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We implement the Penna bit-string model of biological aging on a
square lattice to study the evolution of the spatial distributions of the
population when some rules for the coexistence for nearest lattice neigh-
bors are introduced. By doing like this, we want to avoid the usage of
the, so-called, Verhulst factor, which role has been disscused lately. The
basic characteristics: population size, survival rates and mutation distribu-
tion, obtained in the lattice asexual Penna model occur different from the
corresponding ones which are recorded in the standard Penna model.

PACS numbers: 05.45.-a, 89.60.+x

1. Introduction

Recently, many problems have been studied in the interface between
statistical physics and biology. Computer simulations have helped us to un-
derstand several biological processes and, in particular, population dynamics
studies have had significant advances due to the development of this tool.
As an important example, theories about the evolution of biological aging
have been tested by means of computer simulations.

There exist over 300 theories to explain why the earth creatures, espe-
cially human beings, aging when their life time passes and then they die not
because of the lack of food or an enviroment disaster but because of senes-
cence. The evolutionary approach to the aging problem predicts that Dar-
winian selection becomes weaker when the reproduction starts. This implies
that the genetic harmful mutations which would lead to genetic diseases but
which affect at older ages, will spread in the population, thus causing senes-
cence and eventually death. This is known as the mutation-accumulation
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hypothesis, see [1]. The biological motivation for this hypothesis is that the
Alzheimer disease activates at old ages only, although the desease is present
in the genetic code since birth.

Evolutionary hypotheses are rather difficult to test. There are few reli-
able experiments done by biologists supporting the hypothesis of mutation-
accumulation theory, see [2]. Therefore, solutions derived from mathematical
and/or computational models are an interesting way to deal with them.

The Penna aging model is by now the most widespread one for Monte
Carlo simulations, see [3,4]. The Penna model deals with the accumulation
of deleterious mutations in the inherited genome. The distinguish success
of this model arrives from the fact that it is the only Monte Carlo model
giving approximately the exponential increase of mortality of adults that
agrees with the biological observations.

1.1. Some facts about biological aging

The process of aging can be measured by the so-called mortality, i.e.,
by the probability that an individual of a given species will die in a next
time period. It occurs that the mortality depends on the life period of a
individual. The still good proposal for the dependence of the mortality
for humans on the age comes from the XIX century proposition, made by
Gompertz. This fact is known as the Gompertz law. It states that the
probability to die within the next time interval grows exponentially:

mortality (age) o e 26¢, (1)

where b is of the order of 0.09(1/year). Of course, the Gompertz law becomes
wrong for individuals in their old age because the probability to die becomes
larger than unity.

The newest investigations, based on the populations of Japan, Sweden
and Germany during the past 200 years, done by Azbel, modificate the
Gompertz law to the following one, the so-called Azbel law, see 5],

mortah(‘zy (age) o ob (age—X) )
Here the characteristic age X is the same for the whole species and specifies
the maximum age reachable by any individual of the considered species. The
Azbel observed that in the case of humans the maximum age is X = 103+1
year. However, humans were reliable reported to live until the age 122 years
[6]. This contradiction to the Azbel prediction is explained that the Azbel
law (2) applicates for the homogeneous population and describes people at
their average. Whithin one population there are rare families with small b
(or even with b — 0) and for such little b the statistics other than exponential
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have to be considerd, see [4,7]. Therefore, there are individuals that can live
longer, see [4] for the further disccusion.

It can be frustrating that each of us has to die at its genetically deter-
minded age. The progress in human living conditions can influence the slope
b of the Gompertz law but it cannot change X, see [5, 8] for quantitative
analysis.

1.2. The Penna model

In the asexual Penna bit-string model each individual is characterized
by a string of 32 bits, called genome. Each bit of a genome represents one
subsequent period of life, called year. If at age ¢ the ith bit in the genome is
set to one, the individual suffers the effect of a deleterious mutation, called
disease, from this age until death. If the ith bit is set to zero no new
disease occurs. When the total number of accumulated diseases reaches a
value greater than or equal to a limit 7', the individual dies. The individual
can also die because of the lack of food and space. This is taken into account
through the so-called Verhulst factor:

N(t)

V=1- :
Nmax

(3)
where N (t) is the current poplulation size and Npay is the maximum carry-
ing capacity of the environment, defined at the beginning of the simulation.
The Verhulst factor determines for each individual, independently of the in-
dividual both genome and age, the probability to survive. After reaching the
minimum reproduction age R, each year an individual generates b offspring.
The baby’s genome differs from the parent’s one by m bits, randomly se-
lected. Only deleterious mutations are allowed. If a selected bit is equal
to one, it remains set to one in the offspring’s genome. Otherwise, if the
selected bit is equal to zero, the offspring carries an additional deleterious
mutation when compared to its parent.

