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Formulae are derived for the rise and decay relaxation functions of
third-order electric polarization induced in liquids composed of dipolar,
symmetric-top molecules by rectangular pulse with intermolecular inter-
actions neglected. Smoluchowski equation for rotational diffusion of the
symmetric-top molecules is applied.

PACS numbers: 05.40.—a, 05.45.—a

1. Introduction

The approximate “Smoluchowski—Debye method” for solution of the ro-
tational diffusion equation for non-interacting spherical molecules was used
in classical papers of Kielich and co-workers [1] for a description of non-
linear processes of molecular relaxation in intense electric fields. It is our
aim to apply the extension of Kielich’s method into a medium consisting
of non-interacting dipolar but symmetric-top molecules in the presence of
two-angles dependent external potential V (1, ¢), for a description of the
rise and decay in time of third-order electric polarization. This method was
described recently in details by one of us [2].

* Presented at the XII Marian Smoluchowski Symposium on Statistical Physics
Zakopane, Poland, September 6-12, 1999.
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2. Theory

The Smoluchowski equation of rotational Brownian motion for asym-
metric-top molecules may be written in the form [3]:

of

R A A )

a=xT,Y,2

Here f(9,p,1;t) is the distribution function of rotational motion, D,, are
the diagonal components of the rotational diffusion tensor of the molecule,
L, are the components of a well-known quantum-mechanical angular mo-
mentum operator L, k denotes the Boltzmann constant and 7" - the absolute
temperature, (i> = —1). Here the change in potential energy of the molecule
in an external electric field Fz(t) is denoted by V (49, ¢, 1;t), where 9, ¢, 1
are the Euler angles.
In the case of symmetric-top molecules, this equation reduces to

? o )
8_{ = —D(L”> - L2)f - DyL%f
Dy
—o [ L= LYV + (F(E? = LAV = VI? = L)
Dy
oo |2V s+ FL2V = V(L] 2)

where D) = Dy = Dy, D = D,,. If an external electric field is applied
along the laboratory Z-axis, both the orientational distribution function f
and the change in potential energy of molecules V' depend on two angles:
polar 9 and azimuthal angle ¢, only. By using the operator identities

=02+ L+12 (3)
and . A . A A
2Laf)(LaV) = Ly(Vf) = VLGS = fLAV, (4)
we can write the Smoluchowski equation in the form:
0 . .
2718—f +ELPf+ (1= OLAf
=~ [PV + (- OBV ) +EFEPV (1 - f B2V
—EVLf - (1-9VLLf| (5)
where & = ” is dimensionless parameter describing the anisotropy of rota-

tional diffusion and 7 = m is the Debye relaxation time. Equation (5) can
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be solved by means of the Smoluchowski-Debye method taking into account
the series expansions of orientational distribution function f (4, ¢;t) and the
potential energy V (9, ¢;t) into the powers of the parameters of dipole reori-
entation py, py, p, in the basis of the spherical harmonics functions Yy, (9, ¢).
We assume, that pg,py,p, < 1. With these expansions we can apply some
standard properties of the angular momentum operators

IA/QYlm = l(l + 1)Ylm ’ (6)
and
LY = m?Yi, (7)

together with the orthogonality relation and product and integral rules of
the spherical harmonic functions [4] in order to obtain the f(9, ¢;t). This
method of approximate solution of equation (5), described recently in details
in [2] , is valid in the “low molecular reorientation” case only, but is very well
fulfilled in modern experimental investigations of nonlinear dielectric effect
(NDE), such as recent measurements of the Langevin saturation in dilute
solutions of mesogenic 10-TPEB molecules [5].

In special case of the spherical-top molecules, when & = 1, equation (5)
goes into the well-known Smoluchowski equation depending on the scalar
diffusion coefficient D, = Dj = D only [1,3,6] which is fundamental in the
Kielich classical theory of non-linear electro-optical processes of molecular
rotational relaxation in intense electric fields of high and low frequency [1].

