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HOW HETEROGENOUS STRUCTURE OF TISSUEEFFECTS ITS DIELECTRIC CHARACTERISTICS�Maªgorzata KotulskaWroªaw University of Tehnology, Faulty of Basi Problems of TehnologyDivision of Measuring and Medial InstrumentsWybrze»e Wyspia«skiego 27, 50-370 Wroªaw, Polande-mail: kotulska�pwr.wro.pland Agnieszka JurlewizWroªaw University of Tehnology, Faulty of Basi Problems of TehnologyInstitute of MathematisWybrze»e Wyspia«skiego 27, 50-370 Wroªaw, Poland(Reeived November 15, 1999)In the presented paper a new mathematial model of dispersion � intissue dieletri response is introdued. It is proposed that interfaial phe-nomena and saling properties of tissue aount for power-law form of thisregion. The response � of tissue is onsidered with regard to probabilistinature of its membrane omponents. The system is represented by an ele-tri iruit of parallel R�C subiruits with randomly distributed R andC values. It is shown that for the power law behaviour of tissue dieletrisuseptibility �(!) in the � response area the distribution of the variate(RC)�1, representing the relaxation rate of a single subiruit, should haveheavy tails. The results indiate that the variations in loal environment(loal randomness) an provide a basis for self-similar relaxation dynamiswithout the need for hierarhially onstrained fratal models.PACS numbers: 87.10.+e 1. IntrodutionThe frequeny domain measurements of various plant and animal tis-sues reveal [4℄ four distint regions in their dieletri response (�gure 1). Atthe lowest frequeny range the non-ideal di�usion of ions through biologialmembranes takes plae. Between 1 Hz and 106 Hz the highly dispersive� Presented at the XII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 6�12, 1999.(1085)



1086 M. Kotulska, A. Jurlewizresponse � is observed. It results from lateral movement of slowly mobileharge arriers along biologial membranes. This proess, whih involvestransport and storage of ions in the system, is an example of yet little un-derstood Low Frequeny Dispersion (LFD) phenomenon [10℄. As frequenyreahes high enough value (about 106 Hz) we observe dispersion �. Thisregion, whih is of our speial interest in this paper, stems from interfaialphenomena. In the very high frequeny area (above 109 Hz) the response is observed. It is hardly distintive for the examined material, sine itoriginates in dieletri properties of tissue eletrolytes and in relaxation ofbound water dipoles. (The ited rossover values are harateristi for thejade leaves � Crassula Portulaaeae [4℄).
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Fig. 1. Typial dieletri harateristis of tissueThe region of dispersion � exhibits power law dieletri harateristis,whih has been identi�ed as the Constant Phase Angle (CPA) response [4,9℄.It means that the real and imaginary omponents of dieletri suseptibility� (!) = �0 (!) � i�00 (!) follow the same funtion of frequeny, whih is ofpower law form: �0 (!) / �00 (!) / !s�1; 0 < s < 1: (1)The �rst dieletri model of animal tissue, given by Shwan [12℄, treatedit as a onduting medium (extra-ellular �uid) with suspended spherialells. The ells are enlosed in almost non-onduting biologial membranes,�lled with a onduting �uid. Sine there are also sub-ellular and supra-ellular strutures of the same organization, this model was extended [4℄ intoa deterministi fratal of a self-similar, hierarhial struture. The units are



