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Microscopic analysis of recent data on beta-decay of even neutron-
deficient nuclides between '°°Sn and '°8Sn is performed within the self-
consistent finite Fermi-system theory and BCS plus Quasiparticle Random
Phase Approximation with G-matrix interaction and proton—neutron pair-
ing. Strength functions of Gamow-Teller (-decay are calculated. The
mechanisms of reduction of the GT strength are discussed.
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1. Introduction

Evolution of shell structure of exotic nuclei near new double-shell clo-
sures and its isospin dependence is an attractive problem. The interest in
this field is mainly related with the progress in radioactive beams experi-
ments and the important role of the exotic nuclei in explosive astrophysical
processes. Study of the -decay modes is often the only way to extend our
knowledge of nuclear properties to region far from stability. For the proton
rich nuclei the -decay is dominated by the Gamow-Teller (GT) transitions.
This is the fastest channel of the 8-decay in the region of nuclei where super-
allowed Fermi decay is suppressed by isospin selection rules. In the region of
doubly-magic very neutron deficient °°Sn the Gamow-Teller 8% transition
is built on (lﬁgg/Q,ll/gWQ) shell-model configuration. The simplicity of the
decay mode and the selectivity of the GT-transitions with AL =0, AS =1,
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and no parity change is a good reference point for checking various micro-
scopic approaches to exotic nuclei. The maint points of interest are studying
of GT-strength distribution and determining its magnitude. The accurate
consideration of the problem requires the self-consistent study of the ground
and excited states properties and pairing in the nuclei with N ~ Z and the
description of the splitting of the GT-strength over several final states in
daughter nuclei.

2. Finite Fermi-system theory

The self-consistent finite Fermi-system (FFS) theory [1] has much in
common with the HFB method with effective forces. The main problem
of its practical application is the choice of the form and parametrization of
the appropriate density functional. In the present work we have used the
density functional by [2] which was fitted to the ground state properties of
spin-zero nuclei. As a consequence, the scheme is not fully self-consistent in
the case of spin—isospin excitations, and one has some freedom in choosing
the effective spin—isospin N N-interaction.

In general, the method includes the description of the ground states of
superfluid nuclei [2] and excited states of even and odd-A nuclei with pairing
correlations [3,4]. It consists of two steps:

1) calculating the self-consistent potential and the quasiparticle basis,
taking into account the effects of pairing correlations. We use the
density functional method and the quasiparticle Hamiltonian with a
free kinetic energy operator'. Quasiparticle spectrum and wave func-
tions are calculated in a self-consistent mean field which is the first
functional derivative of the interaction energy with respect to nor-
mal density, the pairing potential being obtained as the functional
derivative of the pairing energy with respect to the anomalous density

(see e.g. [1]);

2) solving the QRPA2-type FFS theory equations and calculating the
strength functions of nuclear charge-exchange excitations in sperfluid
nuclei [3,4].

The strength function determining the response of a superfluid nucleus to
the charge-exchange external field V' oc 7 is given in the FFS theory by [5]

2

5@ = | [ em@pion] . 1)

! The quasiparticle effective mass m* being equal to the bare nucleon mass m.
2 Quasiparticle Random Phase Approximation.
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where é, is the quasiparticle local charge with respect to the external field
Vo and the transition density pi of a nuclear excitation with a frequency wy
is calculated in the FFS theory as

Ptr(ﬁ ws CIm/d [L _'77_”;“5)‘/}771(77,;“5) —i—M('F',’F";wS)Vh (Fl§ws)
FNNF 7 we)d (75 ws) + N2 (7,7 we)d (7 ws)] (2)

where the normalization constant C' is calculated through matrix element of
the nuclear transition from the ground state to the excited one:

M3, = | [ e Vot ] / S(w 3)

Here Aw is an energy interval in which the contribution of some specific
maximum (or resonance) in S(w) at w = wy can be extracted.

