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STOCHASTIC RESONANCE IN TWO COUPLEDTHRESHOLD ELEMENTS WITH PHASE-SHIFTEDINPUT SIGNALS�A. Krawie
kia, A. Sukienni
kia and R.A. Kosi«skia;baFa
ulty of Physi
s, Warsaw University of Te
hnologyKoszykowa 75, 00-662 Warsaw, PolandbCentral Institute for Labour Prote
tionCzerniakowska 16, 00-701 Warsaw, Poland(Re
eived September 17, 1999)Sto
hasti
 resonan
e in a system of two 
oupled threshold elements(neurons) forming a small neural network is investigated numeri
ally. Pe-riodi
 signals at inputs of the elements are phase-shifted with respe
t toea
h other up to a half of the period, but their frequen
ies and amplitudesare identi
al. The signal-to-noise ratio at outputs of the elements has amaximum as a fun
tion of the input noise intensity for any phase shift. Forproper 
oupling, dependent on the phase shift, this ratio is enhan
ed overthat of a single un
oupled element. The enhan
ement is usually observedfor positive (ex
itory) 
oupling if the phase shift is less than one fourthof the period, and for negative (inhibitory) 
oupling otherwise, but minordeviations from these rules are possible for high periodi
 signal frequen
y.Adiabati
 theory of sto
hasti
 resonan
e in 
oupled threshold elements isalso formulated whi
h des
ribes qualitatively the dependen
e of the signal-to-noise ratio on the 
oupling for various phase shifts.PACS numbers: 05.40.+j, 87.10.+e1. Introdu
tionSto
hasti
 resonan
e (SR) o

urs mainly in nonlinear systems driven bya 
ombination of periodi
 and sto
hasti
 signals, in whi
h the periodi
ity ofthe output signal 
an be maximized by tuning properly the intensity of theinput noise [1℄ (for review see [2℄). A simple example of a sto
hasti
 res-onator is a threshold element with the input periodi
 signal s (t) = A sin!st,input noise � (t) being white Gaussian noise with varian
e �2, and with the� Presented at the XII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 6�12, 1999.(1015)
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ki, A. Sukienni
ki, R.A. Kosi«skithreshold b > A, whose output x (t) is given by x (t) = � [s (t) + � (t)� b℄,where � is the Heaviside step fun
tion. Periodi
ity of the signal x (t)is maximum for � > 0 [3, 4℄. Re
ently, SR has been intensively investi-gated in high-dimensional systems, e.g. in systems of globally or lo
ally 
ou-pled bistable [5�8℄ and threshold [9, 10℄ elements, in model neural networks[11�14℄, spatially extended systems [15�19℄, in the Ising model [20, 21℄ et
.In the 
oupled systems, it has been in general 
on
luded that due to a proper
oupling the SR e�e
t observed either in a whole system or in a single el-ement 
oupled to other similar elements is enhan
ed over that of a singleun
oupled element. The most often studied 
ase is that with individual ele-ments driven by independent noises with identi
al distribution and intensity,and by a 
ommon periodi
 signal. Other 
ases, as e.g. a neural network inwhi
h there is a 
ertain distribution of amplitudes of the periodi
 signal overneurons, are less frequently analyzed [14℄.In this paper we 
onsider threshold elements (formal neurons) with 
ou-pling typi
al of arti�
ial neural networks, ea
h of whi
h is driven by a pe-riodi
 signal with the same frequen
y and amplitude, but with arbitraryphase. This 
an be a typi
al situation e.g. in spatially extended systems inwhi
h the signals in two di�erent points 
