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HOW HETEROGENOUS STRUCTURE OF TISSUEEFFECTS ITS DIELECTRIC CHARACTERISTICS�Maªgorzata KotulskaWro
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hnology, Fa
ulty of Basi
 Problems of Te
hnologyDivision of Measuring and Medi
al InstrumentsWybrze»e Wyspia«skiego 27, 50-370 Wro
ªaw, Polande-mail: kotulska�pwr.wro
.pland Agnieszka Jurlewi
zWro
ªaw University of Te
hnology, Fa
ulty of Basi
 Problems of Te
hnologyInstitute of Mathemati
sWybrze»e Wyspia«skiego 27, 50-370 Wro
ªaw, Poland(Re
eived November 15, 1999)In the presented paper a new mathemati
al model of dispersion � intissue diele
tri
 response is introdu
ed. It is proposed that interfa
ial phe-nomena and s
aling properties of tissue a

ount for power-law form of thisregion. The response � of tissue is 
onsidered with regard to probabilisti
nature of its membrane 
omponents. The system is represented by an ele
-tri
 
ir
uit of parallel R�C sub
ir
uits with randomly distributed R andC values. It is shown that for the power law behaviour of tissue diele
tri
sus
eptibility �(!) in the � response area the distribution of the variate(RC)�1, representing the relaxation rate of a single sub
ir
uit, should haveheavy tails. The results indi
ate that the variations in lo
al environment(lo
al randomness) 
an provide a basis for self-similar relaxation dynami
swithout the need for hierar
hi
ally 
onstrained fra
tal models.PACS numbers: 87.10.+e 1. Introdu
tionThe frequen
y domain measurements of various plant and animal tis-sues reveal [4℄ four distin
t regions in their diele
tri
 response (�gure 1). Atthe lowest frequen
y range the non-ideal di�usion of ions through biologi
almembranes takes pla
e. Between 1 Hz and 106 Hz the highly dispersive� Presented at the XII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 6�12, 1999.(1085)



1086 M. Kotulska, A. Jurlewi
zresponse � is observed. It results from lateral movement of slowly mobile
harge 
arriers along biologi
al membranes. This pro
ess, whi
h involvestransport and storage of ions in the system, is an example of yet little un-derstood Low Frequen
y Dispersion (LFD) phenomenon [10℄. As frequen
yrea
hes high enough value (about 106 Hz) we observe dispersion �. Thisregion, whi
h is of our spe
ial interest in this paper, stems from interfa
ialphenomena. In the very high frequen
y area (above 109 Hz) the response
 is observed. It is hardly distin
tive for the examined material, sin
e itoriginates in diele
tri
 properties of tissue ele
trolytes and in relaxation ofbound water dipoles. (The 
ited 
rossover values are 
hara
teristi
 for thejade leaves � Crassula Portula
a
eae [4℄).
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Fig. 1. Typi
al diele
tri
 
hara
teristi
s of tissueThe region of dispersion � exhibits power law diele
tri
 
hara
teristi
s,whi
h has been identi�ed as the Constant Phase Angle (CPA) response [4,9℄.It means that the real and imaginary 
omponents of diele
tri
 sus
eptibility� (!) = �0 (!) � i�00 (!) follow the same fun
tion of frequen
y, whi
h is ofpower law form: �0 (!) / �00 (!) / !s�1; 0 < s < 1: (1)The �rst diele
tri
 model of animal tissue, given by S
hwan [12℄, treatedit as a 
ondu
ting medium (extra-
ellular �uid) with suspended spheri
al
ells. The 
ells are en
losed in almost non-
ondu
ting biologi
al membranes,�lled with a 
ondu
ting �uid. Sin
e there are also sub-
ellular and supra-
ellular stru
tures of the same organization, this model was extended [4℄ intoa deterministi
 fra
tal of a self-similar, hierar
hi
al stru
ture. The units are
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ts : : : 1087of the same 
onstru
tion but on di�erent size s
ales. On the basis of thismodel many attempts have been taken to investigate the phenomena respon-sible for the typi
al diele
tri
 response of tissue, among others an ele
tri

ir
uit approa
h. Below we introdu
e an ele
tri
 model of tissue and employit to explain diele
tri
 properties of tissue in the range of dispersion �. Next,the 
onditions ne
essary for the CPA type of this response are mathemati-
ally derived and the results of 
omputer simulation are presented.2. Ele
tri
 model of dispersion �For a long time, numerous attempts have been made to design the ele
tri

