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APERIODIC STOCHASTIC RESONANCE IN ASYSTEM OF COUPLED CHAOTIC OSCILLATORS�A. Krawie
kiFa
ulty of Physi
s, Warsaw University of Te
hnologyKoszykowa 75, 00-662 Warsaw, Poland(Re
eived September 17, 1999)Noise-free aperiodi
 sto
hasti
 resonan
e is investigated numeri
ally ina system of two 
oupled 
haoti
 Rössler os
illators. The aperiodi
 inputsignal is obtained from a di�erent 
haoti
 system and applied either to oneof the parameters of one os
illator or added to the 
oupling term. When the
oupling 
onstant is de
reased the os
illators lose syn
hronization via at-tra
tor bubbling. The output signal is analyzed whi
h re�e
ts the sequen
eof syn
hronized (laminar) phases and non-syn
hronized bursts in the timeevolution of the os
illators. The 
orrelation fun
tion between the inputand output signals shows maximum as a fun
tion of the 
oupling 
onstant.The dependen
e of the 
orrelation fun
tion on the mean frequen
y of os-
illations of the input signal and on the parameter mismat
h between theos
illators is very 
omplex. The 
orrelation in
reases non-monotoni
allywith de
reasing frequen
y, and the parameter mismat
h 
an 
ause that theoutput and input signals are anti
orrelated.PACS numbers: 05.45.+b, 05.40.+j1. Introdu
tionThe idea of aperiodi
 sto
hasti
 resonan
e (ASR) [1�8℄ is an extensionof the 
on
ept of sto
hasti
 resonan
e (SR) [9℄ to the 
ase of aperiodi
 inputsignals (for review of SR and ASR see Ref. [10℄). In 
ertain systems drivenby noise and an aperiodi
 input signal the noise intensity 
an be tuned sothat the output signal shows maximum 
orrelation with the input one. Sim-ilarly, the idea of noise-free ASR [11℄ is an extension of that of noise-free SR[12�18℄. In this 
ase, the internal dynami
s of a 
haoti
 system is 
hangedby varying a 
ontrol parameter, whose value 
an be 
hosen so that to obtainmaximum 
orrelation between the aperiodi
 input and output signals.� Presented at the XII Marian Smolu
howski Symposium on Statisti
al Physi
sZakopane, Poland, September 6�12, 1999.(1003)



1004 A. Krawie
kiIn previous papers [17℄ noise-free SR in a system of two 
oupled 
haoti
os
illators at the edge of syn
hronization was 
onsidered. In this paper noise-free ASR in su
h a system is studied. The system under study in general
an be written as_x1 = F (p+ Æs (t) ;x1) ; _x2 = F (p+�p;x2) + kG (x1 + "s (t)n� x2) :(1)Here, x1;2 are the state ve
tors of two 
oupled 
haoti
 subsystems whosedynami
s is given by a ve
tor �eld F , G is the 
oupling fun
tion and k isthe 
oupling 
onstant. The subsystems are assumed to be identi
al up to apossible small mismat
h �p between a sele
ted parameter p; this imitatesexperiments in whi
h the parameters of e.g. two ele
tri
 
ir
uits are neveridenti
al. The aperiodi
 signal s (t) > 0 is added either to the parameter pin the system 1 with the amplitude Æ � 1 or to the variable x1 transmittedfrom the system 1 to 2 with the amplitude " � 1. In the latter 
ase thesignal 
an be added to the 
omponents of x1 with weights given by the
omponents of the ve
tor n. This signal 
an be produ
ed e.g. by another
haoti
 system.In the 
ase �p = Æ = " = 0 it is assumed that a 
riti
al value k
 ofthe 
oupling 
onstant exists su
h that if k > k
 the two subsystems aresyn
hronized, i.e. the absolute value of the argument of the 
oupling term�x (t) = jx1 (t) + "s (t)n� x2 (t)j �! 0 for t �! 1 [19, 20℄ (for reviewof 
haoti
 syn
hronization see Ref. [21℄). If k < k
 the two subsystems donot syn
hronize. However, if k is only slightly below k
 there are long timeintervals during whi
h �x (t) � 0 (laminar phases) interrupted by 
haoti
bursts during whi
h �x (t) in
reases substantially. The mean duration oflaminar phases de
reases with k �! 0. It is known that �x (t) exhibitson-o� intermitten
y (OOI) [22, 23℄. If �p 6= 0 but still Æ = " = 0 thesyn
hronization is never perfe
t and the bursts in �x (t) are observed evenfor k > k
; this phenomenon is 
alled attra
tor bubbling (AB) [24, 25℄.The e�e
t of setting Æ 6= 0 or " 6= 0 is similar, and AB is then observedeven for �p = 0. However, sin
e s (t) is time dependent, the bursts o

