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We present first and second-order corrections to the eikonal phase shifts
for the interactions of two deformed nuclei. The elastic scattering differen-
tial cross-section has been calculated for the interactions of 12C-12C system
at energy 1016, 1449 and 2400 MeV. The two results calculated from the
first and second-order corrections do not give substantial improvement be-
tween the experimental data and the theoretical calculations for the elastic
scattering. The deflection function and the S-matrix have been calculated
including the first and second-order corrections to the eikonal phase shift.
Also, the near-side and the far-side decompositions of the scattering ampli-
tude have been calculated including the first and second-order corrections
to the eikonal phase shifts.

PACS numbers: 24.10.Cn

1. Introduction

The scattering processes have been extensively studied within the frame-
work of the eikonal approximation method [1-7]. The correction to the
eikonal phase shift has been studied by many authors. Wallace [8] has eval-
uated the eikonal expansion of the potential scattering T-matrix without
approximation through third order in the inverse momentum. A systematic
program of evaluating the first three eikonal corrections to Glauber theory
has been developed and simple formulas for the eikonal phase corrections
have been given. Wallace has deduced a generating function for the eikonal
phase corrections of arbitrary order and also has conjectured a sum of the
eikonal expansion valid in the limit of high energy and arbitrary potential
strength. The correction to the eikonal phase shift has been studied for
heavy ion reactions and for proton—nucleus reactions. For proton—nucleus
reactions, Waxman has evaluated the first correction term to the eikonal
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phases in closed form for the case of scattering from a potential with a spin—
orbit component. Waxman et al. [9] have generalized Wallace’s results in
the case of scattering from a potential with a spin—orbit as well as a cen-
tral component. Corrections to the Glauber model have been studied for
proton—nucleus elastic scattering at 1 GeV in the Glauber Model [10]. It has
been found that up to momentum transfer ¢ ~ 2-2.5 fm~! the calculations
can be performed with confidence. Going to higher values of ¢ would re-
quire a better knowledge of the nucleon—nucleon interaction as well as more
careful estimates of corrections to the Glauber amplitude. For the case of
heavy ion reactions, Donnelly et al. [1] have calculated corrections to the
lowest-order Glauber results to improve the agreement with experimental
data for heavy ion scattering at intermediate and high energy. Their work
is an application of some of the idea of Wallace [8] and Swift [11] to study
elastic heavy ion scattering at intermediate to high energies. These cor-
rections may be of significant value in describing heavy ion reactions, since
they retain the straight line trajectory of the simple Glauber theory while
folding the actual semi-classical trajectory into an effective potential along
the straight line path. The validity of the eikonal approximation and its first
few corrections in a low energy regime has been studied by Lombard and
Carstoiu [6] to calculate the total and reaction cross-sections. Their results
were coherent enough to reveal a general behavior. They have found that
the eikonal approximation is a good starting point, even at 10 MeV /nucleon,
to calculate oy and op. Corrections give a result within 1% (or better) of
the quantum mechanical value. The first and second order corrections to the
eikonal phase shifts have been presented for heavy ion elastic scattering [7].
The eikonal phase shifts have been modified to include the deflection effect
due to the Coulomb field. Including the first-and second-order corrections
improves the agreement with the experimental data and the optical model
result for the elastic scatterings in the '°0+4°Ca and '0+%9Zr systems at
B = 1503 MeV.

In this work, the first- and second- order corrections to the eikonal phase
shifts have been presented to calculate the elastic scattering differential
cross-section for 12C—12C system at energy 1016, 1449 and 2400 MeV. Our
calculations are performed for two deformed nuclei. The deflection function
and the S-matrix have been calculated for our reactions. The near-side and
the far-side decompositions of the differential cross-section have been calcu-
lated by using the second-order corrections to the eikonal phase shifts. The
formalism is presented in Section 2. Section 3 is devoted to the results and
discussion. The conclusion is given in Section 4.
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2. The formalism

The elastic scattering differential cross-section for symmetric system is
given by

o = |f(0) + f (7 — 0)]? (2.1)
while for non symmetric system is given by
g = |f ()] (22)

