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An algorithm for measurement of entropy in multiparticle systems,
based on the recently published proposal of the present authors is given.
Dependence on discretization of the system and effects of multiparticle cor-
relations are discussed in some detail.

PACS numbers: 13.85.Hd, 25.75.—q

It was suggested recently [1] that studying event-by-event fluctuations
may be used for determination of entropy of multiparticle systems created in
high-energy collisions. A generalization of this idea and a specific proposal
for measurement of entropy were formulated in [2]. In the present note
we spell out explicitly the steps to be taken to implement effectively the
method proposed in [2]. Importance of the dependence of measurements on
discretization of particle momenta and the role of (multi)particle correlations
are emphasized.

1. Selection of the phase-space region

As the first step in the process of measurement one has to select a phase-
space region in which measurements are to be performed. This of course
depends on the detector acceptance as well as on the physics one wants
to investigate. The region cannot be too large because for large systems
the method is difficult to apply (the requirements on statistics become too
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demanding). With the statistics of 105 events, the region containing (on
the average) &~ 100 or less particles should be possible to investigate. A
reasonable procedure seems to be to start from a small region and then
increase it until the errors become unbearable.

Comment 1: The proposed measurement is not restricted to systems
with very large number of particles. It can be applied to any multiparticle
system, e.g., in eTe~ annihilation, hadron-hadron collisions or peripheral
nucleus-nucleus collisions.

2. Discretization of the spectrum

The selected phase-space region should now be divided into bins of equal
size in momentum space. The number of bins cannot be too large if one
wants to keep errors under control. On the other hand, as argued below, it
is important to study the dependence of results on the size (and thus the
number) of the bins. Therefore, large statistics is essential for a success of
the measurement.

Comment 2: If one chooses the bins which are not of equal size in momen-
tum space, the original expression for entropy requires a correction which
follows from an appropriate change of variables [2]. This correction is, in
general, not easy to calculate. Nevertheless it may be interesting to study
the dependence on the shape of the binning, as well.

3. Description of an event

Using this procedure, an event is characterized by the number of particles

in each bin, i.e. by a set of integer numbers s = mgj), where s =1, ... M
(M is the total number of bins) and the superscript (j) runs over all kinds
of particles present in the final state. These sets represent different states
of the multiparticle system which were realized in a given experiment. The
number of possible different sets is, generally, very large (for 5 bins and
100 particles one obtains ~ 10% sets). This is, in fact, the main difficulty
in application of the proposed method. It simply reflects the fact that the

system we are dealing with has very many states.

Comment 3: It should be realized that, in practice, such a description is
never complete, i.e., it never describes fully the event. Most often some of
the variables are summed over. This is the case, e.g., when one measures only
charged particles. Then all the variables (i.e. multiplicities and momenta)
related to neutral particles are summed over. It may be thus interesting
to study reduced events, when even some of the measured variables (e.g.
particle identity) are summed over (i.e. ignored).
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4. Measurement of coincidence probabilities

As explained in [2], this is the basis of the method and therefore the
most important step in the whole procedure.

The measurement consists of the simple counting how many times (ng)
any given set s appears in the whole sample of events'. Once the numbers
ng are known for all sets, one forms the sums:

Np =Y ns(ns—1) ... (ns — k+1), (1)

with £ = 1,2,3, ... . The sum formally runs over all sets s recorded in
a given experiment, but nonvanishing contributions give only those which
were recorded at least k times. One sees that Nj is the total number of
observed coincidences of k configurations. The coincidence probability of k
configurations is thus given by

Ny
NN-1)...(N-k+1)’

C = (2)

where N is the total number of the events in the sample?.

One sees that Nj given by (1) are simply factorial moments of the distri-
bution of n, [3]. It is also clear that, since ) ny = N, C; = 1. Finally, one
sees that only states with ns > k contribute to Ny (and thus also to Cj).

5. Errors

The error of C is determined by the error of the numerator in (2).
This error can be estimated by standard methods used in evaluation of the
moments of a distribution.

6. Renyi entropies and Shannon entropy

Once the coincidence probabilities Cy (k = 1,2, ...) are measured, it is
convenient [2]| to calculate the Renyi entropies defined by [4]

log C},

! Since the number of different sets is very large, most of them shall appear only once
or not at all.