How Heterogenous Struture of Tissue E�ets : : : 1087of the same onstrution but on di�erent size sales. On the basis of thismodel many attempts have been taken to investigate the phenomena respon-sible for the typial dieletri response of tissue, among others an eletriiruit approah. Below we introdue an eletri model of tissue and employit to explain dieletri properties of tissue in the range of dispersion �. Next,the onditions neessary for the CPA type of this response are mathemati-ally derived and the results of omputer simulation are presented.2. Eletri model of dispersion �For a long time, numerous attempts have been made to design the eletriiruit that ould re�et all dieletri properties of tissue. In the 1920'sPhilippson proposed one of the �rst eletri models of the ell, as a simpleR�C iruit (�gure 2), where Re is the resistane of the ell interior, Cm theapaitane of the ell membrane and Rm the membrane resistane [11℄.
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Fig. 2. Eletri model of a ell by PhilippsonIn the following years various eletri models of tissue were proposed.However, there has never been any fully suessful result obtained. None ofthe proposed eletri iruits ould model all dieletri phenomena ourringin tissue, that is: di�usion, interfaial phenomena and dipole relaxation.Nevertheless, the eletri iruit approah seems to be a good idea tomodel dispersion � sine it results from non-equal permittivities and on-dutivities of membranes within a tissue. Suh heterogenous systems ex-hibit frequeny-dependent properties, whih are di�erent from either of theonstituent phases. The phenomenon of this type is known as the Maxwell-Wagner e�et [3, 8℄ and is usually modelled by resistor-apaitor networks.Among other eletri models of tissue, there was one [4℄ arising fromself-similar struture of tissue, based on fratal eletri iruit of perola-tion type. Although it an model dispersion � quite well, the results areonstrained by assumption of deterministi self-similar saling of the tissuestruture and therefore �xed relationship between the impedane of mem-branes and their interior.



1088 M. Kotulska, A. JurlewizWe should, however, stress that the loal randomness is ubiquitous forbiologial systems. Thus, there is a variety of membrane dieletri parame-ters, whih results in the diversity of their harateristis. Hene, we proposeanother eletri reursive model, in whih we take into aount the randomnature of a biologial medium. The elementary membrane struture is rep-resented by the irreduible iruit of the shape similar to that proposed byPhilippson.Following the fratal onstrution (�gure 3) we obtain a iruit, whihrepresents dieletri features of tissue, provided small size of eletrodes, inthe range of dispersion �. It is worth noting that, in ontradition to otherfratal iruits, we do not assume equal, deterministi values of eah R andC values. Instead, we allow for their random distribution. We also assumeindependene between eletri parameters of eah membrane and its interior.
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Fig. 3. Suessive embedding of the biologial membrane system, suh as tissue, ineletri representation.



How Heterogenous Struture of Tissue E�ets : : : 1089It ould be fairly easy to predit a behaviour of suh a system provided asmall number of omponents and their onstant values [3℄. However, we dealwith a large number of randomly distributed R, C elements. In suh a ase,instead of the standard eletri analysis, we an employ the probabilistiapproah.3. The probabilisti origins of the power law formof dispersion � in tissueFor a omplex biologial system, suh as tissue, where the propertiesof its elements never take exatly the same onstant value and an be ap-proximated only by their most frequent values, the probabilisti approahmay provide an explanation of global harateristis, without exat param-eters of eah onstituent membrane. Suh models give strit onstraints onthe mathematial form of the relaxation funtion and in natural way leadfrom loal randomness to the global determinism, harateristi of omplexbiologial system.The objetive of our analysis is to provide information on the stohastiproperties of the investigated eletri iruit whih are responsible for theCPA behavior (1) of its dieletri harateristis.Due to the relation between impedane Z(!) of the system and its di-eletri suseptibility �(!): Z(!) / (i!�(!))�1property (1) may be expressed in terms of the impedane, Z(!), as:Z 0(!) / Z 00(!) / !�s; 0 < s < 1; (2)for the � response area of frequeny. On the other hand impedane Z(!) ofthe analyzed eletri iruit equals:Z(!) = NXk=1( 1Rk + i!Ck)�1 = NXk=1 Rk1 + i!=bk ; (3)where N represents the number of subiruits, Rk and bk = (RkCk)�1 denoteresistane and relaxation rate of the k-th subiruit, respetively.Considering single elements parameters as random variables whose val-ues re�et the real physial situation one an see that variates Rk, bk,k = 1; : : : ; N , form a sample taken from a joint distribution of randomvariables R, B, representing the resistane and the relaxation rate of a sin-gle subiruit, respetively. Then, in a system onsisting of a very large



