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APERIODIC STOCHASTIC RESONANCE IN ASYSTEM OF COUPLED CHAOTIC OSCILLATORS�A. KrawiekiFaulty of Physis, Warsaw University of TehnologyKoszykowa 75, 00-662 Warsaw, Poland(Reeived September 17, 1999)Noise-free aperiodi stohasti resonane is investigated numerially ina system of two oupled haoti Rössler osillators. The aperiodi inputsignal is obtained from a di�erent haoti system and applied either to oneof the parameters of one osillator or added to the oupling term. When theoupling onstant is dereased the osillators lose synhronization via at-trator bubbling. The output signal is analyzed whih re�ets the sequeneof synhronized (laminar) phases and non-synhronized bursts in the timeevolution of the osillators. The orrelation funtion between the inputand output signals shows maximum as a funtion of the oupling onstant.The dependene of the orrelation funtion on the mean frequeny of os-illations of the input signal and on the parameter mismath between theosillators is very omplex. The orrelation inreases non-monotoniallywith dereasing frequeny, and the parameter mismath an ause that theoutput and input signals are antiorrelated.PACS numbers: 05.45.+b, 05.40.+j1. IntrodutionThe idea of aperiodi stohasti resonane (ASR) [1�8℄ is an extensionof the onept of stohasti resonane (SR) [9℄ to the ase of aperiodi inputsignals (for review of SR and ASR see Ref. [10℄). In ertain systems drivenby noise and an aperiodi input signal the noise intensity an be tuned sothat the output signal shows maximum orrelation with the input one. Sim-ilarly, the idea of noise-free ASR [11℄ is an extension of that of noise-free SR[12�18℄. In this ase, the internal dynamis of a haoti system is hangedby varying a ontrol parameter, whose value an be hosen so that to obtainmaximum orrelation between the aperiodi input and output signals.� Presented at the XII Marian Smoluhowski Symposium on Statistial PhysisZakopane, Poland, September 6�12, 1999.(1003)



1004 A. KrawiekiIn previous papers [17℄ noise-free SR in a system of two oupled haotiosillators at the edge of synhronization was onsidered. In this paper noise-free ASR in suh a system is studied. The system under study in generalan be written as_x1 = F (p+ Æs (t) ;x1) ; _x2 = F (p+�p;x2) + kG (x1 + "s (t)n� x2) :(1)Here, x1;2 are the state vetors of two oupled haoti subsystems whosedynamis is given by a vetor �eld F , G is the oupling funtion and k isthe oupling onstant. The subsystems are assumed to be idential up to apossible small mismath �p between a seleted parameter p; this imitatesexperiments in whih the parameters of e.g. two eletri iruits are neveridential. The aperiodi signal s (t) > 0 is added either to the parameter pin the system 1 with the amplitude Æ � 1 or to the variable x1 transmittedfrom the system 1 to 2 with the amplitude " � 1. In the latter ase thesignal an be added to the omponents of x1 with weights given by theomponents of the vetor n. This signal an be produed e.g. by anotherhaoti system.In the ase �p = Æ = " = 0 it is assumed that a ritial value k ofthe oupling onstant exists suh that if k > k the two subsystems aresynhronized, i.e. the absolute value of the argument of the oupling term�x (t) = jx1 (t) + "s (t)n� x2 (t)j �! 0 for t �! 1 [19, 20℄ (for reviewof haoti synhronization see Ref. [21℄). If k < k the two subsystems donot synhronize. However, if k is only slightly below k there are long timeintervals during whih �x (t) � 0 (laminar phases) interrupted by haotibursts during whih �x (t) inreases substantially. The mean duration oflaminar phases dereases with k �! 0. It is known that �x (t) exhibitson-o� intermitteny (OOI) [22, 23℄. If �p 6= 0 but still Æ = " = 0 thesynhronization is never perfet and the bursts in �x (t) are observed evenfor k > k; this phenomenon is alled attrator bubbling (AB) [24, 25℄.The e�et of setting Æ 6= 0 or " 6= 0 is similar, and AB is then observedeven for �p = 0. However, sine s (t) is time dependent, the bursts ourmore and less frequently for higher and lower values of the aperiodi signal,respetively. In this paper we distinguish between the laminar phases andbursts by onsidering a disretized signal X (t) = � [�x (t)� �℄, where �denotes the Heaviside step funtion and � is the threshold for burst. Itfollows from our numerial simulations and prevoius works [17℄ that if X (t)is onsidered as the output signal of the system (1) noise-free SR or ASR isobserved with varying k. In partiular, the orrelation funtion



