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RUNNING COUPLINGS IN HAMILTONIANS�Stanisªaw D. GªazekInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00-681 Warsaw, Poland(Re
eived January 10, 2000)We des
ribe key elements of the perturbative similarity renormaliza-tion group pro
edure for Hamiltonians using two, third-order examples:�3 intera
tion term in the Hamiltonian of s
alar �eld theory in 6 dimen-sions and triple-gluon vertex 
ounterterm in the Hamiltonian of QCD in4 dimensions. These examples provide insight into asymptoti
 freedomin Hamiltonian approa
h to quantum �eld theory. The renormalizationgroup pro
edure also suggests how one may obtain ultraviolet-�nite ef-fe
tive S
hrödinger equations that 
orrespond to the asymptoti
ally freetheories, in
luding transition from quark and gluon to hadroni
 degrees offreedom in 
ase of strong intera
tions. The dynami
s is invariant underboosts and allows simultaneous analysis of bound state stru
ture in therest and in�nite momentum frames.PACS numbers: 11.10.Gh 1. Introdu
tionCanoni
al Hamiltonians of quantum �eld theories 
an be written in termsof 
reation and annihilation operators. Let us denote those operators by q.In this notation, for example, a triple-gluon vertex in the light-front QCDHamiltonian has the stru
tureHY =X123 Z [123℄ Æ(1 + 2� 3) g Y123 qy1 qy2 q3 + h.
. ; (1:1)� This arti
le grew out of an invited talk at The Workshop on Light-Cone QCD andNonperturbative Hadron Physi
s, Centre for The Subatomi
 Stru
ture of Matterand The National Institute of Theoreti
al Physi
s, University of Adelaide, Adelaide,Australia, De
ember 13�23, 1999. (909)



910 S.D. Gªazekwhere symbols 1, 2 and 3 denote 
olors, spins or momenta of gluons, [123℄is a shorthand notation for the integration measure over the gluon three-momenta, Æ(1 + 2 � 3) is the Dira
 Æ-fun
tion of three-momentum 
onser-vation, and Y123 is a fun
tion of the gluon quantum numbers, implied byQCD. g denotes a bare 
anoni
al 
oupling 
onstant, whi
h is expe
ted fromLagrangian approa
h to require ultraviolet renormalization. However, theHamiltonian la
ks many of the Lagrangian density symmetries that are em-ployed in the perturbative Lagrangian renormalization pro
edure and, in alllight-front Hamiltonians, transverse and longitudinal dire
tions are treateddi�erently. For that reason, and to introdu
e a method for renormalizationof Hamiltonians su
h as (1.1), we need to review the origin of the ultravioletdivergen
es.One 
an evaluate matrix elements of HY between states of the formjijk : : :i = qyi qyjqyk : : : j0i. Consider h12jHY j3i, whi
h is proportional to Y123.The trouble is that Y123 does not vanish when the relative motion of parti
les1 and 2 be
omes very energeti
. In other words, the intera
tion Hamiltoniandire
tly 
ouples states of small kineti
 energy to states of arbitrarily high ki-neti
 energy. For example, when we squareHY and evaluatePiHY jiihijHY ,the range of jiis to sum over, on the energy s
ale, is in�nite. The sum di-verges, and the square of HY does not exist. If one tries to �nd eigenstates ofthe Hamiltonian, the divergen
e will dominate �nite terms. Also, exp�iHtdiverges and no 
on
lusions 
an be drawn from knowing H as it stands.The problem is worse than the in�nite energy range of intera
tion impliesby itself: the fun
tion Y123 in QCD grows when the energy di�eren
e be-tween kineti
 energies of parti
les 1 and 2, and parti
le 3 grows. The largerare the kineti
 energies of the intermediate parti
les, the more importantbe
ome the intera
tions, and we are sent into an abyss of Fo
k spa
e stateswithout bounds. All physi
ally relevant lo
al quantum �eld theories havethis trouble.To see the essen
e of the problem, imagine a matrix of the Hamiltonianmatrix elements in the basis of eigenstates of 
ertain H0, H0jii = E0ijii,Hij � hijHjji. Our problem is that the 
orners marked low�high and
Hij = H0ij +HY ij = low E0i

high E0i
high E0j low E0j

high�lowhigh�high
low�high low�lowhigh�low on the above �gure, 
ontain too large matrix elements for the



Running Couplings in Hamiltonians 911Hamiltonian matrix to have eigenvalues that are independent of the matrixboundaries. In order to understand the boundary-dependen
e problem ofthe eigenvalues, we put an upper bound, denoted by �, on the basis statesenergies and we work out what happens with eigenstates of Hamiltonianmatri
es whose size is limited by the 
onditions E0i � � and E0j � �,when we 
hange �. In parti
ular, we ask what properties must HY have forthe spe
trum of H� to have a limit when �!1.Wilson asked this question in 
ase of a model Hamiltonian with bigenergy gaps between su

essive energy s
ales that were in
luded in his 
al-
ulation, and he studied the in�uen
e of 
oupling between small and largeenergy states on the lowest eigenvalues [1℄. His method for dealing withthe �-dependen
e of the spe
trum in the multis
ale eigenvalue problem (ingeneral, the problem of dependen
e on regularization, of any kind), wasbased on an iterative pro
edure. Initially, one solves the highest energy partof dynami
s and fo
uses on its lowest eigenvalue levels whose dynami
s, inturn, is dominated by states with energies lower by one energy gap. Then,one solves this next lower energy s
ale dynami
al problem, and one repeatsthe pro
ess many times. Starting from the energy s
ale �, one eventuallyarrives at a �nite s
ale �. This is s
hemati
ally indi
ated on the following�gure. Wilson's approa
h�
�R��!H� H�In this �gure, we see a new small matrix of size �, denoted by H�. Thismatrix is 
al
ulated using an operation R�, whi
h is 
onstru
ted in the se-quen
e of steps lowering the 
uto� from � to �. The 
onstru
tion is basedon the prin
iple that the smallest eigenvalues of the small matrix, H�, shouldbe the same as the smallest eigenvalues of the big matrix H�. The alge-brai
 derivation of the small Hamiltonian H� is designed to guarantee theequality of the smallest eigenvalues. The 
rux is that if all matrix elementsof H� are independent of � (in general, independent of the regularization