The elastic scattering amplitude considering the Coulomb effect is given by
F(0) = fo(8) + (2ik) 1 Y (26 + 1) exp(2ing) (S¢ — 1) Pe(cos ), (2.3)
l

fc(0) is the usual point charge Coulomb amplitude, 7, is the point charge
Coulomb scattering phase shift, and Sy is given by

Sg = eXp(Q’L'(sg) y (2.4)
where §; is the complex nuclear phase shift, which is obtained from [12]
8¢ = 3(b). (2.5)

For potential scattering the eikonal expansion has been derived by Wal-
lace [8] and Lombard |[6]

N I B
%(b):;—m <ﬁ%‘%%> /v (r)d2Z . (2.6)

Note that p is the reduced mass and that we have set i = 1 The zero order
term in equation (2.6) gives the eikonal phase

o

s0(b) :_7“ / V(r)dzZ. (2.7)

— 00

For local potential the first and second order corrections are given, respec-
tively, by [6]

(b) = —# (142 ?W( )dZ (2.8)
ST b nes |
3 2\
_ K 2 5 0 3
wb) = <= <3+5bab+b _562) /V (r)dZ . (2.9)
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V(r) is the optical potential. In our work the two nuclei are considered to
have a static quadrupole deformation, so, one can write V(r, 51, 32) as [13]

V=3 V(ht),

£1,£2

where
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0

+Asy) (k) Agg (k) Pa(cos £1)],
V(2,2 = > %H(%H)(S S g)

1=0,2,4
oo
x / Ak o (k) (e, k) A (k) ALD (k)
0
(2 2 ¢
<3 (2 6) dals0E (e (2.10)
m=—2
and -
A (1) = b [ dr'r (s i), (2.11)
0
B1,B2 are the two Euler angles and <g (2) g) is the 3j-symbol. #'(e, k) is

the Fourier transform of (e, y)
t'(e,y) = t(e,y)[1 — Cy)]; (2.12)

t(e,y) is the energy dependent constituent-averaged two-nucleon transition
amplitude obtained from scattering experiments, e is the NN kinetic energy
in the c.m frame, y is the NN relative separation and C(y) is the Pauli
correlation function, given by

C(y) = —exp 10 and Kp=1.36fm™ . (2.13)
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3. Results and discussion

We have calculated the elastic scattering differential cross-section for two
deformed nuclei by using the eikonal phase shift and its two higher-order
corrections. These calculations have been performed for '2C-'2C system
at energies 1016, 1449 and 2400 MeV. In Fig. 1, the short-dashed curve is
the result for the zero-order eikonal phase shifts, while the long-dashed curve
and the solid curve are the results for the first- and second-order corrections.
We can see from Fig. 1 that the difference between the long-dashed broken
line, the short-dashed broken line and the solid line is considerable when
compared with the experimental data [14-16]. These differences give some
variations in the depth of the minimum. We can see from Fig. 1 that the
two results calculated from the first- and second-order corrections improve
the agreement with the observed data at large scattering angles for the three
reactions considered. We can see from Fig. 1(a) that the result calculated
from the second-order correction gives a satisfactory agreement with the
experimental data up to 0., = 12°. After that it gives a larger value than
the experimental data. Fig. 1(b) shows that the result calculated with the
second-order correction agrees with the experimental data up to 6., = 6°.
Then it gives a larger value than the experimental data. For the case of
120-12C reactions at energy 2400 MeV, the calculation of the second-order
correction agrees with the experimental data up to 6. = 4°. Then it gives
a larger value than the experimental data.
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Fig.1. The elastic scattering differential cross-section for the interactions of
(a) 2C-12C system at energy 1016 MeV, (b) 12C-12C system at energy 1449 MeV
and (c) >C-12C system at energy 2400 MeV. The short dashed broken line rep-
resents the calculations for zero-order correction of the eikonal phase shift. The
first-order correction (long dashed broken line) and the second-order correction
(solid line) for the eikonal phase shift are shown in Fig. 1.
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The deflection function has been calculated for the three reactions con-
sidered here along with the S-matrix. The deflection function for a real
optical potential has been calculated from,

d
9@22%(014-%54), (3.1)

