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RUNNING COUPLINGS IN HAMILTONIANS�Stanisªaw D. GªazekInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00-681 Warsaw, Poland(Reeived January 10, 2000)We desribe key elements of the perturbative similarity renormaliza-tion group proedure for Hamiltonians using two, third-order examples:�3 interation term in the Hamiltonian of salar �eld theory in 6 dimen-sions and triple-gluon vertex ounterterm in the Hamiltonian of QCD in4 dimensions. These examples provide insight into asymptoti freedomin Hamiltonian approah to quantum �eld theory. The renormalizationgroup proedure also suggests how one may obtain ultraviolet-�nite ef-fetive Shrödinger equations that orrespond to the asymptotially freetheories, inluding transition from quark and gluon to hadroni degrees offreedom in ase of strong interations. The dynamis is invariant underboosts and allows simultaneous analysis of bound state struture in therest and in�nite momentum frames.PACS numbers: 11.10.Gh 1. IntrodutionCanonial Hamiltonians of quantum �eld theories an be written in termsof reation and annihilation operators. Let us denote those operators by q.In this notation, for example, a triple-gluon vertex in the light-front QCDHamiltonian has the strutureHY =X123 Z [123℄ Æ(1 + 2� 3) g Y123 qy1 qy2 q3 + h.. ; (1:1)� This artile grew out of an invited talk at The Workshop on Light-Cone QCD andNonperturbative Hadron Physis, Centre for The Subatomi Struture of Matterand The National Institute of Theoretial Physis, University of Adelaide, Adelaide,Australia, Deember 13�23, 1999. (909)



910 S.D. Gªazekwhere symbols 1, 2 and 3 denote olors, spins or momenta of gluons, [123℄is a shorthand notation for the integration measure over the gluon three-momenta, Æ(1 + 2 � 3) is the Dira Æ-funtion of three-momentum onser-vation, and Y123 is a funtion of the gluon quantum numbers, implied byQCD. g denotes a bare anonial oupling onstant, whih is expeted fromLagrangian approah to require ultraviolet renormalization. However, theHamiltonian laks many of the Lagrangian density symmetries that are em-ployed in the perturbative Lagrangian renormalization proedure and, in alllight-front Hamiltonians, transverse and longitudinal diretions are treateddi�erently. For that reason, and to introdue a method for renormalizationof Hamiltonians suh as (1.1), we need to review the origin of the ultravioletdivergenes.One an evaluate matrix elements of HY between states of the formjijk : : :i = qyi qyjqyk : : : j0i. Consider h12jHY j3i, whih is proportional to Y123.The trouble is that Y123 does not vanish when the relative motion of partiles1 and 2 beomes very energeti. In other words, the interation Hamiltoniandiretly ouples states of small kineti energy to states of arbitrarily high ki-neti energy. For example, when we squareHY and evaluatePiHY jiihijHY ,the range of jiis to sum over, on the energy sale, is in�nite. The sum di-verges, and the square of HY does not exist. If one tries to �nd eigenstates ofthe Hamiltonian, the divergene will dominate �nite terms. Also, exp�iHtdiverges and no onlusions an be drawn from knowing H as it stands.The problem is worse than the in�nite energy range of interation impliesby itself: the funtion Y123 in QCD grows when the energy di�erene be-tween kineti energies of partiles 1 and 2, and partile 3 grows. The largerare the kineti energies of the intermediate partiles, the more importantbeome the interations, and we are sent into an abyss of Fok spae stateswithout bounds. All physially relevant loal quantum �eld theories havethis trouble.To see the essene of the problem, imagine a matrix of the Hamiltonianmatrix elements in the basis of eigenstates of ertain H0, H0jii = E0ijii,Hij � hijHjji. Our problem is that the orners marked low�high and
Hij = H0ij +HY ij = low E0i

high E0i
high E0j low E0j

high�lowhigh�high
low�high low�lowhigh�low on the above �gure, ontain too large matrix elements for the



Running Couplings in Hamiltonians 911Hamiltonian matrix to have eigenvalues that are independent of the matrixboundaries. In order to understand the boundary-dependene problem ofthe eigenvalues, we put an upper bound, denoted by �, on the basis statesenergies and we work out what happens with eigenstates of Hamiltonianmatries whose size is limited by the onditions E0i � � and E0j � �,when we hange �. In partiular, we ask what properties must HY have forthe spetrum of H� to have a limit when �!1.Wilson asked this question in ase of a model Hamiltonian with bigenergy gaps between suessive energy sales that were inluded in his al-ulation, and he studied the in�uene of oupling between small and largeenergy states on the lowest eigenvalues [1℄. His method for dealing withthe �-dependene of the spetrum in the multisale eigenvalue problem (ingeneral, the problem of dependene on regularization, of any kind), wasbased on an iterative proedure. Initially, one solves the highest energy partof dynamis and fouses on its lowest eigenvalue levels whose dynamis, inturn, is dominated by states with energies lower by one energy gap. Then,one solves this next lower energy sale dynamial problem, and one repeatsthe proess many times. Starting from the energy sale �, one eventuallyarrives at a �nite sale �. This is shematially indiated on the following�gure. Wilson's approah�
�R��!H� H�In this �gure, we see a new small matrix of size �, denoted by H�. Thismatrix is alulated using an operation R�, whih is onstruted in the se-quene of steps lowering the uto� from � to �. The onstrution is basedon the priniple that the smallest eigenvalues of the small matrix, H�, shouldbe the same as the smallest eigenvalues of the big matrix H�. The alge-brai derivation of the small Hamiltonian H� is designed to guarantee theequality of the smallest eigenvalues. The rux is that if all matrix elementsof H� are independent of � (in general, independent of the regularization



