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INFINITELY DIVISIBLE WAITING-TIMEDISTRIBUTIONS UNDERLYING THE EMPIRICALRELAXATION RESPONSES�A. JurlewizInstitute of Mathematis, Wroªaw University of TehnologyWyspia«skiego 27, 50�370 Wroªaw, Polande-mail: agniesz�im.pwr.wro.pland K. WeronInstitute of Physis, Wroªaw University of TehnologyWyspia«skiego 27, 50�370 Wroªaw, Polande-mail: karina�rainbow.if.pwr.wro.pl(Reeived January 12, 2000)The frequeny-domain Havriliak�Negami and the time-domainKohlraush�Williams�Watts relaxation funtions have found widespreadaeptane in representing the relaxation data of dieletri systems. Sineboth funtions yield an aurate desription of real data in orrespondingdomains, a relationship between them is often suggested. In this paper weshow that although a suitable hoie of the parameters an lead in someranges to a very small deviation between the plots of the funtions, theempirial responses follow from learly di�erent mathematial reasons. We�nd a ommon probabilisti origin of both empirial relaxation funtions.We obtain that the orresponding waiting-time distributions are in�nitelydivisible what may provide a lue to explain the universality observed inrelaxation phenomena.PACS numbers: 77.22.Gm, 02.50.Cw1. IntrodutionThe �anomalous� nonexponential relaxation responses of various omplexsystems have attrated muh attention of sientists for several deades. Thenatural desription of suh systems, introduing the notion of distribution� Presented at the XII Marian Smoluhowski Symposium on Statistial PhysisZakopane, Poland, September 6�12, 1999.(1077)



1078 A. Jurlewiz, K. Weronfuntions of di�erent physial quantities (random bonds, �elds, relaxationtimes et., see e.g. [1�11℄), learly implies the use of probability theory teh-nique.The present paper is an attempt to shed some light on the probabilistibakground of the empirial funtions used to �t the dieletri relaxationdata [1�4℄. The frequeny dieletri spetra are interpreted mainly by meansof the Havriliak�Negami (HN) funtion de�ned as:�(!)� �1�0 � �1 = ��HN(!) = 1(1 + (i�HN!)a)b ; (1)where 0 < a; ab � 1, the onstant �1 represents the asymptotial value ofthe dieletri suseptibility �(!) at high frequenies and �0 is the value ofthe opposite limit. For a = 1 and b < 1 formula (1) takes the form known asthe empirial Cole�Davidson (CD) funtion, for b = 1 and a < 1 it takes theform of the Cole�Cole (CC) funtion, while for a = 1 and b = 1 one obtainsthe lassial Debye (D) formula.On the other hand, the time-dependent response of dieletri systemsto a steady eletri �eld is usually desribed by the Kohlraush�Williams�Watts (KWW) funtion�KWW(t) = exp��� t�KWW�� ; (2)where 0 <  < 1. For both funtions the parameter � with a respetiveindex has the meaning of a time onstant harateristi to the material.The HN and KWW funtions have both found a widespread aeptanein representing the relaxation data in the orresponding domains and there-fore the interonnetion between them has been the subjet of several at-tempts to relaxation phenomena. Despite the dissimilarity of funtionalforms of the onsidered funtions it has been laimed on the basis of nu-merial investigations [3, 12�14℄ that within experimental error the KWWfuntion is a spei� ase of the HN funtion. One should notie, however,that the numerial similarity of the funtions an be stated in some rangesonly, see e.g. �gure 1. The relation between the KWW and HN funtions ishene worth being lari�ed by means of rigorous mathematial analysis on-erning the underlying stohasti nature of both funtions. Moreover, somemathematial rigour in physial onsiderations is surely needed to trae theorigin of the existing distribution funtions of random quantities and toindiate the universality of the observed relaxation responses.
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Fig. 1. The time-domain numerial omparison of the HN and KWW responsesin the log�log sale. The dotted lines orrespond to the Mittag�Le�er densitiesunderlying the HN funtion, the solid lines � to the Weibull densities underlyingthe KWW funtion.2. Probabilisti representation of empirial responsesRelaxing physial system an be onsidered as a system undergoing anirreversible transition from initial state A, imposed at time t = 0, to stateB that di�ers from A in some physial parameter. The transition A ! B,de�ned as the hange of this partiular parameter (although hanges in allother parameters may also have an in�uene on the proess), takes plae ata random instant of time � that value is equal to the system's waiting timefor the transition. The onditional probability p(t; dt) that the system willundergo the transition during the time interval (t; t+ dt) provided that thetransition did not oure before time t an be expressed by means of therandom variable �: p(t; dt) = Pr(t � � � t+ dt j � � t) : (3)As dt! 0, probability (3) an be rewritten in a form more useful for furtheronsiderations, namely, p(t; dt) = �d lnPr(� � t) ;where Pr(� � t) is the system's survival probability in the initial state by atime interval not less than t, i.e. the probability that the transition of the



