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THE OPERATOR FORM OF THE EFFECTIVEPOTENTIAL GOVERNING THE TIME EVOLUTION INn-DIMENSIONAL SUBSPACE OF STATESJ. PiskorskiPedagogial University, Institute of Physis,Pla Sªowia«ski 6, 65-069 Zielona Góra, Polande-mail: jaro�magda.iz.wsp.zgora.pl(Reeived November 29, 1999)This paper presents the operator form of the e�etive potential V gov-erning the time evolution in 2 and 3 and n dimensional subspae of states.The general formula for the n dimensional ase is onsidered the startingpoint for the alulation of the expliit formulae for 2 and 3 dimensionaldegenerate and non-degenerate ases. We relate the 2 and 3 dimensionalases to some physial systems whih are urrently investigated.PACS numbers: 03.65.Bz, 11.10.St1. IntrodutionThe time evolution of physial systems in the Hilbert spae is desribedby the Shrödinger equation:i ��t j ; ti = Hj ; ti; (1)where ~ =  = 1. If we hoose the initial onditions:j ; t = 0i � j i; (2)then the time evolution is desribed by a unitary operator U(t)j i = j ; ti(j i; j ; ti 2 H, U(t) = e�itH).Vetor j ; ti 2 H arries omplete information about the physial systemonsidered. In partiular, the properties of the system whih are desribedby vetors belonging to a losed subspae Hjj, of H an be extrated fromj ; ti. In suh a ase it is su�ient to know the omponent j ; tijj 2 Hjjof j ; ti. The subspae Hjj is de�ned by a projetor P : Hjj = PH, whihsimply means that j ; tijj = P j ; ti.(773)



774 J. PiskorskiAlternatively, the same result an be obtained by studying the timeevolution not in the total spae of states H but in a losed subspae Hjj. Inthis way the total state spae is split into two orthogonal subspaes Hk andH? = H 	Hk, and the Shrödinger equation an be replaed by equationsdesribing eah of the subspaes respetively. The equation for Hk has thefollowing form [1�3℄:�i ��t � PHP� j ; tijj = j�; ti � i 1Z0 K(t� �)j ; �ijjd�; (3)Q = I � P ; (4)K(t) = �(t)PHQe�iQHQQHP ; (5)j�; ti = PHQe�iQHQj i? ; (6)where �(t) = � 1 for t � 00 for t < 0 :Of ourse,K(t) 6= 0 only if [P;H℄ 6= 0. Condition (2) an now be rewritten asj ; t = 0ijj � j ijj; j ; t = 0i? � j i? ; (7)where j i? � Qj i: If we now assume that at the initial moment no statesfrom H? are oupied, j i? = 0, ( that is j�; ti � 0, j i �  ijj) and de�nethe evolution operator for the subspae Hjj:j ; tijj � P j ; ti � PU(t)j i � PU(t)P j ijj ; (8)so Ujj(t)j ijj def= PU(t)P j ijj ; (9)we an transform (3) into�i ��t � PHP�Ujjj ijj = �i 1Z0 K(t� �)Ujj(�)j ijjd�: (10)An equivalent di�erential form of (10) has been found by Królikowski andRzewuski [1, 2℄:�i ��t �Hjj(t)�Ujj(t)j ijj = 0; t � 0; Ujj(0) = P ; (11)



