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We study an ideally oriented system of Gay—Berne particles with em-
bedded longitudinal dipole moments. While keeping the translational de-
grees of freedom of the molecules unrestricted we assume that their dipoles
can be oriented either parallel or antiparallel to the positive z axis of the
laboratory frame. At high temperatures, this frustrated Gay—Berne meso-
gen exhibits an ideally oriented nematic phase, which is the reference state
of the system. In the limit of vanishing dipole moment nematic, smectic-A
and smectic B phases are stable. Interestingly, by changing the magni-
tude and location of the molecular dipole in the nematic reference state we
found dipole-induced smectic A, smectic B and tetragonal crystal phases,
in addition to crystalline structures with smectic Ay and As-like dipolar
organization. Various singlet, pair and triplet distribution functions were
evaluated to elucidate short and long range organization in these phases. In
particular, the importance of triplet correlations for a proper understanding
of the structures and their local, dipolar organization is demonstrated.

PACS numbers: 61.30.Cz, 61.30.—v, 05.70.Ce, 02.70.Lq

1. Introduction

The relationship between the molecular interactions and the relative sta-
bility of the corresponding liquid crystalline phases is very intriguing and not
yet fully understood. While it is widely accepted that shape anisotropy is
a primary molecular ingredient to the formation of liquid crystals, experi-
ments and theory indicate that the presence of dipolar groups could affect

* The work reported here was presented at the 17th International Liquid Crystal Con-
ference, Strasbourg, France, July 19-24, 1998.
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not only the relative stability and the range of the various liquid crystalline
phases, but also their symmetry [1,2]. Evident examples are the smectic A
phases, which are stabilized in systems with strong longitudinal dipole mo-
ments [1-4]. Their layer spacing ranges from [ to 2I. The most frequently
observed among them is the A4 phase in which the layer spacing is typically
1.41, where [ is the molecular length. Another one is the so called bilayer
Ao phase with layer spacing equal to 2/, where each layer consists of two
polarized sublayers with opposite direction of the dipoles. Also very inter-
esting is the A structure, often referred to as antiphase. It is built from
As-like domains, which are arranged in a 2D centered rectangular lattice.
The polarization of a single sublayer vanishes in this case.

The observation of the rich smectic A polymorphism inspired several
theoretical studies which sought to explain the precise role dipolar forces
can play in stabilizing polar smectics [4] and, in general, liquid crystalline
phases [5,6]. In spite of the valuable insights gained the progress has been
slow. This is, to a large extent, due to an oversimplified treatment of the
electric dipole interaction, especially by density functional theories, where
most often only two-body contributions have been considered [5]. Such
approach disregards the frustration effect [4], which could only be accounted
for by including higher than binary correlations (see e.g. discussion in [6,7]).

More specifically, two longitudinal dipole moments attain the energet-
ically most stable configuration in an antiparallel arrangement, which is
consistent with two-body theories that support strong short-range antifer-
roelectric correlations in polar liquids. But when we consider a third dipole
approaching the other two dipoles, we note that it does not find any favor-
able orientation. Namely, if it is antiparallel to one it must be parallel to the
other, which is the energetically least stable configuration for two dipoles.
We say that it becomes frustrated. Hence an ensemble of dipoles in a fluid
state seeks for an optimal arrangement, which usually is different from that
dictated by a two-body analysis [4].

A direct and reliable way to account for many-body correlations induced
by dipolar forces are computer simulations. They provide a valuable tool to
investigate liquid crystalline ordering arriving from particular molecular in-
teractions. To estimate the effects that can result from dipolar interactions
it seems of particular importance to study relatively simple models for which
the case of vanishing dipole is well understood. One such model is repre-
sented by dipolar spherocylinders, which have been studied intensively by
computer simulations [8-13]. In particular, it was shown that the smectic A
phase is stabilized with respect to the nematic phase for the systems with
central dipoles, but that terminal dipoles enhance the stability of nematics.

Shape anisotropy is only one of the two major molecular factors respon-
sible for the existence of liquid crystals. The second one are the attractive
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forces, which always exist between real molecules. Hence, to study the effect
of dipole moments on the stability of liquid crystalline phases it seems es-
sential that model interactions are of the form where both these factors are
available. One of the potentials fulfilling this condition and being remark-
ably successful for the computer modeling of liquid crystalline molecules is
the single site, anisotropic pair potential of Lennard-Jones type, developed
by Gay and Berne (GB) [14]. The potential contains four parameters, two
of them measuring the anisotropy in shape and interaction energy of a pair
of uniaxial molecules (see Section 2). Using molecular dynamics and Monte
Carlo techniques a rich phase behaviour of the four-parameter Gay—Berne
homologues has been found [15-21]. For example, with its original set of
parameters the Gay—Berne system stabilizes isotropic, nematic and smec-
tic B phases [17]. The observed phases and the phase transitions between
them resemble those found for real mesogens. In view of this success the
original Gey—Berne potential has been developed further to include biaxial-
ity [22], flexibility [23], more complex molecules composed of a collection of
Gay—Berne sites [24] and dipolar forces [25-32].

As concerning the polar GB potentials some numerical results have been
offered. Satoh et al. [25-27] have carried out Monte Carlo simulations of
256 Gay—-Berne molecules with central and terminal, longitudinal dipole mo-
ments. With canonical NVT ensemble (constant number of particles, vol-
ume and temperature) and the reaction field method [33,34] to treat dipolar
interactions they observed the formation of isotropic, nematic, smectic and
crystalline phases. For central dipoles [25] they found that the isotropic—
nematic transition temperature is not sensitive to the strength of the dipole
moment, whereas the nematic—smectic A phase transition is slightly shifted
to higher temperatures as the strength of dipole moment is increased.

For terminal dipoles [26] the transition temperature from the isotropic
to the nematic phase is shifted towards higher temperatures and the tem-
perature range of the nematic phase is broadened with increasing dipole
moment. Additionally, for strong dipole moments a tetragonal crystalline
structure is observed [27]. In view of relatively small system size and lack
of test on the role of boundary conditions these predictions, especially for
smectic and solid phases, should be regarded as preliminary. Note that the
system size dependence was seen for dipolar hard-core systems when the
number of particles was less than 512 [35].

Houssa et al. [28] have studied dipolar GB systems with original values of
the GB parameters [14,17] at reduced temperature T* = 1.25, again utilizing
the reaction field method. The systems contained 256 molecules with axial
dipole moments located at the centre of the molecule. Though the number
of molecules also was comparably small, they partly compensated this by
performing constant pressure NPT Monte Carlo simulations. They found



804 L. LoNngA, G. CHOLEWIAK, J. STELZER

only an isotropic—smectic B transition, whereas in the absence of dipolar
interactions the system has isotropic, nematic and smectic B phases at the
same temperature. In their most recent studies [29] they extended simu-
lations to determine phase diagrams and the structure of the mesophases.
The latter was inferred from a set of reduced singlet and pair distribution
functions.

Very interesting structures were found by Berardi et al. [30]. They have
used NVT Monte Carlo simulations to study large polar GB systems (N =
1000 and N = 8000 molecules), also with central and terminal longitudinal
dipole moments. The energy of dipolar interactions has been calculated
with the help of an alternative method, the Ewald summation technique [34,
36]. They showed that monolayer smectic A liquid crystals and modulated
smectic A domains could be stabilized in both cases. The molecules in the
smectic phases were almost perfectly aligned.

In our calculations we performed canonical (NVT) Monte Carlo simula-
tions for relatively large systems of N = 648 GB molecules with embedded
longitudinal dipole moments (some tests were performed for N = 2592).
The dipolar energy was calculated with the help of very reliable, but time
consuming Ewald summation technique. We investigated the influence of
the dipole strength and the dipole location in the molecule on the formation
of smectic A and higher ordered phases, and studied dipolar correlations in
these phases. In particular, a very accurate information about the struc-
ture of the mesophases and the way system deals with frustration has been
provided by analysing triplet distribution functions. These functions were
calculated together with singlet- and pair-distributions.