urmore and less frequently for higher and lower values of the aperiodi
 signal,respe
tively. In this paper we distinguish between the laminar phases andbursts by 
onsidering a dis
retized signal X (t) = � [�x (t)� �℄, where �denotes the Heaviside step fun
tion and � is the threshold for burst. Itfollows from our numeri
al simulations and prevoius works [17℄ that if X (t)is 
onsidered as the output signal of the system (1) noise-free SR or ASR isobserved with varying k. In parti
ular, the 
orrelation fun
tion



Aperiodi
 Sto
hasti
 Resonan
e in a System of : : : 1005C1 = hs (t)X (t)i � hs (t)ihX (t)ip[hs2 (t)i � hs (t)i2℄ [hX2 (t)i � hX (t)i2℄ ; (2)where the bra
kets denote the time average, has a maximum as a fun
tionof k.Systems like (1) are usually 
onsidered in 
onne
tion with the se
ure
ommuni
ation problem [26-28℄. The system 1 is the transmitter, 2 is there
eiver, and the transmitted variable is x1. The information signal s (t) withsmall amplitude Æ or " is added to one of the parameters of the transmitter(
haoti
 
ommuni
ation s
heme) or to the transmitted signal (
haoti
 signalmasking s
heme), respe
tively [27℄. If k � k
 and Æ; " � 1 addition of thesignal will not lead to large 
haoti
 bursts typi
al of AB, sin
e the timene
essary for the o

urren
e of a burst is extremely long [25℄. Instead,�x (t) follows the signal s (t) 
losely. Hen
e the information signal 
anbe reprodu
ed almost exa
tly at the re
eiver, where x2 is known. This
ommuni
ation s
heme is �se
ure� sin
e pre
ise reprodu
tion of s (t) requiresthe equality of all parameters of the re
eiver and the transmitter, whosevalues 
annot be extra
ted from the transmitted signal x1 or x1 + "s (t). Ifthis is not the 
ase (e.g. �p 6= 0) then �x (t) is 
orrupted by 
haoti
 burstsdue to AB and does not follow s (t).In this paper the opposite limit k � k
 is 
onsidered, when �x (t) doesnot reprodu
e s (t) even if �p = 0. The problem addressed is if the 
ou-pling 
onstant 
an be tuned in order to reprodu
e the (generally aperiodi
)information signal s (t) with a signi�
ant degree of a

ura
y using the ideaof noise-free ASR. To this purpose, the variable �x (t) is passed through athreshold devi
e to obtain X (t). Passing through a threshold nonlinearityis known to produ
e SR in the 
ase of OOI and AB signals [16-18℄. Sig-nals with various amplitudes Æ, " and average frequen
ies are 
onsidered,and the in�uen
e of the parameter mismat
h �p 6= 0 is also analyzed. Itturns out that the 
orrelation fun
tion C1 (2) 
an rea
h quite big values,in parti
ular for slowly varying signals (the adiabati
 limit) with relativelylarge amplitudes. In many 
ases non-trivial dependen
e of C1 on the av-erage frequen
y of the input signal and the parameter mismat
h is found.Of 
ourse, in any 
ase the quality of reprodu
tion of the signal using ASRwith k � k
 is not better than using dire
tly �x (t) in the limit of largek. The amplitudes Æ, " are, however, 
hosen in purpose so that in the limitk � k
 we have �x (t) < �. Thus using noise-free ASR for reprodu
ing theinformation signal (in the way dis
ussed in this paper) makes sense in two
ases. First, if the information signal has su
h a small amplitude that pure�x (t) is not useful at the re
eiver, where our apparatus 
an be insensitiveto signals below a given threshold �. Se
ond, if there are any 
onstraints forthe maximum allowable k.