The Operator Form of the E�etive Potential Governing : : : 775where the Hjj(t) denotes the e�etive Hamiltonian:Hjj(t) � PHP + Vjj(t): (12)For every e�etive Hamiltonian Hk governing the time evolution in Hk �PH, whih in general an depend on time t [1�3℄, the following identityholds [4�7℄: Hk(t) � i�Uk(t)�t [Uk(t)℄�1P ; (13)where [Uk(t)℄�1, is de�ned as follows[Uk(t)℄�1Uk(t) = Uk(t)[Uk(t)℄�1 � P: (14)In the nontrivial ase [P;H℄ 6= 0 ; (15)from (13), using (12) and (9) we �ndHk(t) � PHU(t)P [Uk(t)℄�1P (16)def= PHP + Vk(t): (17)and thus Vjj(t) � PHQU(t)[Uk(t)℄�1P :Assumption (15) means that transitions of states from Hk into H? and fromH? into Hk, i.e., the deay and regeneration proesses, are allowed. Thus[4�6℄, Hk(0) � PHP; Vk(0) = 0; Vk(t! 0) ' �itPHQHP ; (18)so, in general Hk(0) 6= Hk(t � t0 = 0) [4�7℄ and Vk(t 6= 0) 6= V +k (t 6= 0),Hk(t 6= 0) 6= H+k (t 6= 0). Aording to the ideas of the standard satteringtheory, it an be stated that operator Hk(t!1) � Hk(1) def= Hjj desribesthe bounded or quasistationary states of the subsystem onsidered (and inthis sense it is similar to e.g. the LOY-e�etive Hamiltonian [8℄).From (10) and (11), (12) it follows that the ation of Vjj(t) on Ujj(t) hasthe following form: Vjj(t)Ujj(t) = �i 1Z0 K(t� �)Ujj(�)d�: (19)



776 J. PiskorskiThe approximate form of Vjj an be obtained from (10) and (19) with theuse of the retarded solution of:�i ��t � PHP�G(t) = PÆ(t); (20)where G(t) is the retarded Green operator:G � G(t) = �i�(t)e�itPHPP: (21)Then, using the iteration proedure for the equation (10) for Ujj [2,5�7℄ weget: Ujj = U0jj(t) + 1Xn=1(�i)n L Æ L Æ L Æ ::: Æ L| {z }n times ÆU0jj(t): (22)U0jj(t) is the solution of the following �free� equation [5�7℄:�i ��t � PHP�U0jj(t) = 0; U0jj(0) = P : (23)Æ stands for the onvolutionf Æ g(t) = 1Z0 f(t� �)g(�);and L � L(t) = G ÆK(t) :Equations (19) and (22) yield:Vjj(t)Ujj(t) = �iK Æ U0jj(t) + 1Xn=1(�i)nK Æ L Æ L Æ ::: Æ L Æ U0jj(t): (24)If jjL(t)jj < 1 then the series (24) is onvergent. It is worth notiing that,unlike in the standard perturbation series, it is not neessary for the pertur-bation H1 to be small in relation to H0 (the full Hamiltonian H = H0+H1)if jjL(t)jj < 1. This is onsidered one of the advantages of this approah overthe standard ones as it an desribe both week and strong interations [6℄.If for every t � 0 jjL(t)jj < 1 then to the lowest order of L(t), Vjj(t) isexpressed by [6℄:Vjj(t) ' V 1jj (t) = �i 1Z0 K(t� �)ei(t��)PHPPd� : (25)



The Operator Form of the E�etive Potential Governing : : : 777This formula was used to ompute Vjj(t) for one�dimensional subspae Hkand to �nd the matrix elements of Vjj(t) ating in a two�state subspae Hkin [7℄. In some problems it is more useful and more onvenient to use theoperator form of Vk(t) rather than the the matrix elements of Vk(t) only.Searhing for the global transformation properties of Vk(t) under some oper-ators expressing symetries of the system is as an example of suh problems.Result (25) will be the starting point for the following onsiderationsonerning the expliit operator form of Vjj(t) in n, 2 and 3 dimensionalases. 2. E�etive potential Vk in n-dimensionalsubspae of statesLet us onsider a general ase of e�etive potential Vk;n, ating in ann-dimensional subspae of states. Formally, the equation orresponding toEq. (12) has the following form:Hk;n(t) def= PHP + Vk;n(t): (26)The projetor P is de�ned in the following way:P = nXj=1 jejihejj � Ik ; (27)where Ik is the unit operator inHjj, {jeji}j2A and {jeji}j=1;2;:::n�{jeji}j2Aare omplete sets of orthonormal vetors hejjeki = Æjk in H and Hk� j!H,respetively. Consequently, if the state spae for the problem is H thenHk = PH and P is the unity in Hk, P = Ik [7℄.The subspae Hk an also be spanned by the eigenvetors of the Hermitianmatrix PHP : PHP j�ji = �j j�ji; (j = 1; 2; :::; n): (28)Using j�ji we de�ne projetors Pj [9℄, where for simpliity the non-degenerate ase of �j is assumed:Pj def= 1h�j j�ji j�jih�j j; (j = 1; 2; 3): (29)Of ourse, these projetors ful�ll the following ompletness ondition:nXj=1 Pj = P: (30)



