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a(Re
eived January 5, 2000)We 
onstru
t a 
lass of representations of the Heisenberg algebra interms of the 
omplex shift operators subje
t to the proper 
ontinuous limitimposed by the 
orresponden
e prin
iple. We �nd a suitable Hilbert spa
eformulation of our 
onstru
tion for: (1) real shifts, (2) purely imaginaryshifts. The representations involving imaginary shifts are free of spe
trumdoubling. We determine the 
orresponding 
oordinate and momentum op-erators satisfying the 
anoni
al 
ommutation relations. The eigenvalues ofthe 
oordinate operator are in both 
ases dis
rete.PACS numbers: 03.65.�w, 03.65.Fd, 04.60.N
1. Introdu
tionThe aim of this paper is to �nd a possibly wide 
lass of di�eren
e oper-ator representations for the 
oordinate and momentum operators leading toa generalization of the standard Quantum Me
hani
s (QM) in a way 
om-patible with the dis
reteness of spa
e�time. It is important to stress that atthis stage we are at the level of kinemati
s. Thus, we are looking for properde�nitions of the 
oordinate and momentum operators, their domains, the�
lassi
al limit� (to re
over the standard QM in the 
ontinuous limit), theHilbert spa
e et
. We assume that the Heisenberg Commutation Relations(CR) hold on some dense set of states. A deeper understanding of, seem-ingly, exoti
 realizations of CR for whi
h one of the operators is bounded(789)
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e this program. In other words, the la
k of su
hunderstanding was perhaps responsible for the relatively unsu

essful, albeitvery interesting, results of the early attempts in this dire
tion [1�4℄.Our resear
h, though not dire
tly related to, is motivated by an old prob-lem of the nature of the spa
e�time geometry below the Plan
k s
ale. Therehave been many spe
ulations and indi
ations that at this level new dis
retestru
tures are likely to emerge (see the arguments put forward in stringtheory [5℄, in various approa
hes to quantum gravity [6�10℄, in 't Hooft'sapproa
h [11℄ et
.) and that, as a 
onsequen
e, some �unusual� represen-tations of the Heisenberg algebra maybe appropriate [12℄. Finally, dis
retemodels are widely used be
ause of te
hni
al reasons, perhaps the most obvi-ous examples beeing latti
e gauge theories [13℄ and Regge 
al
ulus approa
hto general relativity [14℄ to name only a few.The �rst step to realize this program has been taken in [15℄, where rep-resentations of the Heisenberg CR in terms of real shift operators have beenanalyzed. We have dis
ussed the Bargmann�Fo
k (annihilation�
reationoperators) as well as the S
hrödinger (position and momentum operators)representations. We have found that our 
oordinate operator has a dis
retespe
trum. In this paper we generalize our previous results by in
luding the
omplex shift operators as well. In parti
ular, we �nd that the operatorsdis
ussed in [9, 16, 17℄ are in
luded in our s
heme. Those operators 
orre-spond to purely imaginary shifts and in the last two referen
es they are usedin a physi
ally interesting 
ontext of the bla
k hole's energy quantization.We work dire
tly with the 
oordinate (S
hrödinger) representation, asopposed to the annihilation-
reation type, for the former seems to be phys-i
ally more fundamental; the sentiment 
aptured so ni
ely in the followingquote �In physi
s the only observations we must 
onsider are position obser-vations...� [18℄.2. Momentum and 
oordinate operatorsWe start with the following Ansatz for the generalized momentum oper-ator P and the 
orresponding �dis
rete� derivative DP � �i~D = �i~ NXk=�N 1�x �k Ek�x ; (1)where the 
omplex shift operator is de�ned asEk�x f(x) = f(x+ k�x) ; (2)and the shift �x 
an be 
omplex. We keep the notation the same as in [15℄with the ex
eption of the overall 1=�x fa
tor in the formula (1) that de�nes
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onstants �k's. With this de�nition our formal equations for �k be
omeidenti
al to those of [15℄. The 
oordinate operator X is assumed to have theform X = Xk 12�k hx̂Ek�x +Ek�xx̂i ; (3)with unspe
i�ed 
onstants �k.We would like to have the standard 
oordinate (x̂) and momentum (p̂ =�i~�=�x) in the 
ontinuum limit. Hen
e, we impose the 
lassi
al limit
onditions lim�x!0X = x̂ ; lim�x!0P = p̂ : (4)In addition, we demand the symmetry:��k = �k (5)and that D be the best �t to �=�x, i.e. we assume the operator D to beoptimal in the sense of [15℄. This determines the 
oe�
ients �k in a uniqueway, independent of �x�0 = 0 ; �k = (�1)k+1 (N !)2k(N + k)!(N � k)! : (6)Finally, the operator X will be determined from the Heisenberg CR[X; P ℄ = i~ I : (7)At the formal level (7) imply the same solutions for �k's as in the 
ase ofthe real shifts [15℄. However, to determine Hermi
ity we have to spe
ify thes
alar produ
t and the 
orresponding Hilbert spa
e. This is an espe
iallypressing issue for the imaginary shifts where the standard setup involvingfun
tions in L2(R) is not suitable. For the real shifts the analysis of (7)has been done in [15℄. For general 
omplex shifts �x we were unable to
onstru
t a Hilbert spa
e on whi
h both X and P would be Hermitean. Weare therefore 
on
entrating on two types of shifts: (a) real shifts, (b) purelyimaginary shifts.By abuse of notation we will write �x for real shifts, i�x for imagi-nary shifts, respe
tively. Thus �x is always real. The following se
tion isdevoted to a 
onstru
tion of a suitable Hilbert spa
e supporting imaginaryshift representations.
