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PENNA MODEL OF BIOLOGICAL AGINGON A LATTICE�Danuta MakowieInstitute of Theoretial Physis and Astrophysis, Gda«sk UniversityWita Stwosza 57, 80-952 Gda«sk, Polande-mail: fizdm�univ.gda.pl(Reeived Otober 1, 1999)We implement the Penna bit-string model of biologial aging on asquare lattie to study the evolution of the spatial distributions of thepopulation when some rules for the oexistene for nearest lattie neigh-bors are introdued. By doing like this, we want to avoid the usage ofthe, so-alled, Verhulst fator, whih role has been dissused lately. Thebasi harateristis: population size, survival rates and mutation distribu-tion, obtained in the lattie asexual Penna model our di�erent from theorresponding ones whih are reorded in the standard Penna model.PACS numbers: 05.45.�a, 89.60.+x1. IntrodutionReently, many problems have been studied in the interfae betweenstatistial physis and biology. Computer simulations have helped us to un-derstand several biologial proesses and, in partiular, population dynamisstudies have had signi�ant advanes due to the development of this tool.As an important example, theories about the evolution of biologial aginghave been tested by means of omputer simulations.There exist over 300 theories to explain why the earth reatures, espe-ially human beings, aging when their life time passes and then they die notbeause of the lak of food or an enviroment disaster but beause of senes-ene. The evolutionary approah to the aging problem predits that Dar-winian seletion beomes weaker when the reprodution starts. This impliesthat the geneti harmful mutations whih would lead to geneti diseases butwhih a�et at older ages, will spread in the population, thus ausing senes-ene and eventually death. This is known as the mutation-aumulation� Presented at the XII Marian Smoluhowski Symposium on Statistial PhysisZakopane, Poland, September 6�12,1999(1037)



1038 D. Makowiehypothesis, see [1℄. The biologial motivation for this hypothesis is that theAlzheimer disease ativates at old ages only, although the desease is presentin the geneti ode sine birth.Evolutionary hypotheses are rather di�ult to test. There are few reli-able experiments done by biologists supporting the hypothesis of mutation-aumulation theory, see [2℄. Therefore, solutions derived from mathematialand/or omputational models are an interesting way to deal with them.The Penna aging model is by now the most widespread one for MonteCarlo simulations, see [3, 4℄. The Penna model deals with the aumulationof deleterious mutations in the inherited genome. The distinguish suessof this model arrives from the fat that it is the only Monte Carlo modelgiving approximately the exponential inrease of mortality of adults thatagrees with the biologial observations.1.1. Some fats about biologial agingThe proess of aging an be measured by the so-alled mortality, i.e.,by the probability that an individual of a given speies will die in a nexttime period. It ours that the mortality depends on the life period of aindividual. The still good proposal for the dependene of the mortalityfor humans on the age omes from the XIX entury proposition, made byGompertz. This fat is known as the Gompertz law. It states that theprobability to die within the next time interval grows exponentially:mortality (age) / eb age; (1)where b is of the order of 0:09(1=year). Of ourse, the Gompertz law beomeswrong for individuals in their old age beause the probability to die beomeslarger than unity.The newest investigations, based on the populations of Japan, Swedenand Germany during the past 200 years, done by Azbel, modi�ate theGompertz law to the following one, the so-alled Azbel law, see [5℄,mortality (age)b / eb (age�X): (2)Here the harateristi age X is the same for the whole speies and spei�esthe maximum age reahable by any individual of the onsidered speies. TheAzbel observed that in the ase of humans the maximum age is X = 103�1year. However, humans were reliable reported to live until the age 122 years[6℄. This ontradition to the Azbel predition is explained that the Azbellaw (2) appliates for the homogeneous population and desribes people attheir average. Whithin one population there are rare families with small b(or even with b! 0) and for suh little b the statistis other than exponential