ir
uit that 
ould re�e
t all diele
tri
 properties of tissue. In the 1920'sPhilippson proposed one of the �rst ele
tri
 models of the 
ell, as a simpleR�C 
ir
uit (�gure 2), where Re is the resistan
e of the 
ell interior, Cm the
apa
itan
e of the 
ell membrane and Rm the membrane resistan
e [11℄.
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Fig. 2. Ele
tri
 model of a 
ell by PhilippsonIn the following years various ele
tri
 models of tissue were proposed.However, there has never been any fully su

essful result obtained. None ofthe proposed ele
tri
 
ir
uits 
ould model all diele
tri
 phenomena o

urringin tissue, that is: di�usion, interfa
ial phenomena and dipole relaxation.Nevertheless, the ele
tri
 
ir
uit approa
h seems to be a good idea tomodel dispersion � sin
e it results from non-equal permittivities and 
on-du
tivities of membranes within a tissue. Su
h heterogenous systems ex-hibit frequen
y-dependent properties, whi
h are di�erent from either of the
onstituent phases. The phenomenon of this type is known as the Maxwell-Wagner e�e
t [3, 8℄ and is usually modelled by resistor-
apa
itor networks.Among other ele
tri
 models of tissue, there was one [4℄ arising fromself-similar stru
ture of tissue, based on fra
tal ele
tri
 
ir
uit of per
ola-tion type. Although it 
an model dispersion � quite well, the results are
onstrained by assumption of deterministi
 self-similar s
aling of the tissuestru
ture and therefore �xed relationship between the impedan
e of mem-branes and their interior.
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zWe should, however, stress that the lo
al randomness is ubiquitous forbiologi
al systems. Thus, there is a variety of membrane diele
tri
 parame-ters, whi
h results in the diversity of their 
hara
teristi
s. Hen
e, we proposeanother ele
tri
 re
ursive model, in whi
h we take into a

ount the randomnature of a biologi
al medium. The elementary membrane stru
ture is rep-resented by the irredu
ible 
ir
uit of the shape similar to that proposed byPhilippson.Following the fra
tal 
onstru
tion (�gure 3) we obtain a 
ir
uit, whi
hrepresents diele
tri
 features of tissue, provided small size of ele
trodes, inthe range of dispersion �. It is worth noting that, in 
ontradi
tion to otherfra
tal 
ir
uits, we do not assume equal, deterministi
 values of ea
h R andC values. Instead, we allow for their random distribution. We also assumeindependen
e between ele
tri
 parameters of ea
h membrane and its interior.
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Fig. 3. Su

essive embedding of the biologi
al membrane system, su
h as tissue, inele
tri
 representation.
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ture of Tissue E�e
ts : : : 1089It 
ould be fairly easy to predi
t a behaviour of su
h a system provided asmall number of 
omponents and their 
onstant values [3℄. However, we dealwith a large number of randomly distributed R, C elements. In su
h a 
ase,instead of the standard ele
tri
 analysis, we 
an employ the probabilisti
approa
h.3. The probabilisti
 origins of the power law formof dispersion � in tissueFor a 
omplex biologi
al system, su
h as tissue, where the propertiesof its elements never take exa
tly the same 
onstant value and 
an be ap-proximated only by their most frequent values, the probabilisti
 approa
hmay provide an explanation of global 
hara
teristi
s, without exa
t param-eters of ea
h 
onstituent membrane. Su
h models give stri
t 
onstraints onthe mathemati
al form of the relaxation fun
tion and in natural way leadfrom lo
al randomness to the global determinism, 
hara
teristi
 of 
omplexbiologi
al system.The obje
tive of our analysis is to provide information on the sto
hasti
properties of the investigated ele
tri
 
ir
uit whi
h are responsible for theCPA behavior (1) of its diele
tri
 
hara
teristi
s.Due to the relation between impedan
e Z(!) of the system and its di-ele
tri
 sus
eptibility �(!): Z(!) / (i!�(!))�1property (1) may be expressed in terms of the impedan
e, Z(!), as:Z 0(!) / Z 00(!) / !�s; 0 < s < 1; (2)for the � response area of frequen
y. On the other hand impedan
e Z(!) ofthe analyzed ele
tri
 