In Eq. (2), V,, and Vpl;1 are the effective fields for particles and holes,
respectively, arising due to the action of an external charge-exchange field
V0 x o1 (Vp% = 0) and d' and d? are the effective changes of the corre-
sponding pairing fields. These effective fields have to be found by solving
the system of the FFS theory QRPA-like equations [5] for charge-changing
excitations in non-magic nuclei. In (1)—(3) w = @ — dp with dp = p? — p»
being difference between the proton and neutron chemical potentials, and @
the excitation energy in daughter nucleus. The propagators L, M, N', N?
are obtained by integrating various products of the normal and abnormal
Green’s functions G and F (see [5]).

In practice one often uses an ordinary expansion over single-particle wave
functions ¢,73. It is impossible to solve the effective field equation in the
A-representation without basis truncation because of single-particle contin-
uum. To overcome this difficulty we are using a method of coordinate repre-
sentation of the single-particle Green function allowing to include the whole
ph-continuum in the FFS theory equations (see e.g. [6] and Refs. therein).
For the charge-exchange excitations of superfluid nuclei a scheme for in-
clusion the ph-continuum has been developed [3,4] which is similar to the
method of mixed (r, A)-representation used in [7] for the neutral-channel ex-
citations. Note that for nuclei near the drip lines the correct description of
pairing should allow for the interaction between the bound nucleon states
and continuum [4, 8].

3 The so-called A-representation with A\"*®) = nljmr is the standard set of single-
particle quantum numbers of the neutron (7 = v) or proton (7 = 7) level with
energy €.
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For an accurate description of the single-particle characteristics it is very
important to choose an appropriate form and parametrization of the density
functional. Here we have used the density functional as suggested in [2],
where a dependence on p is simulated by simple fractional-linear functions
and the surface contribution is related to the finite-range forces which are
also density-dependent [9]. The total interaction energy of superfluid nu-
cleus, Eint[p,v] = [dFeint(F) is a functional of two densities, the normal,
p(7), and the anomalous, v(7). Self-consistent calculation with such a func-
tional looks like the standard variational HFB procedure in which the single-
particle Hamiltonian takes the form

_(h—p -—-A
w= ("4 ) o
where 2 5 o] 5 o
p Eint P,V Eint P,V
2m+ igp ov (5)

These equations were solved iteratively. The interaction energy density is
represented as
€int = Emain + Ecoul T Esl + Epair » (6)

where emain contains the volume isoscalar and isovector parts and these
correspond to the surface isoscalar and isovector potential energies generated
by the density-dependent finite-range forces [2]. The energy density of the
Coulomb interaction e.q, takes the usual form and includes the exchange
part in the Slater approximation, while the spin-orbit term &g in Eq. (6)
comes from spin-orbit o< (k + K'7 - 7?2)[616(7_"1 — 7)) X (p1 — Pa2)] - (61 + F2)
and velocity spin-dependent o< (g1 + gi71 - 72)(F1 - F2)(P1 - P2) interactions
(for details see [2]). The last term in (6) is the pairing energy density
Epair = %I/F v, where v is the anomalous nucleon density and F¢ plays
the role of the effective force in the particle—particle channel and has been
chosen for simplicity as:

FE(F P = —Cofe6(F — 7). (7)

Here Cy is the inverse density of states at the Fermi surface in equilib-
rium nuclear matter (305 MeV xfm?) and f¢ is a dimensionless interaction
constant of the FFS theory [5]. The superscript & refers to the energy cut-
off parameter which defines the number of single-particle levels taken into
account when evaluating the anomalous Green’s functions and, correspond-
ingly, when solving equations for pairing fields A" () and chemical potentials
1" as well as the dynamical FFS equations for excited states. In the present
calculations pairing was treated in a diagonal approximation on the basis
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of all bound single-particle levels and quasi-bound levels within the cut off
energy interval of 15 MéV with 5, = gp: 0.28, as we have used in [10] .
Parameters of the density functional (6) were chosen in [9] by fitting
binding energies, charge distributions and single-particle spectra for magic
nuclei 4°Ca, *8Ca, 2%¥Pb and for non-magic ones both with weak super-
fluidity (°°Zr, *Gd) and developed pairing (even-even stable Sn and Ph
isotopes). As for the description of the pairing properties with the interac-
tion (7), the pairing potential A is found to be a smooth function of 7 and
its non-diagonal matrix elements Ayy are small, i.e. Ayy = Aydyy. For
even—even nuclei the level-dependent matrix elements Ay are obtained from
the standard gap equation, which is solved toghether with the condition on
the chemical potential p”7. This procedure gives the particle number in a