912 S.D. Gªazekone uses to de�ne H�) then, the eigenvalues of H� must be independent ofthe regularization. Therefore, if we know what to do with the regulariza-tion dependen
e of matrix elements of H�, then we know how to go aboutregularization dependen
e of the spe
trum of H�.Note, that � is �nite and 
an be 
hosen arbitrarily, as long as � ! 1.The set of transformations that 
onne
t Hamiltonians with di�erent values of� is 
alled renormalization group. [2℄ Physi
al results should be independentof �, by 
onstru
tion. It is 
lear that H� 
annot be equal to merely P�H�P�,where P� denotes a proje
tion operator that proje
ts on the spa
e of stateswith energies E0i < �. Some additional terms must be in
luded, whi
hreprodu
e dynami
al e�e
ts from above �. Similarly, we do not expe
t thatH� is merely P�H
anoni
alP�, where H
anoni
al is built from H0 and termssu
h as (1.1). By the same argument as for H�, some additional terms arerequired in H�, to in
lude e�e
ts from above the 
uto� �. We will 
allthose terms 
ounterterms. The problem is how to �nd them. A

ording toWilson, they are found from the 
ondition that all matrix elements of H�be
ome independent of the regularization in the limit �!1, for all �nitevalues of �. One must take 
are not only of the diverging (i.e. �-dependent)regularization dependen
e, but also of the �nite regularization e�e
ts. The
oupling 
onstant g in Eq. (1.1) is 
hanged in the renormalization pro
essas a result of introdu
ing 
ounterterms.The problem with the transformation R� is that the large energy gaps areabsent in physi
ally relevant 
ases, and perturbation theory based on energys
ales alone fails. One 
an try to take advantage of a small 
oupling 
onstantbut we know that naive perturbative expansion does not work in degenerate
ases. For example, one may think of e�e
ts familiar from elementary degen-erate perturbation theory for eigenvalues of a Hamiltonian matrix with a fewrows and 
olumns. We know that perturbation theory 
annot work unlessone properly 
hooses the initial basis states in the degenerate subspa
e �eigenstates of the intera
tion matrix (if it is a few rows and 
olumns). Onlyin that basis the perturbative limit g ! 0 exists. Otherwise perturbationtheory produ
es vanishing energy denominators that lead to diverging termsand the 
al
ulation is misleading. In 
ase of quantum �eld theories of inter-est, the situation is mu
h more involved than in simple matrix 
ase due tomultiply degenerated 
ontinuous spe
tra of H0. Moreover, in asymptoti
allyfree theories, we expe
t that the intera
tion strength grows when we go fromH� to H� and small energy denominators are 
ertainly expe
ted to produ
elarge e�e
ts. Thus, the degenera
y of spe
tra and strength of 
ouplings donot allow us to do a pre
ise analysis of R� and H�. So, the operation R� isof limited appli
ability in the 
anoni
al approa
h to quantum �eld theory.



Running Couplings in Hamiltonians 9132. Similarity for HamiltoniansThere is an alternative approa
h [3, 4℄ (see the �gure below). Insteadof 
al
ulating a small Hamiltonian matrix, we 
an also 
al
ulate a nar-row matrix. Namely, a similar (in the sense of algebrai
 similarity) matrixthat has the same eigenvalues but whose matrix elements H�ij vanish ifjE0i � E0j j > � (or another 
ondition of �narrowness� is satis�ed � her-mitian matri
es 
an be diagonalized and, therefore, partial diagonalizationto a narrow matrix should be possible). The 
hoi
e of near-diagonal formis motivated by the following property of near-diagonal matri
es: when wea
t with them on a state of some �nite energy, a single a
tion of the matrix
an rise the energy by at most �, i.e. by its width on the energy s
ale. Inperturbation theory for eigenvalues of a near-diagonal matrix, 
orre
tionswill not be sensitive to the 
uto� � up to the order n � �=(2�), sin
e onehas to go up in energies and 
ome ba
k to the initial energy range througha
tion of intera
tions, and at least n are needed to rea
h the boundary start-ing from �. In similarity, the 
rux is that if matrix elements of the narrowmatrix of �nite width � are independent of regularization when � ! 1,then the spe
trum of H� will be independent of regularization to all ordersof perturbation theory. Similarity approa
h
�������

��� �������
����� ��� �S��!

The transformation S� is 
alled similarity transformation. The e�e
tiveHamiltonian matri
es with various widths � are 
onne
ted by transforma-tions that are 
alled similarity renormalization group transformations forHamiltonians. We limit our dis
ussion to unitary transformations S�. Thekey feature of the similarity approa
h is that perturbative 
onstru
tion ofS� avoids small energy denominators entirely � they are limited from belowby the width �. In turn, the perturbatively 
al
ulated narrow Hamiltonians
an be diagonalized numeri
ally, whi
h is the ultimate way to �nd solutions



914 S.D. Gªazekto 
omplex non-perturbative problems of the original theory. One 
ould ask,why don't we go all the way to � = 0, whi
h would mean 
omplete diagonal-ization through S� with � = 0? This is impossible in perturbation theory.We 
an trust perturbation theory for 
al
ulating H� only for not too smallvalues of �.In other words, the perturbative similarity transformation S� involvesenergy 
hanges that are at least as large as � and the problem with largee�e
ts in perturbative evaluation of e�e
tive Hamiltonians is over
ome. Butthat does not mean we eliminated any of the nonperturbative e�e
ts. Theyare still hidden in the narrow e�e
tive Hamiltonian, as mu
h as they werein the initial one. The only thing we a

omplish through similarity, is theelimination of dire
t 
ouplings between states of interest to us and very highenergy states. This is a prerequisite that we need to de�ne an ultraviolet�nite, nonperturbative Hamiltonian eigenvalue problem in quantum �eldtheory.One 
an apply various perturbative pro
edures for 
al
ulating S� andH�. Wegner invented a beautifully simple s
heme for evaluating near diag-onal Hamiltonians in solid state physi
s [5℄. It was shown [6℄ that Wegner'sequation 
an be employed in the renormalization group s
heme. A numberof variations reported in the literature in di�erent areas, is growing [7℄.The bottom line is that when solving for the spe
trum of a narrow Hamil-tonian, we do not have to diagonalize the whole matrix of size �!1. We
an sele
t a window, as is illustrated in the next �gure.Window Hamiltonians
�������

����
�������

������ ���S��! pp p p p p pppppppp
Diagonalization of that small window is mu
h simpler than diagonalizationof the whole matrix and the window eigenvalues mat
h the whole matrixeigenvalues in the middle range of window energies [8℄. The reason is thatthe wave fun
tions have width 
omparable to � on the energy s
ale, whi
h isindi
ated on the �gure (see also Appendix B in Ref. [3℄). One 
annot expe
t



Running Couplings in Hamiltonians 915wave fun
tions of eigenstates of the initial Hamiltonian matrix, H�, to bedominated by some small range of energies. In 
ontrast, the eigenstatesof matrix H� are expe
ted to have wave fun
tions that have this property.Re
ent 
al
ulations of quarkonium and glueball spe
tra in light-front QCDexploit this feature [9, 10℄Ref. [8℄ outlines the similarity pro
edure starting from an initial Hamil-tonian, through evaluation of the narrow Hamiltonians (having found thene
essary 
ounterterms in the initial Hamiltonian) in perturbation theory,to diagonalization of a small window to get the bound state energy, using amatrix example. The matrix model is asymptoti
ally free and has a boundstate. The 
oupling 
onstant is a fun
tion of the e�e
tive Hamiltonian width�, we say it �runs�. For example, it may equal about 0.06 at � = 65 TeV andabout 1 at 1 GeV. Still, the window Hamiltonian of a few GeV size 
an be
al
ulated in se
ond order perturbation theory and the window bound stateeigenvalue deviates from exa
t solution by only 10%. On
e we understandthat example, we 
an return to quantum �eld theories with intera
tionsof the form (1.1) and attempt a 
al
ulation of the 
orresponding �window�Hamiltonians, with running 
ouplings. Cal
ulations 
an be 
arried out usingthe notion of e�e
tive parti
les.3. Similarity for parti
lesWhen we deal with huge Hamiltonian matri
es of quantum �eld theorythe number of states is as big as we let it be and the number of matrixelements we have to think about be
omes very qui
kly in
omprehensible.We have to redu
e the amount of information that we need to know at thebeginning. Imagine we would know matrix elements of the intera
tion �=rin atomi
 basis fun
tions, numeri
ally, but we would not know that theyall 
orrespond to the Coulomb for
e. It would be very hard to relate whathappens in one atomi
 system to what happens in another one. Therefore,when we aim at universal 
al
ulations of e�e
tive Hamiltonians in theoriesthat 
ontain intera
tions su
h as (1.1), we may pro
eed to a new version ofsimilarity transformation, whi
h avoids dealing dire
tly with Hamiltonianmatrix elements in a parti
ular basis and, instead, operates at the level of�eld operators [11℄.Let us introdu
e a unitary transformation U� that transforms �eld op-erators (denoted here by �, independently of their spin or other quantumnumbers they 
arry), ��(x) = U� �1(x) Uy� : (3:1)�1(x) denotes a bare quantum �eld operator that, at any pres
ribed time,
an be expanded into 
reation and annihilation operators for bare parti
lesin a 
anoni
al fashion that we do not need to de�ne here very pre
isely.



916 S.D. Gªazek��(x) denotes an operator that is built in exa
tly the same way from 
re-ation and annihilation operators for e�e
tive (dressed) parti
les. This kindof transformation is motivated by physi
s of hadrons, whose stru
ture 
an beexplained in a 
onstituent quark model. Dressed parti
les in a given theoryintera
t di�erently than the bare ones. Namely, bare ones have intera
tionslike (1.1), while the e�e
tive ones 
an only ex
hange momentum transfersthat are limited by �. This is se
ured by the 
onstru
tion of U�, to be ex-plained below. Therefore, the e�e
tive parti
le wave fun
tions of eigenstatesof the Hamiltonian may qui
kly fall o� when momenta or number of thee�e
tive parti
les deviate from the physi
ally dominant values. This is whyone 
an hope to obtain a 
onstituent pi
ture of hadrons in QCD using sim-ilarity for parti
les. More generally, the expe
ted 
onvergen
e of eigenstateexpansion in e�e
tive parti
le basis in Fo
k spa
e opens a door to studies offew-body systems in quantum �eld theory.In order to set up equations that will allow us to 
al
ulate Hamiltoniansfor e�e
tive parti
les, let's rewrite Eq. (3.1) in terms of the 
reation andannihilation operators, q� = U� q1 Uy� : (3:2)All we need to do next is: take the bare Hamiltonian of our theory, as itis given initially in terms of q1, 
al
ulate 
ounterterms it needs to 
ontainin addition to the 
anoni
al terms, obtain this way our initial H1(q1), andrewrite it in terms of q�. U� is se
ured to be unitary by 
onstru
tion. Thewhole point of the 
onstru
tion is that the resulting H�(q�) is to 
ontain onlysu
h intera
tion terms that, when we evaluate their matrix elements betweenFo
k basis states of e�e
tive parti
les, the resulting e�e
tive Hamiltonianmatrix is narrow, of width �, as in the similarity pro
edure for Hamiltonianmatri
es we dis
ussed in previous Se
tion. It will not be ne
essary to go intodetails here. Only a brief outline of the s
heme follows.Sin
e rewriting the Hamiltonian in di�erent degrees of freedom does not
hange the operator itself, we have H�(q�) = H1(q1). One may thinkabout H�(q�) as a QCD Hamiltonian written in terms of 
onstituent quarksand gluons, and about H1(q1) as the same QCD Hamiltonian written interms of 
anoni
al quarks and gluons, asso
iated with partons, or 
urrentquarks (to make the 
onne
tion between hadroni
 rest frame 
onstituentsand partons in the in�nite momentum frame, we have to use the light-frontform of Hamiltonian dynami
s, see [12℄ for an outline of light-front QCD inthe 
ontext of renormalization group pro
edure for Hamiltonians).Applying the transformation U�, one obtainsH� � H�(q1) = Uy�H1(q1)U� :