778 J. PiskorskiThe operator PHP an now be written as follows:PHP = nXj=1 �jPj ; (31)and following: Pe�itPHP = P nXj=1 e�it�jPj : (32)This result an be diretly applied to equation (25)Vk; n(t) = �i nXj=1 tZ0 PHQe�i(t� �)(QHQ� �j)QHP d� Pj : (33)The integration an be easily performed, with the result:Vk;n(t) = �i nXj=1 nPHQe�it(QHQ��j) � 1QHQ� �j QHPoPj = nXj=1�(�j ; t)Pj ; (34)where �(�; t) def= PHQe�it(QHQ��) � 1QHQ� � QHP: (35)Knowing that [10℄limt!1�(�; t) = PHQ 1QHQ� �+ i0QHP; (36)and de�ning �(�) def= PHQ 1QHQ� �+ i0QHP ;we �nally get:Vk;n def= limt!1Vk;n(t) = �i limt!1 nXj=1�(�j ; t)Pj = �i nXj=1�(�j)Pj : (37)



The Operator Form of the E�etive Potential Governing : : : 7793. Vk in a two dimensional subspaeIn this setion we �nd the expliit formula for Vk in a two-dimensionalsubspae of states using the framework presented above. In this ase PHP ,being a [2� 2℄ Hermitian matrix, has the following form:PHP = � H11 H12H21 H22 � ; (38)Hij = H�ji;where Hj;k =< ejjHjeki. The eigenvalues of PHP are easy to alulate:PHP j�i = � H11 H12H21 H22 �� �1�2 � = �� �1�2 � ; (39)�1;2 = 12(H11 +H22)�rjH12j2 + 14(H11 �H22) ; (40)and if we adopt the symbols used in [4�7℄:�1;2 def= H0 � �; (41)where H0 = 12(H11 +H22); � =rjH12j2 + 14(H11 �H22) : (42)Following, the eigenvetor j�1i an be hosen as follows:j�1i = � H12H0+��H111 � ; (43)and the projetor P1:P1 = 1h�1j�1i j�1ih�1j= 1jH12j2(H0+��H11)2 + 1 � H12H0+��H111 �� H21H0 + ��H11 ; 1� ; (44)so, expliitlyP1 = " (H0+��H11)�jH12j2jH12j2+(H0+��H11)2 (H0+��H11)�H12jH12j2+(H0+��H11)2(H0+��H11)�H21jH12j2+(H0+��H11)2 (H0+��H11)2jH12j2+(H0+��H11)2 # : (45)



780 J. PiskorskiFor larity let us de�ne:Pj def= � pj11 pj12pj21 pj22 � (j = 1; 2):Both P1 and PHP an be represented by Pauli matries:P1 = p10�0 + p1x�x + p1y�y + p1z�z;PHP = H0�0 +Hx�x +Hy�y +Hz�z;and the alulation of the oe�ients pj yields:p0 = 12(p11 + p22) = 12 ;px = 12 (p12 + p21) = Hx2� ;py = 12 i(p12 � p21) = Hy2� ;pz = 12 (p11 � p22) = Hz2� : (46)We an see from the above that p� ; (� = 0; x; y; z) an be expressed byH� ; (� = 0; x; y; z), so �nally we get the following expression for P1P1 = 12 ��1� H0� ��0 + 1�PHP�: (47)Keeping in mind the fat that in Hk we have �0 = Ik = P , we obtain:P1 = 12 ��1� H0� �P + 1�PHP�; (48)and after performing the same alulation for P2:P2 = 12 ��1 + H0� �P � 1�PHP�: (49)It is easy to verify that the ompletness ondition (30) is ful�lled:P1 + P2 = P:If we now ome bak to Eq. (34) and use the results obtained in this setion,the e�etive potential Vk will have the following form:Vk(t) = �12�(H0 + �; t)"�1� H0� �P + 1�PHP#�12�(H0 � �; t)"�1 + H0� �P � 1�PHP#: (50)