1080 A. Jurlewiz, K. Weronsystem from its initial state did not happen prior to the time instant t (fordetails, see [15℄).The survival probability Pr(� � t) determines relaxation response inboth, time and frequeny domains. The time-domain relaxation funtion�(t) equals [5, 6, 15℄: �(t) = Pr(� � t) = 1� F�(t) ; (4)where F�(t) denotes the waiting-time distribution for the system to hangeits initial state. The frequeny�domain response ��(!) is related to thefuntion �(t) by the one-sided Fourier transform:��(!) = 1Z0 e�i!t ��d�(t)dt � dt ;that, using the notion of the random waiting time � introdued above, anbe rewritten as ��(!) = De�i!�E = 1Z0 e�i!t f(t) dt : (5)The waiting-time probability density funtion f(t) = dF�(t)dt in (5) is equal to�d�(t)dt and an be reognized as the response funtion. The representation ofthe time- and frequeny-domain relaxation funtions by means of the randomvariable �, Eqs. (4) and (5), permits us to indiate the ommon probabilistisheme underlying the appearane of the empirially established relaxationfuntions.For the KWW funtion (2) it is easy to reognize that the waiting time �in (4) has the Weibull distribution, de�ned by its density funtion [16, 17℄w(t) = A � tA��1 exp��� tA�� ; t > 0;with the shape parameter equal to  and the sale parameter A = �KWW.In order to study properties of the distribution of the waiting time � thatorresponds to the HN funtion (1) let us take into aount the followingformula � = A Sa (�b)1=a; 0 < a � 1; b > 0 ; (6)for the random variable �. Here Sa is suh a random variable that its Laplaetransform is the strethed exponential funtion
e�sSa� = 1Z0 e�st ha(t) dt = e�sa ; 0 < a � 1 ; (7)



In�nitely Divisible Waiting-Time Distributions : : : 1081and it is a well-known fat that when a < 1 the random variable Sa has tobe distributed aording to one-sided Lévy-stable law with the probabilitydensity funtion ha(t) (given by the series representation, for details see[18, 19℄). In ase a = 1 we have S1 = 1 with probability 1 so that h1(t) =Æ0(t� 1) is the Dira delta funtion. Moreover, the distribution of Sa tendsto the degenerate distribution of S1 as a! 1.The random variable �b in (6) is independent of Sa and distributedaording to the gamma law [16℄ de�ned by the probability density funtiongb(t) = 1� (b) tb�1e�t; t > 0 ;with � (�) being the speial gamma funtion [16℄. It is worth noting that theLaplae transform of �b takes the form
e�s�b� = 1Z0 e�st gb(t) dt = 1(1 + s)b : (8)Finally, the positive onstant A is a sale parameter.For � given by (6) one obtains from the time-frequeny relation (5) andproperties (7), (8) that��(!) = De�i!A Sa (�b)1=aE = 1Z0 0� 1Z0 e�i!Ast1=aha(s) ds1A gb(t) dt= 1Z0 e�(i!At1=a)agb(t) dt = 1Z0 e�(i!A)atgb(t) dt = 1(1 + (iA!)a)b :Therefore the waiting time � of the form (6) with 0 < ab � 1 and A = �HNrepresents the HN funtion (2) and, moreover, in the time domain we have�HN(t) = 1Z0 �1�Gb�� t�HNs�a�� ha(s) ds ; (9)where Gb(x) = R x0 gb(t) dt.On the other hand, the distribution of the random variable � given by (6)is known as the generalized Mittag�Le�er distribution [20℄ and hene thetime-domain relaxation funtion related to the HN funtion has the followingseries representation�HN(t) = 1� 1Xk=0 (�1)k � (b+ k)� (b) k!� (1 + a(b+ k)) � t�HN�a(b+k) : (10)



