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The frequency-domain Havriliak—-Negami and the time-domain
Kohlrausch—-Williams—Watts relaxation functions have found widespread
acceptance in representing the relaxation data of dielectric systems. Since
both functions yield an accurate description of real data in corresponding
domains, a relationship between them is often suggested. In this paper we
show that although a suitable choice of the parameters can lead in some
ranges to a very small deviation between the plots of the functions, the
empirical responses follow from clearly different mathematical reasons. We
find a common probabilistic origin of both empirical relaxation functions.
We obtain that the corresponding waiting-time distributions are infinitely
divisible what may provide a clue to explain the universality observed in
relaxation phenomena.

PACS numbers: 77.22.Gm, 02.50.Cw

1. Introduction

The “anomalous” nonexponential relaxation responses of various complex
systems have attracted much attention of scientists for several decades. The
natural description of such systems, introducing the notion of distribution
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functions of different physical quantities (random bonds, fields, relaxation
times etc., see e.g. [1-11]), clearly implies the use of probability theory tech-
nique.

The present paper is an attempt to shed some light on the probabilistic
background of the empirical functions used to fit the dielectric relaxation
data [1-4]. The frequency dielectric spectra are interpreted mainly by means
of the Havriliak-Negami (HN) function defined as:

X(W) = Xoo _ ey — 1
VR N 1+ ) (1)

where 0 < a,ab < 1, the constant y_, represents the asymptotical value of
the dielectric susceptibility x(w) at high frequencies and x, is the value of
the opposite limit. For ¢ = 1 and b < 1 formula (1) takes the form known as
the empirical Cole-Davidson (CD) function, for b =1 and a < 1 it takes the
form of the Cole—Cole (CC) function, while for = 1 and b = 1 one obtains
the classical Debye (D) formula.

On the other hand, the time-dependent response of dielectric systems
to a steady electric field is usually described by the Kohlrausch—Williams—
Watts (KWW) function

v = (- (=) )

where 0 < ¢ < 1. For both functions the parameter 7 with a respective
index has the meaning of a time constant characteristic to the material.

The HN and KWW functions have both found a widespread acceptance
in representing the relaxation data in the corresponding domains and there-
fore the interconnection between them has been the subject of several at-
tempts to relaxation phenomena. Despite the dissimilarity of functional
forms of the considered functions it has been claimed on the basis of nu-
merical investigations [3, 12-14] that within experimental error the KWW
function is a specific case of the HN function. One should notice, however,
that the numerical similarity of the functions can be stated in some ranges
only, see e.g. figure 1. The relation between the KWW and HN functions is
hence worth being clarified by means of rigorous mathematical analysis con-
cerning the underlying stochastic nature of both functions. Moreover, some
mathematical rigour in physical considerations is surely needed to trace the
origin of the existing distribution functions of random quantities and to
indicate the universality of the observed relaxation responses.
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Fig.1. The time-domain numerical comparison of the HN and KWW responses
in the log—log scale. The dotted lines correspond to the Mittag—Lefler densities
underlying the HN function, the solid lines — to the Weibull densities underlying
the KWW function.

2. Probabilistic representation of empirical responses

Relaxing physical system can be considered as a system undergoing an
irreversible transition from initial state A, imposed at time ¢ = 0, to state
B that differs from A in some physical parameter. The transition A — B,
defined as the change of this particular parameter (although changes in all
other parameters may also have an influence on the process), takes place at
a random instant of time 6 that value is equal to the system’s waiting time
for the transition. The conditional probability p(t,dt) that the system will
undergo the transition during the time interval (¢,t + dt) provided that the
transition did not occure before time ¢ can be expressed by means of the
random variable 6:

p(t,dt) =Pr(t <O <t+dt|0>1). (3)

As dt — 0, probability (3) can be rewritten in a form more useful for further
considerations, namely,

p(t,dt) = —dInPr(0 > t),

where Pr(6 > t) is the system’s survival probability in the initial state by a
time interval not less than ¢, i.e. the probability that the transition of the
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system from its initial state did not happen prior to the time instant ¢ (for
details, see [15]).

The survival probability Pr(6 > t) determines relaxation response in
both, time and frequency domains. The time-domain relaxation function
#(t) equals [5,6,15]:

B(t) = Pr(0 > 1) = 1 — Fy(d), (4)

where Fy(t) denotes the waiting-time distribution for the system to change
its initial state. The frequency-domain response ¢*(w) is related to the
function ¢(t) by the one-sided Fourier transform:

¢ (w) = 70 o (—%ﬁf’) dt,

0

that, using the notion of the random waiting time 6 introduced above, can
be rewritten as

5@ = () = [ gty an (5)
0

The waiting-time probability density function f(t) = dli;’t(t) in (5) is equal to
— %&t) and can be recognized as the response function. The representation of

the time- and frequency-domain relaxation functions by means of the random
variable 0, Eqs. (4) and (5), permits us to indicate the common probabilistic
scheme underlying the appearance of the empirically established relaxation
functions.

For the KWW function (2) it is easy to recognize that the waiting time 0
in (4) has the Weibull distribution, defined by its density function [16,17]

wAﬂ:3%<%)01ap<—<%>3, t>0,

with the shape parameter equal to ¢ and the scale parameter A = Tww.

In order to study properties of the distribution of the waiting time 0 that
corresponds to the HN function (1) let us take into account the following
formula

0=AS, ()" 0<a<1,b>0, (6)
for the random variable . Here S, is such a random variable that its Laplace
transform is the stretched exponential function

oo
(e %5y = /eSt ho(t)dt=e", 0<a<1, (7)
0
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and it is a well-known fact that when a < 1 the random variable S, has to
be distributed according to one-sided Lévy-stable law with the probability
density function hg(t) (given by the series representation, for details see
[18,19]). In case a = 1 we have Sy = 1 with probability 1 so that h(t) =
do(t — 1) is the Dirac delta function. Moreover, the distribution of S, tends
to the degenerate distribution of S7 as a — 1.

