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THE OPERATOR FORM OF THE EFFECTIVEPOTENTIAL GOVERNING THE TIME EVOLUTION INn-DIMENSIONAL SUBSPACE OF STATESJ. PiskorskiPedagogi
al University, Institute of Physi
s,Pla
 Sªowia«ski 6, 65-069 Zielona Góra, Polande-mail: jaro�magda.iz.wsp.zgora.pl(Re
eived November 29, 1999)This paper presents the operator form of the e�e
tive potential V gov-erning the time evolution in 2 and 3 and n dimensional subspa
e of states.The general formula for the n dimensional 
ase is 
onsidered the startingpoint for the 
al
ulation of the expli
it formulae for 2 and 3 dimensionaldegenerate and non-degenerate 
ases. We relate the 2 and 3 dimensional
ases to some physi
al systems whi
h are 
urrently investigated.PACS numbers: 03.65.Bz, 11.10.St1. Introdu
tionThe time evolution of physi
al systems in the Hilbert spa
e is des
ribedby the Shrödinger equation:i ��t j ; ti = Hj ; ti; (1)where ~ = 
 = 1. If we 
hoose the initial 
onditions:j ; t = 0i � j i; (2)then the time evolution is des
ribed by a unitary operator U(t)j i = j ; ti(j i; j ; ti 2 H, U(t) = e�itH).Ve
tor j ; ti 2 H 
arries 
omplete information about the physi
al system
onsidered. In parti
ular, the properties of the system whi
h are des
ribedby ve
tors belonging to a 
losed subspa
e Hjj, of H 
an be extra
ted fromj ; ti. In su
h a 
ase it is su�
ient to know the 
omponent j ; tijj 2 Hjjof j ; ti. The subspa
e Hjj is de�ned by a proje
tor P : Hjj = PH, whi
hsimply means that j ; tijj = P j ; ti.(773)



774 J. PiskorskiAlternatively, the same result 
an be obtained by studying the timeevolution not in the total spa
e of states H but in a 
losed subspa
e Hjj. Inthis way the total state spa
e is split into two orthogonal subspa
es Hk andH? = H 	Hk, and the Shrödinger equation 
an be repla
ed by equationsdes
ribing ea
h of the subspa
es respe
tively. The equation for Hk has thefollowing form [1�3℄:�i ��t � PHP� j ; tijj = j�; ti � i 1Z0 K(t� �)j ; �ijjd�; (3)Q = I � P ; (4)K(t) = �(t)PHQe�iQHQQHP ; (5)j�; ti = PHQe�iQHQj i? ; (6)where �(t) = � 1 for t � 00 for t < 0 :Of 
ourse,K(t) 6= 0 only if [P;H℄ 6= 0. Condition (2) 
an now be rewritten asj ; t = 0ijj � j ijj; j ; t = 0i? � j i? ; (7)where j i? � Qj i: If we now assume that at the initial moment no statesfrom H? are o

upied, j i? = 0, ( that is j�; ti � 0, j i �  ijj) and de�nethe evolution operator for the subspa
e Hjj:j ; tijj � P j ; ti � PU(t)j i � PU(t)P j ijj ; (8)so Ujj(t)j ijj def= PU(t)P j ijj ; (9)we 
an transform (3) into�i ��t � PHP�Ujjj ijj = �i 1Z0 K(t� �)Ujj(�)j ijjd�: (10)An equivalent di�erential form of (10) has been found by Królikowski andRzewuski [1, 2℄:�i ��t �Hjj(t)�Ujj(t)j ijj = 0; t � 0; Ujj(0) = P ; (11)



The Operator Form of the E�e
tive Potential Governing : : : 775where the Hjj(t) denotes the e�e
tive Hamiltonian:Hjj(t) � PHP + Vjj(t): (12)For every e�e
tive Hamiltonian Hk governing the time evolution in Hk �PH, whi
h in general 
an depend on time t [1�3℄, the following identityholds [4�7℄: Hk(t) � i�Uk(t)�t [Uk(t)℄�1P ; (13)where [Uk(t)℄�1, is de�ned as follows[Uk(t)℄�1Uk(t) = Uk(t)[Uk(t)℄�1 � P: (14)In the nontrivial 
ase [P;H℄ 6= 0 ; (15)from (13), using (12) and (9) we �ndHk(t) � PHU(t)P [Uk(t)℄�1P (16)def= PHP + Vk(t): (17)and thus Vjj(t) � PHQU(t)[Uk(t)℄�1P :Assumption (15) means that transitions of states from Hk into H? and fromH? into Hk, i.e., the de
ay and regeneration pro
esses, are allowed. Thus[4�6℄, Hk(0) � PHP; Vk(0) = 0; Vk(t! 0) ' �itPHQHP ; (18)so, in general Hk(0) 6= Hk(t � t0 = 0) [4�7℄ and Vk(t 6= 0) 6= V +k (t 6= 0),Hk(t 6= 0) 6= H+k (t 6= 0). A

