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REPRESENTATIONS OF THE HEISENBERGALGEBRA BY DIFFERENCE OPERATORSAndrzej Z. GórskiInstitute of Nulear PhysisRadzikowskiego 152, 31�342 Kraków, Polande-mail: gorski�alf.ifj.edu.pl, fax:+48 12 637 5441and Jaek SzmigielskiDepartment of Mathematis and Statistis, University of SaskathewanSaskatoon, Saskathewan S7N 5E6, Canadae-mail: szmigiel�math.usask.a(Reeived January 5, 2000)We onstrut a lass of representations of the Heisenberg algebra interms of the omplex shift operators subjet to the proper ontinuous limitimposed by the orrespondene priniple. We �nd a suitable Hilbert spaeformulation of our onstrution for: (1) real shifts, (2) purely imaginaryshifts. The representations involving imaginary shifts are free of spetrumdoubling. We determine the orresponding oordinate and momentum op-erators satisfying the anonial ommutation relations. The eigenvalues ofthe oordinate operator are in both ases disrete.PACS numbers: 03.65.�w, 03.65.Fd, 04.60.N1. IntrodutionThe aim of this paper is to �nd a possibly wide lass of di�erene oper-ator representations for the oordinate and momentum operators leading toa generalization of the standard Quantum Mehanis (QM) in a way om-patible with the disreteness of spae�time. It is important to stress that atthis stage we are at the level of kinematis. Thus, we are looking for properde�nitions of the oordinate and momentum operators, their domains, the�lassial limit� (to reover the standard QM in the ontinuous limit), theHilbert spae et. We assume that the Heisenberg Commutation Relations(CR) hold on some dense set of states. A deeper understanding of, seem-ingly, exoti realizations of CR for whih one of the operators is bounded(789)



790 A.Z. Górski, J. Szmigielskimight be needed to advane this program. In other words, the lak of suhunderstanding was perhaps responsible for the relatively unsuessful, albeitvery interesting, results of the early attempts in this diretion [1�4℄.Our researh, though not diretly related to, is motivated by an old prob-lem of the nature of the spae�time geometry below the Plank sale. Therehave been many speulations and indiations that at this level new disretestrutures are likely to emerge (see the arguments put forward in stringtheory [5℄, in various approahes to quantum gravity [6�10℄, in 't Hooft'sapproah [11℄ et.) and that, as a onsequene, some �unusual� represen-tations of the Heisenberg algebra maybe appropriate [12℄. Finally, disretemodels are widely used beause of tehnial reasons, perhaps the most obvi-ous examples beeing lattie gauge theories [13℄ and Regge alulus approahto general relativity [14℄ to name only a few.The �rst step to realize this program has been taken in [15℄, where rep-resentations of the Heisenberg CR in terms of real shift operators have beenanalyzed. We have disussed the Bargmann�Fok (annihilation�reationoperators) as well as the Shrödinger (position and momentum operators)representations. We have found that our oordinate operator has a disretespetrum. In this paper we generalize our previous results by inluding theomplex shift operators as well. In partiular, we �nd that the operatorsdisussed in [9, 16, 17℄ are inluded in our sheme. Those operators orre-spond to purely imaginary shifts and in the last two referenes they are usedin a physially interesting ontext of the blak hole's energy quantization.We work diretly with the oordinate (Shrödinger) representation, asopposed to the annihilation-reation type, for the former seems to be phys-ially more fundamental; the sentiment aptured so niely in the followingquote �In physis the only observations we must onsider are position obser-vations...� [18℄.2. Momentum and oordinate operatorsWe start with the following Ansatz for the generalized momentum oper-ator P and the orresponding �disrete� derivative DP � �i~D = �i~ NXk=�N 1�x �k Ek�x ; (1)where the omplex shift operator is de�ned asEk�x f(x) = f(x+ k�x) ; (2)and the shift �x an be omplex. We keep the notation the same as in [15℄with the exeption of the overall 1=�x fator in the formula (1) that de�nes