Running Couplings in Hamiltonians 917This relation means that the operator H� has the same 
oe�
ient fun
tionsin front of produ
ts of q1 as the e�e
tive Hamiltonian H� has in front ofthe unitarily equivalent produ
ts of q�. Di�erentiating H� one obtainsdd� H� = �[T�; H�℄ ; (3:3)where the generator T� is related to U� byT� = Uy� dd� U� : (3:4)The s
ript letters are introdu
ed to indi
ate that the operators 
an be 
on-veniently thought about as expanded into sums of produ
ts of operatorsq1. The latter are independent of � and are not di�erentiated in Eqs. (3.3)and (3.4). In other words, Eqs. (3.3) and (3.4) des
ribe only the �ow of
oe�
ients in front of the 
reation and annihilation operators. E�e
tiveHamiltonians are obtained from H� using H�(q�) = U�H�Uy�.The key element now is how one de�nes T�. This is the domain ofsimilarity for e�e
tive parti
les. In its essen
e [3,4℄, one studies what one hasto do to get the narrow Hamiltonian matri
es as a result of the pro
edure,and these studies tell us what to put for T�. There exist in�nitely many
hoi
es. The one that the present author used to get results des
ribed in thenext Se
tions is of the following form [11, 13℄[T�; H0�℄ = dd� (1� F�)[G�℄ : (3:5)The symbols G and F require explanation. The e�e
tive Hamiltonian H�
ontains form fa
tors of width � in all its verti
es. If we denote an operatorwithout the form fa
tors by G�, our Hamiltonian takes the form H� =F�[G�℄, where the operator F� inserts the form fa
tors. With these formfa
tors, momentum transfers in intera
tions between e�e
tive parti
les areguaranteed to be at most of the order of �. G� = Uy�G�U�. We divide G� intotwo parts, a part that is bilinear in q1, and an intera
tion part that wouldvanish if the 
oupling 
onstant were equal 0, so that G� = G0 + GI�. Theoperator GI� satis�es the following di�erential equation as a 
onsequen
e ofEqs. (3.2)�(3.5), dd�GI� = "fGI ; � dd�(1� f)GI�G0# : (3:6)We dropped the subs
ript � on the right-hand side for 
larity. f denotesthe similarity form fa
tor introdu
ed by F� and the 
urly bra
ket with thesubs
ript G0 denotes a solution for T� resulting from Eq. (3.5).



918 S.D. Gªazek4. Asymptoti
 freedom in s
alar theorySin
e the intera
tion term (1.1) is only a part of the QCD Hamiltonianand the fun
tion Y123 depends on spins and momenta of gluons, let us �rstdis
uss the 
ase of s
alar �eld with 
lassi
al Lagrangian densityL = 12(������� �2�2)� g3!�3 : (4:1)In this 
ase, the intera
tion term in the 
orresponding Hamiltonian is ofthe form (1.1), but Y123 = 1=2 and 
al
ulations are mu
h simpler than inQCD. Our goal is to des
ribe results for the light-front Hamiltonian fore�e
tive bosons 
al
ulated in perturbation theory up to third power in g.Although our presentation is based on Ref. [13℄ that uses plain expansion inpowers of g, the reader may also wish to 
ompare our results with Ref. [14℄,where a di�erent s
heme is used, in
luding transverse lo
ality and 
oupling
oheren
e [9, 10℄.The light-front Hamiltonian 
orresponding to the Lagrangian density(4.1) readsH1 = Z [k℄k? 2 + �2k+ ay1ka1k+g2 Z [k1k2k3℄2(2�)5Æ5(k1 + k2 � k3)�(ay1k1ay1k2a1k3 + ay1k3a1k2a1k1)r� +X�; (4.2)where r� is a smooth regularization fa
tor and X� denotes 
ounterterms(derivable in perturbation theory). In n dimensions, [k℄ means�(k+)dk+dn�2k?2k+(2�)n�1 :We 
hoose r� = exp �(�1 + �2)�? 212�2 ; (4:3)where x1 = k+1 =k+3 and �?12 = k?1 � x1k?3 , �i = �(xi), and � is a usefulfun
tion of its argument. A natural 
hoi
e is �(x) = 1, for it is simple.Leaving � unspe
i�ed will help us identify �nite regularization e�e
ts.The similarity form fa
tor for an operator 
ontaining u 
reation operatorsand v annihilation operators is de�ned byf�(u; v) = exp ��(M2u �M2v)2�4 � : (4:4)



Running Couplings in Hamiltonians 919The s
ript notation for invariant masses means M2u = (k1 + : : : + ku)2,where the minus 
omponents of the momentum four-ve
tors are given byk�i = (k? 2i + �2)=k+i for i = 1; : : : ; u, and similarly for v.Equation (3.6) 
an now be solved order by order using expansion in pow-ers of g. Firstly, one obtains the 
ounterterms X� as the initial 
onditionsat � =1 that render regularization independent �nite � Hamiltonians. Toorder g3, the regularization dependen
e of H� lets us identify two 
ountert-erms: the mass 
ounterterm�111 = Z [k℄ Æ�21k+ ay1ka1k ; (4:5)and the vertex 
ounterterm
121 = Z [k1k2k3℄ 2(2�)5Æ5(k1 + k2 � k3) 
1(k1; k2; k3) ay1k1ay1k2a1k3 r� :(4:6)Without loss of generality, we assume that some gedanken experimentaldata require the mass squared parameter in e�e
tive Hamiltonian with � =�0 to be equal �2 + Æ�20. This means that when one 
al
ulates observablesusing the e�e
tive Hamiltonian, �2�0 must equal �2 + Æ�20 to �t the data.This 
ondition, by tra
ing the renormalization group equation for H� ba
kto � =1, tells us thatÆ�21=Æ�20��g2�2 12(2�)5 1Z0 dxx(1� x)Z d4�? 2M2 � �2 �f2�0(M2; �2)� 1� r��:(4:7)The s
ript M denotes invariant mass, M2 = (�? 2 + �2)=x(1 � x), and theregularization fa
tor isr�� = exp��2[�(x) + �(1 � x)℄�? 2�2 � : (4:8)Integration gives two diverging terms, one proportional to �2 and anotherone proportional to log�. The remaining �nite part depends on our 
hoi
eof the fun
tion �. For example, evaluating the integral for �(x) = 1=x oneobtains Æ�21 = g2 1(4�)3 � 124�2 � �2 56 log �� + �2�� ; (4:9)where �� has a �nite limit when � ! 1. The logarithmi
ally divergentpart is independent of the fun
tion � and agrees with results for the La-grangian mass squared 
ounterterm obtained using Feynman diagrams anddimensional regularization [15,16℄ in the following sense: when one 
hanges