ording to the ideas of the standard s
atteringtheory, it 
an be stated that operator Hk(t!1) � Hk(1) def= Hjj des
ribesthe bounded or quasistationary states of the subsystem 
onsidered (and inthis sense it is similar to e.g. the LOY-e�e
tive Hamiltonian [8℄).From (10) and (11), (12) it follows that the a
tion of Vjj(t) on Ujj(t) hasthe following form: Vjj(t)Ujj(t) = �i 1Z0 K(t� �)Ujj(�)d�: (19)



776 J. PiskorskiThe approximate form of Vjj 
an be obtained from (10) and (19) with theuse of the retarded solution of:�i ��t � PHP�G(t) = PÆ(t); (20)where G(t) is the retarded Green operator:G � G(t) = �i�(t)e�itPHPP: (21)Then, using the iteration pro
edure for the equation (10) for Ujj [2,5�7℄ weget: Ujj = U0jj(t) + 1Xn=1(�i)n L Æ L Æ L Æ ::: Æ L| {z }n times ÆU0jj(t): (22)U0jj(t) is the solution of the following �free� equation [5�7℄:�i ��t � PHP�U0jj(t) = 0; U0jj(0) = P : (23)Æ stands for the 
onvolutionf Æ g(t) = 1Z0 f(t� �)g(�);and L � L(t) = G ÆK(t) :Equations (19) and (22) yield:Vjj(t)Ujj(t) = �iK Æ U0jj(t) + 1Xn=1(�i)nK Æ L Æ L Æ ::: Æ L Æ U0jj(t): (24)If jjL(t)jj < 1 then the series (24) is 
onvergent. It is worth noti
ing that,unlike in the standard perturbation series, it is not ne
essary for the pertur-bation H1 to be small in relation to H0 (the full Hamiltonian H = H0+H1)if jjL(t)jj < 1. This is 
onsidered one of the advantages of this approa
h overthe standard ones as it 
an des
ribe both week and strong intera
tions [6℄.If for every t � 0 jjL(t)jj < 1 then to the lowest order of L(t), Vjj(t) isexpressed by [6℄:Vjj(t) ' V 1jj (t) = �i 1Z0 K(t� �)ei(t��)PHPPd� : (25)



The Operator Form of the E�e
tive Potential Governing : : : 777This formula was used to 
ompute Vjj(t) for one�dimensional subspa
e Hkand to �nd the matrix elements of Vjj(t) a
ting in a two�state subspa
e Hkin [7℄. In some problems it is more useful and more 
onvenient to use theoperator form of Vk(t) rather than the the matrix elements of Vk(t) only.Sear
hing for the global transformation properties of Vk(t) under some oper-ators expressing symetries of the system is as an example of su
h problems.Result (25) will be the starting point for the following 
onsiderations
on
erning the expli
it operator form of Vjj(t) in n, 2 and 3 dimensional
ases. 2. E�e
tive potential Vk in n-dimensionalsubspa
e of statesLet us 
onsider a general 
ase of e�e
tive potential Vk;n, a
ting in ann-dimensional subspa
e of states. Formally, the equation 
orresponding toEq. (12) has the following form:Hk;n(t) def= PHP + Vk;n(t): (26)The proje
tor P is de�ned in the following way:P = nXj=1 jejihejj � Ik ; (27)where Ik is the unit operator inHjj, {jeji}j2A and {jeji}j=1;2;:::n�{jeji}j2Aare 
omplete sets of orthonormal ve
tors hejjeki = Æjk in H and Hk� j!H,respe
tively. Consequently, if the state spa
e for the problem is H thenHk = PH and P is the unity in Hk, P = Ik [7℄.The subspa
e Hk 
an also be spanned by the eigenve
tors of the Hermitianmatrix PHP : PHP j�ji = �j j�ji; (j = 1; 2; :::; n): (28)Using j�ji we de�ne proje
tors Pj [9℄, where for simpli
ity the non-degenerate 
ase of �j is assumed:Pj def= 1h�j j�ji j�jih�j j; (j = 1; 2; 3): (29)Of 
ourse, these proje
tors ful�ll the following 
ompletness 
ondition:nXj=1 Pj = P: (30)