912 S.D. Gªazekone uses to de�ne H�) then, the eigenvalues of H� must be independent ofthe regularization. Therefore, if we know what to do with the regulariza-tion dependene of matrix elements of H�, then we know how to go aboutregularization dependene of the spetrum of H�.Note, that � is �nite and an be hosen arbitrarily, as long as � ! 1.The set of transformations that onnet Hamiltonians with di�erent values of� is alled renormalization group. [2℄ Physial results should be independentof �, by onstrution. It is lear that H� annot be equal to merely P�H�P�,where P� denotes a projetion operator that projets on the spae of stateswith energies E0i < �. Some additional terms must be inluded, whihreprodue dynamial e�ets from above �. Similarly, we do not expet thatH� is merely P�HanonialP�, where Hanonial is built from H0 and termssuh as (1.1). By the same argument as for H�, some additional terms arerequired in H�, to inlude e�ets from above the uto� �. We will allthose terms ounterterms. The problem is how to �nd them. Aording toWilson, they are found from the ondition that all matrix elements of H�beome independent of the regularization in the limit �!1, for all �nitevalues of �. One must take are not only of the diverging (i.e. �-dependent)regularization dependene, but also of the �nite regularization e�ets. Theoupling onstant g in Eq. (1.1) is hanged in the renormalization proessas a result of introduing ounterterms.The problem with the transformation R� is that the large energy gaps areabsent in physially relevant ases, and perturbation theory based on energysales alone fails. One an try to take advantage of a small oupling onstantbut we know that naive perturbative expansion does not work in degenerateases. For example, one may think of e�ets familiar from elementary degen-erate perturbation theory for eigenvalues of a Hamiltonian matrix with a fewrows and olumns. We know that perturbation theory annot work unlessone properly hooses the initial basis states in the degenerate subspae �eigenstates of the interation matrix (if it is a few rows and olumns). Onlyin that basis the perturbative limit g ! 0 exists. Otherwise perturbationtheory produes vanishing energy denominators that lead to diverging termsand the alulation is misleading. In ase of quantum �eld theories of inter-est, the situation is muh more involved than in simple matrix ase due tomultiply degenerated ontinuous spetra of H0. Moreover, in asymptotiallyfree theories, we expet that the interation strength grows when we go fromH� to H� and small energy denominators are ertainly expeted to produelarge e�ets. Thus, the degeneray of spetra and strength of ouplings donot allow us to do a preise analysis of R� and H�. So, the operation R� isof limited appliability in the anonial approah to quantum �eld theory.



Running Couplings in Hamiltonians 9132. Similarity for HamiltoniansThere is an alternative approah [3, 4℄ (see the �gure below). Insteadof alulating a small Hamiltonian matrix, we an also alulate a nar-row matrix. Namely, a similar (in the sense of algebrai similarity) matrixthat has the same eigenvalues but whose matrix elements H�ij vanish ifjE0i � E0j j > � (or another ondition of �narrowness� is satis�ed � her-mitian matries an be diagonalized and, therefore, partial diagonalizationto a narrow matrix should be possible). The hoie of near-diagonal formis motivated by the following property of near-diagonal matries: when weat with them on a state of some �nite energy, a single ation of the matrixan rise the energy by at most �, i.e. by its width on the energy sale. Inperturbation theory for eigenvalues of a near-diagonal matrix, orretionswill not be sensitive to the uto� � up to the order n � �=(2�), sine onehas to go up in energies and ome bak to the initial energy range throughation of interations, and at least n are needed to reah the boundary start-ing from �. In similarity, the rux is that if matrix elements of the narrowmatrix of �nite width � are independent of regularization when � ! 1,then the spetrum of H� will be independent of regularization to all ordersof perturbation theory. Similarity approah
�������
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The transformation S� is alled similarity transformation. The e�etiveHamiltonian matries with various widths � are onneted by transforma-tions that are alled similarity renormalization group transformations forHamiltonians. We limit our disussion to unitary transformations S�. Thekey feature of the similarity approah is that perturbative onstrution ofS� avoids small energy denominators entirely � they are limited from belowby the width �. In turn, the perturbatively alulated narrow Hamiltoniansan be diagonalized numerially, whih is the ultimate way to �nd solutions



