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Stochastic resonance in a system of two coupled threshold elements
(neurons) forming a small neural network is investigated numerically. Pe-
riodic signals at inputs of the elements are phase-shifted with respect to
each other up to a half of the period, but their frequencies and amplitudes
are identical. The signal-to-noise ratio at outputs of the elements has a
maximum as a function of the input noise intensity for any phase shift. For
proper coupling, dependent on the phase shift, this ratio is enhanced over
that of a single uncoupled element. The enhancement is usually observed
for positive (excitory) coupling if the phase shift is less than one fourth
of the period, and for negative (inhibitory) coupling otherwise, but minor
deviations from these rules are possible for high periodic signal frequency.
Adiabatic theory of stochastic resonance in coupled threshold elements is
also formulated which describes qualitatively the dependence of the signal-
to-noise ratio on the coupling for various phase shifts.

PACS numbers: 05.40.+j, 87.10.+e

1. Introduction

Stochastic resonance (SR) occurs mainly in nonlinear systems driven by
a combination of periodic and stochastic signals, in which the periodicity of
the output signal can be maximized by tuning properly the intensity of the
input noise [1] (for review see [2]). A simple example of a stochastic res-
onator is a threshold element with the input periodic signal s (t) = A sinwjt,
input noise 7 (¢) being white Gaussian noise with variance o2, and with the
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threshold b > A, whose output z () is given by z (t) = ©[s () +n (t) — b],
where © is the Heaviside step function. Periodicity of the signal x ()
is maximum for o > 0 [3,4]. Recently, SR has been intensively investi-
gated in high-dimensional systems, e.g. in systems of globally or locally cou-
pled bistable [5-8] and threshold [9,10] elements, in model neural networks
[11-14], spatially extended systems [15-19], in the Ising model [20,21] etc.
In the coupled systems, it has been in general concluded that due to a proper
coupling the SR effect observed either in a whole system or in a single el-
ement coupled to other similar elements is enhanced over that of a single
uncoupled element. The most often studied case is that with individual ele-
ments driven by independent noises with identical distribution and intensity,
and by a common periodic signal. Other cases, as e.g. a neural network in
which there is a certain distribution of amplitudes of the periodic signal over
neurons, are less frequently analyzed [14].

In this paper we consider threshold elements (formal neurons) with cou-
pling typical of artificial neural networks, each of which is driven by a pe-
riodic signal with the same frequency and amplitude, but with arbitrary
phase. This can be a typical situation e.g. in spatially extended systems in
which the signals in two different points can be phase shifted due to finite
propagation time of the signal. Here we are only interested in the simplest
case of two coupled elements and in the enhancement of SR of a single el-
ement due to the coupling. However, a similar problem investigated in a
larger system could lead to SR with a spatio-temporal periodic input signal,
an effect which, to our knowledge, has not been reported in the literature
so far. Similarly, a first step in the investigation of array-enhanced SR in
a chain of bistable noisy oscillators [15,16] is to consider only two coupled
oscillators [17].

2. The system and the methods of analysis

The system under study consists of two coupled threshold elements (neu-
rons) denoted as 1, 2, forming a small neural network with discrete-time dy-
namics and parallel updating. Both elements are driven by a periodic signal
with amplitude A, frequency ws and initial phase ¢, and by independent
white Gaussian noises 7](1), 7)(2) with variance ¢?; the periodic signal in the
element 2 is shifted in phase by A¢ with respect to that in the element 1.
The coupling strength (the synaptic connection weight) w is symmetric. The
outputs of the elements, denoted as (1), 2(2), can assume only discrete val-
ues 0 (quiescent state) or 1 (firing), if the total input to the given element is
below or above the threshold b, respectively; it is assumed that b > A. The
equations for the time dependence of z(1), z(2) read
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i)y = O [Asin(sn+¢) + ) +we® —b]

xfﬁl =0 [A sin (wsn 4 ¢ + Ad) + 7P + wall) — b} , (1)

where n denotes the step number.
In this paper, we characterize SR in any of the elements by the Signal-
to-Noise Ratio (SNR), which is obtained from the power spectrum density

S (w) or 8@ (w) of the respective time series mg), 22, We define SNR(1:?
— 10log [592) (ws) | S? (ws)} ,where SO () = 02 (w,) = S (w,)

is the height of the peak in the power spectrum density at w = ws, and
S](\}J) (ws) is the noise background in the vicinity of ws. In systems with SR,
SNR as a function of o has a maximum [2]. In our numerical simulations the
power spectrum density is evaluated from N = 4096 points of the time series
x%l’g) and averaged over 100 consecutive runs. Then, SNR is evaluated and
averaged over 10 random initial conditions for 2V, 2(2) and ¢. All results
for the SNR are normalized to the frequency bandwidth Af = 2712Hz [22].