Representations of the Heisenberg Algebra by: : : 791the onstants �k's. With this de�nition our formal equations for �k beomeidential to those of [15℄. The oordinate operator X is assumed to have theform X = Xk 12�k hx̂Ek�x +Ek�xx̂i ; (3)with unspei�ed onstants �k.We would like to have the standard oordinate (x̂) and momentum (p̂ =�i~�=�x) in the ontinuum limit. Hene, we impose the lassial limitonditions lim�x!0X = x̂ ; lim�x!0P = p̂ : (4)In addition, we demand the symmetry:��k = �k (5)and that D be the best �t to �=�x, i.e. we assume the operator D to beoptimal in the sense of [15℄. This determines the oe�ients �k in a uniqueway, independent of �x�0 = 0 ; �k = (�1)k+1 (N !)2k(N + k)!(N � k)! : (6)Finally, the operator X will be determined from the Heisenberg CR[X; P ℄ = i~ I : (7)At the formal level (7) imply the same solutions for �k's as in the ase ofthe real shifts [15℄. However, to determine Hermiity we have to speify thesalar produt and the orresponding Hilbert spae. This is an espeiallypressing issue for the imaginary shifts where the standard setup involvingfuntions in L2(R) is not suitable. For the real shifts the analysis of (7)has been done in [15℄. For general omplex shifts �x we were unable toonstrut a Hilbert spae on whih both X and P would be Hermitean. Weare therefore onentrating on two types of shifts: (a) real shifts, (b) purelyimaginary shifts.By abuse of notation we will write �x for real shifts, i�x for imagi-nary shifts, respetively. Thus �x is always real. The following setion isdevoted to a onstrution of a suitable Hilbert spae supporting imaginaryshift representations.



792 A.Z. Górski, J. Szmigielski3. Analyti setup for imaginary shiftsWe hoose a partiular model of a Hilbert spae. Suppose � > 0 andonsider a linear spaeC� = �f 2 L2(R); f(p) = 0 for jpj > �	 : (8)One might think of � as a momentum ut�o� and C� is a spae of wavefuntions ompatly supported in the momentum spae (e.g. we ould �x �to be of the order of 1=lP , where lP is the Plank length). In fat, we assumethat � � 1=�x. It is easy to see that C� is a losed subspae of L2(R).Using the Fourier transform we obtain the oordinate representation of C�whih will be denoted by H�. Following [19℄ we adopt the followingDe�nition 1 An entire funtion F (x) is said to be of exponen-tial type at most � if lim supjxj!1 ln jF (x)jjxj � � :Now, one an give the following desription ofH� ( [19℄, Theorems 16 and 17)Theorem 1 (Paley�Wiener) H� = fF 2 L2(R) : F is entire of exponen-tial type at most �gThe shift operator E�z ats on H� and, onsequently, it ats on C�. Usingthe onvention F (x) = 1p2� +1Z�1 e�ipx f(p) dp ; (9)we get that E�z : f(p) 7�! eip�zf(p) ; f 2 C� : (10)Sine f vanishes outside of a ompat set, E�z is unitary if �z = �x 2 R,Hermitean if �z = i�x respetively. The former ase is analyzed in [15℄by a slightly di�erent method. In this paper we are interested in the latterase. Di�x ats on C� as a multipliation operator by the funtionDN (p) = 1i�x NXk=�N �k zk ; (11)where z = e�xp. For real �k, DN is skew�Hermitean. In partiular, this istrue for the optimal disretization.Now, we turn to the study of the operator of multipliation by x. We�rst introdue a dense subspae of C� de�ned asC0� = nf 2 C� : f is a. . ; f(�) = f(��) = 0o :