914 S.D. Gªazekto omplex non-perturbative problems of the original theory. One ould ask,why don't we go all the way to � = 0, whih would mean omplete diagonal-ization through S� with � = 0? This is impossible in perturbation theory.We an trust perturbation theory for alulating H� only for not too smallvalues of �.In other words, the perturbative similarity transformation S� involvesenergy hanges that are at least as large as � and the problem with largee�ets in perturbative evaluation of e�etive Hamiltonians is overome. Butthat does not mean we eliminated any of the nonperturbative e�ets. Theyare still hidden in the narrow e�etive Hamiltonian, as muh as they werein the initial one. The only thing we aomplish through similarity, is theelimination of diret ouplings between states of interest to us and very highenergy states. This is a prerequisite that we need to de�ne an ultraviolet�nite, nonperturbative Hamiltonian eigenvalue problem in quantum �eldtheory.One an apply various perturbative proedures for alulating S� andH�. Wegner invented a beautifully simple sheme for evaluating near diag-onal Hamiltonians in solid state physis [5℄. It was shown [6℄ that Wegner'sequation an be employed in the renormalization group sheme. A numberof variations reported in the literature in di�erent areas, is growing [7℄.The bottom line is that when solving for the spetrum of a narrow Hamil-tonian, we do not have to diagonalize the whole matrix of size �!1. Wean selet a window, as is illustrated in the next �gure.Window Hamiltonians
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Diagonalization of that small window is muh simpler than diagonalizationof the whole matrix and the window eigenvalues math the whole matrixeigenvalues in the middle range of window energies [8℄. The reason is thatthe wave funtions have width omparable to � on the energy sale, whih isindiated on the �gure (see also Appendix B in Ref. [3℄). One annot expet



Running Couplings in Hamiltonians 915wave funtions of eigenstates of the initial Hamiltonian matrix, H�, to bedominated by some small range of energies. In ontrast, the eigenstatesof matrix H� are expeted to have wave funtions that have this property.Reent alulations of quarkonium and glueball spetra in light-front QCDexploit this feature [9, 10℄Ref. [8℄ outlines the similarity proedure starting from an initial Hamil-tonian, through evaluation of the narrow Hamiltonians (having found theneessary ounterterms in the initial Hamiltonian) in perturbation theory,to diagonalization of a small window to get the bound state energy, using amatrix example. The matrix model is asymptotially free and has a boundstate. The oupling onstant is a funtion of the e�etive Hamiltonian width�, we say it �runs�. For example, it may equal about 0.06 at � = 65 TeV andabout 1 at 1 GeV. Still, the window Hamiltonian of a few GeV size an bealulated in seond order perturbation theory and the window bound stateeigenvalue deviates from exat solution by only 10%. One we understandthat example, we an return to quantum �eld theories with interationsof the form (1.1) and attempt a alulation of the orresponding �window�Hamiltonians, with running ouplings. Calulations an be arried out usingthe notion of e�etive partiles.3. Similarity for partilesWhen we deal with huge Hamiltonian matries of quantum �eld theorythe number of states is as big as we let it be and the number of matrixelements we have to think about beomes very quikly inomprehensible.We have to redue the amount of information that we need to know at thebeginning. Imagine we would know matrix elements of the interation �=rin atomi basis funtions, numerially, but we would not know that theyall orrespond to the Coulomb fore. It would be very hard to relate whathappens in one atomi system to what happens in another one. Therefore,when we aim at universal alulations of e�etive Hamiltonians in theoriesthat ontain interations suh as (1.1), we may proeed to a new version ofsimilarity transformation, whih avoids dealing diretly with Hamiltonianmatrix elements in a partiular basis and, instead, operates at the level of�eld operators [11℄.Let us introdue a unitary transformation U� that transforms �eld op-erators (denoted here by �, independently of their spin or other quantumnumbers they arry), ��(x) = U� �1(x) Uy� : (3:1)�1(x) denotes a bare quantum �eld operator that, at any presribed time,an be expanded into reation and annihilation operators for bare partilesin a anonial fashion that we do not need to de�ne here very preisely.



916 S.D. Gªazek��(x) denotes an operator that is built in exatly the same way from re-ation and annihilation operators for e�etive (dressed) partiles. This kindof transformation is motivated by physis of hadrons, whose struture an beexplained in a onstituent quark model. Dressed partiles in a given theoryinterat di�erently than the bare ones. Namely, bare ones have interationslike (1.1), while the e�etive ones an only exhange momentum transfersthat are limited by �. This is seured by the onstrution of U�, to be ex-plained below. Therefore, the e�etive partile wave funtions of eigenstatesof the Hamiltonian may quikly fall o� when momenta or number of thee�etive partiles deviate from the physially dominant values. This is whyone an hope to obtain a onstituent piture of hadrons in QCD using sim-ilarity for partiles. More generally, the expeted onvergene of eigenstateexpansion in e�etive partile basis in Fok spae opens a door to studies offew-body systems in quantum �eld theory.In order to set up equations that will allow us to alulate Hamiltoniansfor e�etive partiles, let's rewrite Eq. (3.1) in terms of the reation andannihilation operators, q� = U� q1 Uy� : (3:2)All we need to do next is: take the bare Hamiltonian of our theory, as itis given initially in terms of q1, alulate ounterterms it needs to ontainin addition to the anonial terms, obtain this way our initial H1(q1), andrewrite it in terms of q�. U� is seured to be unitary by onstrution. Thewhole point of the onstrution is that the resulting H�(q�) is to ontain onlysuh interation terms that, when we evaluate their matrix elements betweenFok basis states of e�etive partiles, the resulting e�etive Hamiltonianmatrix is narrow, of width �, as in the similarity proedure for Hamiltonianmatries we disussed in previous Setion. It will not be neessary to go intodetails here. Only a brief outline of the sheme follows.Sine rewriting the Hamiltonian in di�erent degrees of freedom does nothange the operator itself, we have H�(q�) = H1(q1). One may thinkabout H�(q�) as a QCD Hamiltonian written in terms of onstituent quarksand gluons, and about H1(q1) as the same QCD Hamiltonian written interms of anonial quarks and gluons, assoiated with partons, or urrentquarks (to make the onnetion between hadroni rest frame onstituentsand partons in the in�nite momentum frame, we have to use the light-frontform of Hamiltonian dynamis, see [12℄ for an outline of light-front QCD inthe ontext of renormalization group proedure for Hamiltonians).Applying the transformation U�, one obtainsH� � H�(q1) = Uy�H1(q1)U� :



