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A procedure for reducing the functional integral of QED to an integral
over bosonic gauge invariant fields is presented. Next, a certain averaging
method for this integral, giving a tractable effective quantum field theory, is
proposed. Finally, the current—current propagator and the chiral anomaly
are calculated within this new formulation. These results are part of our
programme of analyzing gauge theories with fermions in terms of local
gauge invariants.
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1. Introduction

This paper is part of our programme of analyzing gauge theories in terms
of physical observables (i.e. gauge invariants). For applications of this pro-
gramme to non-Abelian Higgs models we refer to [1]. In recent years we have
applied it to theories of gauge fields interacting with fermionic matter fields,
see [2-4|. In [2] we have proved that the classical Dirac-Maxwell system can
be formulated in a spin-rotation covariant way in terms of gauge invariant
quantities. In [3] we have shown that similar constructions work on the level
of the (formal) functional integral of QED, where fermion fields are treated
as anticommuting (Berezian) quantities, and in [4] we have applied our pro-
cedure to the 2-dimensional Schwinger model. As a result we obtained a
functional integral completely reformulated in terms of local gauge invari-
ant quantities, which differs essentially from the effective functional integral
obtained via the Faddeev—Popov procedure [5].

(847)
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The present paper is a continuation of [3]. It turns out that our general
procedure leads to a complicated, singular functional integral kernel. In or-
der to make this model tractable, we propose a certain averaging procedure
leading to an effective quantum field theory. This theory is characterized
by a certain number of parameters, which have to be fixed by comparison
with experimental data. As an application we discuss — for the massless
case — the current—current propagator and the chiral anomaly within this
formulation. (In principle, the massive case can be also dealt with, using
an expansion in the mass parameter, but this problem will be not addressed
in this paper.) A number of interesting phenomena and results comes out:
A bosonization rule, similar to that in the Schwinger model appears natu-
rally. Moreover, we get a dynamical mass generation leading to a massive
spin-1 field. Physical quantities like the current—current propagator and
the chiral anomaly are given as expectation values with respect to an effec-
tive non-local measure. This measure can be analyzed in terms of a power
series expansion in the coupling constant, which, however, is completely dif-
ferent from the ordinary perturbation expansion. This is due to the fact
that the above mentioned mass itself contains the bare coupling constant.
Therefore, the formulae obtained suggest that automatically some resuma-
tion of the ordinary perturbation series has taken place. It is also remarkable
that our formulation leads to a completely new approach to calculate the
chiral (Adler-Bardeen) anomaly. In lowest order this quantity can be calcu-
lated analytically. Adjusting part of our free parameters yields the standard
Adler-Bardeen anomaly with the correct coefficient. We underline that this
paper contains only a first step towards a full effective theory. For that pur-
pose one should adjust all free parameters, including some consistency checks
by calculating different physical quantities. Also a systematic perturbation
scheme based upon the power series expansion of the above mentioned non-
local measure should be developed. Finally, it should be clarified, whether
quantities like the anomalous magnetic moment can be calculated using our
approach. (It is likely that for this purpose a different set of gauge invariant
quantities has to be used.)

We stress, that our approach circumvents any gauge fixing and, therefore,
also the Gribov problem [6]. It leads naturally to bosonization and can be
viewed as a general construction scheme for effective quantum field theories.
Due to the above remarks, it seems to be appropriate for the study of non-
perturbative aspects, even if the approach presented here is far from being
complete (e.g. we do not know whether different regularization methods used
for our singular integral kernel preserve the essential features of the theory.)
We also mention that a similar construction is possible for lattice models
within the Hamiltonian framework. In this context we have discussed the
charge superselection structure of QED [7].
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Our method applies also to Yang—Mills theories, see [10], where the func-
tional integral of one-flavour chromodynamics is reduced to an integral over
purely bosonic invariants.