As the Ewald technique requires enormous computing time we simplified
the model by assuming an ideal nematic order. That is, we considered only
translational and dipole flip MC moves, which should be accurate enough to
analyze polar structures that occur on the background of nematic ordering.
Indeed, for polar GB mesogens the orientational order in such phases was
found to be very high [30]. This simplification was also necessary to get a
clear picture of short range dipolar correlations, especially triplet ones.

Summarizing, the objectives of the present studies are the following:
First to consider in detail the relation between the strength and position of
the longitudinal dipole moment on the formation of mesophases. Not only
central and terminal, but also intermediate positions of the dipoles are con-
sidered. Secondly, to take care of a possible dependence on system size and
simulation box geometry, and to use very accurate Ewald summation tech-
nique for dipolar interactions. Finally, to provide a detailed characterization
of the phases in terms of singlet, pair and triplet distribution functions.

We should mention that due to the presence of frustration effect the
triplet correlations are of particular importance for a proper understanding
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of dipolar organization in liquid crystals [6]. Yet, they have not been studied
for liquid crystals. The only papers dealing with triplet correlations we
are aware of are those by McNeil et al. [37] and Fushiki [38] for Lennard-
Jones fluids of spherically symmetric particles. While, in general, triplet
correlations are extremely difficult to analyze, it will be demonstrated that
the problem is feasible for the case of ideal orientational order.

The present paper is arranged as follows. In Section 2, we define the
model and give essential details of the Monte Carlo simulations. The distri-
bution functions are introduced in Section 3, while the results of the sim-
ulations and the structure analysis are presented in Section 4. Section 5 is
devoted to a summary and some final conclusions.

2. Model and simulation method

We consider prolate uniaxial molecules with point dipole moments par-
allel to the long molecular axis. The intermolecular pair potential is chosen
to take the form of an anisotropic single site continuous potential,

V = Ve + Vaa, (1)

where Vgp is the Gay—Berne (GB) potential [14] and V4 represents the
dipole-dipole interaction. The GB potential is a generalization of the stan-
dard 12-6 Lennard-Jones potential to molecules of uniaxial symmetry. It
depends on the unit vectors €; and &; describing the orientations of a pair of
molecules and on the separation vector r = r; — r; of their centers of mass
r; and 7;. The detailed expressions are

VGB(éia éj,r) = 46(@1', éj, ’lA") (RJ_12 — R_G) , (2)
where o
R_ [r—o(é, é;,7)+ oo ‘ 3)
a0
Here r = |r| is the length of the separation vector and # = r/r is its
orientation.

The orientation dependent molecular shape parameter ¢ and the energy
parameter € are defined by the following set of equations:

o [l e)? (f-éi—f-é-)QD‘”?
15 €5, = 1—- > A] 3 AJ ’
(i€, 7) UO( X[ 1+x(&-&j) 1—x(€i-¢€j)

2

€(é;, e, 7) = €’(&;, e)) e'“(éi, é;,m), (5)
and

e(éi, éj) = €0 [1 - X2 (éz . é]‘)2] 12 3 (6)
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(7)

The parameters x and x’ are related to the length-to-breadth ratio x and po-
tential well depths ratio ' for the side-to-side and end-to-end arrangements.
They read

K2 —1 , K Vw1
s XTaug ®)

As already discussed in the previous section this generic potential describes
quite well liquid crystal formation in thermotropic materials [15-21].

Among the cases analysed the original GB model [14], defined by x = 3,
k' =5, p =2 and v = 1, is the one most thoroughly studied [15-17].
Its potential energy contours for the long molecular axes parallel to each
other are shown in Figure 1(a). Obviously, the potential prefers a side-to-
side arrangement of the pair of molecules which, in turn, promotes liquid
crystallinity. The length-to-breadth ratio is 3:1, as the value of k suggests,
and this seems to be the minimum value that is found experimentally for
molecules forming liquid crystals. The complete phase diagram for this
model is found in [17]. It is particularly simple, revealing only vapour,
isotropic liquid, nematic and smectic B phases.

We have investigated a generalized version of this model by adding to the
GB potential in Eq. (2) a point dipolar interaction Vg due to a permanent
dipole moment pu,

X

B g — 3(1ip) (15 P)
Vdd(ra M, H]) = g ,03 ! ) (9)

where p = r + d(é; — &;) is the relative position of the dipole moments of
two molecules. In the present studies the direction of the dipole moment
is assumed to coincide with the long molecular axis (u; = pé;), whereas
its location on the molecular axis is given by a parameter d, which denotes
the distance of the dipole from the molecular center. Modifications of the
potential energy contours due to the presence of the dipole moments are
shown in Figs. 1(b)—(d).

We have performed extensive NVT Monte Carlo simulations [34] of a
system of N = 648 molecules confined to a tetragonal box and subject to
periodic boundary conditions and minimum image convention [34]. Some
testing runs have been carried out for N = 2592 molecules. The parti-
cles were assumed to interact according to the polar GB potential, Eq. (1),
where the strength p and position d of the dipole moment were treated as
parameters. The GB potential was cut at rq,t = 4.0 0¢ and shifted.

Our primary objective was to investigate in a systematic way the in-
fluence of dipolar forces on the formation of orientationally and spatially
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Fig. 1. The potential energy contours calculated for a pair of Gay—Berne particles
with embedded longitudinal dipole moments. The molecules are assumed to be
parallel to the z axis of the laboratory frame. The contours are parametrized by
the strength, the position and the orientation (indicated by arrows) of the dipole
moments: (a) — p* = 0; (b) — p* = 2.5, d* - arbitrary, 11 dipole configuration;
(¢) — p* = 2.5, d* =0, 1 dipole configuration; (d) — p* = 2.5, d* = 0.75, 1|
dipole configuration. The innermost contours correspond to potential energy 2.0
and the other contours are for values of the scaled potential energy decreasing in
steps of 0.25. In this figure and in all figures that follow quantities with asterisk
are given in reduced units introduced in the Appendix A.

ordered liquid crystalline phases, like orthogonal smectic phases. As the
orientational order parameter in the smectic phases of the polar GB system
is known to be close to its saturation value of 1.0 [30], we assumed an ideal
nematic order approximation. This means that all molecular long axes were
fixed parallel to the director, which coincided with the 2z axis. Although
the orientations were frozen, the molecules still preserved all translational
degrees of freedom and their dipole moments were allowed to flip, as in the
Ising model. Therefore in our simulations a Monte Carlo attempted move
consisted of shifting the center of mass of a particle or flipping its dipole.
The step size [0z, dy,dz] for the center of mass move was fixed such that
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overall acceptance ratio did not exceed 40%. The initial configuration for
each run was taken to be (a) a hexagonal lattice of ideally oriented molecules
with randomly distributed dipoles, (b) a translationally disordered ideal ne-
matic configuration and, most frequently, (c) the final configuration of a
Monte Carlo simulation at slightly different values for the strength and lo-
cation of the dipole moment. The system was relaxed to equilibrium until
the configurational energy and distribution functions showed no systematic
changes with the MC steps (usually between 4-10* and 10° cycles). Tests for
about 5-10° cycles were also performed occasionally. After the equilibration
process the system was further simulated for an additional 10> MC cycles,
and every tenth cycle the configuration was saved for a subsequent analysis
of distribution functions.

In simulations dipole-dipole interactions require a special treatment due
to their long range. Here the energy of the dipolar interactions was cal-
culated using the Ewald summation technique [34,36] with tin foil bound-
ary conditions characterized by a dielectric constant ¢ = 1. This is the
standard choice in this type of calculations and it represents a vacuum
surrounding the system at large distances. The choice of the boundary
conditions may have significant influence on the results (e.g. conducting
vs. vacuum boundary conditions [11]). Detailed expressions concerning the
Ewald sum are listed in Appendix B. The convergence parameter vy was
taken 5.75/Lmin, where Lyin = min(Ly, Ly, L,) and Ly, Ly, L, denote the
dimensions of the simulation box. With this choice of  the real space part
of the Ewald sum can be limited to the central box and the Fourier space
part may be restricted to vectors k = (2mny /Ly, 270,/ Ly, 27n,/L,) such

that [n| = ,/n2 +n2 +n2 <6.

