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The Penna model with simplifications aimed on elimination of random-
ness from the system dynamics is considered. In the deterministic system
resulting, the relation arising from the Verhulst factor between families
constituting the population is examined. An example of self-controlling
chaotic system of two-families is presented.
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1. Introduction

Although originally the Penna model was designed to reconstruct the
process of biological ageing, it soon has appeared that the model is attrac-
tive to study other evolutionary facts. Attributing a family name to each
individual of an initial population we can search for reasons of the mito-
chondrial Eve. The interest in the such effect is motivated by the following
biological observation. The mitochondrial DNA — DNA existing outside
chromosomes, is inherited only from mother to child, without any contri-
bution from father [1]. Therefore, different strands of mitochondrial DNA
act like different family names of the Penna model. So that, observation of
the selection of one winning family in the Penna model could give insights
into the hypothesis of existence of the common female ancestor, called mi-
tochondrial Eve, for the whole human population. In the Penna model the
selection process is easily to be observed, especially, when the population is
stationary.
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It has been found that after a short period of time, when the self-
organization of the population takes place to select the best fitted families
(see [2] for details), the stationary state is reached. The properties of the
stationary state arise from the adjustment between the basic Penna model
parameters, see [3]. One of these parameters, the so-called Verhulst factor
V(t), seems to be responsible for the stationary evolution. As the effect of
the activity of the Verhulst factor we observe the stationary evolution as it
is a simple stochastic process. The evident characteristic for the stochastic
branching process like surviving of one line of ancestry only, is observed.
Moreover, as the Verhulst factor arises from the famous logistic map, some
features originated from the logistic map can be found in the model.

The role of the Verhulst factor in the Penna model is discussed from both
sides: evolutionary genetics, see [4], and system dynamics, see [3,5]. The
attempts are done, like implementing the Penna microdynamics on a lat-
tice, see [6,7] or considering the Verhulst which depends on age, see [10], to
weaken this role. In the following paper we consider the population arising
from the Penna microdynamics, however, these microrules work on a very
simple collection of individuals. The simplifications introduced are aimed
on elimination of randomness from the system. Then, in the deterministic
system resulting, we examine the relation between two families constituting
the population which is affected by the Verhulst factor. This relation is stud-
ied by manipulating with the extra parameter introduced by us, called the
conjugation parameter. Finally, we present an example of the self-controlling
evolution of the population consisting of two families.

2. The asexual Penna model

In the asexual Penna bit-string model each individual is characterized
by a string of 32 bits, called genome. Each bit of a genome represents one
subsequent period of life, called year. If at the age ¢ the sth bit in the genome
is set to one, the individual suffers the effect of a deleterious mutation, called
disease, from this age on until death. If the ith bit is set to zero no disease
occurs. When the total number of accumulated diseases reaches a value
greater than or equal to a limit 7', the individual dies. The individual can
also die because of lack of food and space. This is taken into account through
the Verhulst factor:

N(t)

V=1- ,
Nmax

(1)

where N(t) is the current population size and Ny, is the maximum carrying
capacity of the environment, defined at the beginning of the simulation. This
factor determines for each individual and independently of the individual’s
both genome and age, the probability to survive. After reaching the mini-
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mum reproduction age R, each year an individual generates b offspring. The
baby’s genome differs from the parent’s one by m bits, randomly selected.
Only deleterious mutations are allowed. If a selected bit is equal to one, it
remains set to one in the offspring’s genome. Otherwise, if the selected bit is
equal to zero, the offspring carries an additional deleterious mutation when
compared to its parent. To study the Eve effect, each individual obtains the
name of the family, inherited from its parent.

The first presentation of this model one can find in [8], the discussion
of many features together with the modifications is in [9]. The biological
motivation behind the Penna model is the mutation accumulation hypothe-
sis [11].

3. Simplified model

The process of selecting of one winning family performs in the stationary
population, also. When the stationarity is gained, then the population of the
Penna model can be seen as a collection of individuals of two kinds only. The
first part consists of Kids waiting for the procreation age. The other part
consists of Parents that, if survives, produce b offspring. Such stationary
dynamics can be reconstructed by some stochastic difference equations, see
[3]. Families constituting the stationary population do not differ from each
other — they have the same bit-string as well as age characteristics. So that
the Eve effect appears as the result of the well-known branching process.

To get other insight into the Eve effect we need to eliminate the random-
ness from the Penna system. Therefore, we introduced some modifications
to the Penna model, namely, we assume that:

(i) all individuals are characterized by the same genetic code and

(74) no mutation is introduced during a reproduction process. In the result
of these assumptions the evolution of a population can be completely
described by difference equations.