ir
uit equals:Z(!) = NXk=1( 1Rk + i!Ck)�1 = NXk=1 Rk1 + i!=bk ; (3)where N represents the number of sub
ir
uits, Rk and bk = (RkCk)�1 denoteresistan
e and relaxation rate of the k-th sub
ir
uit, respe
tively.Considering single elements parameters as random variables whose val-ues re�e
t the real physi
al situation one 
an see that variates Rk, bk,k = 1; : : : ; N , form a sample taken from a joint distribution of randomvariables R, B, representing the resistan
e and the relaxation rate of a sin-gle sub
ir
uit, respe
tively. Then, in a system 
onsisting of a very large
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znumber N of sub
ir
uits, formula (3) 
an be repla
ed by its approximationZ(!) = N �� R1 + i!=B�a

ording to the Law of Large Numbers. Assuming sto
hasti
 independen
eof random variables R and B one obtains thatZ(!) = N � hRi �� 11 + i!=B� : (4)(Let us noti
e that su
h an assumption does not 
ontradi
t the physi
alintuition of the phenomenon sin
e B depends only on diele
tri
 propertiesof the material, while R is greatly in�uen
ed by its geometry.)Sin
e the expe
ted value hRi is independent of the frequen
y ! theimpedan
e Z(!) of the form (4) responds to the CPA type of behavior(1), expressed in terms of the impedan
e Z(!) in relation (2), only providedthat: K(!) = � 11 + i!=B� / !�s; 0 < s < 1; (5)for ! taken from the region of dispersion �.Now, the distribution of relaxation rate B that results in the dependen
e(5) should be spe
i�ed. We haveK(!) = 1Z0 11 + i!=bf(b)db;where f(b) is a density fun
tion of the random variable B. Sin
e11 + i!=b = 1Z0 e�i!tbe�btdt;we re
eive that: K(!) = 1Z0 k(t)e�i!tdt (6)for k(t) = 1Z0 f(b)be�btdb: (7)
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ording to the Fourier transform quality [1℄ we have for 0 < � < 1 andnon negative fun
tion h(t)1Z0 h(t)e�i!tdt / !�� for ! !1if and only if h(t) / t��1 for t! 0+:Similarly, from the Tauberian theorem [1, 5℄ the relation1Z0 g(b)e�btdb / t� for t! 0+for 0 < � < 1 and nonnegative fun
tion g(b) is satis�ed only provided thatg(b) / b���1 for b!1:It follows from the above properties of Fourier and Lapla
e transforms thatK(!), given by formula (6) with k(t) of the form (7), ful�ls relation (5)(and therefore (2)) for large ! if and only if the density fun
tion f(b) of thedistribution of B satis�es the 
onditionf(b) / b�s�1 for large b: (8)Condition (8) means [5,13,15℄ that the relaxation rate of a single R�C unithas heavy-tailed distribution from the domain of attra
tion of a Lévy-stablelaw with stability index equal to the parameter s.4. Model and details of 
omputer simulationThe theoreti
al result of the previous se
tion suggests that the CPA
hara
teristi
s (1), for the systems represented by the ele
tri
 
ir
uit of theproposed shape with randomly distributed R and C values, requires heavy�tailed, satisfying 
ondition (8) distribution of relaxation rate B = (RC)�1.However, it was formally derived only for ! ! 1, whi
h is not a physi-
al situation. To show the usefulness of the above 
onsiderations for �nitefrequen
y values (from � response region) the departure from the theoreti-
al result has been examined by means of 
omputer simulations. We haveinvestigated the diele
tri
 sus
eptibility 
hara
teristi
s, obtained from theele
tri
 model a

ording to the formula�(!) =  i!hRi NXk=1 11 + i!=bk!�1 ;
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zwhere b1; : : : ; bN are variates of a heavy�tailed random variable (RC)�1.Computations were 
ondu
ted for three distributions satisfying 
ondition(8): a stable distribution [13,15℄ with appropriate index of stability, and two,Pareto and Burr, distributions from its domain of attra
tion [2,7,14℄. Valuesof random variable S�, 0 < � < 1, distributed a

ording to the Lévy-stablelaw with stability index � have been generated by means of the relation [6℄:S� = w0A� sin(�(V + �=2))(
os(V ))1=� � �
os(V � � (V + �=2)E �(1��)=� ;where: A� = �1 + tan2 ��2 � 12� ;V is a random variable uniformly distributed on ���2 ; �2 �, E is independentof V exponential random variable with mean value 1, and w0 > 0 is a s
aleparameter.Variates of the Pareto random variable Pk with parameter k have beenobtained via the transformation [14℄Pk = w0(U�1=k � 1) (9)from a uniform random variable U on [0; 1℄. Similarly, for generating valuesof Burr random variable Bp;k with parameters p; k the transformationBp;k = w0 �U�1=k � 1�1=p (10)has been used. In both formulas w0 > 0 is a s
ale parameter. Additionally, toprovide that the distribution of Pk, Bp;k belongs to the domain of attra
tionof stable law S�, 0 < � < 1, we have taken k = 1=� in 
ase of Pareto formula(9), and k = p=� in 
ase of Burr transformation (10).5. ResultsThe results of simulation for Pareto distribution for k = 2 (s = 0:5),w0 = 10�5, for two di�erent numbers of elementary 
ir
uits are presented in�gures 4 and 5. In a