an be phase shifted due to �nitepropagation time of the signal. Here we are only interested in the simplest
ase of two 
oupled elements and in the enhan
ement of SR of a single el-ement due to the 
oupling. However, a similar problem investigated in alarger system 
ould lead to SR with a spatio-temporal periodi
 input signal,an e�e
t whi
h, to our knowledge, has not been reported in the literatureso far. Similarly, a �rst step in the investigation of array-enhan
ed SR ina 
hain of bistable noisy os
illators [15, 16℄ is to 
onsider only two 
oupledos
illators [17℄.2. The system and the methods of analysisThe system under study 
onsists of two 
oupled threshold elements (neu-rons) denoted as 1, 2, forming a small neural network with dis
rete-time dy-nami
s and parallel updating. Both elements are driven by a periodi
 signalwith amplitude A, frequen
y !s and initial phase �, and by independentwhite Gaussian noises �(1), �(2) with varian
e �2; the periodi
 signal in theelement 2 is shifted in phase by �� with respe
t to that in the element 1.The 
oupling strength (the synapti
 
onne
tion weight) w is symmetri
. Theoutputs of the elements, denoted as x(1), x(2), 
an assume only dis
rete val-ues 0 (quies
ent state) or 1 (�ring), if the total input to the given element isbelow or above the threshold b, respe
tively; it is assumed that b > A. Theequations for the time dependen
e of x(1), x(2) read
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x(1)n+1 = � hA sin (!sn+ �) + �(1)n + wx(2)n � bi ;x(2)n+1 = � hA sin (!sn+ �+��) + �(2)n + wx(1)n � bi ; (1)where n denotes the step number.In this paper, we 
hara
terize SR in any of the elements by the Signal-to-Noise Ratio (SNR), whi
h is obtained from the power spe
trum densityS(1) (!) or S(2) (!) of the respe
tive time series x(1)n , x(2)n . We de�ne SNR(1;2)= 10 log hS(1;2)P (!s) = S(1;2)N (!s)i, where S(1;2)P (!s) = S(1;2) (!s)�S(1;2)N (!s)is the height of the peak in the power spe
trum density at ! = !s, andS(1;2)N (!s) is the noise ba
kground in the vi
inity of !s. In systems with SR,SNR as a fun
tion of � has a maximum [2℄. In our numeri
al simulations thepower spe
trum density is evaluated from N = 4096 points of the time seriesx(1;2)n and averaged over 100 
onse
utive runs. Then, SNR is evaluated andaveraged over 10 random initial 
onditions for x(1), x(2) and �. All resultsfor the SNR are normalized to the frequen
y bandwidth �f = 2�12Hz [22℄.The results of numeri
al simulations are presented in Se
. 4.3. Theory in the adiabati
 approximationIn threshold elements with dis
rete-time dynami
s it is possible to eval-uate SNR analyti
ally using the method of Ref. [4℄. Here we do this in theadiabati
 limit !s �! 0 [22℄.First we obtain the probability that x(1;2)n =1, denoted as Pr�x(1;2)n =1�.Sin
e the pro
esses x(1;2)n = 1 are non-stationary, this probability is time-dependent and periodi
 in time [23℄. The probability densities for the ran-dom variables w(1;2)n =wx(1;2)n are ��w(1;2)n �=Pr�x(1;2)n =1� Æ �w(1;2)n �w�+h1� Pr�x(1;2)n = 1�i Æ �w(1;2)n �. Sin
e the random variables �(1;2)n and x(2;1)nare independent, the probability densities for the variables �(1)n = �(1)n +w(2)n ,�(2)n = �(2)n + w(1)n be
ome���(1)n � = +1Z�1 ��(1)n ��(1)n � w(2)n � ��w(2)n � dw(2)n= 1p2�� �h1� Pr�x(2)n = 1�i e���(1)n �2=2�2
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ki, A. Sukienni