920 S.D. Gªazek� to �0 the logarithmi
 part of the 
ounterterm 
hanges with � as the masssquared 
hanges as a fun
tion of the renormalization s
ale in Eq. (7.1.22)in [16℄.The vertex 
ounterterm is de�ned by the requirement that the e�e
tivevertex in the Hamiltonian H�0 is free from regularization dependen
e forarbitrary �nite values of �0. The one loop regularization sensitive 
ontribu-tions to the e�e
tive vertex fun
tion are given by
1(k1; k2; k3) + �g2�3 �22(2�)5�2412 24 1Zx1 dxx(1� x)(x� x1) 1Z0 �2d�2 8 x� x1xx2M4 exp��
��2�2 �+ (x1 $ x2)35+ 1Z0 dxx(1� x) 1Z0 �2d�2 �3M4 exp��d��2�2 �35 ; (4.10)where 
� = �(x) + �(1� x) +�� �x1x �+ ��x� x1x ���x1x �2+��x� x1x2 �+ ��1� x)x2 � (4.11)and d� = 2[�(x) + �(1 � x)℄ :The 
ounterterm fun
tion 
1(k1; k2; k3) must remove the regularization de-penden
e from the above expression. The regularization e�e
ts are indepen-dent of �?12. Dropping all parts that are independent of regularization, we
on
lude that
1(k1; k2; k3) + �g2�3 1(4�)3�243 log �� � 424 1Zx1 dx1� xx2 log 
� + (x1 $ x2)35+ 3 1Z0 dxx(1 � x) log d�35 :(4.12)must be independent of regularization. We see that the diverging regular-ization dependen
e of the intera
tion vertex, i.e. the term proportional tolog�, is independent of the parti
le momenta and one 
an remove the di-vergen
e by introdu
ing a 
1(k1; k2; k3) that is equivalent to 
hanging the
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oupling 
onstant g in Eq. (4.2). Thus, no diverging x-dependent
ounterterms are required � a di�erent situation than in [17℄. However, itis also visible that the vertex 
ontains a �nite regularization dependent partthat is a fun
tion of x1. The fun
tion depends on our 
hoi
e for �. For ex-ample, if � = 1 one has 
� = 4+2(x1=x)2 and d� = 4. The resulting integralis a fun
tion of x1, and needs to be subtra
ted. But this would not assureus that the whole ultraviolet regularization dependen
e is removed, be
ausewe work with a spe
i�
 fun
tional form of the regulating fun
tion (4.3).Sin
e the whole regularization e�e
t is independent of � and �?12, it 
anbe 
ompletely removed from the e�e
tive intera
tion by subtra
ting its valuefor �?12 = 0 at an arbitrarily 
hosen �nite �0. However, one has to add ba
kthe �nite regularization independent part of the e�e
tive vertex, whi
h is afun
tion of x1, denoted below by 
0(x1). The fun
tion 
0(x1) is ne
essaryto re
over Poin
aré symmetry of observables, be
ause our regularizationspoiled the symmetry. The symmetry may be restored on
e 
ountertermsremove the regularization e�e
ts, but one is not allowed to 
hange termsindependent of the regularization, whi
h were given by the initial 
ovariantLagrangian density unambiguously. Therefore, the fun
tion 
0(x1) must bereinserted. This fun
tion is not altered when � 
hanges and 
ould be 
on-sidered marginal in analogy with usual renormalization group analysis. Theultimate adjustment of the fun
tion 
0(x1) requires 4th order 
al
ulations.For there exists in �3 theory no 3rd order s
attering amplitude one 
oulduse to �nd out what fun
tion 
0(x1) renders Poin
aré symmetry of s
at-tering observables with our 
hoi
e of r� in Eq. (4.2). However, it shouldbe pointed out that the fun
tion does not in�uen
e the way the 3rd orderrunning 
oupling 
onstant in e�e
tive Hamiltonians depends on �.So, in Eq. (4.6), the 
ounterterm fun
tion 
1(k1; k2; k3) � 
1(x1; �?12),whi
h removes the regularization dependen
e from the e�e
tive vertex reads
1(x1; �?12) = � 
�0(x1; 0?) + 
0(x1) : (4:13)This result is used to de�ne the new regularization dependent 
oupling 
on-stant g� in the initial Hamiltonian in Eq. (4.2). We sele
t a 
onvenient valueof x1 = x0 and obtaing�2 = g2 + 
1(x0; 0?) = g2 � 
�0(x0; 0?) + 
0 ; (4:14)where 
0 � 
0(x0). We see that the initial 
oupling g is repla
ed by a new�-dependent quantityg� = g �1� g2 34(4�)3 log �m0 �+ o(g5) ; (4:15)