Aperiodi Stohasti Resonane in a System of : : : 1005C1 = hs (t)X (t)i � hs (t)ihX (t)ip[hs2 (t)i � hs (t)i2℄ [hX2 (t)i � hX (t)i2℄ ; (2)where the brakets denote the time average, has a maximum as a funtionof k.Systems like (1) are usually onsidered in onnetion with the seureommuniation problem [26-28℄. The system 1 is the transmitter, 2 is thereeiver, and the transmitted variable is x1. The information signal s (t) withsmall amplitude Æ or " is added to one of the parameters of the transmitter(haoti ommuniation sheme) or to the transmitted signal (haoti signalmasking sheme), respetively [27℄. If k � k and Æ; " � 1 addition of thesignal will not lead to large haoti bursts typial of AB, sine the timeneessary for the ourrene of a burst is extremely long [25℄. Instead,�x (t) follows the signal s (t) losely. Hene the information signal anbe reprodued almost exatly at the reeiver, where x2 is known. Thisommuniation sheme is �seure� sine preise reprodution of s (t) requiresthe equality of all parameters of the reeiver and the transmitter, whosevalues annot be extrated from the transmitted signal x1 or x1 + "s (t). Ifthis is not the ase (e.g. �p 6= 0) then �x (t) is orrupted by haoti burstsdue to AB and does not follow s (t).In this paper the opposite limit k � k is onsidered, when �x (t) doesnot reprodue s (t) even if �p = 0. The problem addressed is if the ou-pling onstant an be tuned in order to reprodue the (generally aperiodi)information signal s (t) with a signi�ant degree of auray using the ideaof noise-free ASR. To this purpose, the variable �x (t) is passed through athreshold devie to obtain X (t). Passing through a threshold nonlinearityis known to produe SR in the ase of OOI and AB signals [16-18℄. Sig-nals with various amplitudes Æ, " and average frequenies are onsidered,and the in�uene of the parameter mismath �p 6= 0 is also analyzed. Itturns out that the orrelation funtion C1 (2) an reah quite big values,in partiular for slowly varying signals (the adiabati limit) with relativelylarge amplitudes. In many ases non-trivial dependene of C1 on the av-erage frequeny of the input signal and the parameter mismath is found.Of ourse, in any ase the quality of reprodution of the signal using ASRwith k � k is not better than using diretly �x (t) in the limit of largek. The amplitudes Æ, " are, however, hosen in purpose so that in the limitk � k we have �x (t) < �. Thus using noise-free ASR for reproduing theinformation signal (in the way disussed in this paper) makes sense in twoases. First, if the information signal has suh a small amplitude that pure�x (t) is not useful at the reeiver, where our apparatus an be insensitiveto signals below a given threshold �. Seond, if there are any onstraints forthe maximum allowable k.