1006 A. Krawie
ki2. The system under studyAs a parti
ular example of a system (1) a set of two 
oupled 
haoti
Rössler os
illators is 
onsidered_x1 = � (y1 + z1) ;_y1 = x1 + [a+ Æs (t)℄ y1 ;_z1 = b+ z1 (x1 � 
) ;_x2 = � (y2 + z2) ;_y2 = x2 + (a+�a) y2 + k [y1 + "s (t)� y2℄ ;z2 = b+ z2 (x2 � 
) : (3)The parameters are a = 0:2, b = 0:2, 
 = 10, and �a is the parametermismat
h. The 
oupling is via the s
alar y variable. For this 
ouplingthe two os
illators syn
hronize for k > k
 � 0:24. The aperiodi
 inputsignal s (t) is obtained from the well-known Lorenz system _u = ��� (u� v),_v = � (�uw + �u� v), _w = � (uv � �w) with � = 10, � = 28 and � = 8=3as s (t) = jw (t)� 8j. This results in a signal varying between 0 and 
.a. 37.The parameter � sets the 
hara
teristi
 time s
ale of os
illations (frequen
y)of the Lorenz system: the larger � the faster the signal s (t) varies in time.Putting aside the exa
t de�nition of frequen
y in 
haoti
 os
illators [29℄ it
an be estimated e.g. as a mean number of maxima of x1 (t) or w (t) per unittime for the Rössler and Lorenz systems, respe
tively. For the parametersabove and � = 1 this frequen
y is ! � 1Hz for the Rössler system and is 
.a.ten times higher for the Lorenz one. Thus for � � 0:1 both systems os
illatewith 
omparable frequen
ies. The variable �x (t) is hen
eforth de�ned as�x (t) = jy1 (t) + "s (t)� y2 (t)j and the output signal is de�ned as in Se
. 1with � = 0:1.Numeri
al solutions of Eq. (3) were obtained using a fourth-and-�fthorder Runge-Kutta algorithm with permanent step size and error 
ontrol.The integration step size was varied with � and ranged from 0.001 to 0.1.As a measure of ASR the 
orrelation fun
tion C1 (2) was used. Care wastaken to 
al
ulate the time averages in Eq. (2) 
orre
tly, taking into a

ountthe above-mentioned 
hanges in the integration step size, and it was 
he
kedthat the results did not depend on this size.3. Numeri
al results and dis
ussion3.1. The 
haoti
 signal masking s
hemeThe results for the 
ase Æ = 0, " 6= 0 are summarized in Figs. 1,2 whereC1 vs k for various � and �a is shown. It 
an be seen that for �a = 0 the
urves show a single maximum typi
al of ASR. This maximum in general
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Fig. 1. C1 vs k for the system (3) with �a = 0, Æ = 0 and (a) � " = 1:5� 10�3,(b) � " = 2:5� 10�3; � = 1 (2), 10�1 (4), 10�2 (3), 10�3 (+), 10�4 (�).

Fig. 2. C1 vs k for the system (3) with Æ = 0 and (a) � " = 1:5� 10�3, �a = 10�4and � = 1 (2), 10�1 (4), 10�2 (3), 10�3 (+), 10�4 (�); (b) � " = 1:5 � 10�3,� = 10�4 and �a = 0 (2), 5 � 10�5 (4), 8� 10�5 (3), 10�4 (+), 2 � 10�4 (�),10�3 (
); (
) � " = 2:5� 10�3, � = 10�4 and �a = 0 (2), 10�5 (4), 10�4 (3),10�3 (+); (d) � " = 1:5� 10�3, � = 1 and �a = 0 (2), 10�5 (4), 10�4 (3), 10�3(+).in
reases with � �! 0 and its position is shifted towards k � k
 (Fig. 1).Su
h dependen
e of C1 on frequen
y is 
ommon in noise-free ASR, andthe e�e
t of ASR is usually most noti
eable in the adiabati
 limit of slowlyvarying input signals [11℄. However, for � � 0:1 deviations from a monotoni
in
rease of C1 are observed. Then, in the 
ase of a weak input signal with" = 1:5 � 10�3 and "s (t)� � the maximum of the C1 vs k 
urve in
reases