ki, R.A. Kosi«ski+ Pr�x(2)n = 1� e���(1)n �w�2=2�2� ;���(2)n � = +1Z�1 ��(2)n ��(2)n � w(1)n � ��w(1)n � dw(1)n= 1p2�� �h1� Pr�x(1)n = 1�i e���(2)n �2=2�2+ Pr�x(1)n = 1� e���(2)n �w�2=2�2� : (2)From (1) it follows that e.g. x(1)n+1 = 1 if �(1)n > b�A sin (!sn+ �), thusPr�x(1)n+1 = 1� = 1Zb�A sin(!sn+�) ���(1)n � d�(1)n ;Pr�x(2)n+1 = 1� = 1Zb�A sin(!sn+�+��) ���(2)n � d�(2)n : (3)In the adiabati
 limit !s�!0 we assume that Pr�x(1;2)n+1 =1�=Pr�x(1;2)n =1�.Then, after inserting Eq. (2) into Eq. (3) we obtain a system of two linearequations for Pr�x(1;2)n = 1� whose solution isPr�x(1)n = 1� = �(1)n + ��(1)n � �(1)n ��(2)n1� ��(1)n � �(1)n ���(2)n � �(2)n � ;Pr�x(2)n = 1� = �(2)n + ��(2)n � �(2)n ��(1)n1� ��(1)n � �(1)n ���(2)n � �(2)n � ; (4)where �(1)n = 12 + 1p2�� 0Zb�A sin(!sn+�) e��2=2�2d� ;�(2)n = 12 + 1p2�� 0Zb�A sin(!sn+�+��) e��2=2�2d� ;
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e in Two Coupled Threshold Elements: : : 1019�(1)n = 12 + 1p2�� 0Zb�A sin(!sn+�)�w e��2=2�2d� ;�(2)n = 12 + 1p2�� 0Zb�A sin(!sn+�+��)�w e��2=2�2d� : (5)Next the dis
rete Fourier transform of the probabilities in Eq. (4) isperformed P (1;2)k = 1Ts Ts�1Xn=0 Pr�x(1;2)n = 1� exp��2�inkTs � ; (6)where Ts = 2�=!s is the period. A

ording to Ref. [4℄ SNR(1;2) normalizedto a given bandwidth �f = 1=N (here, N = 4096) 
an be evaluated fromEqs. (4),(6) asSNR(1;2) = N ���P (1;2)1 ���2DPr�x(1;2)n = 1�E� DPr2 �x(1;2)n = 1�E ; (7)where the bra
kets denote the time average over Ts. It should be pointedout, however, that Eq. (7) is exa
t only in the 
ase of a threshold elementdriven by a sum of a deterministi
 periodi
 signal and white noise [4℄, whilein Eq. (1) the total random noises �(1;2)n are non-white and the variablesx(1)n , x(2)n are 
orrelated. Thus Eq. (7) is exa
t only for w = 0, i.e. forun
oupled elements, and the di�eren
e between the numeri
al and analyti
values of SNR in
reases with jwj. As it will be shown in Se
. 5, only 
ertainqualitative predi
tions 
on
erning the dependen
e of SNR on w 
an be madeusing Eq. (7). 4. Numeri
al results and their dis
ussionIn this se
tion, the numeri
al results for SNR(1;2) vs. � for the system (1)with parameters A = 0:5, b = 0:6 and various w and !s are presented.We start with a slowly varying signal and take Ts = 128. For �� = 0there is no phase shift between the periodi
 signals in both elements andthe results are rather typi
al of 
oupled systems. In parti
ular, due to thesymmetry SNR(1) = SNR(2). If w < 0 SNR de
reases in 
omparison withthe 
ase w = 0, and the lo
ation of the maximum of SNR does not 
hange(Fig. 1(a)). If w > 0, there exists an optimum value of the 
oupling wopt �
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h the maximum of SNR assumes the largest value, whi
h ex
eedsby several dB that for the w = 0 
urve (Fig. 1(b)). For 0 < w < wopt SNRfor a given � generally in
reases with w and the maximum shifts towardssmaller �; for w > wopt SNR generally de
reases with w and the maximumshifts towards larger � (Fig. 1(b)). Di�erent results are obtained for�� = �,where again due to the symmetry SNR(1) = SNR(2). Then for w �! �1SNR in
reases slightly, but without any visible shift of both the value andlo
ation of the maximum (Fig. 2(a)), while for w �! +1 SNR de
reasesand the maximum shifts towards larger � (Fig. 2(b)).
Fig. 1. SNR(1;2) vs. � for the system (1) with Ts = 128, �� = 0 and otherparameters as in the text. (a) from bottom to top: w = �2:0, w = �0:5, w = 0;(b) 
urve 1 for w = 0, 2 for w = 0:4, 3 for w = 1:0, 4 for w = 1:5.