1006 A. Krawieki2. The system under studyAs a partiular example of a system (1) a set of two oupled haotiRössler osillators is onsidered_x1 = � (y1 + z1) ;_y1 = x1 + [a+ Æs (t)℄ y1 ;_z1 = b+ z1 (x1 � ) ;_x2 = � (y2 + z2) ;_y2 = x2 + (a+�a) y2 + k [y1 + "s (t)� y2℄ ;z2 = b+ z2 (x2 � ) : (3)The parameters are a = 0:2, b = 0:2,  = 10, and �a is the parametermismath. The oupling is via the salar y variable. For this ouplingthe two osillators synhronize for k > k � 0:24. The aperiodi inputsignal s (t) is obtained from the well-known Lorenz system _u = ��� (u� v),_v = � (�uw + �u� v), _w = � (uv � �w) with � = 10, � = 28 and � = 8=3as s (t) = jw (t)� 8j. This results in a signal varying between 0 and .a. 37.The parameter � sets the harateristi time sale of osillations (frequeny)of the Lorenz system: the larger � the faster the signal s (t) varies in time.Putting aside the exat de�nition of frequeny in haoti osillators [29℄ itan be estimated e.g. as a mean number of maxima of x1 (t) or w (t) per unittime for the Rössler and Lorenz systems, respetively. For the parametersabove and � = 1 this frequeny is ! � 1Hz for the Rössler system and is .a.ten times higher for the Lorenz one. Thus for � � 0:1 both systems osillatewith omparable frequenies. The variable �x (t) is heneforth de�ned as�x (t) = jy1 (t) + "s (t)� y2 (t)j and the output signal is de�ned as in Se. 1with � = 0:1.Numerial solutions of Eq. (3) were obtained using a fourth-and-�fthorder Runge-Kutta algorithm with permanent step size and error ontrol.The integration step size was varied with � and ranged from 0.001 to 0.1.As a measure of ASR the orrelation funtion C1 (2) was used. Care wastaken to alulate the time averages in Eq. (2) orretly, taking into aountthe above-mentioned hanges in the integration step size, and it was hekedthat the results did not depend on this size.3. Numerial results and disussion3.1. The haoti signal masking shemeThe results for the ase Æ = 0, " 6= 0 are summarized in Figs. 1,2 whereC1 vs k for various � and �a is shown. It an be seen that for �a = 0 theurves show a single maximum typial of ASR. This maximum in general



Aperiodi Stohasti Resonane in a System of : : : 1007
Fig. 1. C1 vs k for the system (3) with �a = 0, Æ = 0 and (a) � " = 1:5� 10�3,(b) � " = 2:5� 10�3; � = 1 (2), 10�1 (4), 10�2 (3), 10�3 (+), 10�4 (�).

Fig. 2. C1 vs k for the system (3) with Æ = 0 and (a) � " = 1:5� 10�3, �a = 10�4and � = 1 (2), 10�1 (4), 10�2 (3), 10�3 (+), 10�4 (�); (b) � " = 1:5 � 10�3,� = 10�4 and �a = 0 (2), 5 � 10�5 (4), 8� 10�5 (3), 10�4 (+), 2 � 10�4 (�),10�3 (); () � " = 2:5� 10�3, � = 10�4 and �a = 0 (2), 10�5 (4), 10�4 (3),10�3 (+); (d) � " = 1:5� 10�3, � = 1 and �a = 0 (2), 10�5 (4), 10�4 (3), 10�3(+).inreases with � �! 0 and its position is shifted towards k � k (Fig. 1).Suh dependene of C1 on frequeny is ommon in noise-free ASR, andthe e�et of ASR is usually most notieable in the adiabati limit of slowlyvarying input signals [11℄. However, for � � 0:1 deviations from a monotoniinrease of C1 are observed. Then, in the ase of a weak input signal with" = 1:5 � 10�3 and "s (t)� � the maximum of the C1 vs k urve inreases