2. QED in terms of local gauge invariants

The functional integral of QED is given by

7 = /HdAdq/;dz/J* ef J &'z LA 7] (2.1)
L = Egauge + Lmat

= ‘EFWFW—mW Ban = T {9 By ()", Dt} (22)

where F,, = 0,4, — 0,A, and D,9* = 0,4° + ieA )" are the electro-
magnetic field strength and the covariant derivative, respectively. Here
a,b,... = 1,2,1,2 denote bispinor indices and y,v,... = 0,1,2,3 spacetime
indices, B, denotes the Hermitean metric in bispinor space and (7“)b . are
the Dirac matrices. The anticommuting components of the bispinor field ¥,

K
which can be represented by a pair of Weyl spinors ® = < :Z; ) ) , generate

a Grassmann algebra of pointwise real dimension 8. The repreé(entation used
for these quantities can be found in [2] and [3].

In [3] we have proposed a procedure which reduces the functional inte-
gral (2.1) to an integral over gauge invariants. It is based upon the following
ideas: First, one has to analyse the algebra of Grassmann algebra valued
gauge invariants, which can be built from the gauge potential A, and the an-
ticommuting matter fields 9®. Typically, there occurs a number of identities
between the invariants which, in general, cannot be solved on the algebraic
level. In particular, one finds a relation which expresses the Lagrangian,
or the Lagrangian multiplied by some non-vanishing element of the above
algebra, in terms of invariants. In a next step one has to implement this
relation under the functional integral and to reduce the original functional
integral measure to a measure in terms of invariants. For that purpose we
make use of the following notion of the d-distribution on superspace (see [8]
and [9])

n!

o0 1 n
S(u—U) = / dg M=) = 3" (=1) 5 (u)U™. (2.3)
n=0
Here w is a c-number variable and U an element of the Grassmann algebra
built from matter fields ¥ and 1*. From this definition we get immediately

1E/du5(u—U). (2.4)
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Thus, by inserting identities of the form (2.4) under the functional integral,
we introduce for each Grassmann algebra valued gauge invariant a c-number
variable, which we call c-number mate. These mates are by definition gauge
invariant. This way we are able to solve the above mentioned relations be-
tween invariants, leading to a theory reformulated in terms of gauge invariant
fields. For details we refer to [3] and [10].

For QED we start with the following Grassmann algebra valued gauge
invariants:

H = ¢5¢¥, (2.5)
B, := Im{H* (¢ D™ + " Dyupi)}, (2.6)
JH = 1/}a* /Bab ('Yu)bcl/}ca (2‘7)
JE = ™ Bay (Y1), (95) g ¥ (2.8)

Here H is a complex scalar field, whereas B, is a real-valued covector field.
J# and JE denote the vector and axial-vector current, respectively.
We denote the corresponding c-number mates by h, b, j* and j£, and

put v, = 2;‘—‘};'2 as well as h = |hle’®. Tt was shown in [3] that our procedure
yields the following functional integral:

o :/ [T{dv, di* dit din|? de K[j#, 2, |h[?]} €t ] €' lowd® 5 I0el - (2 9)

where
1 52 52 82 82 52 82
K[j*, &, |n]°] = 2 —4
%35, 1hF] = 5 {5ju5ju 57705, " 0jraj, 035075 | 87m0% 047078
+52 52+154+153 1 42
375935 058075~ 16 o|A|* ~ 8|h| 6|A]> 16 |h|? d]h|?
R SN R S S S
16 a3 6|h| 2 8|h|2 65165,  2]|h]| 6|h| 6516j,
1 82 42 1§ 82
- e N - L4 2
+2 (5|h|2 5]?@2 + 2|h| 5|h| 5j§5jf1}5(] )5(]5 )5(|h| )7
(2.10)
and
- 1 2 . 1.
Llvy, 3*, 5+ |hl o] = _Z(a[uUV]) —6]“1}“—1—535(8“04)
1
+ 6aﬂ“7jajg(8uj7) —2m|h|cosa. (2.11)

8 |h|?
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3. Effective bosonized QED

Observe that the integral kernel K [j*, j, |h|?] has the form K =
D {5(5*)0(j5)5(|h|?)}, where D is a differential operator containing func-
tional derivatives with respect to j#, j& and |h|, multiplied by singular coef-
ficients. A priori, this expression does not make sense. In order to regularize
it, we replace it by a Gaussian measure with three free parameters, a;, a;s
and a4, which have to be fixed by physical requirements later. This way we
get:

Z=N /H{dvu dj* djt* d|h)? do} &' 4@ Llowdt s Ikl el (3.12)
where now

YO 1 2 _ gl Ly 1 cBuy ; ;
‘C[Uua] )5 |h|7 Ot] :_Z(a[u UV]) —€] U,u+§35 (alta)+ 8|h|2 jocjﬁ (alt]’y)

et Rl

1
—om|h I
m |h|cos a AT 20,5

20
(3.13)

It is interesting to note that this regularization can be achieved by a
technical trick similar to that used in the Faddeev—Popov procedure: One
can average the singular kernel (2.10) with a functional depending on three
auxiliary fields corresponding to the variables j*,j£ and |h|. It was shown
in [11] that the requirement to obtain the above Gaussian measure after this
averaging determines this functional uniquely.