The results of numerical simulations are presented in Sec. 4.

3. Theory in the adiabatic approximation

In threshold elements with discrete-time dynamics it is possible to eval-
uate SNR analytically using the method of Ref. [4]. Here we do this in the
adiabatic limit ws — 0 [22].

First we obtain the probability that x% 2) =1, denoted as Pr ( 1) 1).
Since the processes %(11,2) = 1 are non-stationary, this probability is time-
dependent and periodic in time [23]. The probability densities for the ran-

dom variables wf@l’?) :wxfll’?) are p (wfll’?)) =Pr (ac,(ll’Q) = 1) ) (wf@l’?) —w) +

[1 Pr ( (1.2) _ 1)] ) (w,(ll 2)). Since the random variables m(@l’ ) and ac(2 R

are 1ndependent the probability densities for the variables 57(11) = 7)7(1 ) —i—w,(f),
fn ) + w,(l ) become
+oo
p(60) = [ oo (69 = 0f) o (u?) du?
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1 Pr <$7(12) _ 1) e—( gp_w)?/gga} |
+oo

P (5'7(12)) — / Py (57(12) _ w7(11)> o (w%1)> duw)

— 00

= 1-Pr(z{)=1)e ) 2o
o P = )] )
+Pr (s =1)e (5””)2/2"2} .

(2)
From (1) it follows that e.g. = 514)—1 =1if fn > b — Asin (wsn + ¢), thus

o

Pr(a), =1) = / p (€0 aelh,

b—Asin(wsn+¢)
00

Pr(al?, =1) = / p () de?. (3)
b—Asin(wsn+p-+Agd)

In the adiabatic limit w; — 0 we assume that Pr ( 7(11_31) = 1) Pr ( (1.2) _ 1) .

Then, after inserting Eq. (2) into Eq. (3) we obtain a system of two linear

equations for Pr (:E?(@l 2 — 1) whose solution is

(571 - )> 05%2)

oy + o
= (- ) (8-
ol

Pr (:Eg) = 1) =

) 4 (5( ) ag)) agll)
(e mt) = o Gt
1= (8 = o) (87 - a?)
where
1 1 ;
m 1, / €220
b—Asin(wsn+¢)
1 1 ;
2) — Z 4 —€2/20% 4

b—Asin(wsn+¢+Ag)
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0

1 1 2 /9.2
g = 1y / /2% e

2 V2

7To-bfAsin(anqL(ﬁ)fw
0

1 1 —£2/9g

5= 5t oy / e de. (5)

b—Asin(wsn+¢+Ap)—w

Next the discrete Fourier transform of the probabilities in Eq. (4) is
performed

T,—1
1 L nk
Pk(1,2) = Z Pr (%(1172) — 1) exp <—2m?) ) (6)
S n=0 ’

where T, = 2 /w; is the period. According to Ref. [4] SNR("?) normalized
to a given bandwidth Af = 1/N (here, N = 4096) can be evaluated from
Egs. (4),(6) as

2
NP

(=) - e =y

where the brackets denote the time average over Ts. It should be pointed
out, however, that Eq. (7) is exact only in the case of a threshold element
driven by a sum of a deterministic periodic signal and white noise [4], while

)

SNR(12) =

in Eq. (1) the total random noises 57(11’2 are non-white and the variables

x%l), 2P are correlated. Thus Eq. (7) is exact only for w = 0, i.e. for
uncoupled elements, and the difference between the numerical and analytic
values of SNR increases with |w|. As it will be shown in Sec. 5, only certain
qualitative predictions concerning the dependence of SNR on w can be made

using Eq. (7).

4. Numerical results and their discussion

In this section, the numerical results for SNR(™?) vs. o for the system (1)

with parameters A = 0.5, b = 0.6 and various w and wy are presented.