During the simulations the density and the temperature were fixed to
the values p* = 0.335 and T* = 2.8, respectively, where all quantities are
expressed in reduced units defined in Appendix A. This choice of the tem-
perature corresponds in our model to a stable nematic state in the absence
of dipoles. Some additional runs have been performed for T* = 2.

Calculations for various dipole strengths and locations were performed.
We considered three different values of the dipole moment: p*=1.5, 2.0, 2.5.
In the first simulation, the dipole moments were assumed to vanish, thus pro-
viding the nonpolar reference system. For nonzero values of p* the dipole
was positioned at d* = 0, 0.75 and 1, relative to the center of the molecule.
Thus, the first and the last case correspond to central and (nearly) termi-
nal dipoles, respectively. For the intermediate value of d* the dipole was
positioned half way between the center and end of the molecule. However,
please be aware of the fact that the molecular length is not precisely defined
for soft interactions. Actually, if we define the molecular shape as one corre-
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sponding to zero energy contour for a pair of molecules with their long axes
parallel to each other then the molecules studied here are of length 3.

Still a few comments concerning Monte Carlo simulations with dipolar
interactions seems in place. First of all, for relatively large systems the
computational requirements are enormous as compared to the case with
short range interactions. This is due to the very reliable, but time consuming
Ewald procedure [11,36]|. Very recently Houssa et al. [28,29] argued that
the Ewald method could safely be replaced by the reaction field method,
the latter being much less computer time demanding. They provided some
checks for states with dipolar disorder. However, we are not aware of any
such studies for structures with long range dipolar ordering and therefore
we prefer to use the Ewald method.

Finally, a constant volume simulation is not the best choice to study
structures with translational order. It may happen, especially for small
systems, that the actual equilibrium structure does not fit to the assumed
simulation box [28]. This problem can be avoided when allowing the box
volume to fluctuate, which is realized in practice in isothermal-isobaric or
constant pressure (NPT) Monte Carlo simulations. Although this could
readily be done the presence of the long-range potential causes that the

k-vectors of the Ewald summation and the term M entering the
expressions, (see Appendix B), must be recalculated for each new simulation
box, which, in turn considerably extends the simulation time. For this reason
we limited ourselves to the NVT MC scheme. In order to check against
the dependence of the results on the simulation box, some trial runs with
N = 2592 molecules have been carried out. Additionally, the dimensions of
the simulation box (with particles inside) were rescaled subject to constant
density, which guaranteed better adjustment of the resulting structures.

3. Structure of the phases

All simulations were performed for those state points of the phase di-
agram where the restricted GB potential stabilizes a nematic phase. The
remaining stable phase of the ideally oriented GB we have found for our
parameters is smectic B. Thus, any stabilization of other smectic or crys-
tal phases must be attributed to the dipolar interactions. The equilibrium
structure of the emerging phases can be quantified by the probability den-
sities for finding one, two, three, or more molecules at specified location
and orientation in phase space. These probabilities can be extracted from
the simulation data. Here we restrict ourselves to singlet, pair and triplet
distribution functions.
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3.1. Singlet distribution function

The simplest of the distribution functions is the longitudinal singlet
distribution [20]. It allows to study smectic ordering along the director.
More specifically, we define the longitudinal one-particle distribution func-
tion P(s, z) for the ideal nematic order approximation as

N
P(s,z) = % <Z 8s.5,0(z — zi)> = % [g“)(z) +s0W(z)|, (10
=1

where s = 1, s;, = 1 (u; = pé;, €; = s; 2).

In the expression (10) we introduced the profile of the particle density
¢ (2) and the profile of the dipole density o(!)(z), both measured along the
smectic layer normal, i.e., parallel to the 2 axis. They read

N
g :%<Zéz—zz> , (11)

1

I N

=1

Additionally, we introduce smectic and dipolar order parameters. Their
definitions follow from the Fourier expansion of P(s, z) and are given by

P(s,z) =1+2 Z Cont18 cos[(2n + 1)qz] + 2 Z Ton €08 (2ngz) . (13)

n=0 n=1

n (13) ¢ = 7 is the wavelength of the smectic structure, [ being the layer
spacing. The Fourier amplitudes 79, and (2,1 are the smectic order param-
eters and dipolar order parameters, respectively. For the structures emerging
from the simulations we evaluate only the leading, lowest order amplitudes
(1 and 7. They are determined from the magnitude of the main peaks in
the Fourier transformations of particle density (11) and dipole density (12),
respectively, and are evaluated as averages, independent of the system of
frame,

G = Ma}x (s exp(miz/L))] (14)

= N{Ila}x |{(exp(27iz/l))]| . (15)

The same procedure can be used to find higher order amplitudes of the
singlet distribution function (10).
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Long range positional order in smectic planes can be probed with the
help of the in-plane one-particle distribution, defined as

F)FCCR)s] S @R T (16)

P S’I"L —1+Z
\/ k ke k

where the set *k of the two-dimensional wave vectors k of the same moduli
is taken from the reciprocal lattice representing in-plane symmetry (i.e. the
symmetry of a two-dimensional cut perpendicular to 2) and N,z denotes
the number of k vectors in *k. Note that some of the amplitudes ¢, (*k)
may vanish. As an example, to be discussed in detail in the present pa-
per, consider the nonpolar crystalline smectic B structure. In this case the
in-plane symmetry is that of the triangular lattice and the leading order pa-
rameter 7| (*k) = 7, is associated with the following set *k of six k vectors:

k=1 |~a—Fg|, ke =29, k=1 [2— 9], ki = —k1, ks =~k

and kg = —k3. Here a is the lattice spacing, & is the unit vector along the
z axis and g is the unit vector along the y axis. Again 7, can be evaluated
as an average, independent of the system of frame,

6

7. = Max > (exp (ikg-(R($)r 1)) , (17)
a, /3:1

where R (%)) is a global rotation about the z axis by angle .

3.2. Pair distribution function

The general pair distribution function [39] of a liquid crystal phase com-
posed of uniaxial rigid molecules is a complex quantity, both to calculate
and to represent graphically (see e.g. [20] and references therein). However,
the situation is considerably simplified for ideal nematic order. In this case
the pair distribution function ¢ of polar liquid crystals can be introduced
in many equivalent ways as

1 jFL

9(2) (TLa ¢7 2, 5132)

(18)
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NQ"'J_ <Zz5s1s, 528; d(rp—|r —’l"j|L)5(¢ — |¢Z—¢]|)5(z —z; + z])>

A ES

NN 1
=g (r,- 2,88 = 9% (r, 5152) Pr(cos ) , (19)

L

where Pj, are Legendre polynomials, 6 is the angle between the unit vector
* = 19 = ri9/r12 = r/r and where 2, and r|, ¢, z are the cyllindri-
cal coordinates of r. It gives the probability that one particle with dipole
orientation s is separated by a distance r from another with dipole s9 (ir-
respective of their absolute positions), relative to the probability expected
for a completely random distribution at the same density.

This distribution gives the exact representation for pair correlations of
translationally invariant phases. Also note that the Legendre polynomial
expansion of ¢(?) is very simple as compared to the general case.

There are two pair distribution functions that can be derived from ¢(*),
which are of particular importance in exploring the layer structure of a phase.