Penna Model of Biologial Aging on a Lattie 1039have to be onsiderd, see [4,7℄. Therefore, there are individuals that an livelonger, see [4℄ for the further disusion.It an be frustrating that eah of us has to die at its genetially deter-minded age. The progress in human living onditions an in�uene the slopeb of the Gompertz law but it annot hange X, see [5, 8℄ for quantitativeanalysis. 1.2. The Penna modelIn the asexual Penna bit-string model eah individual is haraterizedby a string of 32 bits, alled genome. Eah bit of a genome represents onesubsequent period of life, alled year. If at age i the ith bit in the genome isset to one, the individual su�ers the e�et of a deleterious mutation, alleddisease, from this age until death. If the ith bit is set to zero no newdisease ours. When the total number of aumulated diseases reahes avalue greater than or equal to a limit T , the individual dies. The individualan also die beause of the lak of food and spae. This is taken into aountthrough the so-alled Verhulst fator:V = 1� N(t)Nmax ; (3)where N(t) is the urrent poplulation size and Nmax is the maximum arry-ing apaity of the environment, de�ned at the beginning of the simulation.The Verhulst fator determines for eah individual, independently of the in-dividual both genome and age, the probability to survive. After reahing theminimum reprodution age R, eah year an individual generates b o�spring.The baby's genome di�ers from the parent's one by m bits, randomly se-leted. Only deleterious mutations are allowed. If a seleted bit is equalto one, it remains set to one in the o�spring's genome. Otherwise, if theseleted bit is equal to zero, the o�spring arries an additional deleteriousmutation when ompared to its parent.The results of the simulations of this basi Penna model and its sexualversion an be found in [4℄ and in referenes given there.1.3. Why Penna model on a lattie?The assumptions of the Penna model have been ritially revised bythe brave Polish genetiist, Cebrat, who not only did take a hallange tounderstand the physiists idea of aging , but also atively joined the physi-ist ommunity to work on this model, see [9℄. One of the assumptions ofthe Penna model, negatively evaluated by Cebrat, is the relation betweenthe developing population and the external environment. This relation isrealised by the desribed above Verhulst fator. After the time when the



1040 D. Makowieself-organization proess inside a population performs itself to develope thepopulation that is best �tted to the model parameters, the evolution be-omes stationary, see [10℄. The Verhust fator overdominates the evolution.The evolution beomes as it is governed by the logisti equation, see [10,11℄.By introduing the lattie struture to the Penna model we obtain theother from the logisti equation type ondition for modelling the restritiveenviroment apaity. Moreover, in a similar way as in the famous Conway's�Game of Life� we are free to onsider any additional rules for life and death;rules onditioned by the nearest neighbors interations.2. Model desriptionThe population is the olletion of individuals living on a square lattie.Eah lattie site is oupied by at least one individual. Eah individual isharaterized by:Bit-string : the life history inherited from a parent and additionally mutatedat the birth with the ratio m. The genome onsists of 32 bits whih denotethe same as in the standard Penna model desribed in the previous setion.Age: if an individual survives during one iteration then it will get older byone time unit. Similarly to the standard Penna model we assume that if anindividual is mature enough (its age is greater than or equal to R) then itwill give b o�spring. An individual dies beause of su�ering from too manydiseases. T denotes the threshold of the allowed diseases.The extra killing fator arrises from the overrowding of a spae and onlyats on newborn kids. A parent hooses randomly among its four nearestneighboring sites a plae to put a newborn kid. If the hosen site is oupiedthen the newborn kid dies. If at the same time two parents hoose the sameplae then at the equal to eah other probability only one of these parentswins.Thus individuals older than the newborn ones die only beause of toomany diseases arried in their genotypes.By implementing the evolution of the Penna system on a lattie we anonsider distint boundary onditions. In the following we examine twotypes of boundary onditions:(a) free boundary: to imitate lose systems like lakes or islands,(b) periodi boundary: to mimi unrestrited life spae what an be rep-resent by oeans or large forests.Our model an be ompared to the model desribed by Sousa et al.,see [12℄. However, the problem of Verhulst fator in�uene is not onsid-ered there. In [12℄ it is assumed that eah node of the lattie has its own



