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STOCHASTIC RESONANCE IN TWO COUPLEDTHRESHOLD ELEMENTS WITH PHASE-SHIFTEDINPUT SIGNALS�A. Krawiekia, A. Sukiennikia and R.A. Kosi«skia;baFaulty of Physis, Warsaw University of TehnologyKoszykowa 75, 00-662 Warsaw, PolandbCentral Institute for Labour ProtetionCzerniakowska 16, 00-701 Warsaw, Poland(Reeived September 17, 1999)Stohasti resonane in a system of two oupled threshold elements(neurons) forming a small neural network is investigated numerially. Pe-riodi signals at inputs of the elements are phase-shifted with respet toeah other up to a half of the period, but their frequenies and amplitudesare idential. The signal-to-noise ratio at outputs of the elements has amaximum as a funtion of the input noise intensity for any phase shift. Forproper oupling, dependent on the phase shift, this ratio is enhaned overthat of a single unoupled element. The enhanement is usually observedfor positive (exitory) oupling if the phase shift is less than one fourthof the period, and for negative (inhibitory) oupling otherwise, but minordeviations from these rules are possible for high periodi signal frequeny.Adiabati theory of stohasti resonane in oupled threshold elements isalso formulated whih desribes qualitatively the dependene of the signal-to-noise ratio on the oupling for various phase shifts.PACS numbers: 05.40.+j, 87.10.+e1. IntrodutionStohasti resonane (SR) ours mainly in nonlinear systems driven bya ombination of periodi and stohasti signals, in whih the periodiity ofthe output signal an be maximized by tuning properly the intensity of theinput noise [1℄ (for review see [2℄). A simple example of a stohasti res-onator is a threshold element with the input periodi signal s (t) = A sin!st,input noise � (t) being white Gaussian noise with variane �2, and with the� Presented at the XII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 6�12, 1999.(1015)



1016 A. Krawieki, A. Sukienniki, R.A. Kosi«skithreshold b > A, whose output x (t) is given by x (t) = � [s (t) + � (t)� b℄,where � is the Heaviside step funtion. Periodiity of the signal x (t)is maximum for � > 0 [3, 4℄. Reently, SR has been intensively investi-gated in high-dimensional systems, e.g. in systems of globally or loally ou-pled bistable [5�8℄ and threshold [9, 10℄ elements, in model neural networks[11�14℄, spatially extended systems [15�19℄, in the Ising model [20, 21℄ et.In the oupled systems, it has been in general onluded that due to a properoupling the SR e�et observed either in a whole system or in a single el-ement oupled to other similar elements is enhaned over that of a singleunoupled element. The most often studied ase is that with individual ele-ments driven by independent noises with idential distribution and intensity,and by a ommon periodi signal. Other ases, as e.g. a neural network inwhih there is a ertain distribution of amplitudes of the periodi signal overneurons, are less frequently analyzed [14℄.In this paper we onsider threshold elements (formal neurons) with ou-pling typial of arti�ial neural networks, eah of whih is driven by a pe-riodi signal with the same frequeny and amplitude, but with arbitraryphase. This an be a typial situation e.g. in spatially extended systems inwhih the signals in two di�erent points an be phase shifted due to �nitepropagation time