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This paper presents the operator form of the effective potential V gov-
erning the time evolution in 2 and 3 and n dimensional subspace of states.
The general formula for the n dimensional case is considered the starting
point for the calculation of the explicit formulae for 2 and 3 dimensional
degenerate and non-degenerate cases. We relate the 2 and 3 dimensional
cases to some physical systems which are currently investigated.
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1. Introduction

The time evolution of physical systems in the Hilbert space is described
by the Shrodinger equation:

0
i— | t) = Hl|: ¢ 1
i ;1) = Hls ), 1)
where i = ¢ = 1. If we choose the initial conditions:

|4t = 0) = |¢), (2)

then the time evolution is described by a unitary operator U (t)|¢) = |v;1)
(), |3 1) € H, U(#) = e~tH),

Vector |¢;t) € H carries complete information about the physical system
considered. In particular, the properties of the system which are described
by vectors belonging to a closed subspace H,|, of H can be extracted from
|4;t). In such a case it is sufficient to know the component [¢;t) € H
of |1;t). The subspace H, is defined by a projector P: H|| = PH, which
simply means that [¢;t), = P|;t).

(773)
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Alternatively, the same result can be obtained by studying the time
evolution not in the total space of states H but in a closed subspace H,|. In
this way the total state space is split into two orthogonal subspaces H| and
H, = H O H|, and the Shrédinger equation can be replaced by equations
describing each of the subspaces respectively. The equation for H has the
following form [1-3]:

<’L% —PHP) |’l/) t | = |X7 ’L/K t—T |1/), ||d7', (3)
0

Q = I_Pa (4)
K(t) = O@t)PHQe "®HRQHP, (5)
xit) = PHQe "MCy), (6)

where

1 for ¢>0
Q(t)_{o for t<0

Of course, K (t) # 0 only if [P, H] # 0. Condition (2) can now be rewritten as

[t =0) = [9)), st =0)L = [¥) 1, (7)

where [9) | = Q|¢). If we now assume that at the initial moment no states
from H | are occupied, |¢)1 =0, ( that is [x;t) =0, |[¢) = ¢)||) and define
the evolution operator for the subspace H:

;1) = Ply;t) = PU(H[Y) = PUR)Pl) (8)

U (BlpY = PU®Pl), 9)

we can transform (3) into
8 o.¢]
’La— — PHP U|||1/) | = —1 K t—T U|| )|1/)>||d7' (10)
0

An equivalent differential form of (10) has been found by Krolikowski and
Rzewuski [1,2]:

<Z%—H(t))U(t)l¢>||=0, t>0, Uy0)=r, (11)
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where the H)(t) denotes the effective Hamiltonian:
HH(t) EPHP—}-VH(t). (12)

For every effective Hamiltonian H| governing the time evolution in H) =
PH, which in general can depend on time ¢ [1-3], the following identity
holds [4-7]:

0
0 =120 17 -1 13

where [U(#)]7", is defined as follows

[y~ ) = Uy ([0 (1)~ = P. (14)

In the nontrivial case

[P, H] #0, (15)
from (13), using (12) and (9) we find

Hy(t) = PHU)PU(t)]™'P (16)
' PHP + V(1) (17)
and thus
VH(t) = PHQU(t) [UH(t)]*l

Assumption (15) means that transitions of states from | into # | and from
H into Hj|, i.e., the decay and regeneration processes, are allowed. Thus

[476]7

Hy(0) = PHP, Vj(0) =0, Vj(t »0)~—itPHQHP,  (18)
s0, in general H||(0) # H)(t > to = 0) [4-7] and V}|(t # 0) # V] (t # 0),
Hy(t #0) # HH (t #0). According to the ideas of the standard scattermg
theory, it can be stated that operator H)(t — oco) = H||(o0) def H|| describes
the bounded or quasistationary states of the subsystem considered (and in
this sense it is similar to e.g. the LOY-effective Hamiltonian [8]).