Representations of the Heisenberg Algebra by: : : 793The orresponding subspae of H� will be denoted by H0�. We note that C0�is invariant under E�z. On H0� we an integrate by parts obtainingxF (x) = 1p2� �Z�� e�ipx 1i ddpf(p) dp :We are interested in �nding pairs X;DN of operators satisfying HeisenbergCR in the sense of de�nition given in Se. 6 of [15℄. We look for X of theform X = 12i Xm ��m zm ddp + ddp �m zm� : (12)Then the Heisenberg CR (7) reads [DN (p);X℄ = 1 and it implies��xi z Xm �mzm! ddz (DN (p)) = 1 : (13)Example For the optimal disretization sheme and N = 1 we have foundin [15℄ that �1 = 1=2 = ��1. Then (11) impliesD1(p) = 1i�x sinh(p�x) ; �� � p � � ;and (13) yields Xm �mzm = 1(osh p�x) ; �� � p � � :In summary D1(p) = 1i�x sinh(p�x) ;X(p) = 12i � 1osh(p�x) ddp + ddp 1osh(p�x)� ;is a onjugate pair in the sense of [20℄.Below we will show that the pair X(p), D1(p) is unitary equivalent tothe anonial onjugate pair 1i ddy , 1i y on L2 ��� sinh��x�x ; sinh��x�x ��. This,in partiular, implies that the spetrum of a self�adjoint extension of X(p)is a 1�dimensional lattie. It is perhaps worth mentioning that we do nothave in this ase a doubling of anonial onjugate pairs, a phenomenonourring for real shifts [15℄. Finally, we would like to point out that theabove pair X(p); D1(p) appears in [16℄. We believe that the present workprovides a proper analyti setup for that work. For example, to de�ne theposition operator, the authors of [16℄ had to on�ne their attention to thezero momentum setor of the Hilbert spae (formula (7) in [16℄). There isno need for suh an assumption in our approah.



794 A.Z. Górski, J. Szmigielski4. Optimal disretization for imaginary shiftsIn this setion we onsider the ase of the optimal disretization sheme.We limit ourselves to the most important aspets as the details are analogousto the real ase studied in Se. VI of [15℄. Our goal is to understand (13), inpartiular, the struture of zeros of ddzDN (p) � D0N . We immediately haveLemma 1 Let DN (p) be optimal and N be odd. Then D0N (p) has no rootsfor p 2 [��;�℄.Proof: The proof is very similar to the proof of Lemma 2 in [15℄. We omputei�xz d=dzDN to obtaini�xz ddzDN = (�1)N+1 (N !)2(2N)!z�N �(1� z)2N � (�1)N � 2NN � zN� :Thus z0 is a zero of D0N i� it satis�es(1� z)2NzN = (�1)N � 2NN � ; z = ep�x ; �� � p � � :It is lear that for odd N this equation has no real roots (z > 0). Thisompletes the proof.Lemma 2 If N is even and � = 1=�x, then D0N (p) has no roots for p 2[��;�℄.Proof: Now, the equation determining the zeros of D0N reads(1� z)2NzN = � 2NN � ; z = ep�x ; �� � p � � :In other wordssinh2 p�x2 = aN ; aN = 14Ns� 2NN � ; �� � p � � :In [15℄ we have proved that faNg is inreasing and limN!1 aN = 1. Notethat 0 � sinh2 p�x2 � sinh2 ��x2 :Thus we have no roots i� sinh2 ��x2 < aN for every even N .



Representations of the Heisenberg Algebra by: : : 795Sine faNg is inreasing the latter inequality is equivalent to sinh2 (��x=2) <a2 = p6=4 whih implies that��x < 2arsh 4p62 ! ' 1:4379::: ;whih holds if � = 1=�x.Remark: It is lear from the proof of Lemma 2 that if ��x exeeds the bound1.4379... then D02 has exatly two roots. This ase is then very similar tothe ase of real shifts ( [15℄, Se. VI). From now on we assume that D0N hasno real roots on the interval of interest. One easily heks if �� � p � �,then i�xD0N > 0 if N is odd and i�xD0N < 0 if N is even. Hene, the map! : p �! iDN (p) ; [��;�℄ �! [�jDN (�)j; jDN (�)j℄is bijetive. Let us point out that iDN (p) is real for p 2 [��;�℄. Weall the new variable y = iDN (p). The orresponding Hilbert spae isL2 ([�jDN (�)j; jDN (�)j℄). The map ! indues an isomorphism of L2 ([��;�℄)and L2 ([�jDN (��)j; jDN (�)j℄). In partiular, ! mapsX �! 1i ddy ; DN �! 1i y : (14)This situation should be ontrasted with the results we have obtained in [15℄for real shifts, for whih the pairs X;DN are, after a suitable resaling,unitarily equivalent to two opies of the anonial onjugate pairs 1i ddy ; 1i yde�ned on L2([�1; 1℄).5. Imaginary vs real shiftsThe aim of this setion is to larify the di�erenes between the real andimaginary shift representations of the Heisenberg CR. In doing so we willome aross an interesting onnetion to problems in signal theory, enteredaround the so�alled Shannon theorem [21℄. Let us onsider f 2 C�. Everysuh funtion an be written in terms of its Fourier oe�ients. We de�nef̂(n) = 12� �Z�� e�in�� p f(p) dp : (15)In view of (9) we obtain F �n�� � = 2�p2� f̂(n) : (16)