The results of the simulations of this basic Penna model and its sexual
version can be found in [4] and in references given there.

1.3. Why Penna model on a lattice?

The assumptions of the Penna model have been critically revised by
the brave Polish geneticist, Cebrat, who not only did take a challange to
understand the physicists idea of aging , but also actively joined the physi-
cist community to work on this model, see [9]. One of the assumptions of
the Penna model, negatively evaluated by Cebrat, is the relation between
the developing population and the external environment. This relation is
realised by the described above Verhulst factor. After the time when the
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self-organization process inside a population performs itself to develope the
population that is best fitted to the model parameters, the evolution be-
comes stationary, see [10]. The Verhust factor overdominates the evolution.
The evolution becomes as it is governed by the logistic equation, see [10,11].

By introducing the lattice structure to the Penna model we obtain the
other from the logistic equation type condition for modelling the restrictive
enviroment capacity. Moreover, in a similar way as in the famous Conway’s
“Game of Life” we are free to consider any additional rules for life and death;
rules conditioned by the nearest neighbors interactions.

2. Model description

The population is the collection of individuals living on a square lattice.

Each lattice site is occupied by at least one individual. Each individual is
characterized by:
Bit-string: the life history inherited from a parent and additionally mutated
at the birth with the ratio m. The genome consists of 32 bits which denote
the same as in the standard Penna model described in the previous section.
Age: if an individual survives during one iteration then it will get older by
one time unit. Similarly to the standard Penna model we assume that if an
individual is mature enough (its age is greater than or equal to R) then it
will give b offspring. An individual dies because of suffering from too many
diseases. T denotes the threshold of the allowed diseases.

The extra killing factor arrises from the overcrowding of a space and only
acts on newborn kids. A parent chooses randomly among its four nearest
neighboring sites a place to put a newborn kid. If the chosen site is occupied
then the newborn kid dies. If at the same time two parents choose the same
place then at the equal to each other probability only one of these parents
wins.

Thus individuals older than the newborn ones die only because of too
many diseases carried in their genotypes.

By implementing the evolution of the Penna system on a lattice we can
consider distinct boundary conditions. In the following we examine two
types of boundary conditions:

(a) free boundary: to imitate close systems like lakes or islands,

(b) periodic boundary: to mimic unrestricted life space what can be rep-
resent by oceans or large forests.

Our model can be compared to the model described by Sousa et al.,
see [12]. However, the problem of Verhulst factor influence is not consid-
ered there. In [12] it is assumed that each node of the lattice has its own
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maximum capacity, i.e., its own Verhulst factor. So that in the evolution
there is present a constant killing term coming from these Verhulst factors
and therefore the results obtained by the authors do not provide any new
effects.

The model considered by us can be seen as imitation of the biological
population of plants which can give offspring only in the free nearby area.
Our rules for nearest neighbors interactions are similar to the rules con-
sidered by Wallinga in the model of annual weeds, see [13]. However our
“weeds”, thanks to the age progress in Penna dynamics, live longer than a
year.

3. Results

The Penna lattice system is considered on a square lattice with the linear
size L = 680. This size establishes the maximal environment capacity to
462400 individuals. The initial population consists of 100 individuals with
random genomes and with the common age of 1. Individuals are scattered
randomly on the lattice. The stationary population is reached in less than
5000 iterations. All statistics is made over 10 000 iterations of a stationary
population and over at least three independent experiments.

3.1. Free versus periodic boundary conditions

We perform simulations for both free and periodic boundary condistions
to consider dependence of the results on the boundary type. In Figs1,2,3 we
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Fig. 1. Size of the stationary population developed under different Penna model pa-
rameters and different boundary conditions: free boundary conditions and periodic
boundary conditions.
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Fig.2. Age distribution in the stationary population developed under different
Penna model parameters and different boundary conditions: (a) — free boundary

conditions (b) — periodic boundary conditions.
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Fig.3. Mutations distribution in the stationary population developed under differ-
ent Penna model parameters and different boundary conditions:(a) free boundary

conditions, (b) periodic boundary conditions.
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present the basic characteristics of the models: Fig. 1 is to compare the sizes
of the stationary populations developed under different model parameters
and lattice boundary conditions. Fig. 2 is to show the age distribution, i.e.,
the probability to meet an individual at a given age in stationary popula-
tions. Fig. 3 presents the distrubution of bad mutations, i.e., the probability
that an individual has a given bit of its genome set to 1.

According to the above presented results there is no noticable difference
between boundary conditions introduced. Therefore, in our further investi-
gations we restrict our considerations to the model with periodic boundary
conditions.