From (10) and (11), (12) it follows that the action of V}|(¢) on U)/(t) has
the following form:

V(1)U (1) /K (t — 7)U)|(7)dr. (19)
0
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The approximate form of V| can be obtained from (10) and (19) with the
use of the retarded solution of:

<i% - PHP) G(t) = P(t), (20)
where G(t) is the retarded Green operator:

G =G(t) = —iO(t)e PHE P, (21)

Then, using the iteration procedure for the equation (10) for U} [2,5-7] we
get:

o
Uy =U0(t)+ Y (—i)"LoLoLo...o LoUf(1). (22)
n=1 n ;i?nes

Uﬁ(t) is the solution of the following “free” equation [5-7]:
.0 0 0

o stands for the convolution
o
= / fit—1)
0

L=L(t)=GoK(t).
Equations (19) and (22) yield:

and

Vi(OUy(t) = =iK o U(t) + Y (=i)"KoLoLo..oLoU(t). (24)

n=1

If ||L(¢)|| < 1 then the series (24) is convergent. It is worth noticing that,
unlike in the standard perturbation series, it is not necessary for the pertur-
bation H'! to be small in relation to HY (the full Hamiltonian H = H°+ H!)
if ||L(¢)|| < 1. This is considered one of the advantages of this approach over
the standard ones as it can describe both week and strong interactions [6].
If for every ¢ > 0 [|L(#)|| < 1 then to the lowest order of L(t), Vj|(t) is
expressed by [6]:

V(1) ~ /K (t — 7)e!PHP pgr (25)
0
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This formula was used to compute V|(¢) for one-dimensional subspace H|
and to find the matrix elements of V}(¢) acting in a two-state subspace H|
in [7]. In some problems it is more useful and more convenient to use the
operator form of Vj(¢) rather than the the matrix elements of Vj(¢) only.
Searching for the global transformation properties of V), (t) under some oper-
ators expressing symetries of the system is as an example of such problems.

Result (25) will be the starting point for the following considerations
concerning the explicit operator form of V}(¢) in n, 2 and 3 dimensional
cases.

2. Effective potential V) in n-dimensional
subspace of states

Let us consider a general case of effective potential V|, acting in an
n-dimensional subspace of states. Formally, the equation corresponding to
Eq. (12) has the following form:

def
H,(t) = PHP + V| ,(t). (26)

The projector P is defined in the following way:
n
P=>"lej)el =1y, (27)
j=1

where I} is the unit operator in |, {|€;)}jc.4 and {|e;)}j=12..n C{l€;)}jca
are complete sets of orthonormal vectors (ejlex) = d;x in H and H) C |'H,
respectively. Consequently, if the state space for the problem is H then
H| = PH and P is the unity in H, P = I [7].

The subspace | can also be spanned by the eigenvectors of the Hermitian
matrix PHP:

PHP|N;) = Aj|;),  (1=1,2,...,n). (28)

Using |\;) we define projectors P; [9], where for simplicity the non-
degenerate case of ); is assumed:

def 1 ;
Py = mp\j)()\ﬂa (7=1,2,3). (29)

Of course, these projectors fulfill the following completness condition:

zn: P, =P. (30)
j=1
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The operator PH P can now be written as follows:
n
PHP =) _\P;,
j=1

and following:

n
P@iZtPHP — Pzeiit)\jpj.
j=1

This result can be directly applied to equation (25)

n t
Vi,n(t) = —i Z/PHQe—’i(t ~)QHQ = XN)oupdr P,

J=17
The integration can be easily performed, with the result:

e~ IQHQ-)}) _

Vialt) = —i Y {PHQ
j=1

QHQ — A; o
where
def e~ HQHQ-X) _ 1
Z(\t) = PH HP.
Knowing that [10]
lim Z(\,t) = PHQ;QHP
t—oo QHQ — X +1i0 ’
and defining
def 1
Y(A) = PHQ——QHP
() QQHQ -+ iOQ '

we finally get:

n n

def .. - —_ .
Vi = Jim Vo (1) = —i lim 3 2(X;, )P = —i Y D(N\)P;.

t—o0 4 -
J=1 J=1

n
1QHP}Pj =3 =\ 0P,

(31)

(32)

(35)

(36)
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3. V| in a two dimensional subspace

In this section we find the explicit formula for V}; in a two-dimensional
subspace of states using the framework presented above. In this case PHP,
being a [2 x 2] Hermitian matrix, has the following form:

Hyy Hips
PHP = : 38
[ Hy  Hoy ] (38)

3
H;j = Jis

where H;, =< ej|H|ey). The eigenvalues of PHP are easy to calculate:

Hy; Hys o o

PHP|)) = — A , 39
A [Hm H22]<0é2) <042> (39)
AT = §(H11+H22)i |Hio| +Z(H11_H22)’ (40)

and if we adopt the symbols used in [4-7]:
A2 4 (41)

where
1 1

Hy = §(H11 + Hy), k= 1/|Hi2|>+ Z(Hn — Hs) . (42)