of the signal. Here we are only interested in the simplestase of two oupled elements and in the enhanement of SR of a single el-ement due to the oupling. However, a similar problem investigated in alarger system ould lead to SR with a spatio-temporal periodi input signal,an e�et whih, to our knowledge, has not been reported in the literatureso far. Similarly, a �rst step in the investigation of array-enhaned SR ina hain of bistable noisy osillators [15, 16℄ is to onsider only two oupledosillators [17℄.2. The system and the methods of analysisThe system under study onsists of two oupled threshold elements (neu-rons) denoted as 1, 2, forming a small neural network with disrete-time dy-namis and parallel updating. Both elements are driven by a periodi signalwith amplitude A, frequeny !s and initial phase �, and by independentwhite Gaussian noises �(1), �(2) with variane �2; the periodi signal in theelement 2 is shifted in phase by �� with respet to that in the element 1.The oupling strength (the synapti onnetion weight) w is symmetri. Theoutputs of the elements, denoted as x(1), x(2), an assume only disrete val-ues 0 (quiesent state) or 1 (�ring), if the total input to the given element isbelow or above the threshold b, respetively; it is assumed that b > A. Theequations for the time dependene of x(1), x(2) read



Stohasti Resonane in Two Coupled Threshold Elements: : : 1017
x(1)n+1 = � hA sin (!sn+ �) + �(1)n + wx(2)n � bi ;x(2)n+1 = � hA sin (!sn+ �+��) + �(2)n + wx(1)n � bi ; (1)where n denotes the step number.In this paper, we haraterize SR in any of the elements by the Signal-to-Noise Ratio (SNR), whih is obtained from the power spetrum densityS(1) (!) or S(2) (!) of the respetive time series x(1)n , x(2)n . We de�ne SNR(1;2)= 10 log hS(1;2)P (!s) = S(1;2)N (!s)i, where S(1;2)P (!s) = S(1;2) (!s)�S(1;2)N (!s)is the height of the peak in the power spetrum density at ! = !s, andS(1;2)N (!s) is the noise bakground in the viinity of !s. In systems with SR,SNR as a funtion of � has a maximum [2℄. In our numerial simulations thepower spetrum density is evaluated from N = 4096 points of the time seriesx(1;2)n and averaged over 100 onseutive runs. Then, SNR is evaluated andaveraged over 10 random initial onditions for x(1), x(2) and �. All resultsfor the SNR are normalized to the frequeny bandwidth �f = 2�12Hz [22℄.The results of numerial simulations are presented in Se. 4.3. Theory in the adiabati approximationIn threshold elements with disrete-time dynamis it is possible to eval-uate SNR analytially using the method of Ref. [4℄. Here we do this in theadiabati limit !s �! 0 [22℄.First we obtain the probability that x(1;2)n =1, denoted as Pr�x(1;2)n =1�.Sine the proesses x(1;2)n = 1 are non-stationary, this probability is time-dependent and periodi in time [23℄. The probability densities for the ran-dom variables w(1;2)n =wx(1;2)n are ��w(1;2)n �=Pr�x(1;2)n =1� Æ �w(1;2)n �w�+h1� Pr�x(1;2)n = 1�i Æ �w(1;2)n �. Sine the random variables �(1;2)n and x(2;1)nare independent, the probability densities for the variables �(1)n = �(1)n +w(2)n ,�(2)n = �(2)n + w(1)n beome���(1)n � = +1Z�1 ��(1)n ��(1)n � w(2)n � ��w(2)n � dw(2)n= 1p2�� �h1� Pr�x(2)n = 1�i e���(1)n �2=2�2