We start with a slowly varying signal and take Ty = 128. For A¢ =0
there is no phase shift between the periodic signals in both elements and
the results are rather typical of coupled systems. In particular, due to the
symmetry SNR() = SNR®. If w < 0 SNR decreases in comparison with
the case w = 0, and the location of the maximum of SNR does not change
(Fig. 1(a)). If w > 0, there exists an optimum value of the coupling wept ~
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1.0 for which the maximum of SNR assumes the largest value, which exceeds
by several dB that for the w = 0 curve (Fig. 1(b)). For 0 < w < wgpy SNR
for a given o generally increases with w and the maximum shifts towards
smaller o; for w > wept SNR generally decreases with w and the maximum
shifts towards larger o (Fig. 1(b)). Different results are obtained for A¢ = T,
where again due to the symmetry SNR( = SNR®. Then for w — —o0
SNR increases slightly, but without any visible shift of both the value and
location of the maximum (Fig. 2(a)), while for w — +o00 SNR decreases
and the maximum shifts towards larger o (Fig. 2(b)).
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Fig.1. SNR("? us. ¢ for the system (1) with T, = 128, A¢ = 0 and other
parameters as in the text. (a) from bottom to top: w = —2.0, w = —0.5, w = 0;
(b) curve 1 for w =0, 2 for w = 0.4, 3 for w = 1.0, 4 for w = 1.5.
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Fig.2. SNR('? ws. o for the system (1) with T, = 128, A¢ = 7 and other
parameters as in the text. (a) from bottom to top: w = 0, w = —0.5, w = —2.0;
(b) from bottom to top: w = 1.5, w = 1.0, w = 0.5, w = 0.0.

These results can be interpreted using arguments similar to these applied
to the case of coupled bistable noisy oscillators in Refs. [15,16]. The positive
coupling w > 0 increases the probability of simultaneous firing of both ele-
ments, since it increases the effective noise 57(11’2) acting on a given element
when the other element fires. In turn, w < 0 decreases this probability. If
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A¢ = 0 both probabilities Pr <$7(1172) = 1) reach their maximum values at

the same time, when the common periodic signal is maximum. Thus if w > 0
and one element fires then probably the other one will also fire, and both of
them will fire in phase with the common periodic signal. This leads to the

increase of periodicity in the time series x%l’Q). If A¢ = 7 then the moments

in which the probabilities Pr (m,(ll) = 1) and Pr <.’L‘7(12) = 1) reach their max-

imum values are shifted by Ts/2. Thus w > 0 increases the probability that
a given element will fire not only when the periodic signal at its input is
maximum, but also when the signal is minimum. Hence the periodicity of

xg’?) is decreased. Quite the reverse, w < 0 decreases the above-mentioned

probability, thus increasing the periodicity of $7(11,2).

If 0 < A¢ < 7 the system symmetry is broken and the SNRs of the two
elements need not be equal. But for 75 = 128 we did not observe significant
differences between SNR™ and SNR®). For 0 < A¢ < 7/2 the observed
dependence of SNR on w resembles that for A¢ =0, and for 7/2 < A¢p < 7
— that for A¢ = . Arguments similar to the ones given above explain this
dependence, since for 0 < A¢ < 7/2 periodic signals at the inputs of both
elements have the same sign during most of the period, as in the A¢ = 0
case, and for 7/2 < A¢ < 7 they have opposite signs, as in the A¢ = 7 case.
For A¢ = m/2 the value w = wpy ~ 1.0 still exists for which the maximum
of the SNR ws. 0 curve assumes the largest value, but the decrease of SNR
for w < 0 is very small. The maximum of SNR for w = wp decreases
slightly with increasing A¢ for 0 < A¢ < /2.

For fast varying periodic signals the results are more difficult to analyze,
since SNR(Y) = SNR(? only for A¢p = 0 and A¢ = w. For other values
of the phase shift the differences between the SNRs increase with |w| and
decrease with T5. The general tendencies in the dependence of SNR on w
and A¢ are similar to these for Ty = 128. Usually, for 0 < A¢ < /2 and
for w < 0 SNR decreases, whereas for w > 0 the value wep; =~ 1.0 exists for
which the maximum of SNR assumes the largest value. For 7/2 < A¢ < 7
and w < 0 SNR increases or at least does not change, whereas for w > 0 it
monotonically decreases. However, for very small T deviations from these
tendencies can appear. E.g. for Ty = 8, A¢ = 0.757 and w > 0 SNR() first
increases, reaches its maximum values for w = wqp; ~ 0.8 and only then
decreases with w, while SNR(®) decreases monotonically, as usually (Fig. 3).
Such an anomalous behaviour of SNR() changes into the usual decrease
with w — 400 already for T = 16.
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Fig.3. (a) SNR™ ws. o for the system (1) with T, = 8, A¢ = 0.757 and other
parameters as in the text: curve 1 for w = 0, 2 for w = 0.8, 3 for w = 1.5, 4 for
w = 2.0; (b) the same for SNR®, from bottom to top: w = 2.0, w = 1.5, w = 0.8,
w = 0.0.