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 setup for imaginary shiftsWe 
hoose a parti
ular model of a Hilbert spa
e. Suppose � > 0 and
onsider a linear spa
eC� = �f 2 L2(R); f(p) = 0 for jpj > �	 : (8)One might think of � as a momentum 
ut�o� and C� is a spa
e of wavefun
tions 
ompa
tly supported in the momentum spa
e (e.g. we 
ould �x �to be of the order of 1=lP , where lP is the Plank length). In fa
t, we assumethat � � 1=�x. It is easy to see that C� is a 
losed subspa
e of L2(R).Using the Fourier transform we obtain the 
oordinate representation of C�whi
h will be denoted by H�. Following [19℄ we adopt the followingDe�nition 1 An entire fun
tion F (x) is said to be of exponen-tial type at most � if lim supjxj!1 ln jF (x)jjxj � � :Now, one 
an give the following des
ription ofH� ( [19℄, Theorems 16 and 17)Theorem 1 (Paley�Wiener) H� = fF 2 L2(R) : F is entire of exponen-tial type at most �gThe shift operator E�z a
ts on H� and, 
onsequently, it a
ts on C�. Usingthe 
onvention F (x) = 1p2� +1Z�1 e�ipx f(p) dp ; (9)we get that E�z : f(p) 7�! eip�zf(p) ; f 2 C� : (10)Sin
e f vanishes outside of a 
ompa
t set, E�z is unitary if �z = �x 2 R,Hermitean if �z = i�x respe
tively. The former 
ase is analyzed in [15℄by a slightly di�erent method. In this paper we are interested in the latter
ase. Di�x a
ts on C� as a multipli
ation operator by the fun
tionDN (p) = 1i�x NXk=�N �k zk ; (11)where z = e�xp. For real �k, DN is skew�Hermitean. In parti
ular, this istrue for the optimal dis
retization.Now, we turn to the study of the operator of multipli
ation by x. We�rst introdu
e a dense subspa
e of C� de�ned asC0� = nf 2 C� : f is a. 
. ; f(�) = f(��) = 0o :
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orresponding subspa
e of H� will be denoted by H0�. We note that C0�is invariant under E�z. On H0� we 
an integrate by parts obtainingxF (x) = 1p2� �Z�� e�ipx 1i ddpf(p) dp :We are interested in �nding pairs X;DN of operators satisfying HeisenbergCR in the sense of de�nition given in Se
. 6 of [15℄. We look for X of theform X = 12i Xm ��m zm ddp + ddp �m zm� : (12)Then the Heisenberg CR (7) reads [DN (p);X℄ = 1 and it implies��xi z Xm �mzm! ddz (DN (p)) = 1 : (13)Example For the optimal dis
retization s
heme and N = 1 we have foundin [15℄ that �1 = 1=2 = ��1. Then (11) impliesD1(p) = 1i�x sinh(p�x) ; �� � p � � ;and (13) yields Xm �mzm = 1(
osh p�x) ; �� � p � � :In summary D1(p) = 1i�x sinh(p�x) ;X(p) = 12i � 1
osh(p�x) ddp + ddp 1
osh(p�x)� ;is a 
onjugate pair in the sense of [20℄.Below we will show that the pair X(p), D1(p) is unitary equivalent tothe 
anoni
al 
onjugate pair 1i ddy , 1i y on L2 ��� sinh��x�x ; sinh��x�x ��. This,in parti
ular, implies that the spe
trum of a self�adjoint extension of X(p)is a 1�dimensional latti
e. It is perhaps worth mentioning that we do nothave in this 
ase a doubling of 
anoni
al 
onjugate pairs, a phenomenono

urring for real shifts [15℄. Finally, we would like to point out that theabove pair X(p); D1(p) appears in [16℄. We believe that the present workprovides a proper analyti
 setup for that work. For example, to de�ne theposition operator, the authors of [16℄ had to 
on�ne their attention to thezero momentum se
tor of the Hilbert spa
e (formula (7) in [16℄). There isno need for su
h an assumption in our approa
h.