The Operator Form of the E�etive Potential Governing : : : 781Matrix elements of this Vk(t) are exatly the same as those obtained in [7℄.As noted in [7℄ this result is signi�ant. For example in the ase of neutralK mesons the assumption of CPT invariane and CP noninvariane in thequantun theory, that is [CPT;H℄ = 0 and [CP;H℄ 6= 0, yields:h11 � h22 6= 0; (51)where hij = heijHjjjeji are the matrix elements of Hjj � PHP + Vjj, Vjj def=Vjj(1), whih runs ounter to the usual assumption. More remarks on thisproblem an be found in the onlusions.The ase of both eigenvalues of PHP equal an easily be obtained fromthe general ase desribed above. The assumption of both eigenvalues equalfor a Hermitian [2 � 2℄ matrix yields H11 = H22 and H12 = H21 = 0. It iseasy to verify that �1 = �2 () � = 0. Then:�1 = �2 = H0 ; (52)PHP = H0P ;and PeitPHP � eitH0P : (53)Thus, from equations (25) and (33):Vjj(t) ' V 1jj (t) = ��(H0; t)P : (54)Furthermore, if apart from assuming the degenerate ase of PHP we taket ! 1 we will get the same result as obtained from the Wigner-Weisskopfapproximation by e.g. Lee, Oehme and Yang [8℄. It is interesting to notiethat in this ase h11 = h22 (where hjj = hjjHjjjji) with [CPT;H℄ = 0,whereas in the ase of �1 6= �2 under the same onditions we have (51).4. Vk in a three dimensional subspaeThis setion desribes the expliit formula for Vk in a three dimensionalsubspae of states in a very similar way as it was done for the two dimensionalase.In this ase the PHP matrix is a [3� 3℄ matrix, for examplePHP = 24 H11 H12 H13H21 H22 H23H31 H32 H33 35 ; (55)Hij = H�ji;



782 J. Piskorskiand has the following harateristi equation:�3 +A�2 +B�+ C = 0; (56)A = �(H11 +H22 +H33) ;B = H11H22 +H11H33 +H22H33 � jH13j2 � jH23j2 � jH13j2 ;C = �(H11H22H33 + 2Re(H12H23H31)�H11jH23j2 �H22jH13j2 �H33jH12j2) :It is easy to notie that A;B;C 2 < so, given the fat that PHP is aHermitian matrix, equation (56) is a third order equation with real oef-�ients and real solutions. To �nd the solutions we will use the Cardanoformulae. Bearing in mind that the solutions are real we get the followingthree ases �1 6= �2 6= �3, �1 = �2 = � 6= �3 and �1 = �2 = �3 = � . Letus �nd the eigenvetors, projetors and the quasipotential for eah of theabove ases. 4.1. �1 6= �2 6= �3In this ase the three solutions of the harateristi equation (56) aregiven by the following formulae:�1 = �2(A2�3B3 ) 12 os 13�� A3 ;�2 = �2(A2�3B3 ) 12 os 13(�+ 2�)� A3 ;�3 = �2(A2�3B3 ) 12 os 13(�+ 4�)� A3 ; (57)where os� = 32 ( 2A327 �B3 +C)23 (A2�3B3 ) 32 : The following basis of orthogonal eigenvetorsan be hosen: j�ji = 0� H13(H22 � �j)�H23H12H23(H11 � �j)�H13H21jH12j2 � (H11 � �j)(H22 � �j) 1A ; (58)where j = 1; 2; 3. Using these eigenvetors we reate projetors P in theway given in Se. 2:Pj = 1h�jj�ji j�jih�j j= fjH13(H22 � �j)�H23H12j2+ jH23(H11 � �j)�H13H21j2+ �jH12j2 � (H11 � �j)(H22 � �j)�2g�1� 24 pj11 pj12 pj13pj21 pj22 pj23pj31 pj32 pj33 35 ; (j = 1; 2; 3); (59)