In particular, let us consider a population consisting of two families,
named A and B. All individuals of both families have the same genotype of
the length of 3. Hence, the maximal time of life is the same for all individu-
als and equals to 3. Let us assume that individuals of distinct families have
different reproduction time R. Let individuals of A family start reproducing
at the age of 1 and each individual within this family gives b4 offspring.
Family B consists of individuals which start reproducing later than individ-
uals of family A, namely, at the age of 2 and they give bp offspring each
reproduction year. The evolution of the families defined above is described
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by the following equations:

o = bl — Int (pa)]

y D = 2l —Tnt (paV),

AP = oY —Int (pyY), (2a)
2 = bplyP — Int (pyP)]
+bp[P) — Int (p2iP)],
D = B — Int (paP) |
A0 = P~ Int (D). (2b)

Where: mﬁf),yﬁ ), sz) are volumes of A or B family one-year-old, two-year-

old, three-year-old individuals, respectively,

o+ 24 2P 1P 4P N
p= i =v o =1-Vm). 3

Hence p means the probability to die because of the lack of the environment
space. It is obvious that the volume of each family depends on the value of
b’s. Manipulating with values of by and bg we can establish a stationary
population with any family winning, see Figs 1(a)(b)(c). If by = bp = 1,
see Fig. 1(a), the family A is the dominant family in the population, while
if by =1 and bp = 3 then the family B is the winning family, see Fig. 1(b).
When the birth rates b’s are sufficiently high, e.g., by = 3 and bp = 5 we
observe the chaotic changes of the population size as it is expected in case
of logistic map, see Fig. 1(c).

Eqgs. (2a) describe the mutually related systems where the close conju-
gation is established by the Verhulst term, here in Eqs. (2a) represented by
the conjunction parameter p which reads as (3). To explain better how the
relation between families acts, let us rewrite Eqs. (2a), however splitting the
p factor into two factors p4 and pp with one factor for each family A and B,
respectively. Let us introduce a parameter ¢ € [0, 1], named the conjugation
parameter to measure the family conjugation, as follows:
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Fig. 1. Volumes of two families (circles — A, boxes — B) constituting the Penna
simplified population in subsequent iterations of Eqs (2a). Npax = 100000, x((JA) =
wgB) = 100 and y(()A) = y(()B) = z((JA) = z(()B) =0, and (a) ba = bg = 1, (b)
bA = 1,bB = 3, (C) bA = 3,bB = 5.
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Fig.2. Volumes of two families (circles — A, boxes — B) constituting the Penna
simplified population in subsequent iterations of Eqs (2a) with the split environ-

ment , i.e., ¢ = 0. Nyax = 100000, a:(()A) =z, ) =100 and y((JA) =y = z((J

(B (B) _ (A) _

2% =0, and (a) ba =bp =1, (b) ba = 1,bp = 3, (c) ba = 3,bp = 5.
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_ O a1y )
pa = Nnax ;
(A),  (A), (A) (B),,(B), (B)

pp = c(Tn +yn +ZnN131:an +yYn t2zn . (4)

Notice, that ¢ = 0 denotes that the families evolve independently of each
other, and ¢ = 1 restores the relation studied in Egs. (2a).

In Figs 2(a)(b)(c) we present the solutions to Eqs. (2a), however with p
replaced by p’s of (4) and for the independent dynamics, i.e., with ¢ = 0,
and for the values of b’s considered earlier. As we see dynamics of families is
changed. Each of families evolves as this family is the only one in the whole
surrounding. One can say that both families live together side-by-side.
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Fig. 3. Bifurcation diagram for volumes of two families (a) (A) and (b) (B), if the
conjugation parameter c is changed. For each ¢ € [0,1] with the step Ac = 0.001
the first 500 iterations are skipped and the next 2000 points are plotted.
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In Figs 3(a)(b) we present the, so-called, bifurcation diagram (see [12])
for volumes of both families versus ¢ parameter for the chaotic region of
dynamics, namely, b4 = 3 and bg = 5 . The original evolution of the family
A is chaotic, while the evolution of the family B settles as the fixed point
when ¢ = 0, compare Fig. 2(c). With increasing of the conjugation between
families 0 < ¢ < 1/2 we observe loosing the stability of the fixed point of
the family B. The periodic evolution of both families is gained around the
value ¢ = 1/2. One can say the families control each other. When ¢ — 1 the
chaotic properties of the dynamics of the family A takes over the evolution
of the whole population, and, finally, we have the result that is presented in

Fig. 1(c).

4. Conclusions

Although our model can be seen as a toy-model comparing to the more
realistic complete Penna model, it posses the feature which allows us to get
an insight into the role played by the Verhulst factor in the Penna model.
We studied this role by observing the Eve effect.

In the homogeneous stationary Penna population, the only reason for the
Eve effect is the randomness in the system. This randomness arises from the
stochastic and independent of family membership choice of an individual to
die because of environment restrictions. However, if the population is not
homogeneous- the families differs from each other by, e.g., the reproduction
age or by the birth rate, then the Verhulst constrain causes extinction of
the less suited family. To see both families alive, the environment has to
be split into separate parts and each part has to be devoted to one family,
only. One can say families are separated from each other. Our studies of the
influence of this separation provide that manipulating with the strength of
conjugation parameter we obtain a tool to control the development of both
families.
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