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Noise-free aperiodic stochastic resonance is investigated numerically in
a system of two coupled chaotic Réssler oscillators. The aperiodic input
signal is obtained from a different chaotic system and applied either to one
of the parameters of one oscillator or added to the coupling term. When the
coupling constant is decreased the oscillators lose synchronization via at-
tractor bubbling. The output signal is analyzed which reflects the sequence
of synchronized (laminar) phases and non-synchronized bursts in the time
evolution of the oscillators. The correlation function between the input
and output signals shows maximum as a function of the coupling constant.
The dependence of the correlation function on the mean frequency of os-
cillations of the input signal and on the parameter mismatch between the
oscillators is very complex. The correlation increases non-monotonically
with decreasing frequency, and the parameter mismatch can cause that the
output and input signals are anticorrelated.

PACS numbers: 05.45.4+b, 05.40.+]

1. Introduction

The idea of aperiodic stochastic resonance (ASR) [1-8| is an extension
of the concept of stochastic resonance (SR) [9] to the case of aperiodic input
signals (for review of SR and ASR see Ref. [10]). In certain systems driven
by noise and an aperiodic input signal the noise intensity can be tuned so
that the output signal shows maximum correlation with the input one. Sim-
ilarly, the idea of noise-free ASR [11] is an extension of that of noise-free SR
[12-18]. In this case, the internal dynamics of a chaotic system is changed
by varying a control parameter, whose value can be chosen so that to obtain
maximum correlation between the aperiodic input and output signals.

* Presented at the XII Marian Smoluchowski Symposium on Statistical Physics
Zakopane, Poland, September 6-12, 1999.
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In previous papers [17]| noise-free SR in a system of two coupled chaotic
oscillators at the edge of synchronization was considered. In this paper noise-
free ASR in such a system is studied. The system under study in general
can be written as

21 =F(p+0s(t),z1), o=F (p+ Ap,x3) + kG (21 +es(t)n — xz3) .

(1)
Here, @12 are the state vectors of two coupled chaotic subsystems whose
dynamics is given by a vector field F', G is the coupling function and k is
the coupling constant. The subsystems are assumed to be identical up to a
possible small mismatch Ap between a selected parameter p; this imitates
experiments in which the parameters of e.g. two electric circuits are never
identical. The aperiodic signal s (t) > 0 is added either to the parameter p
in the system 1 with the amplitude § < 1 or to the variable x; transmitted
from the system 1 to 2 with the amplitude ¢ < 1. In the latter case the
signal can be added to the components of x; with weights given by the
components of the vector n. This signal can be produced e.g. by another
chaotic system.

In the case Ap = § = ¢ = 0 it is assumed that a critical value k. of
the coupling constant exists such that if & > k. the two subsystems are
synchronized, i.e. the absolute value of the argument of the coupling term
Az (t) = |21 (t) +es(t)n — a2 (t)] — 0 for t — oo [19,20] (for review
of chaotic synchronization see Ref. [21]). If k < k. the two subsystems do
not synchronize. However, if k is only slightly below k. there are long time
intervals during which Az (¢) =~ 0 (laminar phases) interrupted by chaotic
bursts during which Az (¢) increases substantially. The mean duration of
laminar phases decreases with & — 0. It is known that Az (¢) exhibits
on-off intermittency (OOI) [22,23]. If Ap # 0 but still 6 = ¢ = 0 the
synchronization is never perfect and the bursts in Az () are observed even
for k > k.; this phenomenon is called attractor bubbling (AB) [24,25].

The effect of setting d # 0 or € # 0 is similar, and AB is then observed
even for Ap = 0. However, since s (t) is time dependent, the bursts occur
more and less frequently for higher and lower values of the aperiodic signal,
respectively. In this paper we distinguish between the laminar phases and
bursts by considering a discretized signal X (t) = © [Az () — 6], where ©
denotes the Heaviside step function and 6 is the threshold for burst. It
follows from our numerical simulations and prevoius works [17] that if X (¢)
is considered as the output signal of the system (1) noise-free SR or ASR is
observed with varying k. In particular, the correlation function
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Cf = (s (t) X (1)) — (s () (X (1)) ’ @)
VI () — (s (1)) [(X2 (1)) — (X (1))?]
where the brackets denote the time average, has a maximum as a function
of k.