778 J. PiskorskiThe operator PHP 
an now be written as follows:PHP = nXj=1 �jPj ; (31)and following: Pe�itPHP = P nXj=1 e�it�jPj : (32)This result 
an be dire
tly applied to equation (25)Vk; n(t) = �i nXj=1 tZ0 PHQe�i(t� �)(QHQ� �j)QHP d� Pj : (33)The integration 
an be easily performed, with the result:Vk;n(t) = �i nXj=1 nPHQe�it(QHQ��j) � 1QHQ� �j QHPoPj = nXj=1�(�j ; t)Pj ; (34)where �(�; t) def= PHQe�it(QHQ��) � 1QHQ� � QHP: (35)Knowing that [10℄limt!1�(�; t) = PHQ 1QHQ� �+ i0QHP; (36)and de�ning �(�) def= PHQ 1QHQ� �+ i0QHP ;we �nally get:Vk;n def= limt!1Vk;n(t) = �i limt!1 nXj=1�(�j ; t)Pj = �i nXj=1�(�j)Pj : (37)



The Operator Form of the E�e
tive Potential Governing : : : 7793. Vk in a two dimensional subspa
eIn this se
tion we �nd the expli
it formula for Vk in a two-dimensionalsubspa
e of states using the framework presented above. In this 
ase PHP ,being a [2� 2℄ Hermitian matrix, has the following form:PHP = � H11 H12H21 H22 � ; (38)Hij = H�ji;where Hj;k =< ejjHjeki. The eigenvalues of PHP are easy to 
al
ulate:PHP j�i = � H11 H12H21 H22 �� �1�2 � = �� �1�2 � ; (39)�1;2 = 12(H11 +H22)�rjH12j2 + 14(H11 �H22) ; (40)and if we adopt the symbols used in [4�7℄:�1;2 def= H0 � �; (41)where H0 = 12(H11 +H22); � =rjH12j2 + 14(H11 �H22) : (42)Following, the eigenve
tor j�1i 
an be 
hosen as follows:j�1i = � H12H0+��H111 � ; (43)and the proje
tor P1:P1 = 1h�1j�1i j�1ih�1j= 1jH12j2(H0+��H11)2 + 1 � H12H0+��H111 �� H21H0 + ��H11 ; 1� ; (44)so, expli
itlyP1 = " (H0+��H11)�jH12j2jH12j2+(H0+��H11)2 (H0+��H11)�H12jH12j2+(H0+��H11)2(H0+��H11)�H21jH12j2+(H0+��H11)2 (H0+��H11)2jH12j2+(H0+��H11)2 # : (45)



780 J. PiskorskiFor 
larity let us de�ne:Pj def= � pj11 pj12pj21 pj22 � (j = 1; 2):Both P1 and PHP 
an be represented by Pauli matri
es:P1 = p10�0 + p1x�x + p1y�y + p1z�z;PHP = H0�0 +Hx�x +Hy�y +Hz�z;and the 
al
ulation of the 
oe�
ients pj yields:p0 = 12(p11 + p22) = 12 ;px = 12 (p12 + p21) = Hx2� ;py = 12 i(p12 � p21) = Hy2� ;pz = 12 (p11 � p22) = Hz2� : (46)We 
an see from the above that p� ; (� = 0; x; y; z) 
an be expressed byH� ; (� = 0; x; y; z), so �nally we get the following expression for P1P1 = 12 ��1� H0� ��0 + 1�PHP�: (47)Keeping in mind the fa
t that in Hk we have �0 = Ik = P , we obtain:P1 = 12 ��1� H0� �P + 1�PHP�; (48)and after performing the same 
al
ulation for P2:P2 = 12 ��1 + H0� �P � 1�PHP�: (49)It is easy to verify that the 
ompletness 
ondition (30) is ful�lled:P1 + P2 = P:If we now 
ome ba
k to Eq. (34) and use the results obtained in this se
tion,the e�e
tive potential Vk will have the following form:Vk(t) = �12�(H0 + �; t)"�1� H0� �P + 1�PHP#�12�(H0 � �; t)"�1 + H0� �P � 1�PHP#: (50)