2 As explained in [2] this ratio is equal to the (k — 1)-th moment of the probability
distribution Cy = 3", (ps)*. The proof follows closely the argument of [3].
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The Shannon entropy S (i.e. the standard statistical entropy) is formally
equal to the limit of Hy as k — 1 and thus can only be obtained by ex-
trapolation from a series of measured values: Hy = Ho, Hs, ... . to k = 13.
Of course such an extrapolation procedure is not unique and introduces un-
certainty. The main point is, as usual, to choose the "best" extrapolation
formula, 4.e. the functional dependence of Hy on k which will be used to
reach the point £ = 1 from the measured points k = 2,3, . ... This form can
only be guessed on the basis of physics arguments (or prejudices).
In [2] it was suggested to use

log k
Hk:ako_l+a0+a1(k—1)+a2(k—1)2+..., (4)

where the number of terms is determined by the number of measured Renyi
entropies. This formula turned out to be very effective in reproducing the
correct value of entropy for some typical distributions encountered in high-
energy collisions.

Another possibility is to use

Hp=ao+a1/k+ag/k*+ ..., (5)
suggested by the formula for the free gas of massless bosons?.
It will be interesting to compare the results from these two formulae.

Comment 4: The measured values of the Renyi entropies give valuable
information about the system and thus are of great interest, independently
of the accuracy of the extrapolation.

7. Dependence on discretization; scaling

As the result of the procedure explained in Sections 1 to 6, we obtain
the Renyi entropies Hy, (k = 2,3, ...) and the Shannon entropy S of a
given phase-space region. These entropies still depend on the method of
discretization of the momentum spectrum, in particular on the size of the
binning. If the bins are small enough and if the system is close to thermal
equilibrium (s.e. if fluctuations are small), one expects the following scaling
law to hold

Hy(IM) = Hy(M) +logl — S(IM) = S(M) +log! (6)

3 Obviously, one cannot just put k = 1 in the formula (3) for that purpose: since
C; =1, the R.H.S. of (3) for £k = 1 represents the undefined symbol 0/0.

* For the free gas of massless bosons the Renyi entropies are given by Hy, = (1+1/k +
1/k* +1/k*)S/4 where S is the Shannon entropy.
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(M and [M are numbers of bins in two different discretizations). If the
scaling law is verified, one can determine the part of entropy which is inde-
pendent of binning.

The rule (6) is not expected to hold if the system is far from thermal
equilibrium and the fluctuations of the particle distribution are large. In
particular, the effects of intermittency [3] and erraticity [5] as implied, e.g.,
by a cascading mechanism of particle production are expected to violate (6).
Thus testing the dependence of entropies on the number of bins may reveal
interesting features of the system.

8. Comparison of different regions; additivity

Measurements of the entropies Hy and S, as described above, can be per-
formed independently (and — in fact — simultaneously) in different phase-
space regions. The results should give information on the entropy density
and its possible dependence on the position in phase-space (e.g., it seems
likely that the results in the central rapidity region may be rather different
from those in the projectile or target fragmentation). Furthermore, it is
important to verify to what an extent the obtained entropies are additive,
i.e., whether the entropies measured in a region R which is the sum of two
regions Ry and Ry satisfy

Hy(R) = Hy(R1) + Hg(R2) —  S(R) = S(R1)+ S(Ra). (7)

Eq. (7) should be satisfied if there are no strong correlations between the
particles belonging to the regions Ry and Ry. Thus verification of (7) gives
information about the correlations between different phase-space regions.

Comment 5: It may be worth to point out that the scaling law (6) and
the additivity (7) can be more precisely tested for Renyi entropies (Hj) than
for the Shannon entropy (S) where the extrapolation procedure (described
in Section 6) introduces always an additional uncertainty.

9. Conclusions

In conclusion, one sees that the measurement of entropy in limited re-
gions of phase-space is feasible. Moreover, even the simplest tests of the
general scaling and additivity rules can provide essential information on
fluctuations and on correlations in the system. It should be emphasized
that for these tests the Renyi entropies turn out to be more useful than the
standard Shannon entropy.

We thank Y. Foka for suggesting preparation of this note, to
K. Fiatkowski, A. Ostruszka and J. Wosiek for discussions and M. Gazdzicki
for correspondence.
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