Running Couplings in Hamiltonians 917This relation means that the operator H� has the same oe�ient funtionsin front of produts of q1 as the e�etive Hamiltonian H� has in front ofthe unitarily equivalent produts of q�. Di�erentiating H� one obtainsdd� H� = �[T�; H�℄ ; (3:3)where the generator T� is related to U� byT� = Uy� dd� U� : (3:4)The sript letters are introdued to indiate that the operators an be on-veniently thought about as expanded into sums of produts of operatorsq1. The latter are independent of � and are not di�erentiated in Eqs. (3.3)and (3.4). In other words, Eqs. (3.3) and (3.4) desribe only the �ow ofoe�ients in front of the reation and annihilation operators. E�etiveHamiltonians are obtained from H� using H�(q�) = U�H�Uy�.The key element now is how one de�nes T�. This is the domain ofsimilarity for e�etive partiles. In its essene [3,4℄, one studies what one hasto do to get the narrow Hamiltonian matries as a result of the proedure,and these studies tell us what to put for T�. There exist in�nitely manyhoies. The one that the present author used to get results desribed in thenext Setions is of the following form [11, 13℄[T�; H0�℄ = dd� (1� F�)[G�℄ : (3:5)The symbols G and F require explanation. The e�etive Hamiltonian H�ontains form fators of width � in all its verties. If we denote an operatorwithout the form fators by G�, our Hamiltonian takes the form H� =F�[G�℄, where the operator F� inserts the form fators. With these formfators, momentum transfers in interations between e�etive partiles areguaranteed to be at most of the order of �. G� = Uy�G�U�. We divide G� intotwo parts, a part that is bilinear in q1, and an interation part that wouldvanish if the oupling onstant were equal 0, so that G� = G0 + GI�. Theoperator GI� satis�es the following di�erential equation as a onsequene ofEqs. (3.2)�(3.5), dd�GI� = "fGI ; � dd�(1� f)GI�G0# : (3:6)We dropped the subsript � on the right-hand side for larity. f denotesthe similarity form fator introdued by F� and the urly braket with thesubsript G0 denotes a solution for T� resulting from Eq. (3.5).



918 S.D. Gªazek4. Asymptoti freedom in salar theorySine the interation term (1.1) is only a part of the QCD Hamiltonianand the funtion Y123 depends on spins and momenta of gluons, let us �rstdisuss the ase of salar �eld with lassial Lagrangian densityL = 12(������� �2�2)� g3!�3 : (4:1)In this ase, the interation term in the orresponding Hamiltonian is ofthe form (1.1), but Y123 = 1=2 and alulations are muh simpler than inQCD. Our goal is to desribe results for the light-front Hamiltonian fore�etive bosons alulated in perturbation theory up to third power in g.Although our presentation is based on Ref. [13℄ that uses plain expansion inpowers of g, the reader may also wish to ompare our results with Ref. [14℄,where a di�erent sheme is used, inluding transverse loality and ouplingoherene [9, 10℄.The light-front Hamiltonian orresponding to the Lagrangian density(4.1) readsH1 = Z [k℄k? 2 + �2k+ ay1ka1k+g2 Z [k1k2k3℄2(2�)5Æ5(k1 + k2 � k3)�(ay1k1ay1k2a1k3 + ay1k3a1k2a1k1)r� +X�; (4.2)where r� is a smooth regularization fator and X� denotes ounterterms(derivable in perturbation theory). In n dimensions, [k℄ means�(k+)dk+dn�2k?2k+(2�)n�1 :We hoose r� = exp �(�1 + �2)�? 212�2 ; (4:3)where x1 = k+1 =k+3 and �?12 = k?1 � x1k?3 , �i = �(xi), and � is a usefulfuntion of its argument. A natural hoie is �(x) = 1, for it is simple.Leaving � unspei�ed will help us identify �nite regularization e�ets.The similarity form fator for an operator ontaining u reation operatorsand v annihilation operators is de�ned byf�(u; v) = exp ��(M2u �M2v)2�4 � : (4:4)