1090 M. Kotulska, A. Jurlewiznumber N of subiruits, formula (3) an be replaed by its approximationZ(!) = N �� R1 + i!=B�aording to the Law of Large Numbers. Assuming stohasti independeneof random variables R and B one obtains thatZ(!) = N � hRi �� 11 + i!=B� : (4)(Let us notie that suh an assumption does not ontradit the physialintuition of the phenomenon sine B depends only on dieletri propertiesof the material, while R is greatly in�uened by its geometry.)Sine the expeted value hRi is independent of the frequeny ! theimpedane Z(!) of the form (4) responds to the CPA type of behavior(1), expressed in terms of the impedane Z(!) in relation (2), only providedthat: K(!) = � 11 + i!=B� / !�s; 0 < s < 1; (5)for ! taken from the region of dispersion �.Now, the distribution of relaxation rate B that results in the dependene(5) should be spei�ed. We haveK(!) = 1Z0 11 + i!=bf(b)db;where f(b) is a density funtion of the random variable B. Sine11 + i!=b = 1Z0 e�i!tbe�btdt;we reeive that: K(!) = 1Z0 k(t)e�i!tdt (6)for k(t) = 1Z0 f(b)be�btdb: (7)



How Heterogenous Struture of Tissue E�ets : : : 1091Aording to the Fourier transform quality [1℄ we have for 0 < � < 1 andnon negative funtion h(t)1Z0 h(t)e�i!tdt / !�� for ! !1if and only if h(t) / t��1 for t! 0+:Similarly, from the Tauberian theorem [1, 5℄ the relation1Z0 g(b)e�btdb / t� for t! 0+for 0 < � < 1 and nonnegative funtion g(b) is satis�ed only provided thatg(b) / b���1 for b!1:It follows from the above properties of Fourier and Laplae transforms thatK(!), given by formula (6) with k(t) of the form (7), ful�ls relation (5)(and therefore (2)) for large ! if and only if the density funtion f(b) of thedistribution of B satis�es the onditionf(b) / b�s�1 for large b: (8)Condition (8) means [5,13,15℄ that the relaxation rate of a single R�C unithas heavy-tailed distribution from the domain of attration of a Lévy-stablelaw with stability index equal to the parameter s.4. Model and details of omputer simulationThe theoretial result of the previous setion suggests that the CPAharateristis (1), for the systems represented by the eletri iruit of theproposed shape with randomly distributed R and C values, requires heavy�tailed, satisfying ondition (8) distribution of relaxation rate B = (RC)�1.However, it was formally derived only for ! ! 1, whih is not a physi-al situation. To show the usefulness of the above onsiderations for �nitefrequeny values (from � response region) the departure from the theoreti-al result has been examined by means of omputer simulations. We haveinvestigated the dieletri suseptibility harateristis, obtained from theeletri model aording to the formula�(!) =  i!hRi NXk=1 11 + i!=bk!�1 ;



1092 M. Kotulska, A. Jurlewizwhere b1; : : : ; bN are variates of a heavy�tailed random variable (RC)�1.Computations were onduted for three distributions satisfying ondition(8): a stable distribution [13,15℄ with appropriate index of stability, and two,Pareto and Burr, distributions from its domain of attration [2,7,14℄. Valuesof random variable S�, 0 < � < 1, distributed aording to the Lévy-stablelaw with stability index � have been generated by means of the relation [6℄:S� = w0A� sin(�(V + �=2))(os(V ))1=� � �os(V � � (V + �=2)E �(1��)=� ;where: A� = �1 + tan2 ��2 � 12� ;V is a random variable uniformly distributed on ���2 ; �2 �, E is independentof V exponential random variable with mean value 1, and w0 > 0 is a saleparameter.Variates of the Pareto random variable Pk with parameter k have beenobtained via the transformation [14℄Pk = w0(U�1=k � 1) (9)from a uniform random variable U on [0; 1℄. Similarly, for generating valuesof Burr random variable Bp;k with parameters p; k the transformationBp;k = w0 �U�1=k � 1�1=p (10)has been used. In both formulas w0 > 0 is a sale parameter. Additionally, toprovide that the distribution of Pk, Bp;k belongs to the domain of attrationof stable law S�, 0 < � < 1, we have taken k = 1=� in ase of Pareto formula(9), and k = p=� in ase of Burr transformation (10).5. ResultsThe results of simulation for Pareto distribution for k = 2 (s = 0:5),w0 = 10�5, for two di�erent numbers of elementary iruits are presented in�gures 4 and 5. In aordane with the theoretial results, for N = 105, wehave reeived the linear dependene of �0(!) and �00(!) in the log�log salewith the slopes a0sym = �0:49, a00sym = �0:52, while the theoretial values area0 = a00 = �0:50. It has been also observed that an inrease in the numberof subiruits results in the expansion of the CPA region to the diretion ofhigher frequenies.The simulations for Burr distribution (�gure 6) for p = 5, k = 10(s = 0:5), w0 = 10�5, and for the stable distribution (�gure 7) with stability
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Fig. 4. Dieletri harateristis of the investigated eletri iruit for Pareto distri-bution (s = 0:5, w0 = 10�5) of eah subiruit relaxation time and 103 subiruits.
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Fig. 5. Dieletri harateristis of the investigated eletri iruit for Pareto distri-bution (s = 0:5, w0 = 10�5) of eah subiruit relaxation time and 105 subiruits.index � = 0:5 (s = 0:5), w = 10�5, have also been lose to the theoretialresult. The examination for other values of distribution parameters (whihorrespond to di�erent values of parameter s), for all investigated distri-