We see that the Lagrangian (3.13) does not contain derivatives of the
chiral current jﬁ, 1.€. jﬁ enters the theory as a non-dynamical field. Thus,
we can carry out the simple Gaussian integral over the chiral current, which
yields

Z=N /H {dv, dj* d|h|? dor} e 4% £lwsd" Il (3.14)

where the effective Lagrangian has taken the form:

. 1 9 . Lo
Llvy, j*, bl ] = _Z(a[“ Uu}) —ejlv, + W nby (0pa)ja(087)
ajs . L -
+128J|h|4 Eauﬂ'y 56;4,;)0.704(85.7’)/).7 (ap] )

1
Iz _ 4_9
20, ~— "3 + 2 (3 a)(0,a) S |h| m |h|cos a.

(3.15)
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Comparing this Lagrangian with (3.13) we observe that jZ has been re-
placed by the gradient of c. More precisely, we have the remarkable relation

2
Ouor = —ji . (3.16)

C(j5

This is the 4-dimensional analog of the bosonization rule in the 2-dimensional
Schwinger model, see [12]. (In [4] we have obtained this rule for the Schwinger
model using our approach.)

Observe that the field |h|? enters (3.15) in a non-dynamical way, too.
Thus, in principle, one should integrate it out. This, however, cannot be
done explicitly. In a first approximation, |k|? could be replaced by a con-
stant. We will come to that point later.

Finally, let us write down the generating functional integral of our effec-
tive theory (3.14), (3.15):

Z[CH, &t = N / [T{dvy dj* dinf? da} el ] @2 £16" & m svss hlel

(3.17)
with

E[C“af“an#; Uuaj#a |h|a Oé]

1 ) Qs . .
= 10w’ = es"ou+ rm €7 (9u0)ja(557)
Y5 _auby (O '5ap'a_i'#' _ 1 BlA

"‘% (0" ) (Oya) — 2m |h| cos o + ¢H(O,0) + E# 5y + Moy, (3.18)

where (#, &# and n* denote the source currents for (0H«), j* and v#, re-
spectively.

4. The current—current propagator

In this section we want to calculate the current—current propagator
(0|T3*(y1)5¥ (y2)|0) using the effective theory obtained in the last section.
We restrict ourselves to the massless case, i.e. we put m = 0 in the generat-
ing functional integral (3.17).

The current—current propagator is given by

(0|T5* (y1) 5" (y2)]0)

= 1 1 9 0 Ioep o
70,0,0] 2 56201 96 (52) 28 M g o

S S O Z00,¢" ] . (4.19)
Z[0,0,0] i2 66#(?/1) 551/(2/2) ’ ’ EH =0
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To handle the non-linear (self-interaction) term

OKjS aup

128 || ©

7 Esupo ja(aﬁj'y)jé(apja)

occurring in (3.18) we introduce the vector field

]' o
T ] = €7 Ja01) (420)

and decompose it into its longitudinal and transversal parts:
K (Gius [0 = O K[y, |Rf] + KM [, IR (4.21)
where 9,k"1[j,, |h|] = 0. This yields

L[CH, " ks vy, 3%, b, a]

1 ) Q5 .
=1 (Opuvn)* — ej"vu + ﬁ (Ope) (0"k[jy, [RI])
. 1
+m(3“k[3u, |h]) Ok, Ihl])+mk“[3m 2] Ky e Ihl]——J I
Ihl4 (3“ @) (9ua) + ¢ (Oue) + &y + vy (4.22)