Following, the eigenvector |\!) can be chosen as follows:
Hio
) = (T ) (13)

and the projector Pi:

1
P = ——— A {\
1 (A1|>\1)| (A
1 Hio H.
= = < Ho+rx—Hi1 ) <$’1)’ (44)
% + 1 1 H() + K — Hll
so, explicitly
(HO;I'H—HM)-|H12\22 (Hg+n—H11)-H12 ,
_ | TP H0)? THoP+ (Hotr—H
= (1;{‘0+/($7(}{1':).H2111) | 12(|H0(+n(1;11)211) ] (45)
|H12[2+(Ho+K—H11)? |Hi2|?+(Ho+rx—H11)?
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For clarity let us define:
j j
P, def [ p}l P}? ] (G =1,2).
Py P
Both P; and PHP can be represented by Pauli matrices:
P = p(l)UO +p;0m +p;0y +p;02a
PHP = Hyoy + Hyo, + Hyoy + H,0,,
and the calculation of the coefficients p/ yields:

po = %(pn +p2) = %{

Pe = 5(p12 +p21) = 5= A6
_1 B _ & (46)

by = gl(pu p21) —HQ

bz = %(pn —p22) = 55

We can see from the above that p,, (v = 0,z,y,2) can be expressed by
H,, (v=0,2,y, 2), so finally we get the following expression for P

P == 1 <<1—@) ao—i-lPHP). (47)
2 K K

Keeping in mind the fact that in H|| we have o9 = I} = P, we obtain:

1 H, 1
P = <<1 - —°> P+ —PHP), (48)
2 K K
and after performing the same calculation for Ps:
1 H, 1
Py=3 <<1 + 0) P —PHP) (49)
K

It is easy to verify that the completness condition (30) is fulfilled:
P+ P, =P

If we now come back to Eq. (34) and use the results obtained in this section,
the effective potential V}; will have the following form:

(1 - @) p+lpmp
K

K

H, 1
<1+—0)P——PHP .
K

1_
() = —55(Ho+5,1)

1

—§E(H0 —Iﬁ),t) (50)
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Matrix elements of this V| /() are exactly the same as those obtained in [7].

Asnoted in [7] this result is significant. For example in the case of neutral
K mesons the assumption of C'PT invariance and C'P noninvariance in the
quantun theory, that is [CPT, H] = 0 and [C'P, H] # 0, yields:

hi1 — ha # 0, (51)

where h;; = (e;|H|||e;) are the matrix elements of H )= PHP + V), V), o
Vj|(00), which runs counter to the usual assumption. More remarks on this
problem can be found in the conclusions.

The case of both eigenvalues of PH P equal can easily be obtained from
the general case described above. The assumption of both eigenvalues equal
for a Hermitian [2 X 2] matrix yields Hy; = Hoo and Hyo = Hy = 0. It is
easy to verify that A = \> <= k = 0. Then:

A=\ =Hy, (52)
PHP = HyP,
and
PeitPHP — gitHo p (53)

Thus, from equations (25) and (33):
Vi|(t) = V[ (t) = =5 (Ho, )P (54)

Furthermore, if apart from assuming the degenerate case of PH P we take
t — oo we will get the same result as obtained from the Wigner-Weisskopf
approximation by e.g. Lee, Oehme and Yang [8]. It is interesting to notice
that in this case hiy = hoo (where hj; = (j|HH|j)) with [CPT,H] = 0,
whereas in the case of A! # A? under the same conditions we have (51).

4. V|| in a three dimensional subspace

This section describes the explicit formula for ¥} in a three dimensional
subspace of states in a very similar way as it was done for the two dimensional
case.

In this case the PH P matrix is a [3 x 3] matrix, for example

Hy, Hiy» His
PHP = Hy1 Hyy Hos , (55)
H3z H3p Hsj

— *
Hij = Hj;,
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and has the following characteristic equation:

M4+ AN + BA+C =0, (56)
A = —(Hy + Hy + Hs3),
B = HyHoy + HyyHaz + HogHzz — |His|* — |Hoz? — |Hys/?,
C = —(Hy1HxHss + 2Re(H12Ho3H3)

—Hyy|Hys|* — Hyo|Hi3|* — Hsz|Hio|?).

