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INFINITELY DIVISIBLE WAITING-TIMEDISTRIBUTIONS UNDERLYING THE EMPIRICALRELAXATION RESPONSES�A. Jurlewi
zInstitute of Mathemati
s, Wro
ªaw University of Te
hnologyWyspia«skiego 27, 50�370 Wro
ªaw, Polande-mail: agniesz�im.pwr.wro
.pland K. WeronInstitute of Physi
s, Wro
ªaw University of Te
hnologyWyspia«skiego 27, 50�370 Wro
ªaw, Polande-mail: karina�rainbow.if.pwr.wro
.pl(Re
eived January 12, 2000)The frequen
y-domain Havriliak�Negami and the time-domainKohlraus
h�Williams�Watts relaxation fun
tions have found widespreada

eptan
e in representing the relaxation data of diele
tri
 systems. Sin
eboth fun
tions yield an a

urate des
ription of real data in 
orrespondingdomains, a relationship between them is often suggested. In this paper weshow that although a suitable 
hoi
e of the parameters 
an lead in someranges to a very small deviation between the plots of the fun
tions, theempiri
al responses follow from 
learly di�erent mathemati
al reasons. We�nd a 
ommon probabilisti
 origin of both empiri
al relaxation fun
tions.We obtain that the 
orresponding waiting-time distributions are in�nitelydivisible what may provide a 
lue to explain the universality observed inrelaxation phenomena.PACS numbers: 77.22.Gm, 02.50.Cw1. Introdu
tionThe �anomalous� nonexponential relaxation responses of various 
omplexsystems have attra
ted mu
h attention of s
ientists for several de
ades. Thenatural des
ription of su
h systems, introdu
ing the notion of distribution� Presented at the XII Marian Smolu
howski Symposium on Statisti
al Physi
sZakopane, Poland, September 6�12, 1999.(1077)
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tions of di�erent physi
al quantities (random bonds, �elds, relaxationtimes et
., see e.g. [1�11℄), 
learly implies the use of probability theory te
h-nique.The present paper is an attempt to shed some light on the probabilisti
ba
kground of the empiri
al fun
tions used to �t the diele
tri
 relaxationdata [1�4℄. The frequen
y diele
tri
 spe
tra are interpreted mainly by meansof the Havriliak�Negami (HN) fun
tion de�ned as:�(!)� �1�0 � �1 = ��HN(!) = 1(1 + (i�HN!)a)b ; (1)where 0 < a; ab � 1, the 
onstant �1 represents the asymptoti
al value ofthe diele
tri
 sus
eptibility �(!) at high frequen
ies and �0 is the value ofthe opposite limit. For a = 1 and b < 1 formula (1) takes the form known asthe empiri
al Cole�Davidson (CD) fun
tion, for b = 1 and a < 1 it takes theform of the Cole�Cole (CC) fun
tion, while for a = 1 and b = 1 one obtainsthe 
lassi
al Debye (D) formula.On the other hand, the time-dependent response of diele
tri
 systemsto a steady ele
tri
 �eld is usually des
ribed by the Kohlraus
h�Williams�Watts (KWW) fun
tion�KWW(t) = exp��� t�KWW�
� ; (2)where 0 < 
 < 1. For both fun
tions the parameter � with a respe
tiveindex has the meaning of a time 
onstant 
hara
teristi
 to the material.The HN and KWW fun
tions have both found a widespread a

eptan
ein representing the relaxation data in the 
orresponding domains and there-fore the inter
onne
tion between them has been the subje
t of several at-tempts to relaxation phenomena. Despite the dissimilarity of fun
tionalforms of the 
onsidered fun
tions it has been 
laimed on the basis of nu-meri
al investigations [3, 12�14℄ that within experimental error the KWWfun
tion is a spe
i�
 
ase of the HN fun
tion. One should noti
e, however,that the numeri
al similarity of the fun
tions 
an be stated in some rangesonly, see e.g. �gure 1. The relation between the KWW and HN fun
tions ishen
e worth being 
lari�ed by means of rigorous mathemati
al analysis 
on-
erning the underlying sto
hasti
 nature of both fun
tions. Moreover, somemathemati
al rigour in physi
al 
onsiderations is surely needed to tra
e theorigin of the existing distribution fun
tions of random quantities and toindi
ate the universality of the observed relaxation responses.
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Fig. 1. The time-domain numeri
al 
omparison of the HN and KWW responsesin the log�log s
ale. The dotted lines 
orrespond to the Mittag�Le�er densitiesunderlying the HN fun
tion, the solid lines � to the Weibull densities underlyingthe KWW fun
tion.2. Probabilisti
 representation of empiri
al responsesRelaxing physi
al system 
an be 
onsidered as a system undergoing anirreversible transition from initial state A, imposed at time t = 0, to stateB that di�ers from A in some physi
al parameter. The transition A ! B,de�ned as the 
hange of this parti
ular parameter (although 
hanges in allother parameters may also have an in�uen
e on the pro
ess), takes pla
e ata random instant of time � that value is equal to the system's waiting timefor the transition. The 
onditional probability p(t; dt) that the system willundergo the transition during the time interval (t; t+ dt) provided that thetransition did not o