One is the axial pair distribution functions (APDF), gﬁQ) (z,8182), defined as

27 00
L
gﬁQ)(Z,$182) = VZ/ /m_dm_g (ri,¢,z,8189)
0

0
- 2N2 <ZZ5:~:151 525, 0 _|zi_zj|)>. (20)

i j#L

It gives the probability of finding two centers of mass of particles at a re-
solved, relative distance of z along the director, and with orientations s1, $9
of the molecular dipoles relative to the same probability calculated for an

ideal gas of particles at the same density. We calculate gﬁQ)(z,TT) for pairs

of molecules with the same dipolar orientations and gl(‘Q)(z,Ti) for pairs of
molecules with their dipoles oriented in opposite directions, where s =1 =1
(2)

and s = —1 =|. From these two functions we then obtain g, (z) for arbi-
trary orientation of the dipoles using relation

Qﬁ Z g” (2,5182) = 29” (Z ) +29|| ( ), (21)

S$1,52

which follows directly from the “up-down” symmetry of the Hamiltonian.
Similarly, the structure perpendicular to the director can be probed with

the Transversal Pair Distribution Function (TPDF), g(f) (r1,s8182), where r |
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is the separation between the centers of mass of particles projected onto a
plane orthogonal to 2. It is defined by

2w

D
1
g(f)(rbslsg) = 47T—D/d¢/dz 9(2)(TLa¢aza3132)
0 -D

1

- W <ZZ u—|m—mm@<D—|zz-—z]~|>>,
#
(22)

where ©(x) denotes the Heaviside step function, and where D is a small
parameter (D* ~ 0.5). Note that we may also regard 7; and r; in the
Eq. (18) as positions of the dipole moments. In this case we get another
interesting TPDF, which shows the tendency for the dipoles to gather in
plane. So defined TPDF is also of interest for polar systems and will be
calculated in our simulations.

Again, we evaluate g(f) (ri,71) and g(f) (r1,1)), for parallel and opposite

dipolar orientations, respectively, and gf) (r1), for arbitrary orientation of
the dipoles. The latter function is defined as

20 =Y ¢V sis0) =290 1) + 20001, (23)
81,82

Also we have calculated the degree of hexatic order by expanding the general
g1 (r1) in an angular Fourier series

D
1 A s _ _ .
UGIE 2D / g (r,512,502) = g1 (F1) > Won(T1) exp (i 6nj),
s152 ") n

(24)
where 7 is equal to the average in-plane nearest neighbour separation and
¢k is the angle that the separation vector r; — rp between neighbouring
molecules j and k makes with the x axis. Then, the leading hexatic order
parameter is given by

Vi = < = ZZexp(i6¢jk)> : (25)
M (k)

where (k, j) denotes summation over molecules j that are the nearest neigh-
bours of the molecule k and where Npp, = 37,37 1. In selecting the
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nearest neighbours we considered molecules separated by 7| £ § with § be-
ing the distance from 7, where the magnitude g, (7, ) of the leading peak
of g (r1) halves. Normalization in (25) is such that for an ideal triangular
lattice ¥g = 1.

3.3. Triplet distribution function

The thermodynamic properties usually depend not only on singlet and
pair distribution functions but also on higher distributions, in particular, on
triplet one [39], even when the model potential does not contain direct three
body interactions. As argued in Section 1, the Triplet Distribution (TD)
should be of particular importance for strongly polar liquid crystals, where
frustration plays an important réle. Although the TD is straightforward
to evaluate in simulations [39] it has not been analysed for liquid crystals
so far. Also results for simpler, spherically symmetric systems, are scarce.
Actually the only work on ab initio calculation of triplet distributions we
are aware of is that of McNeil et al. [37], where results for an ordinary
Lennard-Jones fluid are reported. This is probably due to the fact that
the general spherical expansion for the triplet distribution is quite involved
and the calculation of averages is time consuming. Even for relatively small
systems the number of triplet configurations to be analysed in one cycle is
quite large. For example, in simulations with N = 648 the number of triplets
equals N(N —1)(N —2)/6 = 45139896 (!). Also the visualization of triplet
correlations, even if we manage to count triplets, is a nontrivial task.

For ideally oriented dipolar systems the triplet distribution function g(®
is defined as

V2
g(3) = g(3)(r,r',313233) == m<zz Z 5slsi5525j5535k
i JFl kA
X0(r —r;+r)o(r —rp + rz)>
V2
== W Z Z Z 651515525]‘6535]‘,5(7"L - |r] + Iri|i)

L7 i j#i kEjA
X5(¢ — (]5]‘ + ¢Z)5(Z —zj+ ZZ)

X8(r' L = |rg + 7| 1)0(¢" — dp + )2 — 2z + Zi)>7 (26)

where the last part of the formula (26) is given in cylindrical coordinates.

3)

Next, we introduce the in-plane part g of ¢®), which counts only these
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triplets that lie in planes perpendicular to the director and form triangles
where two of the three sides are r and 7’ with 6 being the angle between
them. It reads

2w
gD (r 1,10, 515253) = o DQ /dz/dz /d¢/dq§

x6(0 = Min(|gp — ¢'|, 21 — |§ — ¢'))) ¢¥) (r, 7', 515053)

87TTL7” D2N3<ZZ Z 55151 525; s;;sk

i JF#LkFEjE
Xd(rp —|rj+ri|)6(r' L — Pk +7i)L)

<O(D — |2 — )OD — |25 — z])6(0 — Min|d; — bul, 27 — |6 — ¢k|)>>.
(27)

To simplify the analysis further we restrict ourselves to triplets forming
isosceles triangles. That is, we study the case when r = 7' in Eq. (27) and
introduce notation gf) = gf) (ri,r1,0,5818283) = gf) (r1,0,s18283). Owing
to the nature of the model studied we think that other configurations do
not contribute in an essential way to quantitative understanding of triplet
correlations. As for TPDF two cases are considered. The first one assumes
that the vectors r;, rj, and rj in (26) refer to the centers of mass of the

molecules. In the second case these vectors are assumed to parametrize

positions of the dipole moments. Thus gf’) accounts for tendency of the
three centers of mass or, in the second case, of the three dipole moments
to gather in planes perpendicular to the director. Also please note that
gf’) averaged over @ is proportional to [g(f)]2, which could be used to check
consistency of the calculations.

Now we turn to technical aspects of the calculations. First of all we need
to identify the isosceles configurations. This is done with the help of the
algorithm used in work [37]. Namely, for a given molecule i we calculate
the minimum image separations r;; = [r;;| = |r; — r;| from the N — 1
remaining molecules, discretize it and store the results in the distij table.
For the same 7 we also evaluate the minimum image vectors r;; and save
their components in arrays distijx, distijy and distijz. If pairs 4, j
do not belong to the same plane normal to the director, the corresponding
matrix element distij[j] is set to zero. By definition, particles i, j are
associated with a plane provided that |z; — z;| < D.

Search for isosceles triangles starts by sorting the distij array in as-
cending order. This is done in practice by introducing a permutation matrix
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perm of particle indices j such that distij[perm[j]] gives a sorted ma-
trix. The identification of the triangles starts from the first index m for
which distij[perm[m]]>0. The triangle is found when the two elements
distij[perm[n]] and distij[perm[n+1]] (n > m) are equal (up to +=D).
Finally, we compute the angle 6 between r;; and r;;, where j=perm[n] and
k=perm[n+1] and r, = r;; = rj;. The procedure described above must be
applied to all molecules of the system.

As already indicated before, the triplet distribution gf) is parametrized
by (ry,6). Moreover we will distinguish three nonequivalent dipole config-

urations: sisesg = ™1, ™1l and 1JJ, and compute separately three dis-
tribution functions gf’) (ri,0,s18283): gf’) (ri,0,1171), gf’) (ri,0,11)) and
gf) (r1,0,11l), where the dipole moment s; refers to the nonequivalent ver-
tex of isosceles triangle. They are connected by the relation:

dVr0) = Y ¢ VL0, s150s3) = 207 (L, 0,111) + 491V (r,0,110)

51,582,583
+2¢1¥(r1,0,111), (28)

which results from global up-down symmetry of pair interactions and sym-
metry with respect to exchange of so and s3 in Eq. (26). Please note that
the exhange symmetry is not obeyed by the dipole moment s;.

Applying the same procedure to an ideal gas of molecules with density
p yields normalization N3¢l = 278N (2r Dérp)?, where Ni9®! is associated

with the histogram element (r, r + dr), (6, 8 + #). We compute gf) (r.,0)
as Nrg/fo;eal.

4. Results and discussion

Most of the simulations were carried out for an ensemble of 648 molecules
but some runs with N = 2592 were performed to ensure that the results ob-
tained were not significantly dependent on system size. The temperature
and density were fixed to T = 2.8 and p* = 0.335, respectively. In dis-
cussing the results we shall also refer to the parameter o = (Egq)/{(Fiot),
where (Eiq) is the average potential energy of the system and (Fy4) is the
average energy of the dipolar interactions.