Systems like (1) are usually considered in connection with the secure
communication problem [26-28]. The system 1 is the transmitter, 2 is the
receiver, and the transmitted variable is 1. The information signal s (¢) with
small amplitude § or ¢ is added to one of the parameters of the transmitter
(chaotic communication scheme) or to the transmitted signal (chaotic signal
masking scheme), respectively [27]. If k > k. and d,e < 1 addition of the
signal will not lead to large chaotic bursts typical of AB, since the time
necessary for the occurrence of a burst is extremely long [25]. Instead,
Az (t) follows the signal s(¢) closely. Hence the information signal can
be reproduced almost exactly at the receiver, where x5 is known. This
communication scheme is “secure” since precise reproduction of s (t) requires
the equality of all parameters of the receiver and the transmitter, whose
values cannot be extracted from the transmitted signal @1 or @ + es (¢). If
this is not the case (e.g. Ap # 0) then Az (¢) is corrupted by chaotic bursts
due to AB and does not follow s ().

In this paper the opposite limit k ~ k. is considered, when Az (¢) does
not reproduce s (t) even if Ap = 0. The problem addressed is if the cou-
pling constant can be tuned in order to reproduce the (generally aperiodic)
information signal s (¢) with a significant degree of accuracy using the idea
of noise-free ASR. To this purpose, the variable Az (¢) is passed through a
threshold device to obtain X (¢). Passing through a threshold nonlinearity
is known to produce SR in the case of OOI and AB signals [16-18]. Sig-
nals with various amplitudes §, € and average frequencies are considered,
and the influence of the parameter mismatch Ap # 0 is also analyzed. It
turns out that the correlation function C) (2) can reach quite big values,
in particular for slowly varying signals (the adiabatic limit) with relatively
large amplitudes. In many cases non-trivial dependence of C; on the av-
erage frequency of the input signal and the parameter mismatch is found.
Of course, in any case the quality of reproduction of the signal using ASR
with k& = k. is not better than using directly Az (¢) in the limit of large
k. The amplitudes 4, £ are, however, chosen in purpose so that in the limit
k > k. we have Az (t) < 0. Thus using noise-free ASR. for reproducing the
information signal (in the way discussed in this paper) makes sense in two
cases. First, if the information signal has such a small amplitude that pure
Az (t) is not useful at the receiver, where our apparatus can be insensitive
to signals below a given threshold 6. Second, if there are any constraints for
the maximum allowable k.
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2. The system under study

As a particular example of a system (1) a set of two coupled chaotic
Rossler oscillators is considered

1 = —(y1+21),
71 = x1+[a+ds(t)]y1,
= b+21($1—c),

ty = — (y2+ 22) ,
Yo = 2o+ (a+Aa)ys + k[y1 +es(t) —yol ,
Z9 = b+22 (.’L‘Q—C) . (3)

The parameters are ¢ = 0.2, b = 0.2, ¢ = 10, and Aa is the parameter
mismatch. The coupling is via the scalar y variable. For this coupling
the two oscillators synchronize for k£ > k. ~ 0.24. The aperiodic input
signal s (¢) is obtained from the well-known Lorenz system 4 = —puo (u — v),
0= p(—uw + pu —v), w = p(uv — fw) with ¢ = 10, p = 28 and g = 8/3
as s (t) = |w (t) — 8|. This results in a signal varying between 0 and c.a. 37.
The parameter p sets the characteristic time scale of oscillations (frequency)
of the Lorenz system: the larger p the faster the signal s (¢) varies in time.
Putting aside the exact definition of frequency in chaotic oscillators [29] it
can be estimated e.g. as a mean number of maxima of z1 (t) or w () per unit
time for the Réssler and Lorenz systems, respectively. For the parameters
above and p = 1 this frequency is w =~ 1Hz for the Réssler system and is c.a.
ten times higher for the Lorenz one. Thus for y &~ 0.1 both systems oscillate
with comparable frequencies. The variable Az (t) is henceforth defined as
Az (t) = |y1 (t) + es (t) — ya (t)| and the output signal is defined as in Sec. 1
with 8 = 0.1.