1094 M. Kotulska, A. Jurlewizbutions, did not show any signi�ant departure from the theoretial slopeseither. At the end of the simulation we exeuted reliability tests, in whihthe omputations were repeated one hundred times for eah ase. The testsproved that the mean linear slopes are very lose to their theoretial valuesand the standard deviations are very minor.
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Fig. 6. Dieletri harateristis of the investigated eletri iruit for Burr distri-bution (p = 5, k = 10, w0 = 10�5) of eah subiruit relaxation time and 105subiruits.The results on�rmed that the theoretial model an be applied for phys-ial phenomenon modelling, also in the �nite range � of frequeny values.It should be noted, however, that the simulation revealed two limitsof the CPA region. While the low frequeny boundary was theoretiallypredited sine the reasoning is valid only for high enough frequenies, theupper limit origin should be lari�ed. The explanation of this phenomenonis obvious if we take into regard the di�erene between eletrial and prob-abilisti approahes. The probabilisti model assumes in�nite number ofsubiruits in order to introdue the averaging proedure (4), whih is thenused to obtain ondition (8) for the distribution of the relaxation rate. Thesimulation based on more realisti eletrial model, has been onduted for�nite number of subiruits, without the averaging. Therefore, for largernumber of subiruits the upper boundary is shifted to higher frequenies(ompare �gures 4 and 5). Nevertheless, this limitation does not stand inthe way to apply the model. In the experimental harateristis the CPAregions are also limited from both sides.
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Fig. 7. Dieletri harateristis of the investigated eletri iruit for stable distri-bution (s = 0:5, w0 = 10�5) of eah subiruit relaxation time and 105 subiruits.6. SummaryIn this paper we have proposed an alternative to deterministi fratalapproah in modelling dieletri phenomena by eletri iruits. The analy-sis was presented for a iruit onstruted as a series of parallel subiruits,whih is often used to model Maxwell-Wagner phenomenon. We have shownthat CPA harateristis of power-law form an be obtained not only for theiruit of the deterministi nature. Namely, in the framework of a proba-bilisti approah whih assumes randomly distributed R and C elements, wehave found the relation between the CPA harateristis and heavy tails ofthe distribution of a single subiruit's relaxation rate b = (RC)�1. The-oretial asymptotial results have been illustrated by omputer simulationsfor �nite frequeny values. REFERENCES[1℄ N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular variation, Cambridge Uni-versity Press, Cambridge 1989.[2℄ I.W. Burr, Ann. Math. Statist. 13, 215 (1942).[3℄ H.G.L. Coster, T.C. Chilott, A.C.F. Coster, Bioeletrohemistry and Bioen-ergetis, 40, 79 (1996).[4℄ L.A. Dissado, Phys. Med. Biol. 35, 1487 (1990).
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