The Operator Form of the E�e
tive Potential Governing : : : 781Matrix elements of this Vk(t) are exa
tly the same as those obtained in [7℄.As noted in [7℄ this result is signi�
ant. For example in the 
ase of neutralK mesons the assumption of CPT invarian
e and CP noninvarian
e in thequantun theory, that is [CPT;H℄ = 0 and [CP;H℄ 6= 0, yields:h11 � h22 6= 0; (51)where hij = heijHjjjeji are the matrix elements of Hjj � PHP + Vjj, Vjj def=Vjj(1), whi
h runs 
ounter to the usual assumption. More remarks on thisproblem 
an be found in the 
on
lusions.The 
ase of both eigenvalues of PHP equal 
an easily be obtained fromthe general 
ase des
ribed above. The assumption of both eigenvalues equalfor a Hermitian [2 � 2℄ matrix yields H11 = H22 and H12 = H21 = 0. It iseasy to verify that �1 = �2 () � = 0. Then:�1 = �2 = H0 ; (52)PHP = H0P ;and PeitPHP � eitH0P : (53)Thus, from equations (25) and (33):Vjj(t) ' V 1jj (t) = ��(H0; t)P : (54)Furthermore, if apart from assuming the degenerate 
ase of PHP we taket ! 1 we will get the same result as obtained from the Wigner-Weisskopfapproximation by e.g. Lee, Oehme and Yang [8℄. It is interesting to noti
ethat in this 
ase h11 = h22 (where hjj = hjjHjjjji) with [CPT;H℄ = 0,whereas in the 
ase of �1 6= �2 under the same 
onditions we have (51).4. Vk in a three dimensional subspa
eThis se
tion des
ribes the expli
it formula for Vk in a three dimensionalsubspa
e of states in a very similar way as it was done for the two dimensional
ase.In this 
ase the PHP matrix is a [3� 3℄ matrix, for examplePHP = 24 H11 H12 H13H21 H22 H23H31 H32 H33 35 ; (55)Hij = H�ji;



782 J. Piskorskiand has the following 
hara
teristi
 equation:�3 +A�2 +B�+ C = 0; (56)A = �(H11 +H22 +H33) ;B = H11H22 +H11H33 +H22H33 � jH13j2 � jH23j2 � jH13j2 ;C = �(H11H22H33 + 2Re(H12H23H31)�H11jH23j2 �H22jH13j2 �H33jH12j2) :It is easy to noti
e that A;B;C 2 < so, given the fa
t that PHP is aHermitian matrix, equation (56) is a third order equation with real 
oef-�
ients and real solutions. To �nd the solutions we will use the Cardanoformulae. Bearing in mind that the solutions are real we get the followingthree 
ases �1 6= �2 6= �3, �1 = �2 = � 6= �3 and �1 = �2 = �3 = � . Letus �nd the eigenve
tors, proje
tors and the quasipotential for ea
h of theabove 
ases. 4.1. �1 6= �2 6= �3In this 
ase the three solutions of the 
hara
teristi
 equation (56) aregiven by the following formulae:�1 = �2(A2�3B3 ) 12 
os 13�� A3 ;�2 = �2(A2�3B3 ) 12 
os 13(�+ 2�)� A3 ;�3 = �2(A2�3B3 ) 12 
os 13(�+ 4�)� A3 ; (57)where 
os� = 32 ( 2A327 �B3 +C)23 (A2�3B3 ) 32 : The following basis of orthogonal eigenve
tors
an be 
hosen: j�ji = 0� H13(H22 � �j)�H23H12H23(H11 � �j)�H13H21jH12j2 � (H11 � �j)(H22 � �j) 1A ; (58)where j = 1; 2; 3. Using these eigenve
tors we 
reate proje
tors P in theway given in Se
. 2:Pj = 1h�jj�ji j�jih�j j= fjH13(H22 � �j)�H23H12j2+ jH23(H11 � �j)�H13H21j2+ �jH12j2 � (H11 � �j)(H22 � �j)�2g�1� 24 pj11 pj12 pj13pj21 pj22 pj23pj31 pj32 pj33 35 ; (j = 1; 2; 3); (59)