ordan
e with the theoreti
al results, for N = 105, wehave re
eived the linear dependen
e of �0(!) and �00(!) in the log�log s
alewith the slopes a0sym = �0:49, a00sym = �0:52, while the theoreti
al values area0 = a00 = �0:50. It has been also observed that an in
rease in the numberof sub
ir
uits results in the expansion of the CPA region to the dire
tion ofhigher frequen
ies.The simulations for Burr distribution (�gure 6) for p = 5, k = 10(s = 0:5), w0 = 10�5, and for the stable distribution (�gure 7) with stability
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hara
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h sub
ir
uit relaxation time and 103 sub
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Fig. 5. Diele
tri
 
hara
teristi
s of the investigated ele
tri
 
ir
uit for Pareto distri-bution (s = 0:5, w0 = 10�5) of ea
h sub
ir
uit relaxation time and 105 sub
ir
uits.index � = 0:5 (s = 0:5), w = 10�5, have also been 
lose to the theoreti
alresult. The examination for other values of distribution parameters (whi
h
orrespond to di�erent values of parameter s), for all investigated distri-
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zbutions, did not show any signi�
ant departure from the theoreti
al slopeseither. At the end of the simulation we exe
uted reliability tests, in whi
hthe 
omputations were repeated one hundred times for ea
h 
ase. The testsproved that the mean linear slopes are very 
lose to their theoreti
al valuesand the standard deviations are very minor.
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Fig. 6. Diele
tri
 
hara
teristi
s of the investigated ele
tri
 
ir
uit for Burr distri-bution (p = 5, k = 10, w0 = 10�5) of ea
h sub
ir
uit relaxation time and 105sub
ir
uits.The results 
on�rmed that the theoreti
al model 
an be applied for phys-i
al phenomenon modelling, also in the �nite range � of frequen
y values.It should be noted, however, that the simulation revealed two limitsof the CPA region. While the low frequen
y boundary was theoreti
allypredi
ted sin
e the reasoning is valid only for high enough frequen
ies, theupper limit origin should be 
lari�ed. The explanation of this phenomenonis obvious if we take into regard the di�eren
e between ele
tri
al and prob-abilisti
 approa
hes. The probabilisti
 model assumes in�nite number ofsub
ir
uits in order to introdu
e the averaging pro
edure (4), whi
h is thenused to obtain 
ondition (8) for the distribution of the relaxation rate. Thesimulation based on more realisti
 ele
tri
al model, has been 
ondu
ted for�nite number of sub
ir
uits, without the averaging. Therefore, for largernumber of sub
ir
uits the upper boundary is shifted to higher frequen
ies(
ompare �gures 4 and 5). Nevertheless, this limitation does not stand inthe way to apply the model. In the experimental 
hara
teristi
s the CPAregions are also limited from both sides.
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Fig. 7. Diele
tri
 
hara
teristi
s of the investigated ele
tri
 
ir
uit for stable distri-bution (s = 0:5, w0 = 10�5) of ea
h sub
ir
uit relaxation time and 105 sub
ir
uits.6. SummaryIn this paper we have proposed an alternative to deterministi
 fra
talapproa
h in modelling diele
tri
 phenomena by ele
tri
 
ir
uits. The analy-sis was presented for a 
ir
uit 
onstru
ted as a series of parallel sub
ir
uits,whi
h is often used to model Maxwell-Wagner phenomenon. We have shownthat CPA 
hara
teristi
s of power-law form 
an be obtained not only for the
ir
uit of the deterministi
 nature. Namely, in the framework of a proba-bilisti
 approa
h whi
h assumes randomly distributed R and C elements, wehave found the relation between the CPA 
hara
teristi
s and heavy tails ofthe distribution of a single sub
ir
uit's relaxation rate b = (RC)�1. The-oreti
al asymptoti
al results have been illustrated by 
omputer simulationsfor �nite frequen
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