where oy is the Coulomb phase shift and &, is the nuclear phase shift.
Fig. 2 shows the deflection function for '2C-'2C system at energy 1016 MeV.
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Fig.2. The deflection function (a) along with the S-matrix (b) are calculated for
12C12C gystem at energy 1016 MeV. The short dashed broken line represents
the calculations of the zero-order correction to the eikonal phase shift. The long
dashed broken line and the solid line represent the calculations for the first and
second-order correction, respectively.
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The short dashed broken curve represents the results of the zero-order eikonal
phase shift. The long dashed broken curve and the solid curve represent the
results of the first- and second-order corrections. We can see from Fig. 2
that the rainbow scattering angle value,minimum of the deflection function,
decreases with increasing the order of the correction of the eikonal phase
shift. The S-matrix is shifted to the right with increasing the order of the
correction. Also, the deflection function is shifted to higher values of the par-
tial wave. The deflection function and the S-matrix have been calculated
also for ">C-12C system at energies 1449 and 2400 MeV. The deflection func-
tion and the S-matrix have the same smooth shape for the three reactions
considered here. So, we put in the paper the deflection function and the
S-matrix calculated for '?C-'2C system at energy 1016 MeV only. The val-
ues of the rainbow scattering angles, the rainbow partial wave, the grazing
partial wave and the values of the S-matrix at the rainbow scattering angles
are shown in Table I. We can see from Table I that the rainbow scattering
angle values decrease with increasing the energy. The rainbow partial wave
and the grazing partial wave increase with increasing the energy. Also,the
value of the S- matrix at the rainbow angle increases with increasing the
energy. Concerning the strong absorption, we have found that |Sy| ~ 0 for
¢ = 34,27 and 23 for the interactions of 2C-'2C system at energy 1016,
1449 and 2400 MeV, respectively. This shows that the strong absorption
decreases with increasing the energy.

TABLE 1

Parameters characterizing the deflection function and the S-matrix for the inter-
actions of two deformed nuclei.

Reaction Energy (MeV) 6, L, L, |Si,]|

2¢-12¢ 1016 -3.28 35 62 0.006
2¢-12¢ 1449 -2.22 37 70 0.017
2¢-12¢ 2400 -1.45 45 87 0.027

The near-side and the far-side decompositions of the scattering ampli-
tudes have been performed according to Fuller formalism by replacing the
associated Legendre polynomial P(cos ) by [17]

ta(cos 0) = % Py(cos ) F i%Qg(cos 0)| , (3.2)

where Qp is a Legendre function of the second kind. Fig. 3 shows the
contributions of the near-side and the far-side components to the elastic
scattering cross-section along with the total differential cross-section for the
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Fig.3. The near-side (short dashed broken line) and the far-side (long dashed
broken line) components of the elastic scattering along with the total differential
cross-section (solid line) calculated using the second-order correction to the eikonal
phase shift. The calculations are performed for (a) 2C-12C system at energy 1016
MeV, (b) 12C-12C system at energy 1449 MeV and (c) '2C-'2C system at energy
2400 MeV.

interactions of '2C—12C system at energy 1016, 1449 and 2400 MeV. The
near-side and the far-side decompositions of the scattering amplitude have
been calculated with the second-order corrections to the eikonal phase shift.
We can see from Fig. 3 that the oscillations observed at forward angles in the
total differential cross-section for the three reactions are due to the strong
interference between the near-side and the far-side contributions. This is
because the total differential cross-section is not only the sum of the near-
side and the far-side distributions but contains also the interference term
representing the interference between the near-side and the far-side. The
near-side and the far-side cross-over occurs at angles 6. ,,, = 2.8°, 2° and 1.4°
for the interactions of '2C~'2C system at energies 1016, 1449 and 2400 MeV,
respectively. We can see from Fig. 3 that the cross-over angles decrease with
increasing the energy of the interactions. The exponential fall off following
the interference pattern is due to the dominance at large angles of the far-side
amplitude and should thus be referred to as a far-side tail [14,18] rather than
a nuclear rainbow effect. It is seen from Fig. 3 that the far-side distributions
show oscillations. Oscillations will show up only if we have the beating of two
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waves belonging to the different negative branches of the deflection function
[18]. We can notice from Table I that the nuclear rainbow, minimum of the
deflection function, is shifted toward the small S-matrix element, lower L
value than the grazing one. We notice also that the residual rainbow feature
has moved forward in angle that it overlaps with the far/near interference
pattern. This result was obtained by McVoy [19]. Our results show that
the nuclear rainbow is obscured by the strong absorption [20] and cannot
be recognized. The absorption for L < L, is strong enough to make a true
rainbow pattern unobservable, but it is not strong enough to destroy the
pattern of the far-side dominance due to the partial waves with L between
L, and L4 [19]. The oscillations in the near-side distributions are caused
by the interference of the refractive and diffractive components of the near-
side cross-section [21]. Comparing our results obtained for the near-side and
far-side distributions which are calculated using the second order correction
to the eikonal phase shift with that calculated for two spherical nuclei [22].
We can find that the behavior of the near-side and the far-side distributions
does not change by considering both the target and projectile as deformed
nuclei, also, does not change by taking the second order correction of the
eikonal phase shift into consideration.