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retization for imaginary shiftsIn this se
tion we 
onsider the 
ase of the optimal dis
retization s
heme.We limit ourselves to the most important aspe
ts as the details are analogousto the real 
ase studied in Se
. VI of [15℄. Our goal is to understand (13), inparti
ular, the stru
ture of zeros of ddzDN (p) � D0N . We immediately haveLemma 1 Let DN (p) be optimal and N be odd. Then D0N (p) has no rootsfor p 2 [��;�℄.Proof: The proof is very similar to the proof of Lemma 2 in [15℄. We 
omputei�xz d=dzDN to obtaini�xz ddzDN = (�1)N+1 (N !)2(2N)!z�N �(1� z)2N � (�1)N � 2NN � zN� :Thus z0 is a zero of D0N i� it satis�es(1� z)2NzN = (�1)N � 2NN � ; z = ep�x ; �� � p � � :It is 
lear that for odd N this equation has no real roots (z > 0). This
ompletes the proof.Lemma 2 If N is even and � = 1=�x, then D0N (p) has no roots for p 2[��;�℄.Proof: Now, the equation determining the zeros of D0N reads(1� z)2NzN = � 2NN � ; z = ep�x ; �� � p � � :In other wordssinh2 p�x2 = aN ; aN = 14Ns� 2NN � ; �� � p � � :In [15℄ we have proved that faNg is in
reasing and limN!1 aN = 1. Notethat 0 � sinh2 p�x2 � sinh2 ��x2 :Thus we have no roots i� sinh2 ��x2 < aN for every even N .
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e faNg is in
reasing the latter inequality is equivalent to sinh2 (��x=2) <a2 = p6=4 whi
h implies that��x < 2ar
sh 4p62 ! ' 1:4379::: ;whi
h holds if � = 1=�x.Remark: It is 
lear from the proof of Lemma 2 that if ��x ex
eeds the bound1.4379... then D02 has exa
tly two roots. This 
ase is then very similar tothe 
ase of real shifts ( [15℄, Se
. VI). From now on we assume that D0N hasno real roots on the interval of interest. One easily 
he
ks if �� � p � �,then i�xD0N > 0 if N is odd and i�xD0N < 0 if N is even. Hen
e, the map! : p �! iDN (p) ; [��;�℄ �! [�jDN (�)j; jDN (�)j℄is bije
tive. Let us point out that iDN (p) is real for p 2 [��;�℄. We
all the new variable y = iDN (p). The 
orresponding Hilbert spa
e isL2 ([�jDN (�)j; jDN (�)j℄). The map ! indu
es an isomorphism of L2 ([��;�℄)and L2 ([�jDN (��)j; jDN (�)j℄). In parti
ular, ! mapsX �! 1i ddy ; DN �! 1i y : (14)This situation should be 
ontrasted with the results we have obtained in [15℄for real shifts, for whi
h the pairs X;DN are, after a suitable res
aling,unitarily equivalent to two 
opies of the 
anoni
al 
onjugate pairs 1i ddy ; 1i yde�ned on L2([�1; 1℄).5. Imaginary vs real shiftsThe aim of this se
tion is to 
larify the di�eren
es between the real andimaginary shift representations of the Heisenberg CR. In doing so we will
ome a
ross an interesting 
onne
tion to problems in signal theory, 
enteredaround the so�
alled Shannon theorem [21℄. Let us 
onsider f 2 C�. Everysu
h fun
tion 
an be written in terms of its Fourier 
oe�
ients. We de�nef̂(n) = 12� �Z�� e�in�� p f(p) dp : (15)In view of (9) we obtain F �n�� � = 2�p2� f̂(n) : (16)
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e f(p) = Pn f̂(n) ein�� p, we 
on
lude thatf(p) = p2�2� Xn F �n�� � ein�� p : (17)Using the de�nition of F (x) we arrive at Shannon's theoremF (x) = Xn F �n�� � sin(n� � �x)n� � �x ; F 2 H� : (18)Thus F (x) 
an be re
overed from its sample values on the latti
e ��Z.Our obje
tive now is to understand how the real and imaginary shiftsa
t on those sample values. It is 
lear that the real shift E�x, for �x = �=�,gives (E�xF ) (n�=�) = F (n+1� �). The question that presents itself at thispoint is whether there exists a simple formula for the a
tion of the imaginaryshift. We know that the a
tion of Ei�x is most 
onveniently expressed onC� by f(p) 7! ep�xf(p). Thus, in view of (16) we obtain(Ei�xF )�n�� � = 2�p2� \(ep�xf)(n) ;and with the help of the 
onvolution theorem and (16) we get(Ei�xF )�n�� � = (�1)n sinh(��x)Xm2Z(�1)m F �m�� ���x� i(n�m)� : (19)We 
on
lude that the imaginary shift Ei�x involves in�nite number ofreal shifts by �=�. One 