5. Comparison between the numerical and theoretical results

In this section we briefly compare the numerically obtained SNR(H?) ps. o

curves with the predictions of the adiabatic theory. The theoretical values
of SNR(M?) were obtained from Eq. (7) with ¢ = 0, which does not change
the generality of the results. In all cases examined we observed that the
theoretical values of SNR(Y) and SNR(®) were equal independently of w and
A¢. This is in agreement with the numerical results of Sec. 3 which show that
for large Ts the values of both SNRs are equal even if the system symmetry
is broken, i.e. for A¢ # 0 or A¢ # m, and significant differences appear only
in the non-adiabatic limit of small Ts. The theory predicts also qualitatively
the dependence of SNR on w and A¢ in the limit of wy; — 0. However,
the quantitative agreement is much worse, mainly due to the violation of
certain basic assumptions made during the derivation of Eq. (7) in Ref. [4],
as mentioned in Sec. 3. As an example the case Ty = 128 and A¢ = 7 is
considered. For w = 0 the theory is exact and the numerical and theoretical
values of SNR coincide. For w < 0 the theory predicts slight increase of SNR
for w — oo, in accordance with numerical results in Fig. 2(a). For w > 0
the theory predicts the decrease of SNR with w, but this decrease is much
slower than the one obtained from numerical experiments (Fig. 4). The
difference between the numerical and theoretical values of SNR increases
with w and reaches ca. 10 dB already for w = 1.0 and moderate o.
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307

Fig.4. Comparison between the numerical and theoretical results in the adiabatic
approximation for the system (1) with Ts = 128, A¢ = 7 and other parameters
as in the text: w = 0.1 — squares (numerical results) and solid curve (theory);
w = 1.0 — triangles (numerical results) and dashed curve (theory).

6. Summary and conclusions

In this paper we investigated SR in a system of two coupled threshold
elements forming a small neural network (1). Each element was driven by
white Gaussian noise, non-correlated with the noise in the other element, and
by the periodic signal with the amplitude and frequency identical in both
elements; however, there was the phase shift A¢ of the signal between the
elements. We investigated SNR in individual elements as a function of the
noise intensity o for various phase shifts, coupling and signal frequencies. We
were interested in the enhancement of SNR due to the coupling. The theory
of SNR, based on the expression for SNR in a threshold element known from
the literature [4], was formulated and its predictions were compared with the
numerical results.

We found that even in the case A¢ # 0 proper coupling enhances SR in a
threshold element, similarly as in the widely investigated case of a common
signal acting on all coupled elements [5-17]. The SNR varies in the most
systematic manner with the coupling and phase shift if the periodic signal
frequency is small. Then, positive (excitory) coupling between elements
(neurons) w > 0 enhances SNR over that of the uncoupled element if the
periodic signals at the input of both elements have equal signs during most
of the period, i.e. 0 < A¢ < m/2. Negative (inhibitory) coupling w < 0
enhances SNR if the signals have opposite signs during most of the period,
i.e. m/2 < ¢ < w. In the latter case the enhancement is much smaller
than in the former one. In particular, for given w and varying A¢ the
enhancement, if any, is always most visible for A¢ = 0, and for other A¢
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the SNR does not exceed the value for the case of in-phase signal in all
elements. If SNR is increased for w > 0 then usually such w = wqp; exists
for which this enhancement is most pronounced. If SNR is increased for
w < 0 it usually increases monotonically with w — —o0. Small deviations
from these general rules can appear for high-frequency input signals.

It is interesting to note that, in our model, in certain cases proper neg-
ative (inhibitory) coupling can improve SNR, at least slightly, in particular
for 0 — oo (Fig. 2(a)). If there is one periodic signal in a whole system only
positive coupling enhances SR, e.g. diffusive coupling in a chain of bistable
noisy oscillators [15,16] or ferromagnetic coupling in the Ising model [20].
Putting aside the fact that the above-mentioned systems are bistable, the
enhancement of SR occurs since positive coupling increases the probabil-
ity of two neighbouring elements being in the same state. Hence in spa-
tially extended systems the enhancement of SR is connected with maximum
spatio-temporal synchronization of the system [15,16]. The spatio-temporal
synchronization means also maximum synchronization with the input signal.
As explained in Sec. 4, in our system, if the phase shift is big, e.g. A¢ =~ 7,
the simultaneous firing of both elements decreases the periodicity of their
outputs, and w < 0 is necessary to enhance this periodicity and thus SNR.
Hence a question arises if in a spatially extended noisy system driven by
a signal periodic in time and space the possible enhancement of SR is also
connected with maximum synchronization of the system to the input signal.
In a different formulation this is a problem of the most effective processing
of spatio-temporal signals corrupted by noise, using the idea of SR. To our
knowledge, this is a new possible application of SR which requires further
investigation. It also seems that such spatio-temporal effects can be studied
not only in continuous-time systems of coupled oscillators, but also e.g. in
chains of coupled threshold elements forming spatially extended neural net-
works. The present paper provides a starting point for such investigations
which should be done in much larger systems.
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