3. The rise in time of linear and nonlinear electric polarization
for rectangular reorienting pulse

We consider a medium consisting of dipolar, symmetric-top molecules
with the dipole momentum components fiz, iy, it The change of its poten-
tial energy in an external electric field F,(t), applied along the laboratory
Z-axis, is equal

1 )
k—TV(ﬁ; ;) = ipe (Vi1 + Y1) + py(Yii — Yi1) — p. Yo, (8)

where we introduced the dimensionless parameters of dipole moment com-

ponents reorientation
o 2w
Pa = kT ? , a=T,Y,

2u.FE |

D = LT g . (9)
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In the classical statistical mechanics approach the electric polarization (P(t))
induced in our medium by an electric field E,(t) is given by the ensemble
averages

2r W

(P(t)) = p//(umsim?singo—i—uysinﬁcosgo

+p, cos ) f(9; p; t) sinddddyp

2w

= // \/7 Yiu+Yio1) - My\/?(yll—yll)

+uzz\/§ylo]fw,go; 1) sinddddy (10)

of the spherical harmonics Y},,. In equation (10) p = % is the density of the
medium and the reorientational distribution function f (¥, ¢;t) can be found
from equation (5). We assume that the intensity of an external electric field
(t >0)

E.(t) = Eog(t) = Eg + $E,(e ™" + &™) ; Ey > E,, (11)

is sufficiently high to induce the linear (P(M)(¢)) and the nonlinear (P3(t))
polarization in the medium. The total polarization splits into two compo-
nents

(P(t)) = (PO@) + (PO +..., (12)
The time-dependence of the linear component of the polarization is given as
pEqg
(PO@) = [+ py) ATy (1) + p2 AL (1)] SET
where the relaxational diffusion functions Af! (¢), which must be found from
the differential equations [2]:

(13)

r0dfy + Afy=g(t),
A + Af; =g(1) (14)

depend on the shape of the electric field g(¢) and the relaxation times 75,,.
In equations (14) dots denote time derivatives. In the case of the field (11)
switched on at the time ¢ = 0 (g(t) = 0 for ¢ < 0) we obtain for the
reorientational rise functions A7 (t) the formulae
ot
) = 1—e ™,

t

Ajp(t) = 1—e 7o, (15)
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and the reorientational relaxation times for symmetric-top molecules are
equal to

Tim = [l +1)Dy = m*(Dy - D1)] ", (16)

and depend on both components of the rotational diffusion tensor. The time-
dependency of the nonlinear component of the electric polarization (10) is
given by the formula [2]

PO =~ {2+ P AT () + AT
3
F 02+ AR (O + O s (7

and the nonlinear relaxation functions A%*(¢), obey the equations [2]:

TloA%Z + A" = Agg(),
Tz 1 Tz T
Ti0ATR" + AT = 59@) [3A3] — A5G
T A" + AT = %[ + (26 — 1) A5g]
AT22 Tz22 g T Tz 2z
mA” + AT = 1—(i-)§ [A50 + 3EA5T — 26 A55] . (18)

We see from equation (18) that the cubic relaxation functions A7 (t) de-
pend on the quadratic relaxation functions A{%(¢), which obey the equa-
tions [2]:

T0ASS + A3 = AT, (t)g(t),
o035 + A5 = Afp(t)g(t),
T ASS + A35 = A7 (H)g(t),
T Agy + A3) = ﬁAm(t) + ml‘lu(t) g(t). (19)

The nonlinear reorientational relaxation functions Aj**(t), for the electric
field (11), are equal to

3 __t -t 3t __t
z2zz t — 1 — —e 7'10 — —e 720 — ———¢ 710 20
10 (1) 4 4 2 710 ’ (20
_t - --L
() = 1—ane 7 +axe 7 +aye
t .t
_bll_e 1, (21)

T11
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_t _t _t
:fgz(t) + :ffz(t) = 2+ cjpe 710 4+ c¢p1e Tl 4 cgpe ™20
ot t __t t __t

4co1e ™1 +djg—e T0 +djp—e T, (22)