Penna Model of Biologial Aging on a Lattie 1041maximum apaity, i.e., its own Verhulst fator. So that in the evolutionthere is present a onstant killing term oming from these Verhulst fatorsand therefore the results obtained by the authors do not provide any newe�ets.The model onsidered by us an be seen as imitation of the biologialpopulation of plants whih an give o�spring only in the free nearby area.Our rules for nearest neighbors interations are similar to the rules on-sidered by Wallinga in the model of annual weeds, see [13℄. However our�weeds�, thanks to the age progress in Penna dynamis, live longer than ayear. 3. ResultsThe Penna lattie system is onsidered on a square lattie with the linearsize L = 680. This size establishes the maximal environment apaity to462 400 individuals. The initial population onsists of 100 individuals withrandom genomes and with the ommon age of 1. Individuals are satteredrandomly on the lattie. The stationary population is reahed in less than5000 iterations. All statistis is made over 10 000 iterations of a stationarypopulation and over at least three independent experiments.3.1. Free versus periodi boundary onditionsWe perform simulations for both free and periodi boundary ondistionsto onsider dependene of the results on the boundary type. In Figs 1,2,3 we
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(a) (b)Fig. 2. Age distribution in the stationary population developed under di�erentPenna model parameters and di�erent boundary onditions: (a) � free boundaryonditions (b) � periodi boundary onditions.
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Penna Model of Biologial Aging on a Lattie 1043present the basi harateristis of the models: Fig. 1 is to ompare the sizesof the stationary populations developed under di�erent model parametersand lattie boundary onditions. Fig. 2 is to show the age distribution, i.e.,the probability to meet an individual at a given age in stationary popula-tions. Fig. 3 presents the distrubution of bad mutations, i.e., the probabilitythat an individual has a given bit of its genome set to 1.Aording to the above presented results there is no notiable di�erenebetween boundary onditions introdued. Therefore, in our further investi-gations we restrit our onsiderations to the model with periodi boundaryonditions. 3.2. Lattie versus standard Penna modelJust by the eye inspetion one an notie that the mutation distributionin the population developed on a lattie is di�erent from the orrespondingharateristis found for the standard Penna model, see [10℄. If the repro-dution age is low, e.g. R � 10, then we observe the additional mutationaumulation area whih is onentrated at the youth of individuals.
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Fig. 4. Survival rates for Penna standard model and Penna model on the lattie



1044 D. MakowieIn Fig. 4 we present the survival rates, i.e.,survival_rate(age) = number_of_individuals(age + 1)number_of_individuals(age) (4)for the populations obtained in the lattie and standard Penna models underdi�erent model parameters to ompare the distribution of age. In the ase ofthe standard Penna model the survival rates are normalized, i.e., divided bythe survival_rate(1). It ours that the lattie struture has little in�ueneon the survival rates if the reprodution age starts at the young age. How-ever, the notiable di�erene appears if the reprodution in the populationstarts later on, see, e.g., the urves orresponding to R = 10 in Fig. 4. Thepopulation of the standard Penna model ours to be not as sensitive to thehanges in the mutation ratio as the lattie system.
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Fig. 5. The perentage of the maximal environment apaity oupied by a popu-lation.The most evident disrepany between the two systems disussed appearswhen the population sizes are ompared. In Fig. 5 we present the perentageof the maximal environment apaity oupied by stationary populations. Itours that random deaths a�eting all individuals of the whole populationat the same rate, namely, at the rate given by the Verhulst fator, sqeezesarti�ially the population size.