922 S.D. Gªazekwith 
ertain free 
onstant m0. Thus, the theory exhibits asymptoti
 free-dom in 3rd order terms. Our result agrees with literature, say Eq. (7.1.26)from [16℄, in the sense that when we 
hange �, the 
hange required in the
oupling 
onstant in the initial Hamiltonian for obtaining �-independente�e
tive Hamiltonians mat
hes the 
hange implied by Feynman diagramsand dimensional regularization.Having established the stru
ture of 
ounterterms we 
an pro
eed to eval-uation of the �nite similarity �ow of e�e
tive Hamiltonians towards smallwidths �. The e�e
tive kineti
 energy term in narrow Hamiltonians isH�11 = Z [k℄ k? 2 + �2�k+ ay�ka�k ; (4:16)where �2� = �2 + Æ�2�= �2 + Æ�20 + �g2�2 12(2�)5 1Z0 dxx(1� x) Z d4�?� 2M2 � �2 �f2�(M2; �2)� f2�0(M2; �2)� : (4.17)The above result is parti
ularly simple for � = 0 and in that 
ase it reads(Æ�20 is proportional to g2)�2� = Æ�20 + g2 1(4�)3 124r�2 (�2 � �20) : (4:18)Logarithmi
 dependen
e on � arises for � > 0. The value of Æ�20 
ould befound, for example, by solving a single physi
al boson eigenvalue problem,expressing the physi
al boson mass in terms of Æ�20 and adjusting the latterto obtain the gedanken experimental mass value for bosons. Note a 
hange inthe mass fun
tion of 
uto� parameter, from the 
ase of the mass 
ounterterm,dependent on �, to the 
ase of running mass term, dependent on the width �(independent of �). The 
hange 
orresponds to a transition from the initialside of a �xed point (bare 
anoni
al Hamiltonian with regularization) to theother side of the �xed point (renormalization group traje
tory of e�e
tiveHamiltonians in the similarity pro
edure, 
f. [2℄).The e�e
tive vertex readsH�21 = Z [k1k2k3℄ 2(2�)5Æ5(k1 + k2 � k3)�f�[(k1 + k2)2; k23 ℄ V�(x1; �?12) ay�k1ay�k2a�k3 ; (4.19)
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tive vertex fun
tion and f� is the similarityvertex form fa
tor. The vertex fun
tion is given by an integral over loopvariables x and �? of a known fun
tion [13℄.We de�ne the running 
oupling 
onstant as the value of 2V�(x1; �?12) ata 
hosen 
on�guration of momentum variables, denoted by (x10; �?120). Inother words, g� = 2V�(x10; �?120). A possible 
hoi
e for massless bosonsis x10 = 0 and �?120 = 0. This is a natural de�nition, analogous to thestandard Thomson limit in the 
ase of ele
tron 
harge in QED. This 
hoi
egreatly simpli�es the integrand, giving V�(0; 0?), so that the result 
an befully produ
ed here (g0 is the value of g�0 required by phenomenology doneusing H�0)g� = g0 + g30 124 1(4�)3 1Z0 dzz� �2(f� � f3�)� 2(f0 � f30 ) + 20(f3� � f2�)� 20(f30 � f20 ) + 9(f20 � f2�)� ;(4.20)where f� = exp�z2=�4 and f0 = exp�z2=�40. A straightforward integrationgives g� = g0 � g30 34(4�)3 log ��0 ; (4:21)whi
h exhibits asymptoti
 freedom. Di�erentiating with respe
t to � andkeeping terms up to order g3� one obtainsdd� g� = �g3� 3256�3 1� : (4:22)This equation demonstrates the same � fun
tion for 
oupling 
onstants ine�e
tive Hamiltonians as obtained in Lagrangian approa
hes using Feynmandiagrams and dimensional regularization, when one identi�es the renormal-ization s
ale with the Hamiltonian width �. This is en
ouraging but oneneeds to remember that for 
omparison of perturbative s
attering ampli-tudes in Hamiltonian and Lagrangian approa
hes it is ne
essary to makeadditional 
al
ulations and at least of fourth order in g. Beyond model ma-trix studies su
h as in [8℄, 4th order similarity 
al
ulations have so far been
arried out only in a simpli�ed Yukawa model by Masªowski and Wi�
k-owski [18℄ (the latter model 
al
ulations should be helpful in setting up alight-front theory of nu
leons and pions).Integrating Eq. (4.10), one obtains (� = g2=4�)�� = �01 + �0(3=32�2) log �=�0 ; (4:23)
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h shows our result for a boost invariant running 
oupling 
onstant ine�e
tive Hamiltonians. Our pro
edure explains how the running 
oupling
onstant 
an be in
luded in quantum me
hani
s of e�e
tive parti
les, whi
his given by the S
hrödinger equation with the 
orresponding HamiltonianH�. One 
an evaluate matrix elements of the small width Hamiltonian ina limited subspa
e of Fo
k states built of the e�e
tive parti
les. The formfa
tor in the intera
tion vertex (4.19) se
ures a small range of the intera
tionson the energy s
ale and one 
an expe
t a rapid 
onvergen
e of wave fun
tionsin the e�e
tive parti
le basis.Note three 
hara
teristi
 features of the Hamiltonian 
al
ulation.(1) No �eld renormalization 
onstant appeared, sin
e the similarity trans-formation did not eliminate (or integrated out) any degrees of freedom.(2) No va
uum e�e
t played any role, sin
e we used the light-front formof dynami
s. Extensive literature 
on
erning the va
uum issue 
an betra
ed through referen
e [19℄. �3 theory is unstable due to a possibilitythat the �eld � takes an in�nitely large, negative value. It would beinteresting to 
he
k if the perturbatively evaluated e�e
tive Hamilto-nians of small widths have any tenden
y to develop eigenstates thatdeviate in that dire
tion.(3) The Hamiltonian stru
ture is invariant with respe
t to boosts, in
lud-ing boosts from the rest frame of any bound state to the in�nite mo-mentum frame. This suggests the approa
h outlined above should betried in QCD, and in e�e
tive theories of strong intera
tions in nu
learphysi
s, to 
onne
t low energy observables, su
h as binding energies,radii or magneti
 moments of bound states, with high energy ones,su
h as parton distributions, form fa
tors or jets.5. QCD gluon vertex 
ountertermWe 
ome ba
k to Eq. (1.1) in QCD and repeat the same analysis aswe did for the s
alar theory. Most of the pro
edure remains the same,but an important 
ompli
ation arises. The vertex fun
tion in the 
anoni
alHamiltonian has now the form (
 refers to 
olor and " to polarization ofgluons)Y123 = if 
1
2
3 �"�?1 "�?2 � "?3 �?12 � "�?1 "?3 � "�?2 �?12x2 � "�?2 "?3 � "�?1 �?12x1 � ;(5:1)in whi
h the 
hara
teristi
 fa
tors of �?=x tend to in�nity when x ! 0.Ultraviolet 
oupling 
onstant divergen
es in �3 theory in 6 dimensions re-sulted from transverse momentum integration R d4�?=�4, where 1=�4 
ame