T10 T11
where only terms with ES’ are included. The coefficients a;jp,, bjm, ¢ and
dy, in equations (21) and (22) depend on the anisotropy & of the diffusion

tensor components D, D), and are equal to

(¢-1(11-¢)  36+7¢

G R T
_ (26 —1)(11 = ¢)

ST

azp = a1 —az — 1,

anM, for £#5,

T+30( -0

2 [ 3 %B+o] 1l-¢ 3 (142 1-2¢
‘0 = 5[5—5 8(1+5£)] G- - <§1+55 2)
3 [3£<5+5) (1+2€)(5+£)_1]_1

( b)

34+E€ 41 +58) (1+56)(3+¢)

2 3 9¢(5 + &) 3 [E4+282 1-2¢
o= 5[5—5_8(1+55)]+5 <1+55_ 2)
35 54¢ 1+ 2¢ 1—2¢
4[+1+5§<‘“3+5)_2<5—5)]’

943
020_20 4§a
o = e[+ e < “g5c)
3 [f (14+26)(5 5)_1]
C3+€ 401 5) (1+58)((3+¢) ’
g = 304+29)(G+¢
0T 21 +59)(B+ &)
9¢2(5
dn:—ﬁ. (23)

In particular case £ = 5 we have

<57 39 ¢ 3¢ )t 57 ot

128 + 48 11 + 4711790

) = 1-
741 _ ¢t 21-309 __t_
CECEZ()+ACEZZ() = 24 — e T0 +
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1855 —t 5 _t 165 ¢t —t

205 T8 T B

251 ¢t _ ¢ 1 ¢+ __t

_ e i ———e 7o, 24
104Tlle " TQOe * ( )

Equations (12)—(24) describe the influence of the anisotropy of rotational dif-
fusion tensor £ on the dynamic of electric polarization induced by the rectan-
gular field. The rise components, equations (20)—(24), depend on the expo-
nential terms of the type exp(—i) with the symmetric-top molecule relax-
ation times 719, 711, T20, 721 and on the non-exponential terms — —%e Tltm
— with 710, 711. So the rise of the polarizations (13) and (17) may signifi-
cantly differ from the pure exponential curves.

At a sufficiently long time ¢ >> 7y, after switching on of the rectangular
electric field g(t) = Ey dielectric attains his steady state (s.s.),

im(8:5.) = Afp(s.8.) = Ajp®(ss) = 1, (25)

characterized by a stationary value of the electric polarization equal to

2 2 12

w Eqy ueEg
P(s.s.)) = 1- 2
(P(s.5.)) '03kT < 15k2T2)’ (26)

where p? = ji-ji= p2 + u?/ + p2. The particular case ¢ = 1 describes the
rotational diffusion of the dipolar but spherical-top molecules [1, 3], [6-8]
when the Smoluchowski equation (5) takes the simpler form

271% +L°f = = _2I<:—T [LQ(Vf) + fLPV — VLQf] (27)

and the change of the potential energy of the dielectric depends on two angles
9 and . Equation (5) was a basis of the extended Debye theory of dielectric
relaxation of nematic liquid crystals by Coffey [8]. For the spherical-top
molecules with the permanent dipole components p, # py # p. # 0 we
simply have £ = 1 and 711 = 710, T2 = To1 = To9, SO equations (14), (18),
(19) reduce to the set

TloA?l + A?l = g(t) 3 I = Oa 1 )
T20Agla + Agla = g(t) 11> I = 07 ]-a 2 )
T AT + AP = g()AS®,  1=0,1, (28)

where o = z, 9.
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We see that the rise processes of rotational diffusion depend now on the
relaxation times 79 and 799 only and equations (13) and (17) reduce to:
pEqg
3KT’

3

3 _ 4 pEqg
(PO) = -t AT ()2l

In the case of spherical-top molecules for which p,; = p, = 0 and only
l, # 0 the rise of the nonlinear polarization is simply [9]

E3
o s o) (30)

(PO@) = p?Afp(1)

(29)