The Operator Form of the E�e
tive Potential Governing : : : 783wherepj11 = jH13(H22 � �j)�H23H12j2 ;pj12 = (H13(H22 � �j)�H23H12)(H32(H11 � �j)�H31H12) ;pj13 = (H13(H22 � �j)�H23H12)(jH12j2 � (H11 � �j)(H22 � �j)) ;pj21 = (H23(H11 � �j)�H13H21)(H31(H22 � �j)�H32H21) ;pj22 = jH23(H11 � �j)�H13H21j2 ;pj23 = (H23(H11 � �j)�H13H21)(jH12j2 � (H11 � �j)(H22 � �j)) ;pj31 = (jH12j2 � (H11 � �j)(H22 � �j)(H31(H22 � �j)�H32H21) ;pj32 = (jH12j2 � (H11 � �j)(H22 � �j)(H32(H11 � �j)�H31H12) ;pj33 = (jH12j2 � (H11 � �j)(H22 � �j))2 ;(where j=1,2,3).And 
onsequently the quasipotentialVk;3(t) = �i 3Xj=1�(�j ; t)Pj ; (60)4.2. �1 = �2 = � 6= �3In this 
ase we have the following expressions for the solutions of the
hara
teristi
 equation (56):� = (2A327 � B3 + C) 13 � A3 ;�3 = �2(2A327 � B3 + C) 13 � A3 : (61)In this 
ase to de�ne one of the proje
tors, say P3 we 
an use the resultpresented above, so the proje
tor will be given by formula (59). We do nota
tually need to know the remaining two proje
tors expli
itly asVk;3(t) = �i�(�; t)(P1 + P2) +�(�3; t)P3 ; (62)and P1 + P2 = P � P3, P is the unity in the 
onsidered spa
e so:Vk;3(t) = �i�(�; t)(P � P3) +�(�3; t)P3: (63)4.3. �1 = �2 = �3 = �This 
ase is the simplest one, and the solutions are:� = �A3 = H11 = H22 = H33: (64)



784 J. PiskorskiIn this 
ase PHP is a diagonal matrix in any basis. In fa
t, this is true forany n-dimensional Hermitian matrix with all eigenvalues equal, so we get aform of quasipotential whi
h is identi
al to the two dimensional degenerate
ase (54). Vk = ��(�; t)P: (65)Again, if apart from assuming the three-fold degenerate 
ase of PHP wetake t!1 we will get a result whi
h is analogous to the one obtained fromthe Wigner� Weisskopf approximation by e.g. Lee, Oehme and Yang [8℄.5. Equation for � matrix in HjjThis se
tion 
ontains one possible appli
ation of the results obtainedabove, whi
h is the equation for the density matrix � in Hjj.Very often systems of the type des
ribed in Se
tion 1. are 
onsideredas open systems intera
ting with an unknown rest, i.e., with the reservoir[11, 12℄. Then, for the des
ription of the time evolution in subspa
e Hk,instead of the state ve
tor j ; tik solving equations (3), (11), density matrix �is used. The ��matrix in quantum me
hani
s ful�lls the following equation:��t� = i[�;H℄; (66)where H is the total Hamiltonian of the system under 
onsideration a
ting inthe Hilbert state spa
eH. H and � are Hermitian. The 
onsideration of su
hsystems sometimes begins with a phenomenologi
al Hamiltonian He� � Hk,a
ting in an n-dimensional subspa
e Hk. Su
h Hamiltonians are of the LOYtype or the type used in the master equation approa
hes [11, 12℄. TheseHamiltonians are not Hermitian, therefore the time evolution of the redu
ed��matrix, i.e., �k (where �k denotes the part of ��matrix a
ting in Hk ), isgiven by [11℄ ��t�k = �i�Hk�k � �kH+k �; (67)where �k(t) � 0BBBBB� �11(t) �12(t) : : : �1n(t) 0 : : :��12(t) �22(t) : : : �2n(t) 0 : : :: : : : : : : : : : : : 0 : : :��1n(t) ��2n(t) : : : �nn(t) 0 : : :0 0 0 0 0 : : :: : : : : : : : : : : : : : : : : :
1CCCCCA : (68)At this point one remark 
on
erning the above should be made: all propertiesof �k(t > 0) solving this evolution equation are determined by the form andproperties of Hk so for the same initial 
onditions �0 but di�erent Hk adi�erent �k(t) 
an be obtained.