Running Couplings in Hamiltonians 925from the two denominators of third order perturbation theory. In QCD in 4dimensions, we have instead R d2�?(�?=x)2=�4. Therefore, in QCD (moregenerally, in gauge theories), we have to introdu
e a separate regularizationof small x behavior of intera
tion verti
es in the Hamiltonians. For example,in the QCD 
ounterpart of Eq. (4.2), we have to insert a fa
tor, denoted byrÆ, in addition to r�, that will e�e
tively 
ut-o� the region where one ofthe gluons 1 or 2 
arries a smaller fra
tion of k+3 than the size of a smallparameter Æ.The small x regularization fun
tion rÆ may appear to be only a te
hni
aldetail. But it was pointed out by Perry that singularities at small k+ maybe related to e�e
tive 
on�ning potentials in H�, 
al
ulable already in se
-ond order perturbation theory. [20℄ In short, the 
anoni
al light-front QCDHamiltonian 
ontains terms that are singular at small k+ and the singular-ity 
ontributes to the e�e
tive Hamiltonians H�, providing potentials thatgrow with distan
e between 
olor 
harges. This is quite di�erent a situationfrom other formulations of the theory, where se
ond order 
al
ulations arenot expe
ted to tell us anything about 
on�nement. Therefore, the small xfeatures of QCD in the light-front Hamiltonian approa
h deserve extensivestudies. Here, we merely report some initial results for third order gluonvertex 
ounterterm, indi
ating x-dependent features.The whole analysis of the previous Se
tion 
an be repeated step by stepand one 
an derive the intera
tion term for e�e
tive gluons, in the narrowHamiltonian H� for QCD. The 
ondition that the e�e
tive vertex is inde-pendent of regularization parameter � gives us the diverging triple-gluonvertex 
ounterterm in the initial QCD Hamiltonian. The new features ap-pear in the 
oe�
ient of log�. Namely, the diverging part of the vertex, tobe 
ompensated by the ultraviolet 
ounterterm, has the formg34�2 �1112N
 � 16nf +N
f(x1; x2)� log� � Y123 ; (5:2)where the fun
tion f(x1; x2) is symmetri
 in its arguments. This fun
tionoriginates from three su

essive a
tions of the triple gluon intera
tion, thegluon mass 
orre
tion providing only a 
onstant 
ontribution, and it dependson the regularization fa
tor rÆ in the initial Hamiltonian. In fa
t,f(x1; x2) = 12 24� log x1 + 1Z0 dx�2x + 11� x� (rÆ3 � rÆ2) + (1$ 2)35 ;where rÆ3 = rÆ3(x; x1) is a produ
t of three fa
tors rÆ for the three su

essivetriple-gluon intera
tions, and rÆ2 = r2Æ (x), is a produ
t of two fa
tors rÆ fromthe gluon mass 
ounterterm. For rÆ(x) = �(x � Æ)�(1 � x � Æ) in the bare



926 S.D. Gªazekvertex, for gluons 
arrying x and 1�x of the single gluon momentum k+3 inEq. (1.1), f(x1; x2) = log[min(x1; x2)℄, whi
h is negative and hen
e redu
esthe rate at whi
h the initial 
oupling depends on �. The latter feature 
omesabout as follows. Sin
e the 
ounterterm must 
ontain the term opposite insign to (5.2), the 
oupling 
onstant in the regularized H1(q1) in QCD is
hanged to [
f. Eq. (4.15)℄g� = g � g34�2 �1112N
 � 16nf +N
f(x0; 1� x0)� log�: (5:3)The 
oe�
ient of log� is independent of the parameter Æ, but it dependson the small x regularization in a �nite way. Having derived the fun
tionf(x1; x2), for 
ertain 
hoi
es of x1 = x0 in the de�nition of the Hamiltonian
oupling 
onstant, one 
ould obtain triviality instead of asymptoti
 free-dom. This is a pe
uliar result for the regularization given in Eq. (4.3) andthe sharp 
uto� on x at Æ. In the limit when both rÆ3 and rÆ2 are repla
ed by1, one would obtain f(x1; x2) = � logpx1x2, whi
h is always positive, andwould a