1018 A. Krawieki, A. Sukienniki, R.A. Kosi«ski+ Pr�x(2)n = 1� e���(1)n �w�2=2�2� ;���(2)n � = +1Z�1 ��(2)n ��(2)n � w(1)n � ��w(1)n � dw(1)n= 1p2�� �h1� Pr�x(1)n = 1�i e���(2)n �2=2�2+ Pr�x(1)n = 1� e���(2)n �w�2=2�2� : (2)From (1) it follows that e.g. x(1)n+1 = 1 if �(1)n > b�A sin (!sn+ �), thusPr�x(1)n+1 = 1� = 1Zb�A sin(!sn+�) ���(1)n � d�(1)n ;Pr�x(2)n+1 = 1� = 1Zb�A sin(!sn+�+��) ���(2)n � d�(2)n : (3)In the adiabati limit !s�!0 we assume that Pr�x(1;2)n+1 =1�=Pr�x(1;2)n =1�.Then, after inserting Eq. (2) into Eq. (3) we obtain a system of two linearequations for Pr�x(1;2)n = 1� whose solution isPr�x(1)n = 1� = �(1)n + ��(1)n � �(1)n ��(2)n1� ��(1)n � �(1)n ���(2)n � �(2)n � ;Pr�x(2)n = 1� = �(2)n + ��(2)n � �(2)n ��(1)n1� ��(1)n � �(1)n ���(2)n � �(2)n � ; (4)where �(1)n = 12 + 1p2�� 0Zb�A sin(!sn+�) e��2=2�2d� ;�(2)n = 12 + 1p2�� 0Zb�A sin(!sn+�+��) e��2=2�2d� ;



Stohasti Resonane in Two Coupled Threshold Elements: : : 1019�(1)n = 12 + 1p2�� 0Zb�A sin(!sn+�)�w e��2=2�2d� ;�(2)n = 12 + 1p2�� 0Zb�A sin(!sn+�+��)�w e��2=2�2d� : (5)Next the disrete Fourier transform of the probabilities in Eq. (4) isperformed P (1;2)k = 1Ts Ts�1Xn=0 Pr�x(1;2)n = 1� exp��2�inkTs � ; (6)where Ts = 2�=!s is the period. Aording to Ref. [4℄ SNR(1;2) normalizedto a given bandwidth �f = 1=N (here, N = 4096) an be evaluated fromEqs. (4),(6) asSNR(1;2) = N ���P (1;2)1 ���2DPr�x(1;2)n = 1�E� DPr2 �x(1;2)n = 1�E ; (7)where the brakets denote the time average over Ts. It should be pointedout, however, that Eq. (7) is exat only in the ase of a threshold elementdriven by a sum of a deterministi periodi signal and white noise [4℄, whilein Eq. (1) the total random noises �(1;2)n are non-white and the variablesx(1)n , x(2)n are orrelated. Thus Eq. (7) is exat only for w = 0, i.e. forunoupled elements, and the di�erene between the numerial and analytivalues of SNR inreases with jwj. As it will be shown in Se. 5, only ertainqualitative preditions onerning the dependene of SNR on w an be madeusing Eq. (7). 4. Numerial results and their disussionIn this setion, the numerial results for SNR(1;2) vs. � for the system (1)with parameters A = 0:5, b = 0:6 and various w and !s are presented.We start with a slowly varying signal and take Ts = 128. For �� = 0there is no phase shift between the periodi signals in both elements andthe results are rather typial of oupled systems. In partiular, due to thesymmetry SNR(1) = SNR(2). If w < 0 SNR dereases in omparison withthe ase w = 0, and the loation of the maximum of SNR does not hange(Fig. 1(a)). If w > 0, there exists an optimum value of the oupling wopt �



1020 A. Krawieki, A. Sukienniki, R.A. Kosi«ski1:0 for whih the maximum of SNR assumes the largest value, whih exeedsby several dB that for the w = 0 urve (Fig. 1(b)). For 0 < w < wopt SNRfor a given � generally inreases with w and the maximum shifts towardssmaller �; for w > wopt SNR generally dereases with w and the maximumshifts towards larger � (Fig. 1(b)). Di�erent results are obtained for�� = �,where again due to the symmetry SNR(1) = SNR(2). Then for w �! �1SNR inreases slightly, but without any visible shift of both the value andloation of the maximum (Fig. 2(a)), while for w �! +1 SNR dereasesand the maximum shifts towards larger � (Fig. 2(b)).
Fig. 1. SNR(1;2) vs. � for the system (1) with Ts = 128, �� = 0 and otherparameters as in the text. (a) from bottom to top: w = �2:0, w = �0:5, w = 0;(b) urve 1 for w = 0, 2 for w = 0:4, 3 for w = 1:0, 4 for w = 1:5.