The term O;J—'GE’ (0u@) k*[j,, |h|] vanishes by partial integration.
Transforming

o =a+

1
kl7,,|h 4.2
46(5 []Ha| Ha ( 3)
we obtain

L0, &, n"5 v, 5%, |h], o]

1 2 . 1 1
= _Z (a[uvu}) - ejuvu + 12]8 K [J,ua |h|] k [lua |h|]
1 .
gy 0~ —|h|4 (3“ (0u0) + "y + oy (4.24)

Observe that the transformation (4.23) leaves the integral measure doa in-
variant. Thus, o/ can be integrated out trivially and we get

O 1)1 ()10
= s | TL @ dnr)

1 5 5 . f d4 C[O gu "7”' i (B
X 5 el z §TT V] »|h] , 4.95
i2 08, (y1) 06, (y2) £ =0 (4.25)
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where

L[0, ", 05 v, 34, |h]]

1 2 . 1 1
= _Z (a[uvu]) - 6]”0# + 158 E* [J,ua |h'|] k [lua |h’|]
1 1
—— "y — |+ G+ oy 4.2
201]'] Ju 204h| | +f]u+7lvu (4.26)

The further analysis of the term TQS EHL [, |A]] kL[j#, |h|] needs some
care, due to its non-linear (and non-local) character. Expandlng the expo-
nential of this term in a series, we obtain

(015" (y1) 5" (y2)10)

1
- - dv,, dj* d|h|?
Z10,0,0] /H{ o |

oo

1 Q5 n ulr,: A n
5 () (et
l 5 5 1fd4z ['O[ngpm'u;v#vjp"h‘]
i2 08, (y1) 0&u(y2) gt =0

1 .
2,001 / {dvu di* d|h?

A
L (ji;)"( g W e 1)}

eifd4m Co[O,f“,ﬂ”;qu‘jthH

engh=0"

where

Z[0,0,0] /H{dvudj“dlhl Z (128) <ML [5@ |h|] [6(2“ |hﬂ)n}

X elfd41£0[07£”m”7vu71”7|h”

& mr=0

and

EO[Oaguanu;’Uﬂajua |h'|]
1

. 1 ., 1 .
! (B[ny])Q —ejlo, = 2—oejjﬂﬂu B EW4 + &%+ o
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In the last step we used the fact that the integral kernel consists of a poly-
nomial function in j#. Thus, j* can be replaced by the corresponding func-
tional derivative with respect to the source current £€#. Now we are left with
a Gaussian integral with respect to j#, which yields

<0|Tj”( 1) 3% (y2)[0)

70 0 3 /H {dvud|h| Z (128) <;u [155“ |h|] [éwlhl])”}

1 (5 6 eifd‘i:rLo[O,&”,n“;vwlh\]

2 58, (1) 06, (12)

(4.27)

&1 =0
with

Z[0,0, 0] /H{dvud|h|2§: (%) <kw[5§ﬂ Ihl] [%’Iiﬂ])n}

w of [ 'z Lo[0.6" /0y, | ]

&l mr=0

and

Lo[0, 8", n"; vy, |h]]

2.
= ——(8[#1;,,])24—&1)“@“ jf”fu |h|4—a]ev“fu+n“vu (4.28)

2

We remark, that the covector field v, has acquired a mass m2 = oeje2.
Thus, in our effective field theory, the original gauge potential A, has been
replaced by a massive spin-1 field v,. Now, observe that due to (4.28) the
functional derivative with respect to {# produces the term —ajev,. There-

fore, the non-linear (and non-local) term (k‘”‘[légp, |hl] kJ‘[lgégw |h|]) is ef-

fectively of the order e?, and we can treat it as a perturbation. Performing
the functional derivatives in (4.27) with respect to £# yields a complicated
non-local measure, which in full generality cannot be handled analytically.
Limiting ourselves to lowest order we get:

OIT* (1) 3 (42) 0} / [T (o)

x (o ™ 6 (y1 — ya2) + mi o v (y1)v” (2)) elfd%LO[nuw""h'”nu:o-
(4.29)

Here we have denoted

Z[0] = /H {dvu d|h|2} eifd‘lzﬁo[O;vp,\hH
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and

1 m2 1
Lol v [hl) = =7 Opo)” + 55 v = g bl 400, (4:30)