4. Conclusion

We have calculated the elastic scattering differential cross-section for the
interactions of '2C-'2C system at energies 1016, 1449 and 2400 MeV. Our
calculations have been performed for the interactions of two deformed nu-
clei with orientation angle 1 = 2 = 60° [13]. The first and second order
corrections of the eikonal phase shifts have been considered in our calcula-
tions. We have found that including the first and second order corrections to
the eikonal phase shift does not give substantial improvement between the
experimental data and the theoretical calculations for the elastic scattering
differential cross-section. Including the first and second order corrections
to the eikonal phase shift and considering the target and the projectile as
deformed nuclei do not change the behavior of the near-side and the far-side
distributions. The rainbow scattering angle values decrease when including
the first and second order corrections to the eikonal phase shift as we can
see from calculating the deflection function.



724 7. METAWEI

REFERENCES

[1] T.W. Donnelly, J. Dubach, J.D. Walecka, Nucl. Phys. A232, 355 (1974).
[2] J. Knoll, R. Schaeffer, Ann. Phys.(N.Y.) 97, 307 (1976).

[3] J. Chauvin, D. Lebrun, F. Durand, M. Buenerd, J. Phys. G 11 (1985), 261.
[4] R. da Silveira, Lecbrcg-Willain, J. Phys. G 28, 149 (1987).

[5] G. Faldt, A. Ingemarsson, J. Mahalanabis, Phys. Rev. C48, 1974 (1992).
[6] F. Carstoiu, R.J. Lombard, Phys. Rev. C48, 830 (1993).

[7] Moon Hoe Cha, Yong Joo Kim, Phys. Rev. C51, 212 (1995).

[8] S.J. Wallace, Ann. Phys. 78, 190 (1973).

[9] D. Waxman, C. Wilkin, J.F. Germond, R.J. Lombard, Phys. Rev. C24, 578
(1981).

[10] J.P. Auger, R.J. Lombard, Ann. Phys. 115, 442 (1978).
[11] A.R. Swift, Phys. Rev. D9, 1740 (1974).
[12] L.W. Townsend, H.B. Bidasaria, J.W. Wilson, Can. J. Phys. 61, 867 (1983).

[13] M.Y.M. Hassan, H.M.M. Mansour, Z. Metawei, Acta Phys. Slovaca, 46, 25
(1996).

[14] M. Buenerd et al., Nucl. Phys. A424, 313 (1984).

[15] J.Y. Hostachy et al., Phys. Lett. B184, 139 (1987).

[16] P. Roussel et al., Phys. Rev. Lett. 54, 1779 (1985).

[17] R.C. Fuller, Phys. Rev. C12, 1561 (1975).

[18] M.C. Mermaz, Z. Phys. A 321, 613 (1985).

[19] K.M. McVoy, G.R. Satchler, Nucl. Phys. A417, 157 (1984).

[20] J. Chauvin, D. Lebrun, A. Lounis, M. Buenerd, Phys. Rev. C28, 28 (1983).
[21] M.R. Pato, M.S. Hussein, Phys. Rep. 189, 129 (1990).

[22] Z. Metawei, will be published.