The Operator Form of the E�e
tive Potential Governing : : : 785Let us noti
e that the solution of Eq. (66) has the following form�(t) � U(t)�0U+(t); (69)where �0 � �(0) and U(t) is the total unitary evolution operator for thesystem 
onsidered. From this we 
on
lude that the exa
t redu
ed ��matrixfor a given 
omplete and 
losed subspa
e Hk of the total state spa
e H is�k(t) � P�(t)P : (70)If the subsystem des
ribed by �k(t) is an open system, i.e., if transitions fromsubspa
e Hk into H 	Hk (and vi
e versa) o

ur, then P 
annot 
ommutewith the total Hamiltonian H.Now, in order to des
ribe an n state system of the 
onsidered type, �0of the form (68) and a proje
tor de�ning the subspa
e of the form (27), oranother unitary one equivalent to it, should be 
hosen. It is easy to verifythat for this P we have �0 � P�0P; (71)so, in this 
ase (see (70) and (69))�k(t) � P�(t)P � PU(t)P�0PU+(t)P: (72)Using the identity (9) we have�k(t) � Uk(t)�0U+k (t): (73)It 
an be easily veri�ed that �k(t) ful�lls the following equation,i ��t�k(t) =  i�Uk(t)�t !�k(t) + �k(t) i�U+k (t)�t !; (74)or, equivalently i ��t�k(t) � Hk(t) �k(t)� �k(t) H+k (t); (75)(where Hk(t) is given by the identity (13)), whi
h is analogous to (67).6. Con
lusionsThis paper deals with the operator form of the e�e
tive potential gov-erning the time evolution in n-dimensional subspa
e of states. The generalexpression for su
h an e�e
tive potential has been found in Se
tion 2. Se
-tions 3 and 4 dealt with the expli
it form of su
h an operator for 2 and 3



786 J. Piskorskidimensional 
ases. In Se
tion 5 an appli
ation of the formalism developedin the previous se
tions to the density matrix has been suggested.The approa
h presented in this paper 
an be 
onsidered a natural ex-tention of the Wigner�Weisskopf approa
h to the single line width to morelevel subsystems whi
h intera
t with the rest of the physi
al system. It hasbeen shown that in the 
ase of n level systems the WW approa
h may onlybe suitable if the PHP is n-fold degenerate, whi
h of 
ourse is not alwaysthe 
ase.The physi
al problem whi
h is 
urrently investigated with the use of si-milar methods is the neutral kaon 
omplex and the possible violation of theCPT symmetry. This problem is obviously a 2 dimensional problem and
an be resear
hed with the use of the formalism developed in Se
tion 3. Thestandard approa
h to the problem developed in [8℄ uses the WW approxi-mation to des
ribe the time evolution of the K0;K0 
omplex and proves tobe quite a su

essful approximation of the physi
al reality. As noted at theend of Se
tion 3, one of the 
on
lusions whi
h 
an be drawn here is thath11 = h22. This 
an be measured, and the parameter ÆCPT � h11 � h22is used in tests of CPT 
onservation. However, if we want to retain thegeometry of the problem (i.e. we do not want to redu
e the problem to aone dimensional problem by assuming PHP degeneration) we will �nd thatÆCPT 6= 0 even under CPT 
onserved. For a more extensive dis
ussion ofthis problem see [4, 5, 7℄.The three dimensional 
ase has not as yet been applied to des
ribe ana
tual physi
al system and the possibilities of doing so will be investigated infuture papers. One possiblility is to use the density matrix approa
h whi
hhas been proposed in Se
tion 5, to the des
ription of multi-level atomi
transitions. Experiments designed to demonstrate the Quantum Zeno e�e
tprovide an example of su
h multi-level systems. For example Cook suggestedan experiment whi
h should demonstrate this e�e
t on an indu
ed transitionin a single, trapped ion [13℄. This experiment assumes the ion to have a 3 -level stru
ture, and to des
ribe it the density matrix approa
h is usuallyused (see for example [14℄). This gives us a possiblity to use the resultsobtained in Se
tion 4.1 (�1 6= �2 6= �3) and Se
tion 5 to 
onstru
t a suitableequation for the redu
ed three dimensional density matrix. This, however,is beyond the s
ope of this paper and, as noted earlier, will be resear
hed infuture papers.
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