It is easy to notice that A, B,C' € R so, given the fact that PHP is a
Hermitian matrix, equation (56) is a third order equation with real coef-
ficients and real solutions. To find the solutions we will use the Cardano
formulae. Bearing in mind that the solutions are real we get the following
three cases A\ Z A9 # A3, At = Ao = A # A3 and A\ = Ay = A3 = A. Let
us find the eigenvectors, projectors and the quasipotential for each of the
above cases.

4.1 010 # X # A3
In this case the three solutions of the characteristic equation (56) are
given by the following formulae:

A2-3B\1 A
AL = —Q(Tw)i costar— 4,
Ay = —Z(A_%)E cos +(a + 27 —%, (57)
273p.\1
A3 = —2(AT33)2 cos & (o + 4m) — %,
324° B
where cos a = 22(212 = J)F3C ) The following basis of orthogonal eigenvectors
B = 2
3 3

can be chosen:
Hi3(Hop — \j) — HozHio
IAj) = Hy3(Hyy — Aj) — HizHo ; (58)
|Hy2> — (Hin — Aj)(Hzz2 — Aj)
where 5 = 1,2,3. Using these eigenvectors we create projectors P in the
way given in Sec. 2:
1
P = SO
ROV Y L ,
= {|Hi3(Ha — \j) — HosHys|
+ |Hos(Hyy — Xj) — HizHor|?
2. _
+ [[Hi” = (Hiy — X)) (Haz — X))}
p{l pig p{s _
Py P P | (T=123), (59)
pél pég p%s

X
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where
Pl = [Hi3(Haa — \j) — HyzHyo|?,
plo = (Hi3(Haa — X)) — H23H12)(H32(H11 —\j) — H31Hya),
pls = (Hi3(Ha — Xj) — HysHio)(|Hral* — (Hin — ;) (Haz — X)),
Py = (Haz(Hii — Nj) — HizHoy)(Hz1(Hag — \j) — H3gHay),
Phy = |Haz(Hi1 — \j) — HizHa|?,
Phs = (Haz(Hi1 — Xj) — H13H21)(|H12|2 (Hi1 — Aj)(Haz — Aj)),
pay = (|Hia|* — (Hii — Aj)(Haa — Aj)(Hz1(Hay — Aj) — HzaHay)
Pho = (|Hi2|* — (Hii — Aj)(Haa — Aj)(Hsa(Hu — Aj) — Hz1 Haa)
ps = ([Hiol* — (Hi — Xj)(Haz — Aj))?,

(where j=1,2,3).And consequently the quasipotential

Vis(t)=—iY 5\, t)P (60)

Jj=1

12 M= =X%£ )\

In this case we have the following expressions for the solutions of the
characteristic equation (56):

(61)

In this case to define one of the projectors, say P3 we can use the result
presented above, so the projector will be given by formula (59). We do not
actually need to know the remaining two projectors explicitly as

Via3(t) = =S\ ) (P + Po) + Z(Xs, 1) s, (62)
and P, + P, = P — P5, P is the unity in the considered space so:

Vis(t) = —iZ(\ 1) (P — Py) + E(\s, 1) Ps. (63)

48 M == A3 =\

This case is the simplest one, and the solutions are:

A
)\:—g :H11 :H22:H33. (64)
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In this case PHP is a diagonal matrix in any basis. In fact, this is true for
any n-dimensional Hermitian matrix with all eigenvalues equal, so we get a
form of quasipotential which is identical to the two dimensional degenerate
case (54).

Vi=-E\1)P. (65)

Again, if apart from assuming the three-fold degenerate case of PHP we
take £ — oo we will get a result which is analogous to the one obtained from
the Wigner— Weisskopf approximation by e.g. Lee, Oehme and Yang [8].

5. Equation for p matrix in H,

This section contains one possible application of the results obtained
above, which is the equation for the density matrix p in H;.