The Operator Form of the E�etive Potential Governing : : : 783wherepj11 = jH13(H22 � �j)�H23H12j2 ;pj12 = (H13(H22 � �j)�H23H12)(H32(H11 � �j)�H31H12) ;pj13 = (H13(H22 � �j)�H23H12)(jH12j2 � (H11 � �j)(H22 � �j)) ;pj21 = (H23(H11 � �j)�H13H21)(H31(H22 � �j)�H32H21) ;pj22 = jH23(H11 � �j)�H13H21j2 ;pj23 = (H23(H11 � �j)�H13H21)(jH12j2 � (H11 � �j)(H22 � �j)) ;pj31 = (jH12j2 � (H11 � �j)(H22 � �j)(H31(H22 � �j)�H32H21) ;pj32 = (jH12j2 � (H11 � �j)(H22 � �j)(H32(H11 � �j)�H31H12) ;pj33 = (jH12j2 � (H11 � �j)(H22 � �j))2 ;(where j=1,2,3).And onsequently the quasipotentialVk;3(t) = �i 3Xj=1�(�j ; t)Pj ; (60)4.2. �1 = �2 = � 6= �3In this ase we have the following expressions for the solutions of theharateristi equation (56):� = (2A327 � B3 + C) 13 � A3 ;�3 = �2(2A327 � B3 + C) 13 � A3 : (61)In this ase to de�ne one of the projetors, say P3 we an use the resultpresented above, so the projetor will be given by formula (59). We do notatually need to know the remaining two projetors expliitly asVk;3(t) = �i�(�; t)(P1 + P2) +�(�3; t)P3 ; (62)and P1 + P2 = P � P3, P is the unity in the onsidered spae so:Vk;3(t) = �i�(�; t)(P � P3) +�(�3; t)P3: (63)4.3. �1 = �2 = �3 = �This ase is the simplest one, and the solutions are:� = �A3 = H11 = H22 = H33: (64)



784 J. PiskorskiIn this ase PHP is a diagonal matrix in any basis. In fat, this is true forany n-dimensional Hermitian matrix with all eigenvalues equal, so we get aform of quasipotential whih is idential to the two dimensional degeneratease (54). Vk = ��(�; t)P: (65)Again, if apart from assuming the three-fold degenerate ase of PHP wetake t!1 we will get a result whih is analogous to the one obtained fromthe Wigner� Weisskopf approximation by e.g. Lee, Oehme and Yang [8℄.5. Equation for � matrix in HjjThis setion ontains one possible appliation of the results obtainedabove, whih is the equation for the density matrix � in Hjj.Very often systems of the type desribed in Setion 1. are onsideredas open systems interating with an unknown rest, i.e., with the reservoir[11, 12℄. Then, for the desription of the time evolution in subspae Hk,instead of the state vetor j ; tik solving equations (3), (11), density matrix �is used. The ��matrix in quantum mehanis ful�lls the following equation:��t� = i[�;H℄; (66)where H is the total Hamiltonian of the system under onsideration ating inthe Hilbert state spaeH. H and � are Hermitian. The onsideration of suhsystems sometimes begins with a phenomenologial Hamiltonian He� � Hk,ating in an n-dimensional subspae Hk. Suh Hamiltonians are of the LOYtype or the type used in the master equation approahes [11, 12℄. TheseHamiltonians are not Hermitian, therefore the time evolution of the redued��matrix, i.e., �k (where �k denotes the part of ��matrix ating in Hk ), isgiven by [11℄ ��t�k = �i�Hk�k � �kH+k �; (67)where �k(t) � 0BBBBB� �11(t) �12(t) : : : �1n(t) 0 : : :��12(t) �22(t) : : : �2n(t) 0 : : :: : : : : : : : : : : : 0 : : :��1n(t) ��2n(t) : : : �nn(t) 0 : : :0 0 0 0 0 : : :: : : : : : : : : : : : : : : : : :
1CCCCCA : (68)At this point one remark onerning the above should be made: all propertiesof �k(t > 0) solving this evolution equation are determined by the form andproperties of Hk so for the same initial onditions �0 but di�erent Hk adi�erent �k(t) an be obtained.