The simulations start with the nonpolar case (u* = 0) for which we
obtained an ideally oriented nematic phase. In this phase the smectic order
parameter 79, Eq. (15), should vanish. But due to system size 75 is not
precisely zero (12 = 0.025).

The pair distribution functions g(L2) (r*, s1s9) (Fig. 2) and 95_2) (Fig. 3) also
do not reveal any long range order and they have the characteristic features
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Fig.2. The pair distribution functions g(LZ) (r*) for L = 2 in the nematic phase of

nonpolar molecules (continuous line) and g(LZ) (r*,s1s2) in the smectic A phase of
molecules with central dipole moment p* = 1.5. The dotted line represents the
s182 =T case while the dashed one corresponds to s;s9 =11 dipole configurations.

The inset shows the same cases, but for L = 4.

4

3.5

(@)
O
N

Fig. 3. The transversal pair distribution functions gf)(rj) in the nematic phase of

nonpolar molecules (continuous line) and gf) (1%, s1,82) in the smectic A phase of
molecules with central dipole moment p* = 1.5. The dash-dotted line represents
the total distribution function, gf) (r%), while dotted and dashed cases correspond
to s1s2 =1 and s1se =11 configurations, respectively.
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of liquid structure. As expected, the correlations are the strongest when the
distance vector between molecular centers is perpendicular to Z (negative

(2)

values of g,/ and positive values of gf) at short distances in Fig. 2). This
corresponds to the first peak of g(f) (Fig. 3). Short range character of the pair
correlations, as displayed in Figs. 2 and 3, agrees qualitatively with what we

observe for unconstrained nematics (see e.g. [20] and references therein). But

neither orientational correlation coefficients {g(L?),L =0,2,4,..}, Eq. (18),
nor gf) compare directly with analogous functions determined for uncon-
strained nematics [20]. The reason is that in the latter case usually all
information about the relative orientation between the director and other

vectors involved is averaged out.

Fig.4. The triplet distribution function g(f) (r%,8) of the nonpolar, ideally oriented

Gay-Berne system in the nematic phase. Note that the angle 6 is given in degrees.
That is why g(f) tends to 7/180 at large distances.

The triplet distribution function (Fig. 4) provides a deeper insight into
short range organization, especially into the ‘fine structure’ of the leading

(2)

peak of g\”’. It shows that the major contribution to this peak comes from

triplets forming equilateral triangles (maximum of gf) at 6 = 60°), and
from triplets of particles placed equally along a straight line (second, broad

maximum of gf) at @ = 180°). Also there exists a third weak maximum of

gf) at § = 120°. These maxima suggest that the nonpolar system under
study locally supports a weak hexagonal ordering and linear correlations of
triplets in the nematic state. As we shall see these local correlations will
be strenthened or converted into tetragonal ones depending on the position
and value of the dipole moment.
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Given this characterization of the reference phase we now turn to the
systems with nonzero dipole moment. We start with the dipoles localized at
the molecular center (d* = 0). For p* = 1.5 the ratio of the average dipole-
dipole energy to the total energy yields e = 23%. The density modulation
along the director is now clearly established, giving 75 = 0.11. We attribute
this to a (weak) dipole-induced smectic A structure. The layer spacing, I*,
is about 2.7, indicating that the layers are slightly interdigitated. As in the
nematic phase, the pair distributions, Figs. 2 and 3, are fluid-like. Within
the layers the dipoles are distributed randomly as in the smectic A phase
and they show no long-range ordering. This could again be deduced from
Figs. 2 and 3. At short distances, however, the in-plane correlations are
dominated by up-down configurations (Fig. 3). The ‘fine structure’ of these
correlations can again be studied with the help of the triplet in-plane distri-
bution function. First, the dipole averaged distribution function, Eq. (23),
appears similar to the nematic one (Fig. 4), again displaying local hexagonal
structure and linear correlations of the triplets. A good approximation for
this function can be obtained from the nematic one (Fig. 4) by multiplying
the latter by the factor of 1.5. The leading peak of these correlations is
again dominated by the triplets occupying equilateral triangles and, hence,
it belongs to frustrated configurations. Indeed, this observation is supported
by dipole dependent triplet correlations, Figs. ba and 5b, which show that
the peak at 60° is due to the triplets where one dipole moment is oriented
in the opposite direction of the two others. Interestingly, the contribution
from non-frustrated triplets, where the middle dipole has different orienta-
tion than the terminal ones, becomes equally important (see peaks at 120°
and 180° in Fig. 5(b)). The distribution function where all three dipoles
are oriented in the same direction shows the same structure of the peaks as
Fig. 5(b), but is approximately six times smaller.

An increase of magnitude of the central dipole to u* = 2.0 causes a new
structure to appear. The density profile now reveals distinct, well organized
smectic layers, yielding a smectic order parameter of 79 = 0.8 (see Table I),
which is close to its saturation value of 1. Even though a exceeds 37% in
this case, no long-range dipolar order along the layers is stabilized. This is
clear from the APDFs, (Fig. 6), which show strong axial correlations. These
correlations are independent on the relative dipolar orientations of the pairs

of the molecules, rendering the functions g|(|2) (z*,11) (dashed curve in Fig. 6)

and gl(‘Q)(z*,Ti) (dotted curve in Fig. 6) almost identical.

Inspection of gf) (r7) (Fig. 7) and gf) (r5,0, s1s2s3) (Figs. 8(a), 8(b)

and 8(c)) shows that the system has developed positional correlations within
(3)

each layer. This is especially clear from the dipole-dependent g™ functions,
Figs. 8(a), 8(b) and 8(c), where these correlations are shown to be of the
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Fig. 5. The triplet distribution function gg_g) (14,8, s15283) of polar, ideally oriented

Gay-Berne system in the smectic A phase for (a) — s1s2s3 =71} and (b) —
s18283 =Tl). The dipolar strength and the dipole location are p* = 1.5 and

d* = 0, respectively.

8 10 12
z

Fig.6. The axial pair distribution function g‘(f) (z*,5182) in the smectic B phase.
The dipolar strength and the dipole location are pu* = 2 and d* = 0, respectively.
The solid line represents dipole-averaged total distribution function g|(|2) (z*) and
the dashed line is for the s;so =11 distribution. The dotted line gives the s1s2 =1]

distribution.

hexagonal type. Hence, we have strong indication that this new phase is a
mesogenic smectic B (Sp) phase. It is known that Sp can exist as a crys-
talline B phase (Scrp) with AAA and ABC stacking as well as the more
common ABAB, or as a hexatic Spexp phase [40]. All these phases are built
from in-plane hexagons formed by the centers of mass of the molecules. The
hexagons are, on average, parallel to each other, giving a nonzero value of
the hexatic order parameter (24). In the case of the Sc;p phase they addi-
tionally occupy the sites of a two-dimensional, hexagonal lattice, resulting in
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Fig. 7. The transversal pair distribution function, gf) (r%,5182), in the smectic B

phase of polar molecules with central dipole moment u* = 2. The continuous line
represents the total distribution function, g(f)(rj), while dotted and dashed lines
correspond to s159 =T| and s182 =711 cases, respectively. The inset shows the
transversal distribution in the same phase, but for T* = 2.

a long-range in-plane positional order, which is absent in the hexatic phase.
Unfortunately, it decays slowly with the system size, making distinction
between Shexp and Sep in simulations rather subtle (see e.g. [17]).

Our simulation results are consistent with two possibilities for this phase:
Serp with ABAB stacking or Spexp, where the first option seems more likely.
We started the analysis of in-plane ordering by calculating the order param-
eters 71, Eq. (17), and ¥, Eq. (25), which were found to be 0.38 and 0.69,
respectively, while the maximal value of both is 1 for the ideal triangular
lattice. However, the order parameter 7, vanishes when calculated for the
total system (7, = 0.02), indicating that different smectic layers are either
uncorrelated or shifted with respect to each other. By analyzing both pos-
sibilities we found that the layers are likely to form an ABAB stacking and
interdigitate. The average in-plane position of a randomly chosen molecule
coincides with the center of a triangle formed by the average positions of the
nearest-neighbour triplets in adjacent layers. The bulk value of 7, for the
ABAB stacking (after taking into account the relative phase shift between
the neighbouring layers) is found to be 7, = 0.23. This is considerably lower
than the (small) in-plane value, which indicates on high disorder not only
in atomic positions within the hexagonal layers but also in the stacking of
the layers.