Fig. 2. SNR(1;2) vs. � for the system (1) with Ts = 128, �� = � and otherparameters as in the text. (a) from bottom to top: w = 0, w = �0:5, w = �2:0;(b) from bottom to top: w = 1:5, w = 1:0, w = 0:5, w = 0:0.These results 
an be interpreted using arguments similar to these appliedto the 
ase of 
oupled bistable noisy os
illators in Refs. [15,16℄. The positive
oupling w > 0 in
reases the probability of simultaneous �ring of both ele-ments, sin
e it in
reases the e�e
tive noise �(1;2)n a
ting on a given elementwhen the other element �res. In turn, w < 0 de
reases this probability. If
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h their maximum values atthe same time, when the 
ommon periodi
 signal is maximum. Thus if w > 0and one element �res then probably the other one will also �re, and both ofthem will �re in phase with the 
ommon periodi
 signal. This leads to thein
rease of periodi
ity in the time series x(1;2)n . If �� = � then the momentsin whi
h the probabilities Pr�x(1)n = 1� and Pr�x(2)n = 1� rea
h their max-imum values are shifted by Ts=2. Thus w > 0 in
reases the probability thata given element will �re not only when the periodi
 signal at its input ismaximum, but also when the signal is minimum. Hen
e the periodi
ity ofx(1;2)n is de
reased. Quite the reverse, w < 0 de
reases the above-mentionedprobability, thus in
reasing the periodi
ity of x(1;2)n .If 0 < �� < � the system symmetry is broken and the SNRs of the twoelements need not be equal. But for Ts = 128 we did not observe signi�
antdi�eren
es between SNR(1) and SNR(2). For 0 < �� < �=2 the observeddependen
e of SNR on w resembles that for �� = 0, and for �=2 < �� < �� that for �� = �. Arguments similar to the ones given above explain thisdependen
e, sin
e for 0 < �� < �=2 periodi
 signals at the inputs of bothelements have the same sign during most of the period, as in the �� = 0
ase, and for �=2 < �� < � they have opposite signs, as in the �� = � 
ase.For �� = �=2 the value w = wopt � 1:0 still exists for whi
h the maximumof the SNR vs. � 
urve assumes the largest value, but the de
rease of SNRfor w < 0 is very small. The maximum of SNR for w = wopt de
reasesslightly with in
reasing �� for 0 < �� < �=2.For fast varying periodi
 signals the results are more di�
ult to analyze,sin
e SNR(1) = SNR(2) only for �� = 0 and �� = �. For other valuesof the phase shift the di�eren
es between the SNRs in
rease with jwj andde
rease with Ts. The general tenden
ies in the dependen
e of SNR on wand �� are similar to these for Ts = 128. Usually, for 0 < �� < �=2 andfor w < 0 SNR de
reases, whereas for w > 0 the value wopt � 1:0 exists forwhi
h the maximum of SNR assumes the largest value. For �=2 < �� < �and w < 0 SNR in
reases or at least does not 
hange, whereas for w > 0 itmonotoni
ally de
reases. However, for very small Ts deviations from thesetenden
ies 
an appear. E.g. for Ts = 8, �� = 0:75� and w > 0 SNR(1) �rstin
reases, rea
hes its maximum values for w = wopt � 0:8 and only thende
reases with w, while SNR(2) de
reases monotoni
ally, as usually (Fig. 3).Su
h an anomalous behaviour of SNR(1) 
hanges into the usual de
reasewith w �! +1 already for Ts = 16.
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Fig. 3. (a) SNR(1) vs. � for the system (1) with Ts = 8, �� = 0:75� and otherparameters as in the text: 
urve 1 for w = 0, 2 for w = 0:8, 3 for w = 1:5, 4 forw = 2:0; (b) the same for SNR(2), from bottom to top: w = 2:0, w = 1:5, w = 0:8,w = 0:0.5. Comparison between the numeri
al and theoreti
al resultsIn this se
tion we brie�y 
ompare the numeri
ally obtained SNR(1;2) vs. �
urves with the predi
tions of the adiabati
 theory. The theoreti
al valuesof SNR(1;2) were obtained from Eq. (7) with � = 0, whi
h does not 
hangethe generality of the results. In all 
ases examined we observed that thetheoreti
al values of SNR(1) and SNR(2) were equal independently of w and��. This is in agreement with the numeri
al results of Se
. 3 whi
h show thatfor large Ts the values of both SNRs are equal even if the system symmetryis broken, i.e. for �� 6= 0 or �� 6= �, and signi�
ant di�eren
es appear onlyin the non-adiabati
 limit of small Ts. The theory predi
ts also qualitativelythe dependen
e of SNR on w and �� in the limit of !s �! 0. However,the quantitative agreement is mu
h worse, mainly due to the violation of
ertain basi
 assumptions made during the derivation of Eq. (7) in Ref. [4℄,as mentioned in Se
. 3. As an example the 
ase Ts = 128 and �� = � is
onsidered. For w = 0 the theory is exa
t and the numeri
al and theoreti
alvalues of SNR 
oin
ide. For w < 0 the theory predi
ts slight in
rease of SNRfor w �! 1, in a

ordan
e with numeri
al results in Fig. 2(a). For w > 0the theory predi
ts the de
rease of SNR with w, but this de
rease is mu
hslower than the one obtained from numeri
al experiments (Fig. 4). Thedi�eren
e between the numeri
al and theoreti
al values of SNR in
reaseswith w and rea
hes 
a. 10 dB already for w = 1:0 and moderate �.