Fig. 2. SNR(1;2) vs. � for the system (1) with Ts = 128, �� = � and otherparameters as in the text. (a) from bottom to top: w = 0, w = �0:5, w = �2:0;(b) from bottom to top: w = 1:5, w = 1:0, w = 0:5, w = 0:0.These results an be interpreted using arguments similar to these appliedto the ase of oupled bistable noisy osillators in Refs. [15,16℄. The positiveoupling w > 0 inreases the probability of simultaneous �ring of both ele-ments, sine it inreases the e�etive noise �(1;2)n ating on a given elementwhen the other element �res. In turn, w < 0 dereases this probability. If



Stohasti Resonane in Two Coupled Threshold Elements: : : 1021�� = 0 both probabilities Pr�x(1;2)n = 1� reah their maximum values atthe same time, when the ommon periodi signal is maximum. Thus if w > 0and one element �res then probably the other one will also �re, and both ofthem will �re in phase with the ommon periodi signal. This leads to theinrease of periodiity in the time series x(1;2)n . If �� = � then the momentsin whih the probabilities Pr�x(1)n = 1� and Pr�x(2)n = 1� reah their max-imum values are shifted by Ts=2. Thus w > 0 inreases the probability thata given element will �re not only when the periodi signal at its input ismaximum, but also when the signal is minimum. Hene the periodiity ofx(1;2)n is dereased. Quite the reverse, w < 0 dereases the above-mentionedprobability, thus inreasing the periodiity of x(1;2)n .If 0 < �� < � the system symmetry is broken and the SNRs of the twoelements need not be equal. But for Ts = 128 we did not observe signi�antdi�erenes between SNR(1) and SNR(2). For 0 < �� < �=2 the observeddependene of SNR on w resembles that for �� = 0, and for �=2 < �� < �� that for �� = �. Arguments similar to the ones given above explain thisdependene, sine for 0 < �� < �=2 periodi signals at the inputs of bothelements have the same sign during most of the period, as in the �� = 0ase, and for �=2 < �� < � they have opposite signs, as in the �� = � ase.For �� = �=2 the value w = wopt � 1:0 still exists for whih the maximumof the SNR vs. � urve assumes the largest value, but the derease of SNRfor w < 0 is very small. The maximum of SNR for w = wopt dereasesslightly with inreasing �� for 0 < �� < �=2.For fast varying periodi signals the results are more di�ult to analyze,sine SNR(1) = SNR(2) only for �� = 0 and �� = �. For other valuesof the phase shift the di�erenes between the SNRs inrease with jwj andderease with Ts. The general tendenies in the dependene of SNR on wand �� are similar to these for Ts = 128. Usually, for 0 < �� < �=2 andfor w < 0 SNR dereases, whereas for w > 0 the value wopt � 1:0 exists forwhih the maximum of SNR assumes the largest value. For �=2 < �� < �and w < 0 SNR inreases or at least does not hange, whereas for w > 0 itmonotonially dereases. However, for very small Ts deviations from thesetendenies an appear. E.g. for Ts = 8, �� = 0:75� and w > 0 SNR(1) �rstinreases, reahes its maximum values for w = wopt � 0:8 and only thendereases with w, while SNR(2) dereases monotonially, as usually (Fig. 3).Suh an anomalous behaviour of SNR(1) hanges into the usual dereasewith w �! +1 already for Ts = 16.
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Fig. 3. (a) SNR(1) vs. � for the system (1) with Ts = 8, �� = 0:75� and otherparameters as in the text: urve 1 for w = 0, 2 for w = 0:8, 3 for w = 1:5, 4 forw = 2:0; (b) the same for SNR(2), from bottom to top: w = 2:0, w = 1:5, w = 0:8,w = 0:0.5. Comparison between the numerial and theoretial resultsIn this setion we brie�y ompare the numerially obtained SNR(1;2) vs. �urves with the preditions of the adiabati theory. The theoretial valuesof SNR(1;2) were obtained from Eq. (7) with � = 0, whih does not hangethe generality of the results. In all ases examined we observed that thetheoretial values of SNR(1) and SNR(2) were equal independently of w and��. This is in agreement with the numerial results of Se. 3 whih show thatfor large Ts the values of both SNRs are equal even if the system symmetryis broken, i.e. for �� 6= 0 or �� 6= �, and signi�ant di�erenes appear onlyin the non-adiabati limit of small Ts. The theory predits also qualitativelythe dependene of SNR on w and �� in the limit of !s �! 0. However,the quantitative agreement is muh worse, mainly due to the violation ofertain basi assumptions made during the derivation of Eq. (7) in Ref. [4℄,as mentioned in Se. 3. As an example the ase Ts = 128 and �� = � isonsidered. For w = 0 the theory is exat and the numerial and theoretialvalues of SNR oinide. For w < 0 the theory predits slight inrease of SNRfor w �! 1, in aordane with numerial results in Fig. 2(a). For w > 0the theory predits the derease of SNR with w, but this derease is muhslower than the one obtained from numerial experiments (Fig. 4). Thedi�erene between the numerial and theoretial values of SNR inreaseswith w and reahes a. 10 dB already for w = 1:0 and moderate �.