1008 A. Krawiekiand shifts towards larger k (Fig. 1(a)), while in the ase of a strong inputsignal with " = 2:5 � 10�3 and "s (t) � � it dereases and shifts towardslarger k (Fig. 1(b)). In the latter ase the inrease of C1 not only for � �! 0but also for � > 0:1 is observed.If �a 6= 0 di�erenes between the ases of weak and strong input signalsalso an be seen (Fig. 2). In Figs. 2(a), (b) results for the weak signal with" = 1:5 � 10�3 are shown: in Fig. 2(a) for given �a and dereasing �, andin Fig. 2(b) for given �, yielding a slowly varying signal s (t), and inreasing�a. If the input signal has small frequeny a substantial derease of C1with the inrease of the parameter mismath is observed. Moreover, thereare suh intervals of �a, � and k for whih the output and input signals areantiorrelated, i.e. C1 < 0. This means that �x (t) is above or below thethreshold � most often when the signal is lose to its minimum or maximum,respetively, just the opposite of what an be expeted. In the ase of thestrong input signal with " = 2:5 � 10�3 the antiorrelation is not observedwithin the range of parameters investigated, and for slowly varying s (t) themaximum of the C1 vs k urve just dereases and shifts towards larger k withinreasing parameter mismath (Fig. 2()). For both weak and strong inputsignal, if its frequeny is very high, �rst slight derease and then substantialinrease of C1 with the rise of �a is observed, of ourse within reasonablelimits of �a� � (Fig. 2(d)).3.2. The haoti ommuniation shemeAnalogous results in the ase Æ 6= 0, " = 0 are summarized in Figs. 3,4.Again, for �a = 0 the urves C1 vs k show a single maximum whose valueinreases and position shifts towards k � k if � �! 0 (Fig. 3). In theopposite limit of large �, C1 dereases to zero and no signi�ant orrelationbetween the input and output signals is observed. This is true for both weak(with Æ = 10�4) and strong (with Æ = 4�10�4) input signals, although in thelatter ase C1 di�ers notieably from zero for � an order of magnitude biggerthan in the former ase (f. the values of � in Fig. 3(a) and Fig. 3(b)). Inpartiular, no inrease of the orrelation funtion for the strong input signaland � > 0:1 is observed. For moderate �, just when C1 starts deviatingfrom zero, antiorrelation between the input and output signals is observed,whih results in C1 < 0.In the ase �a 6= 0 the results again depend on the strength of the inputsignal (Fig. 4). In Figs. 4(a), (b) results for the weak signal with Æ = 10�4are shown: in Fig. 4(a) for given �a and dereasing �, and in Fig. 4(b)for given �, yielding a slowly varying signal s (t), and inreasing �a. If theinput signal has small frequeny, then, like in the haoti signal maskingsheme, antiorrelation between the input and output signals, haraterized



Aperiodi Stohasti Resonane in a System of : : : 1009
Fig. 3. C1 vs k for the system (3) with �a = 0, " = 0 and (a) � Æ = 10�4 and� = 10�2 (2), 5�10�3 (4), 2�10�3 (3), 10�3 (+), 10�4 (�); (b) � Æ = 4�10�4and � = 10�1 (2), 5� 10�2 (4), 3� 10�2 (3), 10�2 (+), 10�3 (�), () 10�4.

Fig. 4. C1 vs k for the system (3) with " = 0 and (a) � Æ = 10�4, �a = 5� 10�4and � = 10�2 (2), 5�10�3 (4), 2�10�3 (3), 10�3 (+), 10�4 (�); (b) � Æ = 10�4,� = 10�4 and �a = 0 (2), 10�4 (4), 5� 10�4 (+), 10�3 (�); () � Æ = 4� 10�4,�a = 5 � 10�4 and � = 10�1 (2), 5 � 10�2 (4), 3 � 10�2 (3), 10�2 (+), 10�3(�), 10�4 ().by C1 < 0, ours for non-zero parameter mismath. This e�et appears for� �! 0 (Fig. 4(a)) or for inreasing �a (Fig. 4(b)). The maximum value ofC1 again dereases with inreasing parameter mismath. In the ase of theslowly varying strong input signal with " = 4 � 10�4 the antiorrelation isnot observed within the range of parameters investigated and the values of