elerate the asymptoti
 freedom rate of 
hange of g� with �. One
an seek 
hoi
es of regulating fun
tions r� and rÆ that eliminate the unusuallogarithm (the other terms are standard) but it is not known if a �nite fun
-tion of x1 is not ne
essary in pla
e of f(x1; x2) in light-front Hamiltoniansanyway, to restore symmetries for physi
al quantities. In addition, as inthe s
alar theory, the ultraviolet �nite part of the 
ounterterm involves anunknown fun
tion of x1. One 
ould say that the stru
ture of the model fromRef. [17℄ is 
loser to QCD than to s
alar theory in 6 dimensions. Evaluationof the e�e
tive 
oupling 
onstant g� in QCD, in analogy to Eq. (4.20) ins
alar theory, may shed some light on how to disentangle genuine ultravioletfrom small x singularities in Hamiltonians.It is 
lear from the above example that e�e
tive light-front Hamiltoniansof QCD require 
areful studies employing various types of regulators beforewe will know the optimal ways of 
al
ulating window Hamiltonians. Theinterplay of transverse and longitudinal momentum variables may lead tosurprising results. However, the 
al
ulations are 
ertainly doable and theresulting matri
es will tell us about details of QCD dynami
s in the Fo
kspa
e of e�e
tive quarks and gluons. The similarity renormalization grouppro
edure for Hamiltonians is able to reveal new features of e�e
tive parti
ledynami
s whi
h standard Lagrangian approa
hes do not reveal.6. Transition to new degrees of freedomWe may hope to make a transition from the e�e
tive QCD degrees offreedom to nu
lear physi
s hadroni
 intera
tions, su
h as pion�nu
leon 
ou-
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hieve understanding of the narrow H� in QCD. To see thebasis for this hope, let us 
ome ba
k again to the matrix pi
ture.On
e we have the narrow Hamiltonian matrix, we 
an divide it into theboxes as it is illustrated in the �gure below, negle
ting the small triangles inthe band outside of them, whi
h are initially left out. We 
an �nd eigenstatesof the boxes (they 
orrespond to di�erent invariant mass states) and 
al
u-late the band diagonal matrix matrix elements in the basis built from thoseeigenstates. The states 
orresponding to the middle energy s
ale of ea
h boxwill not intera
t very strongly with neighboring (in energy, or mass) states,but matrix elements sensitive to the left-out triangles will lead to strongintera
tions. We 
an imagine that the lowest box 
orresponds to nu
leonsintera
ting through potential for
es, the next box 
orresponds to nu
leonsplus one meson, the se
ond box to nu
leons and up to two mesons, et
.This is how one 
ould make a 
onne
tion between the QCD dynami
s andnu
lear physi
s through similarity renormalization group for Hamiltonians(
f. [21℄). Changing degrees of freedom
�������

����
�������

������ ���S��!QCD NPHowever, this is not the only possibility one 
an try to explore for the
hange of basis. One 
an 
onsider new basis states built of quarks and gluons,possibly open gluon string bits with quarks at the ends or 
losed rings ofgluons, and evaluate matrix elements of the e�e
tive Hamiltonians betweensu
h obje
ts. Sin
e one has a perturbative expression for the operators U�,see Eqs. (3.1) and (3.2), one 
an attempt evaluation of matrix elementsbetween states that are 
onstru
ted in a variety of ways, using quarks andgluons 
orresponding to di�erent s
ales �. One 
ould even ask if there isa way to 
al
ulate a 
onne
tion between the quark and gluon matri
es ofintermediate widths and reggeized gluon intera
tions, on
e one restri
ts thespa
e of states to those that dominate in multi-Regge kinemati
s [22℄.



928 S.D. Gªazek7. Con
lusionAsymptoti
ally free theories 
an be analyzed using Hamiltonian ap-proa
h. The analysis 
an be based on the similarity renormalization grouppro
edure for e�e
tive parti
les. The evaluation of running 
ouplings inthe e�e
tive Hamiltonians 
an be 
arried out without introdu
tion of wavefun
tion renormalization 
onstants and without invoking any properties ofthe va
uum state (in the light-front form of Hamiltonian dynami
s). Inthird order 
al
ulations, one obtains familiar asymptoti
 results in s
alar�3 theory, plus an x-dependent �nite 
ounterterm. In QCD, the standardasymptoti
 freedom form of triple-gluon vertex 
ounterterm is supplementedby an ultraviolet diverging and x-dependent 
ounterterm, and by an ultra-violet �nite x-dependent 
ounterterm. E�e
ts predi
ted for QCD by thepower 
ounting in k? and k+ [12℄ are 
on�rmed but the analysis is 
hangedby transition to boost invariant variables �? and x, and detailed 
al
ula-tions may produ
e results that are not expe
ted to emerge from Feynmandiagrams. Mixing between the small x and large �? 
uto�s indi
ates a needfor a new pre
ise de�nition of the ultraviolet domain in the Hamiltonianapproa
h. Nevertheless, one obtains well-de�ned expressions for e�e
tiveHamiltonian intera
tions without ne
essity to 
al
ulate s
attering matrixelements for quarks and gluons as if they were observable parti
les.The e�e
tive parti
le 
al
ulus preserves 
luster properties and allows forevaluation of e�e
tive Hamiltonians without limitation to any parti
ular setof matrix elements. In other words, we 
an derive integral expressions formatrix elements of e�e
tive Hamiltonians in the whole Fo
k spa
e spannedby basis states of e�e
tive parti
les. The renormalization group equationsare integrated analyti
ally using Gaussian similarity form fa
tors and onefully 
ontrols o�-shell behavior of e�e
tive verti
es that 
orrespond to theinitial theory. The e�e
tive dynami
s is invariant with respe
t to boosts andallows simultaneous analysis of the rest frame and in�nite momentum framestru
ture of bound states.The e�e
tive parti
le Fo
k spa
e expansion 
an 
onverge thanks to thesimilarity form fa
tors in the intera
tion verti
es. The form fa
tors dampenintera
tions 
hanging invariant masses by more than � and thus 
an tame thespread of eigenstate wave fun
tions for low lying eigenvalues into regions ofhigh relative momenta of 
onstituents. This feature may lead to exponential
onvergen
e of the eigenstate expansion in the e�e
tive parti
le basis. Su
h
onvergen
e is not expe
ted in the 
ase of bare parti
les. The �ne stru
ture ofe�e
tive parti
les would then unfold in the transformation U�1Uy�2 relatinge�e
tive degrees of freedom at two di�erent s
ales, one 
orresponding tothe binding s
ale and the other to the high momentum transfer probe inquestion.



Running Couplings in Hamiltonians 929The near-diagonal Hamiltonian matri
es allow for transition to new de-grees of freedom by turning to basis states that are eigenstates of small blo
kmatri
es on the diagonal. In prin
iple, these new degrees of freedom 
ould
orrespond to mesons and baryons built from 
onstituent quarks and glu-ons, in 
ase of QCD. One 
an also 
onsider other 
hanges of basis states andseek most e�
ient degrees of freedom, su
h as strings of gluons with quarksat the ends, for solving the nonperturbative eigenvalue problems for narrowe�e
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