Both in-plane and bulk 7, are much smaller than what one would expect
for a first order phase transition between smectic A (nematic) and crystalline
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Fig. 8. The triplet distribution function gg_g) (r% .8, s15283) of polar, ideally oriented

Gay-Berne system in the smectic B phase: (a) — the s1s283 =11 case; (b) — the
s18283 =1 case, and (¢) — the s1s283 =111 case. The dipolar strength and the
dipole location are u* = 2 and d* = 0, respectively.

smectic B. Note also that g(f) (Fig. 7) and gf’), Figs. 8a, 8b and 8¢, are
dominated by the nearest neighbour peaks at r ~ 1.1. The second and the
third peak of the TPDF are approximately of the same height, but weak and
broad in comparison to the first one. Actually each of them is composed of
two peaks, although they cannot be resolved at T% = 2.8. Their existence
becomes obvious at T = 2, which is shown as inset in Fig. 7.

While hexagonal in-plane arrangement cannot be justified by looking at
gf) it becomes apparent when we switch to triplet correlations (see Figs. 8a,
8b and 8c). In particular, we observe that all three first-order peaks occur-
ring at scaled separations, 77, of approximately 1.1 and angles, 6, of 60°,
120° and 180° are now well-resolved. Qualitatively they follow the same
trends as previously observed peaks for p* = 1.5. Interestingly, the sec-
ondary peaks at r7] between 2 and 3 are also better resolved, but their
amplitudes are more than four times smaller than those of the leading one.

The qualitative difference between the correlations for the system with
w* = 0,1.5 and 2 prompt us to conclude that the phase for y* = 2 is most
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probably a smectic B although it is rather difficult to choose between hexatic
and crystalline smectic B ordering. The existence of the ABAB stacking and
of a similar structure for even higher central dipole moment (u* = 2.5) or
lower temperature, T* = 2.0, (see inset in Fig. 7 ) makes, in our opinion,
the crystalline case more likely. This is in line with the very recent studies
by Satoh et al. [27], who also claim to have stable dipolar Sp phase, most
probably of AA or AB stacking, although this aspect of the ordering has not
been studied.

On the other hand the frustration mechanism seems to be in favour of
the hexatic arrangement. More specifically, a triangular lattice of dipole
moments is completely frustrated and hence energetically unfavourable. In-
troduction of in-plane defects or imperfections, which destroy long-range
hexagonal order, could help in overcoming this difficulty, especially for strong
dipole moments.

We now analyse the systems where the dipole is shifted by d* = 0.75.
For molecules with dipole moments of magnitude p* = 1.5 (a = 36%) the
layered structure is stabilized without long-range dipolar order along the
z axis. The small value of the translational order parameter (15 &~ 0.35)
would indicate that this structure is probably smectic A. But the situation
seems more subtle. First of all, the most probable relative distance between
the positions of the molecular centers along the z direction is found to be
1.7, which means that the layers are strongly interdigitated. Clearly, this is
aided by the presence of the dipole moments as the dipole-dipole interaction
for a pair of molecules is minimized for antiparallel configuration when the
reduced distance between the molecular centers is of 1.5. To understand
the averaged molecular arrangement more thoroughly, it would be necessary
to examine the transversal distributions of the molecules within a single
layer and within the planes of the dipole moments, which we have done.
The results are somewhat surprising because we found that the strongest
transversal pair correlations (and hence also the triplet ones) are not for
in-plane centers of mass but for in-plane antiparallel dipole moments with
the corresponding centers of mass of the molecules being located in the
neighbouring layers (see Fig. 9). Interestingly, the leading peak of gf) at
r% = 0.9 is exclusively built from molecular units (pairs, triplets, etc.) that
yield better, local compensation of the dipolar interactions. This should be
contrasted with the much weaker peak at 7] ~ 1.06 of the in-layer correla-
tions (inset in Fig. 9). The probability of finding in-plane parallel dipoles
at short separations is smaller by a factor of 7. To clarify the origin of

the leading peak of gf) in Fig. 9, the strongest (s1s283 =1]|) and total
triplet dipole correlations, calculated in the plane of dipoles, are shown in
Figs. 10(a) and 10(b), respectively. These correlations are essentially domi-
nated by two broad peaks at 90° and 180°. For comparison we showed the
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Fig.9. The transversal pair distribution function, g(f) (r%,s182), in the smectic
A phase of polar molecules with dipole moment p* = 1.5 positioned at d* =
0.75. The distribution is shown for the case when the dipole moments lay in plane
perpendicular to director. The molecular centers are localized in the neighbouring
layers. The continuous line represents the total distribution function, g(f) (r3);
dotted and dashed lines correspond to s;ss =1] and s;s5 =711 cases, respectively.
The inset shows the transversal distribution in the same phase but viewed from
the smectic plane of molecular centers. Note that the dashed lines representing
parallel orientations of the dipole moments are the same in both cases.

triplet s1s9s3 =111 correlations in Fig. 10(c). They again appear weaker
by a factor of 7 than the leading s;ses3 =1]{ correlations. The remaining
518283 =711 triplet distribution function is about 5 times smaller than that
for s18983 =1]l configurations.

Combining these results with the in-layer center of mass triplet distribu-
tion, Fig. 10(d), we see that there may be two possible scenarios explaining
the results. The first possibility is that the phase is a (weak) crystalline
smectic with interdigitated, tetragonal layers (Scyr). The layer spacing and
the dipolar ordering between the neighbouring layers is such that the dipo-
lar energy is minimized due to weak polymer-like configurations. But the
apparently very small probability to have in-plane molecules with parallel
dipole moments at reduced distance of 0.9 x v/2 (see Fig. 10(c)) and the
structure of correlations shown in Figs. 9 and 10a suggests that the phase
could also be crystalline one of a smectic Ag-type. Then the layers would
be supported by in-plane ‘branched polymer-like structures’ with the layer
spacing being 2[* ~ 3.4. Interestingly, for d* = 0.75 the local hexagonal
ordering of central dipoles is transformed into an unfrustrated tetragonal
one.
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Fig.10. The triplet distribution function gf) (r%,6,s18283) of polar, ideally ori-

ented Gay—Berne system in the smectic phase of local tetragonal symmetry within
layers: (a) in the plane of 1]]-oriented dipole moments (this case shows the
strongest dipolar correlations between the dipoles; note that the centers of mass of
the molecules with oppositely oriented dipole moments belong to the neighbouring
layers); (b) total distribution function for the case (a); (¢) in-layer, s1s253 =111 dis-
tribution function, and (d) in-layer center of mass total distribution function. The
dipolar strength and the dipole location are pu* = 1.5 and d* = 0.75, respectively.

For dipole moments of magnitude p* = 2 the peaks of the distribution
functions become sharper and their fine structure could be resolved (see e.g.
Figs. 11a and 11b). The order parameter 7 is now of 0.55. This we attribute
to crystalline smectic ordering of tetragonal symmetry, similar to that one
reported very recently by Satoh [27]. The square base lies within the smectic
layers (Fig. 12). Though the influence of the dipolar interactions is much
stronger now (a = 56%), still no long-range dipolar order has been found
for this case. But enhancement of the 111 triplet correlations by a factor
of 2.5 (compare Figs. 10c and 11b) indicates that further increase of the
dipole strength may yield a crystalline phase with polarized layers.

Indeed, for very strong dipoles shifted towards the end (u* = 2.5,d* =
0.75, a = 76%) a bilayer crystalline structure with tetragonal in-plane or-
dering is achieved (Fig. 13). Now both order parameters (; and 79 are
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Fig.11. The in-layer center of mass triplet distribution function 95_3) (15,0, 515283)

of polar, ideally oriented Gay—Berne system in the crystalline smectic phase of
tetragonal symmetry: (a) — the total distribution function; (b) — the s1s283 =11
distribution function. The dipolar strength and the dipole location are p* = 2 and
d* = 0.75, respectively.