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Fig. 4. Comparison between the numerial and theoretial results in the adiabatiapproximation for the system (1) with Ts = 128, �� = � and other parametersas in the text: w = 0:1 � squares (numerial results) and solid urve (theory);w = 1:0 � triangles (numerial results) and dashed urve (theory).6. Summary and onlusionsIn this paper we investigated SR in a system of two oupled thresholdelements forming a small neural network (1). Eah element was driven bywhite Gaussian noise, non-orrelated with the noise in the other element, andby the periodi signal with the amplitude and frequeny idential in bothelements; however, there was the phase shift �� of the signal between theelements. We investigated SNR in individual elements as a funtion of thenoise intensity � for various phase shifts, oupling and signal frequenies. Wewere interested in the enhanement of SNR due to the oupling. The theoryof SNR, based on the expression for SNR in a threshold element known fromthe literature [4℄, was formulated and its preditions were ompared with thenumerial results.We found that even in the ase �� 6= 0 proper oupling enhanes SR in athreshold element, similarly as in the widely investigated ase of a ommonsignal ating on all oupled elements [5�17℄. The SNR varies in the mostsystemati manner with the oupling and phase shift if the periodi signalfrequeny is small. Then, positive (exitory) oupling between elements(neurons) w > 0 enhanes SNR over that of the unoupled element if theperiodi signals at the input of both elements have equal signs during mostof the period, i.e. 0 < �� < �=2. Negative (inhibitory) oupling w < 0enhanes SNR if the signals have opposite signs during most of the period,i.e. �=2 < � < �. In the latter ase the enhanement is muh smallerthan in the former one. In partiular, for given w and varying �� theenhanement, if any, is always most visible for �� = 0, and for other ��



1024 A. Krawieki, A. Sukienniki, R.A. Kosi«skithe SNR does not exeed the value for the ase of in-phase signal in allelements. If SNR is inreased for w > 0 then usually suh w = wopt existsfor whih this enhanement is most pronouned. If SNR is inreased forw < 0 it usually inreases monotonially with w �! �1. Small deviationsfrom these general rules an appear for high-frequeny input signals.It is interesting to note that, in our model, in ertain ases proper neg-ative (inhibitory) oupling an improve SNR, at least slightly, in partiularfor � �!1 (Fig. 2(a)). If there is one periodi signal in a whole system onlypositive oupling enhanes SR, e.g. di�usive oupling in a hain of bistablenoisy osillators [15, 16℄ or ferromagneti oupling in the Ising model [20℄.Putting aside the fat that the above-mentioned systems are bistable, theenhanement of SR ours sine positive oupling inreases the probabil-ity of two neighbouring elements being in the same state. Hene in spa-tially extended systems the enhanement of SR is onneted with maximumspatio-temporal synhronization of the system [15,16℄. The spatio-temporalsynhronization means also maximum synhronization with the input signal.As explained in Se. 4, in our system, if the phase shift is big, e.g. �� � �,the simultaneous �ring of both elements dereases the periodiity of theiroutputs, and w < 0 is neessary to enhane this periodiity and thus SNR.Hene a question arises if in a spatially extended noisy system driven bya signal periodi in time and spae the possible enhanement of SR is alsoonneted with maximum synhronization of the system to the input signal.In a di�erent formulation this is a problem of the most e�etive proessingof spatio-temporal signals orrupted by noise, using the idea of SR. To ourknowledge, this is a new possible appliation of SR whih requires furtherinvestigation. It also seems that suh spatio-temporal e�ets an be studiednot only in ontinuous-time systems of oupled osillators, but also e.g. inhains of oupled threshold elements forming spatially extended neural net-works. The present paper provides a starting point for suh investigationswhih should be done in muh larger systems.REFERENCES[1℄ R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A14, L453 (1981).[2℄ L. Gammaitoni, P. Hänggi, P. Jung, F. Marhesoni, Rev. Mod .Phys. 70, 223(1998).[3℄ Z. Gingl, L.B. Kiss, F. Moss, Europhys. Lett. 29, 191 (1995).[4℄ F. Chapeau-Blondeau, Phys. Rev. E53, 5469 (1996).[5℄ P. Jung, Phys. Rev. A46, R1709 (1992).[6℄ M. Morillo, J. Gómez-Ordoñez, J.M. Casado, Phys. Rev. E52, 316 (1995).[7℄ M.E. Inhiosa, A.R. Bulsara, Phys. Rev. E52, 327 (1995).
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