796 A.Z. Górski, J. SzmigielskiSine f(p) = Pn f̂(n) ein�� p, we onlude thatf(p) = p2�2� Xn F �n�� � ein�� p : (17)Using the de�nition of F (x) we arrive at Shannon's theoremF (x) = Xn F �n�� � sin(n� � �x)n� � �x ; F 2 H� : (18)Thus F (x) an be reovered from its sample values on the lattie ��Z.Our objetive now is to understand how the real and imaginary shiftsat on those sample values. It is lear that the real shift E�x, for �x = �=�,gives (E�xF ) (n�=�) = F (n+1� �). The question that presents itself at thispoint is whether there exists a simple formula for the ation of the imaginaryshift. We know that the ation of Ei�x is most onveniently expressed onC� by f(p) 7! ep�xf(p). Thus, in view of (16) we obtain(Ei�xF )�n�� � = 2�p2� \(ep�xf)(n) ;and with the help of the onvolution theorem and (16) we get(Ei�xF )�n�� � = (�1)n sinh(��x)Xm2Z(�1)m F �m�� ���x� i(n�m)� : (19)We onlude that the imaginary shift Ei�x involves in�nite number ofreal shifts by �=�. One an easily extend these omputations to the �dis-rete� derivative Di�x. For simpliity, we only onsider here the ase N = 1for whih we obtain�D1i�xF � �n�� �= (�1)n sinh(��x)�x Xm2Z(�1)m (m� n)�(��x)2 + (m� n)2�2F �m�� � : (20)We remark that the main ontribution to the sum (20) omes form the regionm � n � ��x� . Sine � � 1=�x, we onlude that (20) an be interpretedas a smeared entral di�erene sheme. However, due to the slow deay oneannot ignore the tail of the expansion (20). It is perhaps fair to say that theutility of di�erene shemes involving in�nitely many points is questionablefrom a omputational point of view. If, however, one is willing to aeptthat in priniple our goal is not to �nd useful omputational methods of theexisting quantum theory but explore the foundations of quantum kinematis,then the imaginary shifts merit a areful study. In the next setion weomment on the problem of fermion doubling viewed from the perspetiveof di�erent hoies of the disrete derivative.



Representations of the Heisenberg Algebra by: : : 7976. Remarks on fermion doublingIn this setion we brie�y omment on the problem of the spetrum dou-bling for the lattie Dira operator. For an elementary introdution to theproblem one an onsult [13℄. Let us onsider the 2�D lattie Dira equationi~ ��t	 = 5 P 	 ; (21)where 5 = � 0 11 0�, P is a momentum operator. If one uses, say, theentral di�erene sheme��x	(x) 7�! 	(n�x+�x)� 	(n�x��x)2�x ;followed by the plane wave substitution 	(n�x) = e�i!t+in�xp�(n) oneobtains the dispersion relation!2 = sin2(p�x)(�x)2 :Spetrum doubling arises beause the right hand side has two zeros in theBrillouin zone. We have shown in [15℄ that the spetrum doubling is tan-tamount to the presene of two opies of the anonial onjugate pairs.This e�et ours for any optimal disretization and real �x. In partiular,the entral di�erene sheme is inluded in that sheme and orresponds toN = 1. The situation for the imaginary shift is di�erent! In the simplest aseof N = 1 we have P = sinh(p�x)=�x (�� � p � �) and the dispersionrelation reads !2 = sinh2(p�x)�x2 ; �� � p � � :There is no spetrum doubling; only a single opy of the anonial onjugatepair ours. One an diretly interpret (21) as a lattie equation by using theinterpretation of the imaginary shift in terms of in�nitely many real shiftspresented in Se. 5. 7. Summary and onlusionsThis paper onludes the projet of looking for Heisenberg algebra rep-resentations in terms of the omplex shift operators of the form (1) and (3).In the present paper we have limited our attention to the Shrödinger pi-ture, hene to the Hermitean X;P pairs. For the ase of purely imaginaryshifts we have formulated a Hilbert spae approah using the spae of en-tire funtions. Assuming furthermore the optimal form of the momentum