The random variable I}, in (6) is independent of S, and distributed
according to the gamma law [16] defined by the probability density function

Loyt
t) = ——t t>0
gb( ) F(b) €, >0,

with I'(-) being the special gamma function [16]. It is worth noting that the
Laplace transform of I, takes the form

(e75b) = /e_St gp(t) dt = a j 3 (8)
0

Finally, the positive constant A is a scale parameter.
For 6 given by (6) one obtains from the time-frequency relation (5) and
properties (7), (8) that

P*(w) = <e_“”A Sa (Ib) Ua / / Aty (s)ds | gy(t) dt
0
o0

oo

— —(iwAt' /@) “ / (iwA)e dt _ 1
/e ¢ 1+ (iAw)?)b

0

Therefore the waiting time 6 of the form (6) with 0 < ab < 1 and A = mn
represents the HN function (2) and, moreover, in the time domain we have

pun () =70{1—Gb <<TH15)G)}’M(3”3’ (9)
0

where Gy(x f gp(t

On the other hand, the distribution of the random variable 8 given by (6)
is known as the generalized Mittag—Leffler distribution [20] and hence the
time-domain relaxation function related to the HN function has the following
series representation

> )k (b + k) ¢\ UbtHk)
O3 e () O
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The corresponding response function

X0 (=DFrB+k) 1 [ ¢ MRt
F(b) k!F(a(b—i—k)) THN < )

fax(t) = (11)

o THN
can be recognized as the Riesz function. It should be mentioned that already
two decades ago it has been suggested [21] that the Riesz function (11) may
represent any arbitrary arrangement of Debye decays in the time domain.
Formula (6) and hence the time-domain relaxation function (9) take on
simpler forms in case of the CD, CC and D responses. For the CD function

(a=1,0 < b< 1) one gets the gamma waiting-time distribution and
t
$ep(t) =1 -Gy —.
TCD

The respective response function equals fcp(t) = gs(t/7cp)/7cp - Similarily,
in case of the D function (a = b = 1) the corresponding waiting time is
distributed according to the exponential law and

ppt)=1—e¥Y™ t>0.

For the CC response b = 1 so that the gamma part of formula (6) becomes
an exponentially distributed random variable and the waiting time 6 has the
Mittag—Leffler distribution [20]. The series representation (10) is simplified

to
. (—1)k t)
qbcc(t)—l_kz_op(1+a(1+k)) < ) .

TCC

It is worth noting that all the waiting-time distributions underlying the
considered empirical relaxation responses are infinitely divisible [22,23]. In
case of the HN function it follows directly from the form (1) of frequency-
domain function ¢*(w), for the KWW function it is the consequence of
infinite divisibility of the Weibull distribution with the shape parameter less
than 1 [24].

In order to find a relation between the HN and KWW functions it should
be taken into account that the random variable Fll /¢ has the Weibull dis-
tribution with the shape parameter equal to ¢. Therefore the waiting times
representing the functions can be considered as specific cases of a random
variable of the form

0=AS,(I})"/ (12)

with 0 < a,¢ < 1and b > 0. One gets here the KWW function fora =b=1,
0 <c¢c<1and A = mkww, the HN function if ¢ = 1, 0 < a,ab < 1, for
details see Table I.
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TABLE 1
Waiting-time distributions underlying the empirical relaxation responses

Empirical Waiting time Waiting time distribution
response =AS, () Fy(t)

c=1,0<a,ab< 1 Generalized Mittag—Leffler distribution

HN 6 = tan S, (I‘b)l/a with the scale constant Tun > 0
and the parameters 0 < a,ab < 1
b=1c¢c=1,0<ax<1 Mittag—Leffler distribution
CccC 0 = rcc Sa (L) with the scale constant 7cc > 0
and the parameter 0 < a < 1
a=1c¢c=1,0<b<1 Gamma distribution
CD 0 =7cp Iy with the scale constant 7¢p > 0
and the parameter 0 < b < 1
a=1,b=1,0<c<1 Weibull distribution
KWW 6 = reww (Ih)"/° with the scale constant Tww > 0
and the parameter 0 < c < 1
a=1,b=1c=1 Exponential distribution
D =1 I, with the scale constant 7p > 0

3. Concluding remarks

The relationship between the frequency-domain HN and the time
-domain KWW functions has been studied in terms of the probabilistic ap-
proach to relaxation. The common probabilistic origin of both relaxation
functions given by the general formula (12) for the system’s waiting time
for the transition from the initial nonequilibrium state has been found. Al-
though both functions follow from the same formula (12), they result from
different mathematical constraints imposed on the parameters of the waiting-
time distribution Fy(t), see Table I. The ranges of the parameters determine
the dissimilar functional forms of the empirical relaxation functions, as well
as the different stochastic mechanisms [9, 15] underlying them, and it is
hence clear that the KWW function cannot be considered as a specific case
of the HN function. However, the “equivalence” of both functions, expected
on the basis of experimental data and numerical studies [3, 12-14], can be
reached by such a choice of scale constants and distribution parameters that
the distinction between graphical representations of both functions in the
range taken into account is very small [13,14], see also figure 1.

It is still an open question what a stochastic relaxation mechanism,
physically acceptable, can meet the condition (12) uniquely determining the
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common origins of the HN and KWW relaxation functions. The obtained
property of the empirical types of dielectric responses, namely, the infinite
divisibility of the corresponding waiting-time distributions, may provide a
clue to better understanding of the origins of relaxation phenomena.
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