Fig.12. Snapshot of the molecular configuration in crystalline smectic phase of
tetragonal symmetry for p* = 2.0 and d* = 0.75. Dark molecules represent up
orientation (s = +1) of the dipole moment; light ones are for s = —1.

nonzero and high, yielding ¢; = 0.89 and 75 = 0.75, which indicates that
the antiferroelectric dipolar order is even stronger than the smectic ordering
(see Table I). Thus, the crystalline structure that we discovered has similar
dipolar ordering as the antiferroelectric smectic As.
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TABLE 1

Various phases resulting from Monte Carlo simulations in dependence on the lo-
cation d* and strength p* of the molecular dipole moments for 7* = 2.8 and
p* = 0.335. The meaning of symbols is: N (ideal nematic phase), A (smec-
tic A phase), Scrr (crystalline smectic phase with dipolar disorder and transver-
sal tetragonal lattice structure), CrAs, (crystalline bilayer phase with transversal
tetragonal lattice structure), A (smectic A phase, transversal domain structure).
Also are given: dipolar order parameter (;, smectic order parameter 71, hexagonal
order parameter 7, and hexagonal leading bond order parameter ¥s. Note that all
quantities with asterisk are given in reduced units introduced in the appendix A.

(dr, ©) phase (1 T2 TL Vs

(0, 0) N — 0.025 — 0.017
(0, 1.5) S4 0 0.11 — —
(0, 2) Sg' 0 0.8  0.38%,0.23 0.69,0.78*
(0.75, 1.5) Sa' 0.065 0.35 — —
(0.75,  2) Scer 014 0.55 — 0.08
(0.75, 2.5) Crd, 089 0.75 — —
(1, 2) A — — — —

1 See text for more details.

2 In-layer value.

3 Bulk value for ABAB stacking of layers.
4 Value for T* = 2.

The APDF (Fig. 14) also clearly reveals the bilayer structure: the peaks
of gﬁQ)(z,TT) and gl(‘Q)(z,Ti) are shifted with respect to each other by one
period. Interestingly, the axial up—up correlation are stronger than the

up—down correlations. Also note that up—down correlations (g(f) (ri,1)) in
Fig. 15) are almost negligible within one smectic layer.

The crystalline structure is clearly of tetragonal symmetry, which is ob-
vious from a snapshot of the molecular configuration, Fig. 13, and from the
total in-layer triplet distribution function (Fig. 16).

For large shifts in the dipole location (d* = 1.0) and p* = 2 we recov-
ered planar domains very similar to those reported by Berardi et al. [30]
(Table IT). As the present systems were too small to analyse quantitatively
the S; configurations we postpone the analysis of these cases to our future
publication.
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Fig.13. Snapshot of the molecular configuration in crystalline smectic phase of
tetragonal symmetry with polarized layers. Dark molecules represent up orientation
(s = +1) of the dipole moment; light ones are for s = —1. The dipolar strength
and the dipole location are p* = 2.0 and d* = 0.75, respectively.

Fig. 14. The axial pair distribution function, g‘(f) (z*, 8182), in the crystalline bilayer
smectic phase. The solid line represents the dipole-averaged total distribution
function g2 (z*), dashed line is for s s> =11, and dotted for s;s2 =t|. The dipolar

Il
strength and the dipole location are p* = 2.5 and d* = 0.75, respectively.
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Fig. 15. The transversal pair distribution function, g(f)(rj_, $182), in the crystalline

bilayer smectic phase of polar molecules with p* = 2.5 and d* = 0.75. The continu-
ous line represents the total distribution function gf) (r% ) while dotted and dashed
lines correspond to s1s2 =1 and sys2 =11 cases, respectively.

Fig.16. The total in-layer center of mass triplet distribution function g(f)(rj,ﬁ)
in the crystalline bilayer smectic phase of polar molecules with yu* = 2.5 and d* =
0.75.

5. Summary and conclusions

In this paper Monte Carlo simulations were performed for an ideally ori-
ented dipolar Gay—Berne system, which models uniaxial ellipsoidal molecules
with longitudinal, point dipole moment. The method employed in treating
dipolar interactions was the Ewald summation technique [34,36]. The inves-
tigation has been directed towards the fulfillment of the three goals: (i) seek
for new dipole-induced structures in the limit where nematic ordering is well
established, i.e., smectic and crystalline phases. To that aim we extended
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earlier works [25-31] by studying a Gay—Berne system with a different set of
parameters. More specifically, we supplemented the simulations with central
and terminal longitudinal dipole moments with those where the dipoles were
positioned half way between the center and end of the molecule. Also we con-
sidered more possibilities for the dipole strength; (i1) study of large systems
to gain more information about the structure of possible ordered phases and
to avoid dependence on system size. Contrary to previous work [25-29] em-
ploying the reaction field method to treat dipolar interactions we used more
reliable, but time consuming Ewald summation technique. Please note that
simulations of liquid crystals using Evald method are scarce [30,31] and apri-
ori it is not clear whether reaction field method is accurate for structures
with long-range dipolar ordering, like the A, ordering; (i) calculate and
analyse various distribution functions, in particular the triplet ones, which,
as far as we are aware of, have not been studied for polar liquid crystals
so far. To make the analysis of the triplet distribution feasible we assumed
the ideal nematic order approximation. This does not seem to be a severe
approximation for structures where the nematic order is well established [17].

Our analysis clearly demonstrates the importance of triplet distribution
functions for a proper understanding of dipolar organization in strongly po-
lar liquid crystals. A restriction only to singlet and pair correlations misses
structures derived from geometries representing frustration of dipolar inter-
actions. This, in particular, is seen on going from central dipole moments
(d* = 0) to off-center dipoles positioned at d* = 0.75, where the transfor-
mation from in-plane hexagonal to tetragonal ordering with indication on
polymer-like correlations is observed.

By studying pair and triplet correlations we showed that the location
and the strength of the dipole moment in the molecule has a profound effect
on the short range in-layer molecular ordering and, consequently, also on
the resulting phase behaviour. For example, the central dipoles (d* = 0)
may enhance local hexagonal order and the tendency of the system to form
frustration-free polymer-like correlations. This, in turn, may stabilize the
smectic A ordering (which is consistent with earlier results [7,25, 26, 35]),
smectic structures with nonvanishing hexatic order parameters and tetrag-
onal structures with polarized layers.

For dipoles placed off-center (d* = 0.75) the local hexagonal structure of
the d* = 0 case is abandoned by the system in favour of the tetragonal one.
The latter seems much better suited to overcome the frustration effect by
forming interdigitating layers. The level of interdigitation is such that the
dipolar interactions of the neighbouring layers tend to minimize (and locally
compensate). Again this could be visualized and quantified with the help of
triplet correlation functions as shown in Figs. 10(a) and 10(b).
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Upon systematic increase of the magnitude of the dipole moment at
d* = 0.75 we can observe an enhancement of short-range parallel dipolar
correlations (see Figs. 10(c) and 11(b)). This indicates on the possibility
of converting nonpolar layers into a polar bilayer crystalline structure of
tetragonal symmetry, which we indeed observe for u* = 2.5 (see Fig. 13).
The dipolar organization in this structure appears very similar to that one
found for the smectic Ao phase. The last observation seems to hold in
general. Namely, the local correlations of the triplet in-plane distribution
function that enhance with increasing dipole moment usually correspond to
long-range in-plane ordering found for stronger dipolar cases.