nucleus and thus defines the quasiparticle energy F\ = 1/(ex — ,u)2 + Ai.

It is worth to note, that for specific case of the spin—isospin excitations
the corresponding effective N N-interaction has not been obtained as the
second functional derivative of the density functional with respect to normal
spin—isospin density but was defined independently. The effective interaction
F¥_in the particle-hole spin—isospin channel is chosen as in [11]. It contains
local d-part with Landau—Migdal parameter ¢’ and renormalized one-pion
exchange amplitude. In the momentum representation it reads

(31%)(52F)
k2 +m2 + Pa(k2) |

F2, =20 |¢'518, — g™(1 - 2¢7)° (8)

where g, = —4m (f2/m2)/Cy = —1.45 and PA(k?) is the pion irreducible
polarization operator in nuclear medium with allowance for virtual produc-
tion of the A isobar. The constant ¢’=1.0-1.1 has been extracted from
positions of the GT and M1 resonances [11|. The parameter (7 character-
izes the suppression of spin—isospin vertices in nuclei due to the quasiparticle
local charge e4lo7] = 1 — 2¢, [5]. The value of ¢, = 0.1 was determined by
a fit to the observed GT and M1 strength distributions [11].

The effective spin—isospin interaction in the particle-particle channel en-
tering FF'S theory equations for the charge-exchange excitations was chosen
in the simplest form:

F§T(F1af2) = _Cogéé(Fl - FQ) a(‘]ﬂ =0, 1+7' . ) . (9)

The value of gé for the spin—isospin strength constant in the pp-channel as

deduced from the f-decay data and (p,n)/(n,p) reactions spectra in [3] was
found to be 0.2-0.5 (in the present calculations the value of 0.2 has been
used).
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3. Quasiparticle Random Phase Approximation
and excited states

To calculate the matrix elements of beta transitions one needs to know
not only the structure of the ground state but of the excited states of the final
nucleus as well. Also their energy has to be calculated if one is interested in
the discrimination of the individual transition. Here the QRPA formalism
proves to be useful. It accounts not only for the particle-hole diagrams but
for particle—particle ones as well [18]. The excited states are constructed
as one-phonon excitations generated from the ground state of the initial
nucleus:

T 1 aabT
o e

ao<bt

~Y24 Alao, br JM)] IQRPA), (10)
where Azaa, br; JM) are the angular-momentum coupled two-quasiparticle
creation operators. The usual proton—neutron QRPA formalism has been
extended to a full form, taking into account the possibility of mixing between
protons and neutrons [19]. Treating X and Y amplitudes as independent
variational parameters one gets a matrix equation for them and for the
excitation energy of the m™ excited state hwm, g7 = By g — Ep:

AJﬂ' BJW XJW . XJﬂ'
< —BJW —AJW ) < YJW )m_hwm’Jﬂ< YJn- )m ) (11)

Matrices A i B are defined in the following way:

- \/(1 + 5ab507)(1 + Oarpy 5017_/) ’
gl W achr _ (pnBOS|A(d'd, b7’ JM )A(ao,br; JM)H |[pnBCS) (12)
" - \/(1 + 5ab507)(1 + 60/[)’50"7-’) )

The explicit forms of A i B matrices are quite lengthy and will not be quoted
here — they can be found e.g. in [19].