Running Couplings in Hamiltonians 919The sript notation for invariant masses means M2u = (k1 + : : : + ku)2,where the minus omponents of the momentum four-vetors are given byk�i = (k? 2i + �2)=k+i for i = 1; : : : ; u, and similarly for v.Equation (3.6) an now be solved order by order using expansion in pow-ers of g. Firstly, one obtains the ounterterms X� as the initial onditionsat � =1 that render regularization independent �nite � Hamiltonians. Toorder g3, the regularization dependene of H� lets us identify two ountert-erms: the mass ounterterm�111 = Z [k℄ Æ�21k+ ay1ka1k ; (4:5)and the vertex ounterterm121 = Z [k1k2k3℄ 2(2�)5Æ5(k1 + k2 � k3) 1(k1; k2; k3) ay1k1ay1k2a1k3 r� :(4:6)Without loss of generality, we assume that some gedanken experimentaldata require the mass squared parameter in e�etive Hamiltonian with � =�0 to be equal �2 + Æ�20. This means that when one alulates observablesusing the e�etive Hamiltonian, �2�0 must equal �2 + Æ�20 to �t the data.This ondition, by traing the renormalization group equation for H� bakto � =1, tells us thatÆ�21=Æ�20��g2�2 12(2�)5 1Z0 dxx(1� x)Z d4�? 2M2 � �2 �f2�0(M2; �2)� 1� r��:(4:7)The sript M denotes invariant mass, M2 = (�? 2 + �2)=x(1 � x), and theregularization fator isr�� = exp��2[�(x) + �(1 � x)℄�? 2�2 � : (4:8)Integration gives two diverging terms, one proportional to �2 and anotherone proportional to log�. The remaining �nite part depends on our hoieof the funtion �. For example, evaluating the integral for �(x) = 1=x oneobtains Æ�21 = g2 1(4�)3 � 124�2 � �2 56 log �� + �2�� ; (4:9)where �� has a �nite limit when � ! 1. The logarithmially divergentpart is independent of the funtion � and agrees with results for the La-grangian mass squared ounterterm obtained using Feynman diagrams anddimensional regularization [15,16℄ in the following sense: when one hanges



920 S.D. Gªazek� to �0 the logarithmi part of the ounterterm hanges with � as the masssquared hanges as a funtion of the renormalization sale in Eq. (7.1.22)in [16℄.The vertex ounterterm is de�ned by the requirement that the e�etivevertex in the Hamiltonian H�0 is free from regularization dependene forarbitrary �nite values of �0. The one loop regularization sensitive ontribu-tions to the e�etive vertex funtion are given by1(k1; k2; k3) + �g2�3 �22(2�)5�2412 24 1Zx1 dxx(1� x)(x� x1) 1Z0 �2d�2 8 x� x1xx2M4 exp����2�2 �+ (x1 $ x2)35+ 1Z0 dxx(1� x) 1Z0 �2d�2 �3M4 exp��d��2�2 �35 ; (4.10)where � = �(x) + �(1� x) +�� �x1x �+ ��x� x1x ���x1x �2+��x� x1x2 �+ ��1� x)x2 � (4.11)and d� = 2[�(x) + �(1 � x)℄ :The ounterterm funtion 1(k1; k2; k3) must remove the regularization de-pendene from the above expression. The regularization e�ets are indepen-dent of �?12. Dropping all parts that are independent of regularization, weonlude that1(k1; k2; k3) + �g2�3 1(4�)3�243 log �� � 424 1Zx1 dx1� xx2 log � + (x1 $ x2)35+ 3 1Z0 dxx(1 � x) log d�35 :(4.12)must be independent of regularization. We see that the diverging regular-ization dependene of the interation vertex, i.e. the term proportional tolog�, is independent of the partile momenta and one an remove the di-vergene by introduing a 1(k1; k2; k3) that is equivalent to hanging the



Running Couplings in Hamiltonians 921initial oupling onstant g in Eq. (4.2). Thus, no diverging x-dependentounterterms are required � a di�erent situation than in [17℄. However, itis also visible that the vertex ontains a �nite regularization dependent partthat is a funtion of x1. The funtion depends on our hoie for �. For ex-ample, if � = 1 one has � = 4+2(x1=x)2 and d� = 4. The resulting integralis a funtion of x1, and needs to be subtrated. But this would not assureus that the whole ultraviolet regularization dependene is removed, beausewe work with a spei� funtional form of the regulating funtion (4.3).Sine the whole regularization e�et is independent of � and �?12, it anbe ompletely removed from the e�etive interation by subtrating its valuefor �?12 = 0 at an arbitrarily hosen �nite �0. However, one has to add bakthe �nite regularization independent part of the e�etive vertex, whih is afuntion of x1, denoted below by 0(x1). The funtion 0(x1) is neessaryto reover Poinaré symmetry of observables, beause our regularizationspoiled the symmetry. The symmetry may be restored one ountertermsremove the regularization e�ets, but one is not allowed to hange termsindependent of the regularization, whih were given by the initial ovariantLagrangian density unambiguously. Therefore, the funtion 0(x1) must bereinserted. This funtion is not altered when � hanges and ould be on-sidered marginal in analogy with usual renormalization group analysis. Theultimate adjustment of the funtion 0(x1) requires 4th order alulations.For there exists in �3 theory no 3rd order sattering amplitude one oulduse to �nd out what funtion 0(x1) renders Poinaré symmetry of sat-tering observables with our hoie of r� in Eq. (4.2). However, it shouldbe pointed out that the funtion does not in�uene the way the 3rd orderrunning oupling onstant in e�etive Hamiltonians depends on �.So, in Eq. (4.6), the ounterterm funtion 1(k1; k2; k3) � 1(x1; �?12),whih removes the regularization dependene from the e�etive vertex reads1(x1; �?12) = � �0(x1; 0?) + 0(x1) : (4:13)This result is used to de�ne the new regularization dependent oupling on-stant g� in the initial Hamiltonian in Eq. (4.2). We selet a onvenient valueof x1 = x0 and obtaing�2 = g2 + 1(x0; 0?) = g2 � �0(x0; 0?) + 0 ; (4:14)where 0 � 0(x0). We see that the initial oupling g is replaed by a new�-dependent quantityg� = g �1� g2 34(4�)3 log �m0 �+ o(g5) ; (4:15)