Numerical solutions of Eq. (3) were obtained using a fourth-and-fifth
order Runge-Kutta algorithm with permanent step size and error control.
The integration step size was varied with p and ranged from 0.001 to 0.1.
As a measure of ASR the correlation function C; (2) was used. Care was
taken to calculate the time averages in Eq. (2) correctly, taking into account
the above-mentioned changes in the integration step size, and it was checked
that the results did not depend on this size.

3. Numerical results and discussion

3.1. The chaotic signal masking scheme

The results for the case § = 0, € # 0 are summarized in Figs. 1,2 where
C1 vs k for various u and Aa is shown. It can be seen that for Aa = 0 the
curves show a single maximum typical of ASR. This maximum in general
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Fig.1. Cy vs k for the system (3) with Aa =0, =0 and (a) — ¢ = 1.5 x 1073,
(b) —e=25x1073; =1 (D), 107! (A), 1072 (©), 103 (+), 10~* ().
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Fig.2. C} vs k for the system (3) with § =0 and (a) —e=1.5%x10"3, Aa =10"*
and g =1 (0), 1071 (A), 1072 (), 1073 (+), 107% (x); (b) — e = 1.5 x 103,
p=10"%and Aa =0 (O), 5 x 107 (A), 8 x 1075 (&), 1074 (+), 2 x 104 (x),
1072 (0); () —e=25x 1073, p=10~* and Aa = 0 (0), 105 (A), 104 (©),
1072 (+); (d) —e=15x10"3 p=1and Aa =0 (0), 10°° (A), 10~% (<), 103
(+)-

increases with ;1 — 0 and its position is shifted towards k =~ k. (Fig. 1).
Such dependence of C7 on frequency is common in noise-free ASR, and
the effect of ASR is usually most noticeable in the adiabatic limit of slowly
varying input signals [11]. However, for ;1 = 0.1 deviations from a monotonic
increase of C are observed. Then, in the case of a weak input signal with
e=1.5x10"? and es (t) < 6 the maximum of the C; vs k curve increases
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and shifts towards larger k& (Fig. 1(a)), while in the case of a strong input
signal with ¢ = 2.5 x 1073 and s (t) ~ @ it decreases and shifts towards
larger k (Fig. 1(b)). In the latter case the increase of Cy not only for p — 0
but also for p > 0.1 is observed.

If Aa # 0 differences between the cases of weak and strong input signals
also can be seen (Fig. 2). In Figs. 2(a), (b) results for the weak signal with
e = 1.5 x 1073 are shown: in Fig. 2(a) for given Aa and decreasing y, and
in Fig. 2(b) for given p, yielding a slowly varying signal s (), and increasing
Aaq. If the input signal has small frequency a substantial decrease of C}
with the increase of the parameter mismatch is observed. Moreover, there
are such intervals of Aa, p and k for which the output and input signals are
anticorrelated, i.e. Cy < 0. This means that Ax (¢) is above or below the
threshold 6 most often when the signal is close to its minimum or maximum,
respectively, just the opposite of what can be expected. In the case of the
strong input signal with ¢ = 2.5 x 1072 the anticorrelation is not observed
within the range of parameters investigated, and for slowly varying s (¢) the
maximum of the C vs k curve just decreases and shifts towards larger £ with
increasing parameter mismatch (Fig. 2(c)). For both weak and strong input
signal, if its frequency is very high, first slight decrease and then substantial
increase of Cy with the rise of Aa is observed, of course within reasonable
limits of Aa < 0 (Fig. 2(d)).