Next, observe that the integration over |h| decouples, giving

(0]T5*(y1) 5" (y2)|0)o

1 v v i 4m LY}
= m/l;[ {dvu}(am“ 54(y1_y2)+m12;04j0“(y1)v (y2))e Jd*azLon* ;] o

= (a; 0™ 5 (y1 — yo) + maay v" (y1)v” (12))
where now

200)= [ TL (a0t

and
2

1 m
EO[")M; Uu] = _Z (a[uvu])2 + 71) quu + n”Uu :
This way we obtain:
Proposition 1 In lowest order, the current—current propagator
(075" (2)5% (y)|0)

of massless QED 1is given by the vacuum expectation value
(1T (1) 3” (y2)|0)0 = (e "™ " (1 — yo) +mijj ¥ (y1)v" (y2))  (4.31)

with respect to the functional measure Hx{dvﬂ}eifd%q”“] and the Lagrangian
1 2 m?) o
Llv,] = ~1 (D)) + — V" (4.32)

Thus, in the lowest order, we are left with a simple Gaussian integration.
We have

1 m? 1
Lo[n";v,] = ~ (8@0,4)2 + 7” v, +nfv, = ~3 v, D 0" + 0t

with DY), 1= 8”0, — 0,0°0, — m?2 45, We introduce the new field

v () = v (x) +/d4yn”(y)(D_l)“,,(ac -y,
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where the propagator (D™')¥ (z —y) of the massive free field v, is defined
by

D'o (DY) (x —y) = =8z —y) oL .
Thus,
o9, +m?2 sl

2 (mZ + 0) oMz —y) . (4.33)

(D™ (z —y) =

Performing the above transformation, the resulting integration over U;L de-
couples and we obtain

(0]T5"(y1) 3” (y2)|0)o

14 1 5 5
= <OAJ7]“ 54(?/1 _?JQ) +m aj 12 6nu(y1) I/(yQ))

w oiJdtdty{—nu(@) (D) (a—y)n"(y)} , (4.34)
nt=0
Finally, performing the remaining functional derivatives, we get
. . o*ro” +m 77‘“’
(0|T5*(y1)3" (y2)[0)o = 04j7IW54(y1 Y2) — Td (y1 — y2)
’U
WO — GRHY
e (TP (4.35)

= ;
J m2 + 0

Fourier transforming to momentum space leads to the following expression
in lowest order:

5 (p) = F < O|T5"(y1) 5” (y2)|0 >o= (p"p” — "*p*) T(p®)  (4.36)

with T'(p?) := —52—. This result has the expected Lorentz structure. More-
mg—p

over, we obtain the identity p, I1§" (p) = 0, which is nothing but the vector
Ward identity. Thus, in lowest order of the above defined perturbation series,
our result obeys the vector Ward identity.

However, a direct comparison with the well known perturbation series
of QED is not possible. This is due to the fact that the mass m?2 = oeje2 of
the spin-1 field v, occurring in (4.35) contains the bare coupling constant e.
Thus, expanding this result around m2 = 0, which corresponds to a power
expansion in e?, we obtain non-vanishing contributions to all orders in e?.
Therefore, formula (4.35) can be interpreted as a resumation of particular
quantum corrections, which results in an effective (“dynamical”) mass for
the field v,. Unfortunately, higher order contributions (in the sense of our
expansion) cannot be calculated analytically.
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5. The chiral anomaly

In this section we show that within our approach the correct Adler—
Bardeen anomaly [14] is obtained in the lowest order approximation dis-
cussed in the previous section. Again we restrict ourselves to the massless
case.

Due to the bosonization rule (3.16) the chiral anomaly (9,j%) is given
by the vacuum expectation value

0.8) = (- ©.0"aw))

_ b e g
~ Z[0,0,0] 2i <8u %(y)) Z[¢H, &r ] g (5.37)

where Z[(#, &#,n*] is given by (3.17) and L[¢*, £#,n*; v, 3*, |h], @] by (3.18),
or in terms of k#[j,, |h|], by (4.22). Choosing a longitudinal source current
(M := (0"¢) and transforming