922 S.D. Gªazekwith ertain free onstant m0. Thus, the theory exhibits asymptoti free-dom in 3rd order terms. Our result agrees with literature, say Eq. (7.1.26)from [16℄, in the sense that when we hange �, the hange required in theoupling onstant in the initial Hamiltonian for obtaining �-independente�etive Hamiltonians mathes the hange implied by Feynman diagramsand dimensional regularization.Having established the struture of ounterterms we an proeed to eval-uation of the �nite similarity �ow of e�etive Hamiltonians towards smallwidths �. The e�etive kineti energy term in narrow Hamiltonians isH�11 = Z [k℄ k? 2 + �2�k+ ay�ka�k ; (4:16)where �2� = �2 + Æ�2�= �2 + Æ�20 + �g2�2 12(2�)5 1Z0 dxx(1� x) Z d4�?� 2M2 � �2 �f2�(M2; �2)� f2�0(M2; �2)� : (4.17)The above result is partiularly simple for � = 0 and in that ase it reads(Æ�20 is proportional to g2)�2� = Æ�20 + g2 1(4�)3 124r�2 (�2 � �20) : (4:18)Logarithmi dependene on � arises for � > 0. The value of Æ�20 ould befound, for example, by solving a single physial boson eigenvalue problem,expressing the physial boson mass in terms of Æ�20 and adjusting the latterto obtain the gedanken experimental mass value for bosons. Note a hange inthe mass funtion of uto� parameter, from the ase of the mass ounterterm,dependent on �, to the ase of running mass term, dependent on the width �(independent of �). The hange orresponds to a transition from the initialside of a �xed point (bare anonial Hamiltonian with regularization) to theother side of the �xed point (renormalization group trajetory of e�etiveHamiltonians in the similarity proedure, f. [2℄).The e�etive vertex readsH�21 = Z [k1k2k3℄ 2(2�)5Æ5(k1 + k2 � k3)�f�[(k1 + k2)2; k23 ℄ V�(x1; �?12) ay�k1ay�k2a�k3 ; (4.19)



Running Couplings in Hamiltonians 923where V�(x1; �?12) is the e�etive vertex funtion and f� is the similarityvertex form fator. The vertex funtion is given by an integral over loopvariables x and �? of a known funtion [13℄.We de�ne the running oupling onstant as the value of 2V�(x1; �?12) ata hosen on�guration of momentum variables, denoted by (x10; �?120). Inother words, g� = 2V�(x10; �?120). A possible hoie for massless bosonsis x10 = 0 and �?120 = 0. This is a natural de�nition, analogous to thestandard Thomson limit in the ase of eletron harge in QED. This hoiegreatly simpli�es the integrand, giving V�(0; 0?), so that the result an befully produed here (g0 is the value of g�0 required by phenomenology doneusing H�0)g� = g0 + g30 124 1(4�)3 1Z0 dzz� �2(f� � f3�)� 2(f0 � f30 ) + 20(f3� � f2�)� 20(f30 � f20 ) + 9(f20 � f2�)� ;(4.20)where f� = exp�z2=�4 and f0 = exp�z2=�40. A straightforward integrationgives g� = g0 � g30 34(4�)3 log ��0 ; (4:21)whih exhibits asymptoti freedom. Di�erentiating with respet to � andkeeping terms up to order g3� one obtainsdd� g� = �g3� 3256�3 1� : (4:22)This equation demonstrates the same � funtion for oupling onstants ine�etive Hamiltonians as obtained in Lagrangian approahes using Feynmandiagrams and dimensional regularization, when one identi�es the renormal-ization sale with the Hamiltonian width �. This is enouraging but oneneeds to remember that for omparison of perturbative sattering ampli-tudes in Hamiltonian and Lagrangian approahes it is neessary to makeadditional alulations and at least of fourth order in g. Beyond model ma-trix studies suh as in [8℄, 4th order similarity alulations have so far beenarried out only in a simpli�ed Yukawa model by Masªowski and Wi�k-owski [18℄ (the latter model alulations should be helpful in setting up alight-front theory of nuleons and pions).Integrating Eq. (4.10), one obtains (� = g2=4�)�� = �01 + �0(3=32�2) log �=�0 ; (4:23)