1008 A. Krawie
kiand shifts towards larger k (Fig. 1(a)), while in the 
ase of a strong inputsignal with " = 2:5 � 10�3 and "s (t) � � it de
reases and shifts towardslarger k (Fig. 1(b)). In the latter 
ase the in
rease of C1 not only for � �! 0but also for � > 0:1 is observed.If �a 6= 0 di�eren
es between the 
ases of weak and strong input signalsalso 
an be seen (Fig. 2). In Figs. 2(a), (b) results for the weak signal with" = 1:5 � 10�3 are shown: in Fig. 2(a) for given �a and de
reasing �, andin Fig. 2(b) for given �, yielding a slowly varying signal s (t), and in
reasing�a. If the input signal has small frequen
y a substantial de
rease of C1with the in
rease of the parameter mismat
h is observed. Moreover, thereare su
h intervals of �a, � and k for whi
h the output and input signals areanti
orrelated, i.e. C1 < 0. This means that �x (t) is above or below thethreshold � most often when the signal is 
lose to its minimum or maximum,respe
tively, just the opposite of what 
an be expe
ted. In the 
ase of thestrong input signal with " = 2:5 � 10�3 the anti
orrelation is not observedwithin the range of parameters investigated, and for slowly varying s (t) themaximum of the C1 vs k 
urve just de
reases and shifts towards larger k within
reasing parameter mismat
h (Fig. 2(
)). For both weak and strong inputsignal, if its frequen
y is very high, �rst slight de
rease and then substantialin
rease of C1 with the rise of �a is observed, of 
ourse within reasonablelimits of �a� � (Fig. 2(d)).3.2. The 
haoti
 
ommuni
ation s
hemeAnalogous results in the 
ase Æ 6= 0, " = 0 are summarized in Figs. 3,4.Again, for �a = 0 the 
urves C1 vs k show a single maximum whose valuein
reases and position shifts towards k � k
 if � �! 0 (Fig. 3). In theopposite limit of large �, C1 de
reases to zero and no signi�
ant 
orrelationbetween the input and output signals is observed. This is true for both weak(with Æ = 10�4) and strong (with Æ = 4�10�4) input signals, although in thelatter 
ase C1 di�ers noti
eably from zero for � an order of magnitude biggerthan in the former 
ase (
f. the values of � in Fig. 3(a) and Fig. 3(b)). Inparti
ular, no in
rease of the 
orrelation fun
tion for the strong input signaland � > 0:1 is observed. For moderate �, just when C1 starts deviatingfrom zero, anti
orrelation between the input and output signals is observed,whi
h results in C1 < 0.In the 
ase �a 6= 0 the results again depend on the strength of the inputsignal (Fig. 4). In Figs. 4(a), (b) results for the weak signal with Æ = 10�4are shown: in Fig. 4(a) for given �a and de
reasing �, and in Fig. 4(b)for given �, yielding a slowly varying signal s (t), and in
reasing �a. If theinput signal has small frequen
y, then, like in the 
haoti
 signal maskings
heme, anti
orrelation between the input and output signals, 
hara
terized
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Fig. 3. C1 vs k for the system (3) with �a = 0, " = 0 and (a) � Æ = 10�4 and� = 10�2 (2), 5�10�3 (4), 2�10�3 (3), 10�3 (+), 10�4 (�); (b) � Æ = 4�10�4and � = 10�1 (2), 5� 10�2 (4), 3� 10�2 (3), 10�2 (+), 10�3 (�), (
) 10�4.