ure before time t 
an be expressed by means of therandom variable �: p(t; dt) = Pr(t � � � t+ dt j � � t) : (3)As dt! 0, probability (3) 
an be rewritten in a form more useful for further
onsiderations, namely, p(t; dt) = �d lnPr(� � t) ;where Pr(� � t) is the system's survival probability in the initial state by atime interval not less than t, i.e. the probability that the transition of the
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z, K. Weronsystem from its initial state did not happen prior to the time instant t (fordetails, see [15℄).The survival probability Pr(� � t) determines relaxation response inboth, time and frequen
y domains. The time-domain relaxation fun
tion�(t) equals [5, 6, 15℄: �(t) = Pr(� � t) = 1� F�(t) ; (4)where F�(t) denotes the waiting-time distribution for the system to 
hangeits initial state. The frequen
y�domain response ��(!) is related to thefun
tion �(t) by the one-sided Fourier transform:��(!) = 1Z0 e�i!t ��d�(t)dt � dt ;that, using the notion of the random waiting time � introdu
ed above, 
anbe rewritten as ��(!) = De�i!�E = 1Z0 e�i!t f(t) dt : (5)The waiting-time probability density fun
tion f(t) = dF�(t)dt in (5) is equal to�d�(t)dt and 
an be re
ognized as the response fun
tion. The representation ofthe time- and frequen
y-domain relaxation fun
tions by means of the randomvariable �, Eqs. (4) and (5), permits us to indi
ate the 
ommon probabilisti
s
heme underlying the appearan
e of the empiri
ally established relaxationfun
tions.For the KWW fun
tion (2) it is easy to re
ognize that the waiting time �in (4) has the Weibull distribution, de�ned by its density fun
tion [16, 17℄w
(t) = 
A � tA�
�1 exp��� tA�
� ; t > 0;with the shape parameter equal to 
 and the s
ale parameter A = �KWW.In order to study properties of the distribution of the waiting time � that
orresponds to the HN fun
tion (1) let us take into a

ount the followingformula � = A Sa (�b)1=a; 0 < a � 1; b > 0 ; (6)for the random variable �. Here Sa is su
h a random variable that its Lapla
etransform is the stret
hed exponential fun
tion
e�sSa� = 1Z0 e�st ha(t) dt = e�sa ; 0 < a � 1 ; (7)
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t that when a < 1 the random variable Sa has tobe distributed a

ording to one-sided Lévy-stable law with the probabilitydensity fun
tion ha(t) (given by the series representation, for details see[18, 19℄). In 
ase a = 1 we have S1 = 1 with probability 1 so that h1(t) =Æ0(t� 1) is the Dira
 delta fun
tion. Moreover, the distribution of Sa tendsto the degenerate distribution of S1 as a! 1.The random variable �b in (6) is independent of Sa and distributeda

ording to the gamma law [16℄ de�ned by the probability density fun
tiongb(t) = 1� (b) tb�1e�t; t > 0 ;with � (�) being the spe
ial gamma fun
tion [16℄. It is worth noting that theLapla
e transform of �b takes the form
e�s�b� = 1Z0 e�st gb(t) dt = 1(1 + s)b : (8)Finally, the positive 
onstant A is a s
ale parameter.For � given by (6) one obtains from the time-frequen
y relation (5) andproperties (7), (8) that��(!) = De�i!A Sa (�b)1=aE = 1Z0 0� 1Z0 e�i!Ast1=aha(s) ds1A gb(t) dt= 1Z0 e�(i!At1=a)agb(t) dt = 1Z0 e�(i!A)atgb(t) dt = 1(1 + (iA!)a)b :Therefore the waiting time � of the form (6) with 0 < ab � 1 and A = �HNrepresents the HN fun
tion (2) and, moreover, in the time domain we have�HN(t) = 1Z0 �1�Gb�� t�HNs�a�� ha(s) ds ; (9)where Gb(x) = R x0 gb(t) dt.On the other hand, the distribution of the random variable � given by (6)is known as the generalized Mittag�Le�er distribution [20℄ and hen
e thetime-domain relaxation fun
tion related to the HN fun
tion has the followingseries representation�HN(t) = 1� 1Xk=0 (�1)k � (b+ k)� (b) k!� (1 + a(b+ k)) � t�HN�a(b+k) : (10)
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orresponding response fun
tionfHN(t) = 1Xk=0 (�1)k � (b+ k)� (b) k!� (a(b+ k)) 1�HN � t�HN�a(b+k)�1 (11)
an be re
ognized as the Riesz fun
tion. It should be mentioned that alreadytwo de
ades ago it has been suggested [21℄ that the Riesz fun
tion (11) mayrepresent any arbitrary arrangement of Debye de
ays in the time domain.Formula (6) and hen
e the time-domain relaxation fun
tion (9) take onsimpler forms in 
ase of the CD, CC and D responses. For the CD fun
tion(a = 1, 0 < b < 1) one gets the gamma waiting-time distribution and�CD(t) = 1�Gb t�CD :The respe
tive response fun
tion equals fCD(t) = gb(t=�CD)=�CD . Similarily,in 
ase of the D fun
tion (a = b = 1) the 
orresponding waiting time isdistributed a