Penna Model of Biologial Aging on a Lattie 10453.3. Spatial evolutionIn the present subsetion we onsider the spae distribution of the Pennalattie system. In Fig. 6 we show the snapshots of the populations obtainedafter �rst iterations to observe the spatial self-organization. In Fig. 7 onean see the zoomed parts of these snapshots to analize the age distributionin the spae.
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R=10, b=1, m=1Fig. 6. Snapshots of the lattie sites for the Penna model when the reprodutionstart at (a) R = 4 (b) R = 10 after �xed number of iterations. Blak dots denoteoupied sites, white dots denote free spae.
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Fig. 7. Parts of the zoomed snapshots of the lattie sites for the Penna model whenthe reprodution start at (a) R = 4 (b) R = 10 after �xed number of iterations.Di�erent olors represent individuals of di�erent age: gray dots denote individualsyounger than R, balh dots denote individuals at the age of > R.3.4. MortalityThe Penna model on the lattie keeps the property of the exponentialinrease of mortality for adults, i.e., for individuals of the age > R. Fig. 8presents the mortality obtained for di�erent Penna model parameters.
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Fig. 8. Mortality of the Penna model on a lattie (log plot)4. ConlusionsSine the overdominating role of the Verhulst fator in the standardPenna model has been questioned by many authors, see, e.g., [8�10, 14℄,distint modi�ations are formulated to hange the model, to improve theresult, namely, make the model more lose to the real one. Consideringthe Penna population on a lattie we gain the independene of the randomdeaths. The adult individuals die only beause of passing through too manydiseases. Suh a situation ould be seen as somehow extremal. To improveit one an think of introduing some additional killing fator whih providesthe extra probability to die for eah individual. Unlike the Verhulst fatorthis killing fator does not need to be onneted with restrited environmentapaity. Suh a fator would represent, for example, the possible weatherdisasters.



1048 D. MakowieThe three important di�erenes are observed when the basi harater-istis of the standard Penna model are ompared to the Penna model imple-mented on the lattie. First, the distribution of mutations in the populationexhibit the additional aumulation period whih a�ets individuals at theiryouth. Seond, the survival rates depend strongly on the mutational ratio.Third, the sizes reahed by the populations developed in the lattie Pennasystem are notiable greater than the sizes observed in the standard Pennamodel.No signi�ant di�erenes are notied when the two distint lattie bound-ary onditions: the free boundary and the periodi boundary, are onsidered.Presented results are the preliminary ones and the model designed needsfurther invesigations. Speially, we plan to onsider the properties of themortality within the Penna lattie model. The reported in the followingpaper properties of the model allow us to expet to obtain laws for mortalitywhih provide better �ts to the life table data atually observed than theoriginal Penna model.This work is supported by the Gda«sk University Grant: BW 5400-5-0261-9. Parts of the simulations were done in TASK�Aademi ComputerCenter in Gda«sk.. REFERENCES[1℄ M.R. Rose, Evolutionary Biology of Aging, Oxford University Press, New York1991; B. Charlesworth, Evolution in Age-Strutured Populations, 2nd edn,Cambridge University Press, Cambridge 1994.[2℄ H. Krzanowska, A. �omniki, J. Ra�«ski, H. Szarski, J.M. Szymura, Zarysmehanizmów ewoluji, Wydawnitwo Naukowe PWN, Warszawa 1997, in Pol-ish.[3℄ T.J.P. Penna, J. Stat. Phys. 78, 1629 (1995).[4℄ S. Moss de Olveira, P.M.C. de Oliveira, D. Stau�er, Evolution, Money, Warand Computers, Teubner, Stuttgart-Leipzig 1999.[5℄ M.Ya. Azbel, Pro. Roy. So. B263, 1449 (1996); M.Ya. Azbel, Phys. Rep.288, 545 (1997).[6℄ Z. Witkowski, private ommuniation, 1999.[7℄ M.Ya. Azbel, Physia A273, 75 (1999).[8℄ P.M. de Oliveira, S.M. de Oliveira, D. Stau�er, S. Cebrat, Physia A273, 145(1999).[9℄ S. Cebrat, Physia A258, 493 (1999).[10℄ D. Makowie, J. D�abkowski, M. Groth, Physia A273, 169 (1999).[11℄ J. D¡bkowski, M. Groth, D. Makowie, Ata Phys. Pol. B31, 1027 (2000).
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