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Fig. 4. Comparison between the numeri
al and theoreti
al results in the adiabati
approximation for the system (1) with Ts = 128, �� = � and other parametersas in the text: w = 0:1 � squares (numeri
al results) and solid 
urve (theory);w = 1:0 � triangles (numeri
al results) and dashed 
urve (theory).6. Summary and 
on
lusionsIn this paper we investigated SR in a system of two 
oupled thresholdelements forming a small neural network (1). Ea
h element was driven bywhite Gaussian noise, non-
orrelated with the noise in the other element, andby the periodi
 signal with the amplitude and frequen
y identi
al in bothelements; however, there was the phase shift �� of the signal between theelements. We investigated SNR in individual elements as a fun
tion of thenoise intensity � for various phase shifts, 
oupling and signal frequen
ies. Wewere interested in the enhan
ement of SNR due to the 
oupling. The theoryof SNR, based on the expression for SNR in a threshold element known fromthe literature [4℄, was formulated and its predi
tions were 
ompared with thenumeri
al results.We found that even in the 
ase �� 6= 0 proper 
oupling enhan
es SR in athreshold element, similarly as in the widely investigated 
ase of a 
ommonsignal a
ting on all 
oupled elements [5�17℄. The SNR varies in the mostsystemati
 manner with the 
oupling and phase shift if the periodi
 signalfrequen
y is small. Then, positive (ex
itory) 
oupling between elements(neurons) w > 0 enhan
es SNR over that of the un
oupled element if theperiodi
 signals at the input of both elements have equal signs during mostof the period, i.e. 0 < �� < �=2. Negative (inhibitory) 
oupling w < 0enhan
es SNR if the signals have opposite signs during most of the period,i.e. �=2 < � < �. In the latter 
ase the enhan
ement is mu
h smallerthan in the former one. In parti
ular, for given w and varying �� theenhan
ement, if any, is always most visible for �� = 0, and for other ��
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eed the value for the 
ase of in-phase signal in allelements. If SNR is in
reased for w > 0 then usually su
h w = wopt existsfor whi
h this enhan
ement is most pronoun
ed. If SNR is in
reased forw < 0 it usually in
reases monotoni
ally with w �! �1. Small deviationsfrom these general rules 
an appear for high-frequen
y input signals.It is interesting to note that, in our model, in 
ertain 
ases proper neg-ative (inhibitory) 
oupling 
an improve SNR, at least slightly, in parti
ularfor � �!1 (Fig. 2(a)). If there is one periodi
 signal in a whole system onlypositive 
oupling enhan
es SR, e.g. di�usive 
oupling in a 
hain of bistablenoisy os
illators [15, 16℄ or ferromagneti
 
oupling in the Ising model [20℄.Putting aside the fa
t that the above-mentioned systems are bistable, theenhan
ement of SR o

urs sin
e positive 
oupling in
reases the probabil-ity of two neighbouring elements being in the same state. Hen
e in spa-tially extended systems the enhan
ement of SR is 
onne
ted with maximumspatio-temporal syn
hronization of the system [15,16℄. The spatio-temporalsyn
hronization means also maximum syn
hronization with the input signal.As explained in Se
. 4, in our system, if the phase shift is big, e.g. �� � �,the simultaneous �ring of both elements de
reases the periodi
ity of theiroutputs, and w < 0 is ne
essary to enhan
e this periodi
ity and thus SNR.Hen
e a question arises if in a spatially extended noisy system driven bya signal periodi
 in time and spa
e the possible enhan
ement of SR is also
onne
ted with maximum syn
hronization of the system to the input signal.In a di�erent formulation this is a problem of the most e�e
tive pro
essingof spatio-temporal signals 
orrupted by noise, using the idea of SR. To ourknowledge, this is a new possible appli
ation of SR whi
h requires furtherinvestigation. It also seems that su
h spatio-temporal e�e
ts 
an be studiednot only in 
ontinuous-time systems of 
oupled os
illators, but also e.g. in
hains of 
oupled threshold elements forming spatially extended neural net-works. The present paper provides a starting point for su
h investigationswhi
h should be done in mu
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