1
= — h 5.38
W =0k o Kl A (539)
yields the Lagrangian in the following form:
LICH, M M50, 5, ], "]
1 2 . 1 .
= —— (0 _ 15 _ k#” h ] k,/JJ. h kJ_ h
4( [uvu}) €] Upu 404]' Cuk™ [y [] + 128 (s [R]K [0 [R]
]. 4 o ap, " 8 " [ M
T Jju——| | ——CuC + 2 ( )(Opa”) + & jy + 0oy

Now o can be integrated out trivially. Performing the functional derivative
with respect to (* we obtain

<% (2,0"a(y)))
- 7500 L[ v " din? }< Ou(0" Kljn(y ),|h<y>|]+4c“<y>))

%ol fd4x L[CH,&M,0500,5",| h]

¢ gm=0

- o [ THaswaran} (- Lot 1non)

w el [ d'z £[0.6#,0;v,,5% | h]

gn=0"
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where
L[0,&",0;v,, 3", |h]

1 OéjS L. 1> 1 T 1 4 .
4(6[uvu) —ej out 1og k' s [Nk, [Jua|h|]_§j.7u]u_ﬁ|h| +&Ju

Due to the explicit dependence of k"[j,(y), |h(y)|] on |h|, a further ex-
act analytical treatment of this formula is impossible. But, as outlined in
Section 3, |h| enters our effective theory in a non-dynamical way and, there-
fore, in principle it can be “averaged” out. In the simplest approximation we
replace |h| by its mean value xo. This way we are led to

(T @0 o))
— m /H{dvu dj*} <—é<9uk“[ju(y),><o]>

« o J @@ L£[0,6",030,,5#]

£4=0

- Z[O,lo,O] /I;I {dvy, dj"'} <_ﬁ 56“05(3uj5(y))(3aj§(y))>

of [ d4 L£]0,6#,050,0,5] (5.39)

gr=0’
with
L[0, ", 05 vy, 5]

1

1
2 . 1 1 T .
= 1 (‘%%}) - 63”% + m K [J,uaXO]k# [J,uaXO] - Q—%J“Ju + f”]u-

Now the non-trivial coupling term - > iy L4, x0] kt (74, Xo] will be treat-
ed similarly as in the previous section. In the lowest order we get

<%<auaﬂa<y)>>0
= 25,00 / H dv,, dj* < ghnot (3uja(y))(<9oj5(y))>

Xelfd mﬁo 0,5”,0;’1/#;]”}

5“0

- 000 /H dvy " < 8i2 2" e <a”%> <a"5§%(y)>)

xelfd mﬁo 0,5“,0;’1/#;]#}

en=0
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where Z[0,0,0] = / [T {dvadjt}p !t col000imneit]
and i » 1 9 " Iy Y
Lo[0,&",0; vy, 5] = —= (O0,))° — e v — 5— "3 + &
4 2a;

Performing the Gaussian integration over j# and the functional deriva-
tives with respect to £#, we finally obtain

(L @),
e 1
7]

= E prvaf = /H{dv }(a 0,1 (1)) (D v (y))eifd‘lzc[vu}
8x3 ] s O] [a¥g]
e’a?
= nggwaﬁ (O () (Ojavp (y))) (5.40)

with Z[0] = [T, {dv,} e/ @£ and

1 m2
Lo = —7 (O7)” + = v (5.41)

Thus, bearing in mind that F),, = 9j,v,) we can formulate the following
result:

Proposition 2 In lowest order, the chiral anomaly of massless QFED in
(3+ 1) dimensions is given by the vacuum expectation value

2.2

55 12 _ea uvap
(5 @uat)), =53 (Fu Fog) (5.42)

with respect to the functional measure [], {dv,} elf ' Llvu] yphere

2

1
—= (a[“’uy])2 + % U“’UM . (5.43)

E[”u] = 4

If we start with an external electromagnetic field, v, becomes external,
too. In that case we get

62042

;5
(55 @u"atu)) = 53 & Fuw Fas. (5.44)

where F),, = 9),v,] denotes the external electromagnetic field strength.
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Observe that we get the correct coefficient, see [13,14], for the chiral
anomaly if we require the following relation between our parameters:

2

— = —. 5.45
X2 2n? (5.45)
This yields
. 5 e? v
(@) = (5 @ud"ay))) = 155" FuFag. (5.46)

Thus, the anomaly can be used to fix one of the parameters of our effective
theory as discussed in the Introduction.
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