ording to the exponential law and�D(t) = 1� e�t=�D ; t > 0 :For the CC response b = 1 so that the gamma part of formula (6) be
omesan exponentially distributed random variable and the waiting time � has theMittag�Le�er distribution [20℄. The series representation (10) is simpli�edto �CC(t) = 1� 1Xk=0 (�1)k� (1 + a(1 + k)) � t�CC�a(1+k) :It is worth noting that all the waiting-time distributions underlying the
onsidered empiri
al relaxation responses are in�nitely divisible [22, 23℄. In
ase of the HN fun
tion it follows dire
tly from the form (1) of frequen
y-domain fun
tion ��(!), for the KWW fun
tion it is the 
onsequen
e ofin�nite divisibility of the Weibull distribution with the shape parameter lessthan 1 [24℄.In order to �nd a relation between the HN and KWW fun
tions it shouldbe taken into a

ount that the random variable � 1=
1 has the Weibull dis-tribution with the shape parameter equal to 
. Therefore the waiting timesrepresenting the fun
tions 
an be 
onsidered as spe
i�
 
ases of a randomvariable of the form � = A Sa (�b)1=a
 (12)with 0 < a; 
 � 1 and b > 0. One gets here the KWW fun
tion for a = b = 1,0 < 
 < 1 and A = �KWW, the HN fun
tion if 
 = 1, 0 < a; ab � 1, fordetails see Table I.
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al relaxation responsesEmpiri
al Waiting time Waiting time distributionresponse � = A Sa (�b)1=a
 F�(t)
 = 1, 0 < a; ab < 1 Generalized Mittag�Le�er distributionHN � = �HN Sa (�b)1=a with the s
ale 
onstant �HN > 0and the parameters 0 < a; ab < 1b = 1, 
 = 1, 0 < a < 1 Mittag�Le�er distributionCC � = �CC Sa (�1)1=a with the s
ale 
onstant �CC > 0and the parameter 0 < a < 1a = 1, 
 = 1, 0 < b < 1 Gamma distributionCD � = �CD �b with the s
ale 
onstant �CD > 0and the parameter 0 < b < 1a = 1, b = 1, 0 < 
 < 1 Weibull distributionKWW � = �KWW (�1)1=
 with the s
ale 
onstant �KWW > 0and the parameter 0 < 
 < 1a = 1, b = 1, 
 = 1 Exponential distributionD � = �D �1 with the s
ale 
onstant �D > 0
3. Con
luding remarksThe relationship between the frequen
y-domain HN and the time-domain KWW fun
tions has been studied in terms of the probabilisti
 ap-proa
h to relaxation. The 
ommon probabilisti
 origin of both relaxationfun
tions given by the general formula (12) for the system's waiting timefor the transition from the initial nonequilibrium state has been found. Al-though both fun
tions follow from the same formula (12), they result fromdi�erent mathemati
al 
onstraints imposed on the parameters of the waiting-time distribution F�(t), see Table I. The ranges of the parameters determinethe dissimilar fun
tional forms of the empiri
al relaxation fun
tions, as wellas the di�erent sto
hasti
 me
hanisms [9, 15℄ underlying them, and it ishen
e 
lear that the KWW fun
tion 
annot be 
onsidered as a spe
i�
 
aseof the HN fun
tion. However, the �equivalen
e� of both fun
tions, expe
tedon the basis of experimental data and numeri
al studies [3, 12�14℄, 
an berea
hed by su
h a 
hoi
e of s
ale 
onstants and distribution parameters thatthe distin
tion between graphi
al representations of both fun
tions in therange taken into a

ount is very small [13, 14℄, see also �gure 1.It is still an open question what a sto
hasti
 relaxation me
hanism,physi
ally a

eptable, 
an meet the 
ondition (12) uniquely determining the
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ommon origins of the HN and KWW relaxation fun
tions. The obtainedproperty of the empiri
al types of diele
tri
 responses, namely, the in�nitedivisibility of the 
orresponding waiting-time distributions, may provide a
lue to better understanding of the origins of relaxation phenomena.This work was supported by KBN Grant No. 2 P03B 100 13.REFERENCES[1℄ C.J.F. B®tt
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