924 S.D. Gªazekwhih shows our result for a boost invariant running oupling onstant ine�etive Hamiltonians. Our proedure explains how the running ouplingonstant an be inluded in quantum mehanis of e�etive partiles, whihis given by the Shrödinger equation with the orresponding HamiltonianH�. One an evaluate matrix elements of the small width Hamiltonian ina limited subspae of Fok states built of the e�etive partiles. The formfator in the interation vertex (4.19) seures a small range of the interationson the energy sale and one an expet a rapid onvergene of wave funtionsin the e�etive partile basis.Note three harateristi features of the Hamiltonian alulation.(1) No �eld renormalization onstant appeared, sine the similarity trans-formation did not eliminate (or integrated out) any degrees of freedom.(2) No vauum e�et played any role, sine we used the light-front formof dynamis. Extensive literature onerning the vauum issue an betraed through referene [19℄. �3 theory is unstable due to a possibilitythat the �eld � takes an in�nitely large, negative value. It would beinteresting to hek if the perturbatively evaluated e�etive Hamilto-nians of small widths have any tendeny to develop eigenstates thatdeviate in that diretion.(3) The Hamiltonian struture is invariant with respet to boosts, inlud-ing boosts from the rest frame of any bound state to the in�nite mo-mentum frame. This suggests the approah outlined above should betried in QCD, and in e�etive theories of strong interations in nulearphysis, to onnet low energy observables, suh as binding energies,radii or magneti moments of bound states, with high energy ones,suh as parton distributions, form fators or jets.5. QCD gluon vertex ountertermWe ome bak to Eq. (1.1) in QCD and repeat the same analysis aswe did for the salar theory. Most of the proedure remains the same,but an important ompliation arises. The vertex funtion in the anonialHamiltonian has now the form ( refers to olor and " to polarization ofgluons)Y123 = if 123 �"�?1 "�?2 � "?3 �?12 � "�?1 "?3 � "�?2 �?12x2 � "�?2 "?3 � "�?1 �?12x1 � ;(5:1)in whih the harateristi fators of �?=x tend to in�nity when x ! 0.Ultraviolet oupling onstant divergenes in �3 theory in 6 dimensions re-sulted from transverse momentum integration R d4�?=�4, where 1=�4 ame



Running Couplings in Hamiltonians 925from the two denominators of third order perturbation theory. In QCD in 4dimensions, we have instead R d2�?(�?=x)2=�4. Therefore, in QCD (moregenerally, in gauge theories), we have to introdue a separate regularizationof small x behavior of interation verties in the Hamiltonians. For example,in the QCD ounterpart of Eq. (4.2), we have to insert a fator, denoted byrÆ, in addition to r�, that will e�etively ut-o� the region where one ofthe gluons 1 or 2 arries a smaller fration of k+3 than the size of a smallparameter Æ.The small x regularization funtion rÆ may appear to be only a tehnialdetail. But it was pointed out by Perry that singularities at small k+ maybe related to e�etive on�ning potentials in H�, alulable already in se-ond order perturbation theory. [20℄ In short, the anonial light-front QCDHamiltonian ontains terms that are singular at small k+ and the singular-ity ontributes to the e�etive Hamiltonians H�, providing potentials thatgrow with distane between olor harges. This is quite di�erent a situationfrom other formulations of the theory, where seond order alulations arenot expeted to tell us anything about on�nement. Therefore, the small xfeatures of QCD in the light-front Hamiltonian approah deserve extensivestudies. Here, we merely report some initial results for third order gluonvertex ounterterm, indiating x-dependent features.The whole analysis of the previous Setion an be repeated step by stepand one an derive the interation term for e�etive gluons, in the narrowHamiltonian H� for QCD. The ondition that the e�etive vertex is inde-pendent of regularization parameter � gives us the diverging triple-gluonvertex ounterterm in the initial QCD Hamiltonian. The new features ap-pear in the oe�ient of log�. Namely, the diverging part of the vertex, tobe ompensated by the ultraviolet ounterterm, has the formg34�2 �1112N � 16nf +Nf(x1; x2)� log� � Y123 ; (5:2)where the funtion f(x1; x2) is symmetri in its arguments. This funtionoriginates from three suessive ations of the triple gluon interation, thegluon mass orretion providing only a onstant ontribution, and it dependson the regularization fator rÆ in the initial Hamiltonian. In fat,f(x1; x2) = 12 24� log x1 + 1Z0 dx�2x + 11� x� (rÆ3 � rÆ2) + (1$ 2)35 ;where rÆ3 = rÆ3(x; x1) is a produt of three fators rÆ for the three suessivetriple-gluon interations, and rÆ2 = r2Æ (x), is a produt of two fators rÆ fromthe gluon mass ounterterm. For rÆ(x) = �(x � Æ)�(1 � x � Æ) in the bare



926 S.D. Gªazekvertex, for gluons arrying x and 1�x of the single gluon momentum k+3 inEq. (1.1), f(x1; x2) = log[min(x1; x2)℄, whih is negative and hene reduesthe rate at whih the initial oupling depends on �. The latter feature omesabout as follows. Sine the ounterterm must ontain the term opposite insign to (5.2), the oupling onstant in the regularized H1(q1) in QCD ishanged to [f. Eq. (4.15)℄g� = g � g34�2 �1112N � 16nf +Nf(x0; 1� x0)� log�: (5:3)The oe�ient of log� is independent of the parameter Æ, but it dependson the small x regularization in a �nite way. Having derived the funtionf(x1; x2), for ertain hoies of x1 = x0 in the de�nition of the Hamiltonianoupling onstant, one ould obtain triviality instead of asymptoti free-dom. This is a peuliar result for the regularization given in Eq. (4.3) andthe sharp uto� on x at Æ. In the limit when both rÆ3 and rÆ2 are replaed by1, one would obtain f(x1; x2) = � logpx1x2, whih is always positive, andwould aelerate the asymptoti freedom rate of hange of g� with �. Onean seek hoies of regulating funtions r� and rÆ that eliminate the unusuallogarithm (the other terms are standard) but it is not known if a �nite fun-tion of x1 is not neessary in plae of f(x1; x2) in light-front Hamiltoniansanyway, to restore symmetries for physial quantities. In addition, as inthe salar theory, the ultraviolet �nite part of the ounterterm involves anunknown funtion of x1. One ould say that the struture of the model fromRef. [17℄ is loser to QCD than to salar theory in 6 dimensions. Evaluationof the e�etive oupling onstant g� in QCD, in analogy to Eq. (4.20) insalar theory, may shed some light on how to disentangle genuine ultravioletfrom small x singularities in Hamiltonians.It is lear from the above example that e�etive light-front Hamiltoniansof QCD require areful studies employing various types of regulators beforewe will know the optimal ways of alulating window Hamiltonians. Theinterplay of transverse and longitudinal momentum variables may lead tosurprising results. However, the alulations are ertainly doable and theresulting matries will tell us about details of QCD dynamis in the Fokspae of e�etive quarks and gluons. The similarity renormalization groupproedure for Hamiltonians is able to reveal new features of e�etive partiledynamis whih standard Lagrangian approahes do not reveal.6. Transition to new degrees of freedomWe may hope to make a transition from the e�etive QCD degrees offreedom to nulear physis hadroni interations, suh as pion�nuleon ou-