1010 A. KrawiekiC1 derease with inreasing �a (f. Fig. 4() and Fig. 3(b)). Only for stronginput signals with moderate � we have C1 < 0, but this is true also if thereis no any parameter mismath between the osillators.3.3. DisussionThe results for ASR obtained in this paper are omparable with the onesknown from our earlier work on noise-free SR with periodi input signals intwo oupled haoti osillators [17℄. In that ase a di�erent measure of SR isused, the signal-to-noise ratio (SNR) whih yields the strength of the peak atthe input signal frequeny divided by the strength of the noise bakground,where both quantities are obtained from the power spetrum density of theoutput signal. In order to perform a detailed omparison between the SRand ASR ases the results for SR from Ref. [17℄ have to be extended to awider range of frequenies and amplitudes of the periodi signal. However,even now ertain similarities between these two ases an be found.In the ase of haoti signal masking sheme, if �a = 0 both C1 andSNR show omplex dependene on the input signal frequeny. Of partiularinterest is the ase when the input signal frequeny is lose to the frequenyof osillations of the system (3), here for � = 1. For suh frequenies C1and SNR an derease substantially (Fig. 1(b)), but the opposite e�et ofthe inrease of SNR in the ase of a weak input signal was not reported,ontrary to C1 (Fig. 1(a)). Also the inrease of SNR for both very fastand very slow input signals was found, in analogy with the results for C1shown in Fig. 1(b). The inrease of SNR for high-frequeny input signals iseven muh more spetaular than that of C1, by orders of magnitude. Thedisussion in Ref. [17℄ shows that in these two limiting ases two di�erentmehanisms are responsible for SR. For fast input signals the SR e�et isnon-dynamial and high values of SNR are aused by a separation of thefast and slow time sales, onneted with the fast and slow osillations ofthe input signal and the haoti system, respetively. For slow input signals(adiabati limit) SR is a dynamial e�et onneted with AB, as suggestedin Se. 1. This is also true in the ASR ase.Another interesting problem is the ompliated dependene of the ASRe�et on the parameter mismath �a. In Ref. [17℄ this problem was notstudied systematially, but in ertain ases the inrease of SNR with �a wasobserved, in analogy with Fig. 2(d) here obtained for the fast input signal.In Fig. 2(a)�() it an be seen that for slow input signals C1 in generaldereases with �a and antiorrelation between the input and output signalsan our. Similar e�ets have not been reported for SR.The ase of haoti ommuniation sheme was not disussed for periodiinput signals in Ref. [17℄. The results of Se. 3.2 show that for the whole



Aperiodi Stohasti Resonane in a System of : : : 1011range of � investigated ASR is a dynamial e�et. This is on�rmed by thesystemati inrease of C1 with dereasing � and the disappearane of orre-lation between the output and fast input signal. Namely, if the input signalosillates too fast the system has no time to reat to individual maxima ofs (t) and AB is triggered by averaged in�uene of the signal, so the desyn-hronization bursts are not orrelated with the signal maxima. For moderate� and �a = 0 we have C1 < 0 (Fig. 3). This is probably onneted witha kind of a phase shift between the input signal and the desynhronizationbursts: the ourrene of maximum in s (t) initiates the burst, but the inputsignal varies so fast that a maximum of �x (t) appears only when the inputsignal already reahes its minimum. For �a 6= 0 antiorrelation is observedfor a wide range of � when � �! 0.It turns out that the properties of the ASR e�et in (3) depend stronglyon the de�nition of the output signal X (t) and on the input signal. e.g. if inthe ase Æ = 0, " 6= 0 the presene of a desynhronization burst is de�ned asexeeding the threshold � by a loal maximum of �x (t), the fast osillationsof the output signal are ut o� and the inrease of C1 with � seen in Fig. 1(b)for � < 0:1 is not observed. If instead of the input signal from the Lorenzsystem s (t) just randomly swithes between 0 and 1, the frequeny for suha signal is poorly de�ned and C1 just inreases monotonially with dereas-ing mean time between swithes. Besides, it should be pointed out thatmaximum of C1 vs k is observed only if the signal �x (t) is passed througha threshold, both in the haoti signal masking and haoti ommuniationshemes. If �x (t) itself is used as the output signal C1 �! 1 for k �! 1.This exeeds muh the maxima of C1 vs k urves in Figs. 1�4 thus provingthat ASR annot be used to inrease the quality of retrieving the informationsignal in seure ommuniation. This is in ontrast with the ampli�ation ofsmall signals using AB, reently disussed in Refs. [18,30,31℄. Small signalsan be ampli�ed sine the amplitude of desynhronization bursts exeeds bymany orders of magnitude that of the input signal, and it seems that theampli�ation fator as a funtion of k an exhibit maximum [18℄. Neverthe-less, the output signals are ontaminated with haoti �utuations, thus theorrelation funtion and SNR do not reah their highest possible values.4. ConlusionsIn this paper noise-free ASR in a system of oupled haoti Rössler osil-lators at the edge of haoti synhronization was investigated. The systemunder study is typial in the seure ommuniation problem. The ases ofaperiodi haoti input signal applied both in the haoti signal masking andhaoti ommuniation shemes were analyzed. The output signal re�etedthe sequene of synhronization phases and bursts in AB triggered by the in-