3.2. The chaotic communication scheme

Analogous results in the case d # 0, ¢ = 0 are summarized in Figs. 3,4.
Again, for Aa = 0 the curves C} vs k show a single maximum whose value
increases and position shifts towards k = k. if p — 0 (Fig. 3). In the
opposite limit of large u, C decreases to zero and no significant correlation
between the input and output signals is observed. This is true for both weak
(with 6 = 10™*) and strong (with § = 4x10~%) input signals, although in the
latter case C differs noticeably from zero for p an order of magnitude bigger
than in the former case (cf. the values of x4 in Fig. 3(a) and Fig. 3(b)). In
particular, no increase of the correlation function for the strong input signal
and p > 0.1 is observed. For moderate p, just when Cy starts deviating
from zero, anticorrelation between the input and output signals is observed,
which results in Cy < 0.

In the case Aa # 0 the results again depend on the strength of the input
signal (Fig. 4). In Figs. 4(a), (b) results for the weak signal with § = 1074
are shown: in Fig. 4(a) for given Aqa and decreasing p, and in Fig. 4(b)
for given pu, yielding a slowly varying signal s (¢), and increasing Aa. If the
input signal has small frequency, then, like in the chaotic signal masking
scheme, anticorrelation between the input and output signals, characterized
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Fig.3. Cy vs k for the system (3) with Aa = 0, ¢ = 0 and (a)
p=10"2(0), 5x 1073 (A), 2x 1072 (©), 102 (+), 10~* (x); (b) — § = 4 x 10~*
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Fig.4. Cy vs k for the system (3) with e = 0 and (a) — § = 1074, Aa =5 x 107*
and g = 1072 (0), 5x 1073 (A), 2x 1073 (<), 1072 (+), 1074 (x); (b) — 6 = 104,
p=10"*and Aa =0 (0), 107 (A), 5x 107* (+), 1073 (x); (¢) — J =4 x 1074,
Aa=5x10"%and p =101 (O), 5x 1072 (A), 3x 1072 (<), 1072 (+), 1073
(x), 10 (O).

by C7 < 0, occurs for non-zero parameter mismatch. This effect appears for
u — 0 (Fig. 4(a)) or for increasing Aa (Fig. 4(b)). The maximum value of
C1 again decreases with increasing parameter mismatch. In the case of the
slowly varying strong input signal with e = 4 x 10~* the anticorrelation is
not observed within the range of parameters investigated and the values of
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C; decrease with increasing Aa (cf. Fig. 4(c) and Fig. 3(b)). Only for strong
input signals with moderate u we have C; < 0, but this is true also if there
is no any parameter mismatch between the oscillators.

3.3. Discussion

The results for ASR obtained in this paper are comparable with the ones
known from our earlier work on noise-free SR with periodic input signals in
two coupled chaotic oscillators [17]. In that case a different measure of SR is
used, the signal-to-noise ratio (SNR) which yields the strength of the peak at
the input signal frequency divided by the strength of the noise background,
where both quantities are obtained from the power spectrum density of the
output signal. In order to perform a detailed comparison between the SR
and ASR cases the results for SR from Ref. [17] have to be extended to a
wider range of frequencies and amplitudes of the periodic signal. However,
even now certain similarities between these two cases can be found.

In the case of chaotic signal masking scheme, if Aa = 0 both C; and
SNR show complex dependence on the input signal frequency. Of particular
interest is the case when the input signal frequency is close to the frequency
of oscillations of the system (3), here for u = 1. For such frequencies C
and SNR can decrease substantially (Fig. 1(b)), but the opposite effect of
the increase of SNR in the case of a weak input signal was not reported,
contrary to Cy (Fig. 1(a)). Also the increase of SNR for both very fast
and very slow input signals was found, in analogy with the results for C}
shown in Fig. 1(b). The increase of SNR for high-frequency input signals is
even much more spectacular than that of C, by orders of magnitude. The
discussion in Ref. [17] shows that in these two limiting cases two different
mechanisms are responsible for SR. For fast input signals the SR effect is
non-dynamical and high values of SNR are caused by a separation of the
fast and slow time scales, connected with the fast and slow oscillations of
the input signal and the chaotic system, respectively. For slow input signals
(adiabatic limit) SR is a dynamical effect connected with AB, as suggested
in Sec. 1. This is also true in the ASR case.