Running Couplings in Hamiltonians 927pling, after we ahieve understanding of the narrow H� in QCD. To see thebasis for this hope, let us ome bak again to the matrix piture.One we have the narrow Hamiltonian matrix, we an divide it into theboxes as it is illustrated in the �gure below, negleting the small triangles inthe band outside of them, whih are initially left out. We an �nd eigenstatesof the boxes (they orrespond to di�erent invariant mass states) and alu-late the band diagonal matrix matrix elements in the basis built from thoseeigenstates. The states orresponding to the middle energy sale of eah boxwill not interat very strongly with neighboring (in energy, or mass) states,but matrix elements sensitive to the left-out triangles will lead to stronginterations. We an imagine that the lowest box orresponds to nuleonsinterating through potential fores, the next box orresponds to nuleonsplus one meson, the seond box to nuleons and up to two mesons, et.This is how one ould make a onnetion between the QCD dynamis andnulear physis through similarity renormalization group for Hamiltonians(f. [21℄). Changing degrees of freedom
�������
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�������

������ ���S��!QCD NPHowever, this is not the only possibility one an try to explore for thehange of basis. One an onsider new basis states built of quarks and gluons,possibly open gluon string bits with quarks at the ends or losed rings ofgluons, and evaluate matrix elements of the e�etive Hamiltonians betweensuh objets. Sine one has a perturbative expression for the operators U�,see Eqs. (3.1) and (3.2), one an attempt evaluation of matrix elementsbetween states that are onstruted in a variety of ways, using quarks andgluons orresponding to di�erent sales �. One ould even ask if there isa way to alulate a onnetion between the quark and gluon matries ofintermediate widths and reggeized gluon interations, one one restrits thespae of states to those that dominate in multi-Regge kinematis [22℄.



928 S.D. Gªazek7. ConlusionAsymptotially free theories an be analyzed using Hamiltonian ap-proah. The analysis an be based on the similarity renormalization groupproedure for e�etive partiles. The evaluation of running ouplings inthe e�etive Hamiltonians an be arried out without introdution of wavefuntion renormalization onstants and without invoking any properties ofthe vauum state (in the light-front form of Hamiltonian dynamis). Inthird order alulations, one obtains familiar asymptoti results in salar�3 theory, plus an x-dependent �nite ounterterm. In QCD, the standardasymptoti freedom form of triple-gluon vertex ounterterm is supplementedby an ultraviolet diverging and x-dependent ounterterm, and by an ultra-violet �nite x-dependent ounterterm. E�ets predited for QCD by thepower ounting in k? and k+ [12℄ are on�rmed but the analysis is hangedby transition to boost invariant variables �? and x, and detailed alula-tions may produe results that are not expeted to emerge from Feynmandiagrams. Mixing between the small x and large �? uto�s indiates a needfor a new preise de�nition of the ultraviolet domain in the Hamiltonianapproah. Nevertheless, one obtains well-de�ned expressions for e�etiveHamiltonian interations without neessity to alulate sattering matrixelements for quarks and gluons as if they were observable partiles.The e�etive partile alulus preserves luster properties and allows forevaluation of e�etive Hamiltonians without limitation to any partiular setof matrix elements. In other words, we an derive integral expressions formatrix elements of e�etive Hamiltonians in the whole Fok spae spannedby basis states of e�etive partiles. The renormalization group equationsare integrated analytially using Gaussian similarity form fators and onefully ontrols o�-shell behavior of e�etive verties that orrespond to theinitial theory. The e�etive dynamis is invariant with respet to boosts andallows simultaneous analysis of the rest frame and in�nite momentum framestruture of bound states.The e�etive partile Fok spae expansion an onverge thanks to thesimilarity form fators in the interation verties. The form fators dampeninterations hanging invariant masses by more than � and thus an tame thespread of eigenstate wave funtions for low lying eigenvalues into regions ofhigh relative momenta of onstituents. This feature may lead to exponentialonvergene of the eigenstate expansion in the e�etive partile basis. Suhonvergene is not expeted in the ase of bare partiles. The �ne struture ofe�etive partiles would then unfold in the transformation U�1Uy�2 relatinge�etive degrees of freedom at two di�erent sales, one orresponding tothe binding sale and the other to the high momentum transfer probe inquestion.
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