798 A.Z. Górski, J. Szmigielskioperator introdued in [15℄ we have found that (i) the spetrum of the self�adjoint extension of the oordinate operator X omprises a lattie, (ii) allthe onjugate pairs are, after a suitable resaling, unitary equivalent to theanonial pair 1i y; 1i ddy on L2([�1; 1℄) (iii) the pairs X;D do not exhibit thedoubling whih ours for real shifts.As the next step within this approah one ould analyze evolution (wave)equations for state vetors and operators orresponding to observables otherthan X;P . Some work in this diretion has been done a long time ago( [2�4℄). We, nevertheless, expet that the most interesting feature arisingfrom our work, whih is the lattie struture of the spetrum of X, has notbeen su�iently eluidated. In partiular, one ould pursue a potentiallyinteresting analogy with the solid state physis. But this will be a subjetof the future researh.The authors gratefully aknowledge the support of the State Committeefor Sienti� Researh (KBN) grant no 2 P03B 140 10 and the NSERC grantno OGP0138591. REFERENCES[1℄ H. Snyder, Phys. Rev. 71, 38 (1947); 72, 68 (1948).[2℄ A. Pais, G.E. Uhlenbek, Phys. Rev. 79, 145 (1950).[3℄ A. Das, Nuovo Cimento 13, 482 (1960).[4℄ E.A.B. Cole, Nuovo Cimento A66, 645 (1970).[5℄ I. Klebanov, L. Suskind, Nul. Phys. B309, 175 (1988).[6℄ G. Horowitz, talk at the Conferene on Quantum Gravity, Durham, 1994.[7℄ C. Rovelli, L. Smolin, Nul. Phys. B442, 593 (1995).[8℄ J.D. Bekenstein, Lett. Nuovo Cimento 11, 467 (1974).[9℄ P.O. Mazur, Ata. Phys. Pol. B26, 1685 (1995).[10℄ P.O. Mazur, Ata Phys. Pol. B27, 1849 (1996).[11℄ G. 't Hooft, Nul. Phys. B342, 471 (1990).[12℄ M.R. Douglas, Phys. Lett. B238, 176 (1990).[13℄ J.B. Kogut, Three Letures on Lattie Gauge Theory, preprint CLNS�347(Ot 1976).[14℄ T. Regge, Nuovo Cimento 19, 558 (1961).[15℄ A.Z. Górski, J. Szmigielski, J. Math. Phys. 39, 545 (1998).[16℄ L. Frappat, A. Siarino, Phys. Lett. B347, 28 (1995).[17℄ V.A. Berezin, A.M. Boyarsky, A.Yu. Neronov, Phys. Rev. D57, 1118 (1998).



Representations of the Heisenberg Algebra by: : : 799[18℄ J.S. Bell, Speakable and Unspeakable in Quantum Mehanis, Cambridge Uni-versity Press, 1987.[19℄ L. de Branges, Hilbert Spaes of Entire Funtions, Prentie�Hall, EnglewoodCli�s, 1968.[20℄ G. Dorfmeister, J. Dorfmeister, J. Funt. Anal. 57, 301 (1984).[21℄ I. Daubehies, Ten Letures on Wavelets, CBMS-NSF, Conf. in Appl. Math.,61 (1995).