(PO(B) =

4. Decay of linear and nonlinear electric polarization

We consider the decay of polarization, after switching the electric field
off, at the time ¢ = t¢. This case is simpler then that described previously,
because we have V (¢, p;t) = 0 for ¢ > ¢p and the equation (5) takes the
simple form

1 of
D, at
The decay of polarization is described by equations (13) and (17) but

+ELPf+ (1 - €)L2f = 0. (31)

with the reorientational decay functions Dl(gz) (t) instead of rise functions
A (t). Our extension of the Kielich theory on the symmetric-top molecules

gives the linear differential equations for the decay-functions Dl(:%) (t)

TimDim (t) + Dim (t) = 0, (32)

where the dot denotes the time-derivative. With a simple assumption that
the dielectric has attained the stationary state, given by equations (25, 26),
Dy (t > t9) = 1, we have just

__t_ __t
Dlm(t):Dlm(tO)e Tim = € Tim (33)

as an exponential decay for all components of the polarization, so the decay
of the polarization is equal to

E
(PO@) = [ +pd)e 70 +ple 7] 20 (34)
3 _ 2 2 2 L 2 —=1 P
(PO = = (2 + g2 + i) [(u2 + )70 + 270 | 220 (35)

From the above equations we see that the decays of polarization components
are simply the superposition of two exponentials with the relaxation times
T11 and T 10-
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5. Conclusions

Equations (12)-(24) and (35) describe the rise in time and decay of
the third-order electric polarization in dielectric media composed of non-
interacting symmetric-top molecules. The rotational relaxation times 711, 729
and 791, given by formula (16), for the symmetric-top molecules may signif-
icantly differ from those of the spherical molecules — 71 = 79, T2 = T99.
The difference mainly depends on the anisotropy parameter £ = D / D. In
Fig. 1 the ratios

2
711/710 = ma
/ 3
T99/Tog = ———
22/ 720 1+2§7
6
7'21/7'20 = ma (36)

versus the parameter ¢ are presented. We can see that all ratios go to zero
when ¢ — inf. For ¢ < 1 these ratios are higher than 1, so the respective
exponentials in equations (20)-(22) and (24) grow faster than in the case of
spherical molecules.

In Fig. 2 we present the nonlinear relaxation (rise and decay) functions
(zzx)

Aq9(t) and Dqo(t) versus % The corresponding graphs for A7 (t) and

D1 (t) are shown in Fig. 5 and for the sums Ay, " (t)+ A7, (t) and Dyo(t)+
Dq1(t) in Fig. 3 and Fig. 4. These curves describe the influence of the
anisotropy of the diagonal components of rotational diffusion tensor on the
dynamic of the nonlinear dielectric effect (NDE) [10,11].

Since NDE is an important method for measurements of the Langevin
electric saturation in dilute solutions of dipolar molecules [5,12,13] it seems
that our theory will stimulate the time-dependent investigations of nonlinear
dielectric effect.
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Flg 1. The ratios T11/T10, T22/T20 and 7-21/7-20
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versus the anisotropy parameter £.
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Fig. 2. The nonlinear relaxation functions A7) (#) (rise) and Dio(t) (decay) versus
t/m independent of £, see the explanation in the text.
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Fig.3. The nonlinear relaxation functions A%“)(t) + Aﬁ“) (t) (rise) and D1o(t) +
Dy, (t) (decay) versus t/m for selected values of £ < 0.5.
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Fig.4. The nonlinear relaxation functions A%m)(t) + Ag”{“) (t) (rise) and D1o(t) +
Dy, (t) (decay) versus t/m for selected values of £ > 0.5.
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Fig.5. The nonlinear relaxation functions A§1 )(t) (rise) and D11 (t) (decay) versus
t/m for selected values of &.
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Fig. 6. The nonlinear relaxation functions 42" (¢) (rise) and Dy (t) (decay) versus

t/m for selected values of ¢ around & = 5.
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Fig. 7. The nonlinear relaxation functions A%m)(t) + Ag?zz) (t) (rise) and D1o(t) +
Dy (t) (decay) versus t/m for selected values of ¢ around & = 5.
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