Fig. 4. C1 vs k for the system (3) with " = 0 and (a) � Æ = 10�4, �a = 5� 10�4and � = 10�2 (2), 5�10�3 (4), 2�10�3 (3), 10�3 (+), 10�4 (�); (b) � Æ = 10�4,� = 10�4 and �a = 0 (2), 10�4 (4), 5� 10�4 (+), 10�3 (�); (
) � Æ = 4� 10�4,�a = 5 � 10�4 and � = 10�1 (2), 5 � 10�2 (4), 3 � 10�2 (3), 10�2 (+), 10�3(�), 10�4 (
).by C1 < 0, o

urs for non-zero parameter mismat
h. This e�e
t appears for� �! 0 (Fig. 4(a)) or for in
reasing �a (Fig. 4(b)). The maximum value ofC1 again de
reases with in
reasing parameter mismat
h. In the 
ase of theslowly varying strong input signal with " = 4 � 10�4 the anti
orrelation isnot observed within the range of parameters investigated and the values of
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kiC1 de
rease with in
reasing �a (
f. Fig. 4(
) and Fig. 3(b)). Only for stronginput signals with moderate � we have C1 < 0, but this is true also if thereis no any parameter mismat
h between the os
illators.3.3. Dis
ussionThe results for ASR obtained in this paper are 
omparable with the onesknown from our earlier work on noise-free SR with periodi
 input signals intwo 
oupled 
haoti
 os
illators [17℄. In that 
ase a di�erent measure of SR isused, the signal-to-noise ratio (SNR) whi
h yields the strength of the peak atthe input signal frequen
y divided by the strength of the noise ba
kground,where both quantities are obtained from the power spe
trum density of theoutput signal. In order to perform a detailed 
omparison between the SRand ASR 
ases the results for SR from Ref. [17℄ have to be extended to awider range of frequen
ies and amplitudes of the periodi
 signal. However,even now 
ertain similarities between these two 
ases 
an be found.In the 
ase of 
haoti
 signal masking s
heme, if �a = 0 both C1 andSNR show 
omplex dependen
e on the input signal frequen
y. Of parti
ularinterest is the 
ase when the input signal frequen
y is 
lose to the frequen
yof os
illations of the system (3), here for � = 1. For su
h frequen
ies C1and SNR 
an de
rease substantially (Fig. 1(b)), but the opposite e�e
t ofthe in
rease of SNR in the 
ase of a weak input signal was not reported,
ontrary to C1 (Fig. 1(a)). Also the in
rease of SNR for both very fastand very slow input signals was found, in analogy with the results for C1shown in Fig. 1(b). The in
rease of SNR for high-frequen
y input signals iseven mu
h more spe
ta
ular than that of C1, by orders of magnitude. Thedis
ussion in Ref. [17℄ shows that in these two limiting 
ases two di�erentme
hanisms are responsible for SR. For fast input signals the SR e�e
t isnon-dynami
al and high values of SNR are 
aused by a separation of thefast and slow time s
ales, 
onne
ted with the fast and slow os
illations ofthe input signal and the 
haoti
 system, respe
tively. For slow input signals(adiabati
 limit) SR is a dynami
al e�e
t 
onne
ted with AB, as suggestedin Se
. 1. This is also true in the ASR 
ase.Another interesting problem is the 
ompli
ated dependen
e of the ASRe�e
t on the parameter mismat
h �a. In Ref. [17℄ this problem was notstudied systemati
ally, but in 
ertain 
ases the in
rease of SNR with �a wasobserved, in analogy with Fig. 2(d) here obtained for the fast input signal.In Fig. 2(a)�(
) it 
an be seen that for slow input signals C1 in generalde
reases with �a and anti
orrelation between the input and output signals
an o