Another interesting problem is the complicated dependence of the ASR
effect on the parameter mismatch Aa. In Ref. [17] this problem was not
studied systematically, but in certain cases the increase of SNR with Aa was
observed, in analogy with Fig. 2(d) here obtained for the fast input signal.
In Fig. 2(a)-(c) it can be seen that for slow input signals C} in general
decreases with Aa and anticorrelation between the input and output signals
can occur. Similar effects have not been reported for SR.

The case of chaotic communication scheme was not discussed for periodic
input signals in Ref. [17]. The results of Sec. 3.2 show that for the whole
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range of u investigated ASR is a dynamical effect. This is confirmed by the
systematic increase of C with decreasing u and the disappearance of corre-
lation between the output and fast input signal. Namely, if the input signal
oscillates too fast the system has no time to react to individual maxima of
s(t) and AB is triggered by averaged influence of the signal, so the desyn-
chronization bursts are not correlated with the signal maxima. For moderate
u and Aa = 0 we have Cy < 0 (Fig. 3). This is probably connected with
a kind of a phase shift between the input signal and the desynchronization
bursts: the occurrence of maximum in s (¢) initiates the burst, but the input
signal varies so fast that a maximum of Az (t) appears only when the input
signal already reaches its minimum. For Aa # 0 anticorrelation is observed
for a wide range of y when yu — 0.

It turns out that the properties of the ASR effect in (3) depend strongly
on the definition of the output signal X (¢) and on the input signal. e.g. if in
the case § = 0, € # 0 the presence of a desynchronization burst is defined as
exceeding the threshold 0 by a local maximum of Az (¢), the fast oscillations
of the output signal are cut off and the increase of Cy with p seen in Fig. 1(b)
for ;4 < 0.1 is not observed. If instead of the input signal from the Lorenz
system s (t) just randomly switches between 0 and 1, the frequency for such
a signal is poorly defined and C just increases monotonically with decreas-
ing mean time between switches. Besides, it should be pointed out that
maximum of Cy vs k is observed only if the signal Az () is passed through
a threshold, both in the chaotic signal masking and chaotic communication
schemes. If Az (t) itself is used as the output signal C; — 1 for k — oo.
This exceeds much the maxima of Cy vs k curves in Figs. 1-4 thus proving
that ASR cannot be used to increase the quality of retrieving the information
signal in secure communication. This is in contrast with the amplification of
small signals using AB, recently discussed in Refs. [18,30,31]. Small signals
can be amplified since the amplitude of desynchronization bursts exceeds by
many orders of magnitude that of the input signal, and it seems that the
amplification factor as a function of £ can exhibit maximum [18]. Neverthe-
less, the output signals are contaminated with chaotic fluctuations, thus the
correlation function and SNR do not reach their highest possible values.

4. Conclusions

In this paper noise-free ASR in a system of coupled chaotic Rossler oscil-
lators at the edge of chaotic synchronization was investigated. The system
under study is typical in the secure communication problem. The cases of
aperiodic chaotic input signal applied both in the chaotic signal masking and
chaotic communication schemes were analyzed. The output signal reflected
the sequence of synchronization phases and bursts in AB triggered by the in-
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put signal, and maximum of the correlation function between these signals
was observed on varying the coupling constant. The correlation function
showed strong dependence on the mean frequency of the input signal and
the parameter mismatch between the oscillators. The novel effects are the
non-monotonic increase of C; with decreasing frequency of the input sig-
nal, with violation of monotonicity when the frequencies of the input signal
and of chaotic oscillations of the system (3) coincide, the possible increase
of C; for fast input signals and the occurrence of anticorrelation between
the input and output signals for non-zero parameter mismatch. The rather
non-trivial dependence of SR and ASR in coupled chaotic oscillators on the
input signal frequency requires further systematic study, since it may be
connected with fundamental differences between the chaotic and stochastic
systems. It was also concluded that even though the ASR effect does not
lead to the improvement in the quality of recovering information signals in
secure communication, it can be used to maximize correlation between the
retrieved and information signal e.g. if the latter is too weak to be useful at
the output.
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