In the QRPA formalism the Gamow—Teller transition matrix elements
are expressed as follows:

QW ashr (pnBCS|A(d'0", /7' IM)[H, At (ac, br; JM)]|pnBCS)
JT =

B(GT) = |(m, 17]|3*[[QRPA)[

allo b b
S B ot (vunptiven — taonvirs)
ao<bt abCoT
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b
+Ynlz£/7:11 (Uaapvb'rn - Uaanub'rp)] . (13)

The u and v coefficients are the 2 x 2 matrices, being the solutions of the gen-
eralized BCS problem with proton—neutron pairing taken into account [19].

4. Details of the calculations and results

4.1. FFST approach

The results of the calculations within the FFST are given in Fig. 1 and
Table I, where the GT-strength functions and the total GT-strength within
the Qrc window for the B*-decay of even '00~108Gn are presented. For
all available cases the experimental distributions are also given (for review
see [20]). The qualitative features of the 8T -strength distributions in FFST
scheme are easily seen. There are two main 17 levels fed in the energy region
of interest. One of them carring the most of the strength has the ph nature,
the other one is attributed to the pairing effects. The energy position and
the strength of ph level depends mainly on the strength parameters of the
effective N N-interaction (¢, gr) and the local charge value, which remains
unchanged in our calculations. The energy position of the ph level for tin iso-
topes with A < 110 is typically below the Qgc-value. The characteristics of
the second level, the so-called pp-level, is sensitive to pp-interaction strength.
In some cases this level is shifted above the Qgc-value. It is important that
for fT-decay the main part of the strength is contained in the ph-level which
carries the average particle numbers of daughter nuclei. This allows to de-
termine its excitation energy from the calculated transition energy. In the
present work the QQrc-values are determined in self-consistent way as the
atomic mass differences of parent and daughter nuclei in their ground states

=g o o4 LTI e R e e R e R
>
3z Sn = “In Qgc=319 MeV Qg = 2.059 Me!
251 Qge=4.515*0.060 MeV QT 108 ~~~~~~~~~~~~~ 108—":
o [ - i Sn — 18[p -
5 4 " - | P 4
c Prad //’ e
o 3 L i 2k === S
< P £ 106g, _, 1061, b S |
% 2k > P COE e - i y
: -—-’—-)Wm_ '''''' l_ - I/
Syo— 4 Y ___._._. - ; ]
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Fig.1. Experimental GT-strength distribution (solid lines) and calculated within
FFST approach (dash-dotted lines). The experimental threshold is marked with
the dashed line.
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TABLE 1

Total B(GT) strength, calculated within the FFST (a), QRPA without (b) and
with (c) p—n pairing, together with experimental values (d) [20]. The adopted
strength of the spin—isospin interaction in the pp-channel is 60 MeV xfm?.

Sn — In > B(GT)
A (@) | (b) | () (d)
100 | 7.63 | 9.27 | 8.95 —
102 | 6.08 | 8.02 | 7.69 —
104 | 530 | 6.75 | 6.49 | 2.63703%
106 | 4.37 | 5.43 | 5.24 | 2.447030
108 | 3.53 | 3.99 | 3.85 | 1.3770:49

and were not fitted to experimental ones, as well as single-particle energies.
Further calculations of the total GT-strength are influenced by the accuracy
of the obtained Qgc-values.

It is worth to compare not the details of calculated and experimental
spectra, but the energy positions of the centroids of GT-strength distribu-
tions. It is seen from Fig. 1 that the main part of the calculated strength
for 104-108 S is within the Qrc-window. The positions of the centroids of
GT-distribution in even—even tin isotopes calculated within the FFST are
in resonable agreement with experiment.