The Operator Form of the E�etive Potential Governing : : : 785Let us notie that the solution of Eq. (66) has the following form�(t) � U(t)�0U+(t); (69)where �0 � �(0) and U(t) is the total unitary evolution operator for thesystem onsidered. From this we onlude that the exat redued ��matrixfor a given omplete and losed subspae Hk of the total state spae H is�k(t) � P�(t)P : (70)If the subsystem desribed by �k(t) is an open system, i.e., if transitions fromsubspae Hk into H 	Hk (and vie versa) our, then P annot ommutewith the total Hamiltonian H.Now, in order to desribe an n state system of the onsidered type, �0of the form (68) and a projetor de�ning the subspae of the form (27), oranother unitary one equivalent to it, should be hosen. It is easy to verifythat for this P we have �0 � P�0P; (71)so, in this ase (see (70) and (69))�k(t) � P�(t)P � PU(t)P�0PU+(t)P: (72)Using the identity (9) we have�k(t) � Uk(t)�0U+k (t): (73)It an be easily veri�ed that �k(t) ful�lls the following equation,i ��t�k(t) =  i�Uk(t)�t !�k(t) + �k(t) i�U+k (t)�t !; (74)or, equivalently i ��t�k(t) � Hk(t) �k(t)� �k(t) H+k (t); (75)(where Hk(t) is given by the identity (13)), whih is analogous to (67).6. ConlusionsThis paper deals with the operator form of the e�etive potential gov-erning the time evolution in n-dimensional subspae of states. The generalexpression for suh an e�etive potential has been found in Setion 2. Se-tions 3 and 4 dealt with the expliit form of suh an operator for 2 and 3



786 J. Piskorskidimensional ases. In Setion 5 an appliation of the formalism developedin the previous setions to the density matrix has been suggested.The approah presented in this paper an be onsidered a natural ex-tention of the Wigner�Weisskopf approah to the single line width to morelevel subsystems whih interat with the rest of the physial system. It hasbeen shown that in the ase of n level systems the WW approah may onlybe suitable if the PHP is n-fold degenerate, whih of ourse is not alwaysthe ase.The physial problem whih is urrently investigated with the use of si-milar methods is the neutral kaon omplex and the possible violation of theCPT symmetry. This problem is obviously a 2 dimensional problem andan be researhed with the use of the formalism developed in Setion 3. Thestandard approah to the problem developed in [8℄ uses the WW approxi-mation to desribe the time evolution of the K0;K0 omplex and proves tobe quite a suessful approximation of the physial reality. As noted at theend of Setion 3, one of the onlusions whih an be drawn here is thath11 = h22. This an be measured, and the parameter ÆCPT � h11 � h22is used in tests of CPT onservation. However, if we want to retain thegeometry of the problem (i.e. we do not want to redue the problem to aone dimensional problem by assuming PHP degeneration) we will �nd thatÆCPT 6= 0 even under CPT onserved. For a more extensive disussion ofthis problem see [4, 5, 7℄.The three dimensional ase has not as yet been applied to desribe anatual physial system and the possibilities of doing so will be investigated infuture papers. One possiblility is to use the density matrix approah whihhas been proposed in Setion 5, to the desription of multi-level atomitransitions. Experiments designed to demonstrate the Quantum Zeno e�etprovide an example of suh multi-level systems. For example Cook suggestedan experiment whih should demonstrate this e�et on an indued transitionin a single, trapped ion [13℄. This experiment assumes the ion to have a 3 -level struture, and to desribe it the density matrix approah is usuallyused (see for example [14℄). This gives us a possiblity to use the resultsobtained in Setion 4.1 (�1 6= �2 6= �3) and Setion 5 to onstrut a suitableequation for the redued three dimensional density matrix. This, however,is beyond the sope of this paper and, as noted earlier, will be researhed infuture papers.
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