Very often systems of the type described in Section 1. are considered
as open systems interacting with an unknown rest, i.e., with the reservoir
[11,12]. Then, for the description of the time evolution in subspace H|,
instead of the state vector [4; ) solving equations (3), (11), density matrix p
is used. The p—matrix in quantum mechanics fulfills the following equation:

9 p=ilp, ), (66)

where H is the total Hamiltonian of the system under consideration acting in
the Hilbert state space H. H and p are Hermitian. The consideration of such
systems sometimes begins with a phenomenological Hamiltonian Heg = H)|,
acting in an n-dimensional subspace . Such Hamiltonians are of the LOY
type or the type used in the master equation approaches [11,12]. These
Hamiltonians are not Hermitian, therefore the time evolution of the reduced
p-matrix, i.e., p| (where p; denotes the part of p-matrix acting in H,| ), is
given by [11]

o1 = —i(Hipy — oy H). (67)
where
pii(t) pi2(t) ... pa(t) O
Pia(t)  p22(t) ... pan(t) 8
W0=| iy o e b o
0 0 0 0 0

At this point one remark concerning the above should be made: all properties
of pj(t > 0) solving this evolution equation are determined by the form and
properties of H) so for the same initial conditions pg but different H) a
different pj|(¢) can be obtained.
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Let us notice that the solution of Eq. (66) has the following form

p(t) = U(t)poU™ (1), (69)

where pg = p(0) and U(#) is the total unitary evolution operator for the
system considered. From this we conclude that the exact reduced p-matrix
for a given complete and closed subspace H|| of the total state space H is

o1(t) = Pp(t)P. (70)

If the subsystem described by pj|(t) is an open system, i.e., if transitions from
subspace H into H © H| (and vice versa) occur, then P cannot commute
with the total Hamiltonian H.

Now, in order to describe an n state system of the considered type, pg
of the form (68) and a projector defining the subspace of the form (27), or
another unitary one equivalent to it, should be chosen. It is easy to verify
that for this P we have

po = PpoP, (71)

s, in this case (see (70) and (69))
p(t) = Pp(t)P = PU(t)PpoPU*(t)P. (72)
Using the identity (9) we have
p(8) = U (O)pol} (1) (73)

It can be easily verified that p)(¢) fulfills the following equation,

oUt(t
i%ﬂll(t) = (z Blgt(t))p'(t) + py(t) (z |8t( )>, (74)

or, equivalently

(1) = Hy(1) py(4) — oy (1) H} 1) (75)

(where H||(t) is given by the identity (13)), which is analogous to (67).

6. Conclusions

This paper deals with the operator form of the effective potential gov-
erning the time evolution in n-dimensional subspace of states. The general
expression for such an effective potential has been found in Section 2. Sec-
tions 3 and 4 dealt with the explicit form of such an operator for 2 and 3
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dimensional cases. In Section 5 an application of the formalism developed
in the previous sections to the density matrix has been suggested.

The approach presented in this paper can be considered a natural ex-
tention of the Wigner—Weisskopf approach to the single line width to more
level subsystems which interact with the rest of the physical system. It has
been shown that in the case of n level systems the WW approach may only
be suitable if the PH P is n-fold degenerate, which of course is not always
the case.

The physical problem which is currently investigated with the use of si-
milar methods is the neutral kaon complex and the possible violation of the
CPT symmetry. This problem is obviously a 2 dimensional problem and
can be researched with the use of the formalism developed in Section 3. The
standard approach to the problem developed in [8] uses the WW approxi-
mation to describe the time evolution of the Ky, Koy complex and proves to
be quite a successful approximation of the physical reality. As noted at the
end of Section 3, one of the conclusions which can be drawn here is that
hi1 = hos. This can be measured, and the parameter dcpr ~ hi1 — hos
is used in tests of CPT conservation. However, if we want to retain the
geometry of the problem (i.e. we do not want to reduce the problem to a
one dimensional problem by assuming PH P degeneration) we will find that
dcpr # 0 even under C'PT conserved. For a more extensive discussion of
this problem see [4,5,7].

The three dimensional case has not as yet been applied to describe an
actual physical system and the possibilities of doing so will be investigated in
future papers. One possiblility is to use the density matrix approach which
has been proposed in Section 5, to the description of multi-level atomic
transitions. Experiments designed to demonstrate the Quantum Zeno effect
provide an example of such multi-level systems. For example Cook suggested
an experiment which should demonstrate this effect on an induced transition
in a single, trapped ion [13|. This experiment assumes the ion to have a 3 -
level structure, and to describe it the density matrix approach is usually
used (see for example [14]). This gives us a possiblity to use the results
obtained in Section 4.1 (A1 # A2 # A3) and Section 5 to construct a suitable
equation for the reduced three dimensional density matrix. This, however,
is beyond the scope of this paper and, as noted earlier, will be researched in
future papers.
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