1012 A. Krawiekiput signal, and maximum of the orrelation funtion between these signalswas observed on varying the oupling onstant. The orrelation funtionshowed strong dependene on the mean frequeny of the input signal andthe parameter mismath between the osillators. The novel e�ets are thenon-monotoni inrease of C1 with dereasing frequeny of the input sig-nal, with violation of monotoniity when the frequenies of the input signaland of haoti osillations of the system (3) oinide, the possible inreaseof C1 for fast input signals and the ourrene of antiorrelation betweenthe input and output signals for non-zero parameter mismath. The rathernon-trivial dependene of SR and ASR in oupled haoti osillators on theinput signal frequeny requires further systemati study, sine it may beonneted with fundamental di�erenes between the haoti and stohastisystems. It was also onluded that even though the ASR e�et does notlead to the improvement in the quality of reovering information signals inseure ommuniation, it an be used to maximize orrelation between theretrieved and information signal e.g. if the latter is too weak to be useful atthe output. REFERENCES[1℄ J.J. Collins, C.C. Chow, T.T. Imho�, Phys. Rev. E52, R3321 (1995).[2℄ J.J. Collins, C.C. Chow, A.C. Capela, T.T. Imho�, Phys. Rev. E54, 5575(1996).[3℄ J.E. Levin, J.P. Miller, Nature 380, 165 (1996).[4℄ X. Pei, L. Wilkens, F. Moss, Phys. Rev. Lett. 77, 4679 (1996).[5℄ D.R. Chialvo, A. Longtin, J. Müller-Gerking, Phys. Rev. E55, 1789 (1997).[6℄ C. Eihwald, J. Wallezek, Phys. Rev. E55, R6315 (1997).[7℄ A. Neiman, L. Shimansky-Geier, F. Moss, Phys. Rev. E56, R9 (1997).[8℄ P.C. Gailey, A. Neiman, J.J. Collins, F. Moss, Phys. Rev. Lett. 79, 4701 (1997).[9℄ R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981).[10℄ L. Gammaitoni, P. Hänggi, P. Jung, F. Marhesoni, Rev. Mod. Phys. 70, 223(1998).[11℄ A. Krawieki, A. Sukienniki, Chaos 8, 768 (1998).[12℄ V.S. Anishenko, A.B. Neiman, M.A. Safanova, J. Stat. Phys. 70, 183 (1993).[13℄ G. Niolis, C. Niolis, D. MKernan, J. Stat. Phys. 70, 125 (1993).[14℄ V.S. Anishenko, M.A. Safonova, L.O. Chua, Int. J. Bifuration & Chaos 4,441 (1994).[15℄ E. Reibold, W. Just, J. Beker, H. Benner, Phys. Rev. Lett. 78, 3101 (1997).[16℄ A. Krawieki, Ata Phys. Pol. A92, 1101 (1997).
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