an easily extend these 
omputations to the �dis-
rete� derivative Di�x. For simpli
ity, we only 
onsider here the 
ase N = 1for whi
h we obtain�D1i�xF � �n�� �= (�1)n sinh(��x)�x Xm2Z(�1)m (m� n)�(��x)2 + (m� n)2�2F �m�� � : (20)We remark that the main 
ontribution to the sum (20) 
omes form the regionm � n � ��x� . Sin
e � � 1=�x, we 
on
lude that (20) 
an be interpretedas a smeared 
entral di�eren
e s
heme. However, due to the slow de
ay one
annot ignore the tail of the expansion (20). It is perhaps fair to say that theutility of di�eren
e s
hemes involving in�nitely many points is questionablefrom a 
omputational point of view. If, however, one is willing to a

eptthat in prin
iple our goal is not to �nd useful 
omputational methods of theexisting quantum theory but explore the foundations of quantum kinemati
s,then the imaginary shifts merit a 
areful study. In the next se
tion we
omment on the problem of fermion doubling viewed from the perspe
tiveof di�erent 
hoi
es of the dis
rete derivative.
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tion we brie�y 
omment on the problem of the spe
trum dou-bling for the latti
e Dira
 operator. For an elementary introdu
tion to theproblem one 
an 
onsult [13℄. Let us 
onsider the 2�D latti
e Dira
 equationi~ ��t	 = 
5 P 	 ; (21)where 
5 = � 0 11 0�, P is a momentum operator. If one uses, say, the
entral di�eren
e s
heme��x	(x) 7�! 	(n�x+�x)� 	(n�x��x)2�x ;followed by the plane wave substitution 	(n�x) = e�i!t+in�xp�(n) oneobtains the dispersion relation!2 = sin2(p�x)(�x)2 :Spe
trum doubling arises be
ause the right hand side has two zeros in theBrillouin zone. We have shown in [15℄ that the spe
trum doubling is tan-tamount to the presen
e of two 
opies of the 
anoni
al 
onjugate pairs.This e�e
t o

urs for any optimal dis
retization and real �x. In parti
ular,the 
entral di�eren
e s
heme is in
luded in that s
heme and 
orresponds toN = 1. The situation for the imaginary shift is di�erent! In the simplest 
aseof N = 1 we have P = sinh(p�x)=�x (�� � p � �) and the dispersionrelation reads !2 = sinh2(p�x)�x2 ; �� � p � � :There is no spe
trum doubling; only a single 
opy of the 
anoni
al 
onjugatepair o

urs. One 
an dire
tly interpret (21) as a latti
e equation by using theinterpretation of the imaginary shift in terms of in�nitely many real shiftspresented in Se
. 5. 7. Summary and 
on
lusionsThis paper 
on
ludes the proje
t of looking for Heisenberg algebra rep-resentations in terms of the 
omplex shift operators of the form (1) and (3).In the present paper we have limited our attention to the S
hrödinger pi
-ture, hen
e to the Hermitean X;P pairs. For the 
ase of purely imaginaryshifts we have formulated a Hilbert spa
e approa
h using the spa
e of en-tire fun
tions. Assuming furthermore the optimal form of the momentum
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ed in [15℄ we have found that (i) the spe
trum of the self�adjoint extension of the 
oordinate operator X 
omprises a latti
e, (ii) allthe 
onjugate pairs are, after a suitable res
aling, unitary equivalent to the
anoni
al pair 1i y; 1i ddy on L2([�1; 1℄) (iii) the pairs X;D do not exhibit thedoubling whi
h o

urs for real shifts.As the next step within this approa
h one 
ould analyze evolution (wave)equations for state ve
tors and operators 
orresponding to observables otherthan X;P . Some work in this dire
tion has been done a long time ago( [2�4℄). We, nevertheless, expe
t that the most interesting feature arisingfrom our work, whi
h is the latti
e stru
ture of the spe
trum of X, has notbeen su�
iently elu
idated. In parti
ular, one 
ould pursue a potentiallyinteresting analogy with the solid state physi
s. But this will be a subje
tof the future resear
h.The authors gratefully a
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