The total GT-strength observed below decay energy threshold is sub-
stantially lower than calculated in FFST and BCS+pnQRPA approaches.
The mechanisms of the strength renormalisation has been intensively stud-
ied recently (see e.g. [21]). The main source of the GT-strength reduction in
is the “core-polarization” mechanism due to the effective interactions in ph
and pp channels and the continuum effect. The relative importance of the
mentioned factors can be understood on the example of the FFST calcula-
tion of the 1% state in '%4Sn. The quenching factor cased by spin-isospin
ph interaction with truncated basis is 2.1, the coupling to continuum drives
the reduction factor to 2.5, the inclusion of pp interaction with the strength
parameter g/,=0.2 gives overall reduction of 2.8 (all factors are given rela-
tive to the total strength, calculated without any interaction except pairing
one). Note that the latest experimental data on the (n,p) reactions [12]
favor the higher value of the g/,=0.4-0.5 which would lead to additional
30-40% reduction in the total B(GT).
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4.2. BCS+QRPA approach

In these calculations we have taken the realistic Hamiltonian with in-
teraction part based on the G-matrix calculated using the Bethe-Goldstone
equation with one-boson exchange nucleon—nucleon potential of Bonn type
[22], and Woods—Saxon potential with Bertsch parametrization as the single-
particle part. For comparison with FFST results, the strength of the spin—
isospin effective interactionin the pp-channel has been chosen the same,
namely 60 MeV xfm?. The single-particle basis consisted of 10 orbitals with
40Ca as an inert core. We studied an influence of the proton-neutron pairing
on the B(GT) values by switching off the p—n interaction, what corresponds
to taking non-diagonal elements of the u and v matrices equal zero and re-
stricting the isospin indices in Egs. (10) and (13) to values ¢ = p and 7 = n.
The results are summarised in Table I and in Fig. 2. One can notice slight
reduction of B(GT) values when p—n pairing is included. This is due to
the fact that the strength is redistributed because of the increased number
of possible excitations. But still they overestimate both FFST results and
experimental data.

6.0 T

a0t ®gn

20 |
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ao b 102Sn
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106

BG

40 f Sn

20} ]H

0.0 + -+ ' -
4.0 f 108Sn
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Fig.2. GT-strength distribution calculated within BCS+QRPA approach with
(black bars) and without (white bars) p—n pairing

Important feature of the observed GT-distributions is substantial split-
ting of the strength between several states. This may cause a significant
part of reduction of total GT-strength due to limited experimental sensitiv-
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ity, which is energy dependent. The transitions with the excitation energy
close to the Qgrc-value may be missed even when its strength is rather large.

In order to explain the fragmentation of the GT-strength in terms of
QRPA-like schemes one should include the effect of coupling of single-particle
and phonon modes. The consistent approach of this type in nuclei with
pairing is still missing. The attempts to extend the QRPA model in this
direction are known, but quantitative analysis has been not performed yet.
Also recently discussed problem of the violation of Pauli principle in the
QRPA approach [23] and inclusion of the so-called scattering terms [24]
may influence the results. These and other questions remain therefore still
open.

5. Summary and conclusions

The analysis of recent experiments on the -decay of neutron- deficient
tin isotopes near 19°Sn were performed in order to understand the details of
the GT-decays in even—even nuclei in this region. The self-consistent FFST
with continuum and the QRPA approach with the G-matrix interaction and
proton—neutron pairing was used for the study. The results are consistent
with the overall picture of GT-decay governed by the gg/o — g7/ transition.
The effect of proton—neutron pairing on low-spin excitations is found to be
small. Although the change in the total strength caused by the pn-pairing
is in the right direction, it is clearly not enough to solve the problem of
the universal quenching of GT-strength. The latter seems to be also an
experimental issue.

To explain the rest of difference in total GT-strength for even—even tin
isotopes one should include in reliable way the quasiparticle-phonon corre-
lations within the RQRPA-like schemes [23,24]. This can also provide the
link with the shell-model approaches, which forms a basis for understand-
ing of the role of strength splitting in the observed quenching effect. On
the other hand, further experimental developments, like the application of
well calibrated total gamma absorption spectrometers will help to improve
our knowledges on the [-decay properties of exotic nuclei in the region of
doubly-magic 1%°Sn.
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