ur. Similar e�e
ts have not been reported for SR.The 
ase of 
haoti
 
ommuni
ation s
heme was not dis
ussed for periodi
input signals in Ref. [17℄. The results of Se
. 3.2 show that for the whole
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hasti
 Resonan
e in a System of : : : 1011range of � investigated ASR is a dynami
al e�e
t. This is 
on�rmed by thesystemati
 in
rease of C1 with de
reasing � and the disappearan
e of 
orre-lation between the output and fast input signal. Namely, if the input signalos
illates too fast the system has no time to rea
t to individual maxima ofs (t) and AB is triggered by averaged in�uen
e of the signal, so the desyn-
hronization bursts are not 
orrelated with the signal maxima. For moderate� and �a = 0 we have C1 < 0 (Fig. 3). This is probably 
onne
ted witha kind of a phase shift between the input signal and the desyn
hronizationbursts: the o

urren
e of maximum in s (t) initiates the burst, but the inputsignal varies so fast that a maximum of �x (t) appears only when the inputsignal already rea
hes its minimum. For �a 6= 0 anti
orrelation is observedfor a wide range of � when � �! 0.It turns out that the properties of the ASR e�e
t in (3) depend stronglyon the de�nition of the output signal X (t) and on the input signal. e.g. if inthe 
ase Æ = 0, " 6= 0 the presen
e of a desyn
hronization burst is de�ned asex
eeding the threshold � by a lo
al maximum of �x (t), the fast os
illationsof the output signal are 
ut o� and the in
rease of C1 with � seen in Fig. 1(b)for � < 0:1 is not observed. If instead of the input signal from the Lorenzsystem s (t) just randomly swit
hes between 0 and 1, the frequen
y for su
ha signal is poorly de�ned and C1 just in
reases monotoni
ally with de
reas-ing mean time between swit
hes. Besides, it should be pointed out thatmaximum of C1 vs k is observed only if the signal �x (t) is passed througha threshold, both in the 
haoti
 signal masking and 
haoti
 
ommuni
ations
hemes. If �x (t) itself is used as the output signal C1 �! 1 for k �! 1.This ex
eeds mu
h the maxima of C1 vs k 
urves in Figs. 1�4 thus provingthat ASR 
annot be used to in
rease the quality of retrieving the informationsignal in se
ure 
ommuni
ation. This is in 
ontrast with the ampli�
ation ofsmall signals using AB, re
ently dis
ussed in Refs. [18,30,31℄. Small signals
an be ampli�ed sin
e the amplitude of desyn
hronization bursts ex
eeds bymany orders of magnitude that of the input signal, and it seems that theampli�
ation fa
tor as a fun
tion of k 
an exhibit maximum [18℄. Neverthe-less, the output signals are 
ontaminated with 
haoti
 �u
tuations, thus the
orrelation fun
tion and SNR do not rea
h their highest possible values.4. Con
lusionsIn this paper noise-free ASR in a system of 
oupled 
haoti
 Rössler os
il-lators at the edge of 
haoti
 syn
hronization was investigated. The systemunder study is typi
al in the se
ure 
ommuni
ation problem. The 
ases ofaperiodi
 
haoti
 input signal applied both in the 
haoti
 signal masking and
haoti
 
ommuni
ation s
hemes were analyzed. The output signal re�e
tedthe sequen
e of syn
hronization phases and bursts in AB triggered by the in-
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kiput signal, and maximum of the 
orrelation fun
tion between these signalswas observed on varying the 
oupling 
onstant. The 
orrelation fun
tionshowed strong dependen
e on the mean frequen
y of the input signal andthe parameter mismat
h between the os
illators. The novel e�e
ts are thenon-monotoni
 in
rease of C1 with de
reasing frequen
y of the input sig-nal, with violation of monotoni
ity when the frequen
ies of the input signaland of 
haoti
 os
illations of the system (3) 
oin
ide, the possible in
reaseof C1 for fast input signals and the o

urren
e of anti
orrelation betweenthe input and output signals for non-zero parameter mismat
h. The rathernon-trivial dependen
e of SR and ASR in 
oupled 
haoti
 os
illators on theinput signal frequen
y requires further systemati
 study, sin
e it may be
onne
ted with fundamental di�eren
es between the 
haoti
 and sto
hasti
systems. It was also 
on
luded that even though the ASR e�e
t does notlead to the improvement in the quality of re
overing information signals inse
ure 
ommuni
ation, it 
an be used to maximize 
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