In conclusion, the striking changes in the local molecular organization
as displayed by triplet correlations provide a wealth of information about
the interplay between dipole position and its strength on liquid crystalline
structures. The way in which the system deals with frustration also becomes
apparent.
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Appendix A

Reduced units

The constants €y and o of the GB potential (2) provide a natural length
and energy scale for our problem. In terms of these constants all relevant
physical quantities studied in this paper can be rendered dimensionless. The
most often used reduced quantities (denoted by a star) are listed below:

e length: I* =1/0g

density: p* = pod

energy: E* = E/e¢

temperature: T* = kT /e

dipole moment: p* = y (egog) ™'/
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Appendix B

Fwald sum

According to [11] the total dipolar energy can be expressed as

E = %Z(ui-p,j)B(mj) = (mi-rij) (pj-rij) C(rij)
i#]

2 exp(—k? /4v?) 2m vy
2052 SRR g - 25 2
k-0

Z 2%
i=1

In the expression above k denotes the reciprocal lattice vectors k= (2mny /Ly,
2mny /Ly, 2mn,/L,) (with ng, ny, n, = 0,..,7max) and v is a convergence
parameter.

The functions B(r;;) and C(r;;) are defined as

2

2m
3V

f .. exp(— 27'.2.
B(ry) def et c(;yn]) Lo p( 27 i)
T NZ3 T

and -
f i 3 expl(—yr:;
C('I’ZJ) déf36r C(g’rlj) +2l 2,}/24__2 ( 5 Z])’
T NZS i i
whereas
N
F(k) < S (k) exp(ikor).
i=1

erfc(x) is the complementary error function:

2 7 2
erfc(z) = NG dte™.

3



[1]
2]
3]

[4]

[5]

[6]
7]
18]
19]
[10]
[11]
[12]

[13]

[14]
[15]

[16]
[17]

[18]
[19]

[20]

Aligned Polar Gay—Berne Systems 833

REFERENCES

P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd ed., Clarendon
Press, Oxford 1993.

G.W. Gray, J.W. Goodby, Smectic Liquid Crystals. Textures and Structures,
Leonard Hill, Glasgow 1984.

(a) G. Sigaud, F. Hardouin, M.F. Achard, H. Gasparoux, J. Phys. Collog. 40,
C3-356 (1979); (b) A.M. Levelut, R.J. Tarento, F. Hardouin, M.F. Achard,
G. Sigaud, Phys. Rev. A24, 2180 (1981); (c) F. Hardouin, Physica A140, 359
(1986); (d) J. Prost, P. Barois, J. Chim. Phys. 80, 65 (1983).

See e.g. (a) P.E. Cladis, Phys. Rev. Lett. 35, 48 (1975); (b) L. Longa, W.H.
de Jeu, Phys. Rev. A26, 1632 (1982); (c) L. Longa, W.H. de Jeu, Phys. Rev.
A28, 2380 (1983); (d) L. Longa, Models of high-temperature liquid crystalline
phases and of related phase transitions, Raport No 1454 /PH (1989), Institute
of Nuclear Physics, Krakow, Poland; (e) A.N. Berker, J.S. Walker, Phys. Rev.
Lett. 47, 1469 (1981).

(a) C. Vega, S. Lago, J. Chem. Phys. 56, 6727 (1994); (b) A.G. Vanakaras,
D.J. Photinos, Mol. Phys. 85, 1089 (1995).

D.C. Williamson, F. del Rio, J. Chem. Phys. 107, 9549 (1997).

S.C. McGrother, G. Jackson, D.J. Photinos, Mol. Phys. 91, 751 (1997).

J.J. Weis, D. Levesque, G.J. Zarragoicoechea, Phys. Rev. Lett. 69, 913 (1992).
J.J. Weis, D. Levesque, G.J. Zarragoicoechea, Mol. Phys. 80, 1077 (1993).
D. Levesque, J.J. Weis, G.Z. Zarragoicoechea, Phys. Rev. E47, 496 (1993).
J.J. Weis, D. Levesque, Phys. Rev. E48, 3728 (1993).

S.C. McGrother, A. Gil-Villegas, G. Jackson, J. Phys. Condens. Matter 8,
9649 (1996).

A. Gil-Villegas, S.C. McGrother, G. Jackson, Chem. Phys. Lett. 269, 441
(1997).

J.G. Gay, B.J. Berne, J. Chem. Phys. 74, 3316 (1981).

E. de Miguel, L.F. Rull, M.K. Chalam, K.E. Gubbins, Mol. Phys. 71, 1223
(1990).

E. de Miguel, L.F. Rull, M.K. Chalam, K.E. Gubbins, F. van Swol Mol. Phys.
72, 593 (1991).

E. de Miguel, L.F. Rull, M.K. Chalam, K.E. Gubbins, Mol. Phys. 74, 405
(1991).

D.J. Adams, G.R. Luckhurst, R.W. Phippen, Mol. Phys. 61, 1575 (1987).
G.R. Luckhurst, R.A. Stephens, R.W. Phippen, Lig. Cryst. 8, 451 (1990);
G.R. Luckhurst, P.S.J. Simmonds, Mol. Phys. 80, 233 (1993); A.P.J. Emerson,

G.R. Luckhurst, S.G. Whatling, Mol. Phys. 82, 113 (1994); R. Hashim, G.R.
Luckhurst, S. Romano, J. Chem. Soc. Faraday Trans. 91, 2141 (1995).

M.A. Bates, G.R. Luckhurst, J. Chem. Phys. 110, 7087 (1999).



834

[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]
[36]

[37]

[38]
[39]

[40]

[41]

L. LoNngA, G. CHOLEWIAK, J. STELZER

M.P. Allen, J.T. Brown, M.A. Warren, J. Phys. Condens. Maiter. 8, 9433
(1996); J.T. Brown, M.P. Allen, E. M. del Rio, E de Miguel Phys. Rev. E57,
6685 (1998).

R. Berardi, C. Fava, C. Zannoni, Chem. Phys. Lett. 236, 462 (1995).

G. La Penna, D. Catalino, C.A. Veracini, J. Chem. Phys. 105, 7097 (1996).
M.P. Neal, A.J. Parker, C.M. Care, Mol. Phys. 91, 603 (1997).

K. Satoh, S. Mita, S. Kondo, Lig. Cryst. 20, 757 (1996).

K. Satoh, S. Mita, S. Kondo, Chem. Phys. Lett. 255, 99 (1996).

K. Satoh, S. Mita, S. Kondo, Mol. Cryst. Liq. Cryst. 300, 143 (1997).

M. Houssa, A. Qualid, L.F. Rull, Mol. Phys. 94, 439 (1998).

M. Houssa, L.F. Rull, S.C. McGrother J. Chem. Phys. 109, 9529 (1998).
R. Berardi, S. Orlandi, C. Zannoni, Chem. Phys. Lett. 261, 357 (1996).

G. Cholewiak, J. Stelzer, L. Longa, SPIE Int. Soc. Opt. Eng. 3318, 179 (1998).
A.V. Zakharov, S. Romano Phys. Rev. E58, 7428 (1998).

C.G. Gray, Y.S. Sainger, C.G. Joslin, P.T. Cummings, S. Goldman, J. Chem.
Phys. 85, 1502 (1986).

M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press,
Oxford 1987.

S.C. McGrother, G. Jackson, Phys. Rev. Lett. 76, 4183 (1996).

S.W. de Leeuw, J.W. Perram, E.R. Smith, Proc. R. Soc. Lonon. A373, 27
(1980).

W.J. McNeil, W.G. Madden, A.D.J. Haymet, S.A. Rice, J. Chem. Phys. 78,
388 (1983).

M. Fushiki, Mol. Phys. 44, 307 (1991).

See e.g. J.P. Hansen, .R. McDonald, Theory of Simple Liquids, 2"? edition,
Academic Press, 1986.

P.S. Pershan, Structure of Liquid Crystal Phases, World Scientific Lecture
Notes in Physics, Vol. 23, World Scientific, Singapore 1988.

(a) An excellent review of present status of density functional theory is given by
J.P. Hansen, in: Observation, Prediction and simulation of Phase Transitions
in Complex Fluids, M. Baus (ed.) Kluwer Academic Publishers, 1995, p. 167;
(b) A.D.J. Haymet, D.W. Oxtoby, J. Chem. Phys. 84, 1769 (1986); (c) J.L.
Barret, J.P. Hansen, G. Pastore, Phys. Rev. Lett. 58, 2075 (1988).