1082 A. Jurlewiz, K. WeronThe orresponding response funtionfHN(t) = 1Xk=0 (�1)k � (b+ k)� (b) k!� (a(b+ k)) 1�HN � t�HN�a(b+k)�1 (11)an be reognized as the Riesz funtion. It should be mentioned that alreadytwo deades ago it has been suggested [21℄ that the Riesz funtion (11) mayrepresent any arbitrary arrangement of Debye deays in the time domain.Formula (6) and hene the time-domain relaxation funtion (9) take onsimpler forms in ase of the CD, CC and D responses. For the CD funtion(a = 1, 0 < b < 1) one gets the gamma waiting-time distribution and�CD(t) = 1�Gb t�CD :The respetive response funtion equals fCD(t) = gb(t=�CD)=�CD . Similarily,in ase of the D funtion (a = b = 1) the orresponding waiting time isdistributed aording to the exponential law and�D(t) = 1� e�t=�D ; t > 0 :For the CC response b = 1 so that the gamma part of formula (6) beomesan exponentially distributed random variable and the waiting time � has theMittag�Le�er distribution [20℄. The series representation (10) is simpli�edto �CC(t) = 1� 1Xk=0 (�1)k� (1 + a(1 + k)) � t�CC�a(1+k) :It is worth noting that all the waiting-time distributions underlying theonsidered empirial relaxation responses are in�nitely divisible [22, 23℄. Inase of the HN funtion it follows diretly from the form (1) of frequeny-domain funtion ��(!), for the KWW funtion it is the onsequene ofin�nite divisibility of the Weibull distribution with the shape parameter lessthan 1 [24℄.In order to �nd a relation between the HN and KWW funtions it shouldbe taken into aount that the random variable � 1=1 has the Weibull dis-tribution with the shape parameter equal to . Therefore the waiting timesrepresenting the funtions an be onsidered as spei� ases of a randomvariable of the form � = A Sa (�b)1=a (12)with 0 < a;  � 1 and b > 0. One gets here the KWW funtion for a = b = 1,0 <  < 1 and A = �KWW, the HN funtion if  = 1, 0 < a; ab � 1, fordetails see Table I.



In�nitely Divisible Waiting-Time Distributions : : : 1083TABLE IWaiting-time distributions underlying the empirial relaxation responsesEmpirial Waiting time Waiting time distributionresponse � = A Sa (�b)1=a F�(t) = 1, 0 < a; ab < 1 Generalized Mittag�Le�er distributionHN � = �HN Sa (�b)1=a with the sale onstant �HN > 0and the parameters 0 < a; ab < 1b = 1,  = 1, 0 < a < 1 Mittag�Le�er distributionCC � = �CC Sa (�1)1=a with the sale onstant �CC > 0and the parameter 0 < a < 1a = 1,  = 1, 0 < b < 1 Gamma distributionCD � = �CD �b with the sale onstant �CD > 0and the parameter 0 < b < 1a = 1, b = 1, 0 <  < 1 Weibull distributionKWW � = �KWW (�1)1= with the sale onstant �KWW > 0and the parameter 0 <  < 1a = 1, b = 1,  = 1 Exponential distributionD � = �D �1 with the sale onstant �D > 0
3. Conluding remarksThe relationship between the frequeny-domain HN and the time-domain KWW funtions has been studied in terms of the probabilisti ap-proah to relaxation. The ommon probabilisti origin of both relaxationfuntions given by the general formula (12) for the system's waiting timefor the transition from the initial nonequilibrium state has been found. Al-though both funtions follow from the same formula (12), they result fromdi�erent mathematial onstraints imposed on the parameters of the waiting-time distribution F�(t), see Table I. The ranges of the parameters determinethe dissimilar funtional forms of the empirial relaxation funtions, as wellas the di�erent stohasti mehanisms [9, 15℄ underlying them, and it ishene lear that the KWW funtion annot be onsidered as a spei� aseof the HN funtion. However, the �equivalene� of both funtions, expetedon the basis of experimental data and numerial studies [3, 12�14℄, an bereahed by suh a hoie of sale onstants and distribution parameters thatthe distintion between graphial representations of both funtions in therange taken into aount is very small [13, 14℄, see also �gure 1.It is still an open question what a stohasti relaxation mehanism,physially aeptable, an meet the ondition (12) uniquely determining the
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