3.2. Lattice versus standard Penna model

Just by the eye inspection one can notice that the mutation distribution
in the population developed on a lattice is different from the corresponding
characteristics found for the standard Penna model, see [10]. If the repro-
duction age is low, e.g. R < 10, then we observe the additional mutation
accumulation area which is concentrated at the youth of individuals.
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Fig.4. Survival rates for Penna standard model and Penna model on the lattice
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In Fig. 4 we present the survival rates, i.e.,

number of individuals(age + 1)

(4)

for the populations obtained in the lattice and standard Penna models under
different model parameters to compare the distribution of age. In the case of
the standard Penna model the survival rates are normalized, i.e., divided by
the survival rate(1). It occurs that the lattice structure has little influence
on the survival rates if the reproduction age starts at the young age. How-
ever, the noticable difference appears if the reproduction in the population
starts later on, see, e.g., the curves corresponding to R = 10 in Fig. 4. The
population of the standard Penna model occurs to be not as sensitive to the
changes in the mutation ratio as the lattice system.
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Fig.5. The percentage of the maximal environment capacity occupied by a popu-
lation.

The most evident discrepancy between the two systems discussed appears
when the population sizes are compared. In Fig. 5 we present the percentage
of the maximal environment capacity occupied by stationary populations. It
occurs that random deaths affecting all individuals of the whole population
at the same rate, namely, at the rate given by the Verhulst factor, sqeezes
artificially the population size.
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3.3. Spatial evolution

In the present subsection we consider the space distribution of the Penna
lattice system. In Fig. 6 we show the snapshots of the populations obtained
after first iterations to observe the spatial self-organization. In Fig. 7 one
can see the zoomed parts of these snapshots to analize the age distribution
in the space.

after 10 iterations

after 10iterations

after 100 iterations

after 1000 iteration

after 1000 iteration

R=4, b=1, m=1 R=10, b=1, m=1

Fig.6. Snapshots of the lattice sites for the Penna model when the reproduction
start at (a) R =4 (b) R = 10 after fixed number of iterations. Black dots denote
occupied sites, white dots denote free space.
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R=4(b=1m=1)

R=10(b=1,m=1)

10 iterations:

10 iterations:

100 iterations:

Fig. 7. Parts of the zoomed snapshots of the lattice sites for the Penna model when
the reproduction start at (a) R = 4 (b) R = 10 after fixed number of iterations.
Different colors represent individuals of different age: gray dots denote individuals
younger than R, balch dots denote individuals at the age of > R.

3.4. Mortality

The Penna model on the lattice keeps the property of the exponential
increase of mortality for adults, i.e., for individuals of the age > R. Fig. 8
presents the mortality obtained for different Penna model parameters.



1047

mortality: b=2,m=2 e | | @ R=4 . #
(In plot) —8— R=6 /
el | | —A—- R=8 /
—v— R=10 / /
e’ /
/
et | A b
)'//
2 /
€ A//‘/
e’ /A /’/
et 4 & \ 4
I I I I
2 4 6 8 10 12

——
——
—A—
—v—

V00T
[T TR ]

= = 00 O h

N o

agelyears]

Fig. 8. Mortality of the Penna model on a lattice (log plot)

4. Conclusions

Since the overdominating role of the Verhulst factor in the standard
Penna model has been questioned by many authors, see, e.g., [8-10, 14],
distinct modifications are formulated to change the model, to improve the
result, namely, make the model more close to the real one. Considering
the Penna population on a lattice we gain the independence of the random
deaths. The adult individuals die only because of passing through too many
diseases. Such a situation could be seen as somehow extremal. To improve
it one can think of introducing some additional killing factor which provides
the extra probability to die for each individual. Unlike the Verhulst factor
this killing factor does not need to be connected with restricted environment
capacity. Such a factor would represent, for example, the possible weather
disasters.
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The three important differences are observed when the basic character-
istics of the standard Penna model are compared to the Penna model imple-
mented on the lattice. First, the distribution of mutations in the population
exhibit the additional acumulation period which affects individuals at their
youth. Second, the survival rates depend strongly on the mutational ratio.
Third, the sizes reached by the populations developed in the lattice Penna
system are noticable greater than the sizes observed in the standard Penna
model.

No significant differences are noticed when the two distinct lattice bound-
ary conditions: the free boundary and the periodic boundary, are considered.

Presented results are the preliminary ones and the model designed needs
further invesigations. Specially, we plan to consider the properties of the
mortality within the Penna lattice model. The reported in the following
paper properties of the model allow us to expect to obtain laws for mortality
which provide better fits to the life table data actually observed than the
original Penna model.

This work is supported by the Gdarisk University Grant: BW 5400-5-
0261-9. Parts of the simulations were done in TASK—Academic Computer
Center in Gdarisk..
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