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In the presented paper a new mathematical model of dispersion 8 in
tissue dielectric response is introduced. It is proposed that interfacial phe-
nomena and scaling properties of tissue account for power-law form of this
region. The response § of tissue is considered with regard to probabilistic
nature of its membrane components. The system is represented by an elec-
tric circuit of parallel R—C' subcircuits with randomly distributed R and
C values. Tt is shown that for the power law behaviour of tissue dielectric
susceptibility y(w) in the § response area the distribution of the variate
(RC)™!, representing the relaxation rate of a single subcircuit, should have
heavy tails. The results indicate that the variations in local environment
(local randomness) can provide a basis for self-similar relaxation dynamics
without the need for hierarchically constrained fractal models.

PACS numbers: 87.10.4-e

1. Introduction

The frequency domain measurements of various plant and animal tis-
sues reveal [4] four distinct regions in their dielectric response (figure 1). At
the lowest frequency range the non-ideal diffusion of ions through biological
membranes takes place. Between 1 Hz and 10° Hz the highly dispersive
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response « is observed. It results from lateral movement of slowly mobile
charge carriers along biological membranes. This process, which involves
transport and storage of ions in the system, is an example of yet little un-
derstood Low Frequency Dispersion (LFD) phenomenon [10]. As frequency
reaches high enough value (about 10° Hz) we observe dispersion 3. This
region, which is of our special interest in this paper, stems from interfacial
phenomena. In the very high frequency area (above 10? Hz) the response
v is observed. It is hardly distinctive for the examined material, since it
originates in dielectric properties of tissue electrolytes and in relaxation of
bound water dipoles. (The cited crossover values are characteristic for the
jade leaves — Crassula Portulacaceae [4]).
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Fig. 1. Typical dielectric characteristics of tissue

The region of dispersion S exhibits power law dielectric characteristics,
which has been identified as the Constant Phase Angle (CPA) response [4,9].
It means that the real and imaginary components of dielectric susceptibility
x (w) = x' (w) —ix" (w) follow the same function of frequency, which is of
power law form:

X (W) xx (w) x w®™, 0<s<l. (1)

The first dielectric model of animal tissue, given by Schwan [12], treated
it as a conducting medium (extra-cellular fluid) with suspended spherical
cells. The cells are enclosed in almost non-conducting biological membranes,
filled with a conducting fluid. Since there are also sub-cellular and supra-
cellular structures of the same organization, this model was extended [4] into
a deterministic fractal of a self-similar, hierarchical structure. The units are



How Heterogenous Structure of Tissue Effects ... 1087

of the same construction but on different size scales. On the basis of this
model many attempts have been taken to investigate the phenomena respon-
sible for the typical dielectric response of tissue, among others an electric
circuit approach. Below we introduce an electric model of tissue and employ
it to explain dielectric properties of tissue in the range of dispersion 5. Next,
the conditions necessary for the CPA type of this response are mathemati-
cally derived and the results of computer simulation are presented.

2. Electric model of dispersion 8

For a long time, numerous attempts have been made to design the electric
circuit that could reflect all dielectric properties of tissue. In the 1920’s
Philippson proposed one of the first electric models of the cell, as a simple
R-C circuit (figure 2), where R, is the resistance of the cell interior, Cp, the
capacitance of the cell membrane and R,,, the membrane resistance [11].
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Fig. 2. Electric model of a cell by Philippson

In the following years various electric models of tissue were proposed.
However, there has never been any fully successful result obtained. None of
the proposed electric circuits could model all dielectric phenomena occurring
in tissue, that is: diffusion, interfacial phenomena and dipole relaxation.

Nevertheless, the electric circuit approach seems to be a good idea to
model dispersion g since it results from non-equal permittivities and con-
ductivities of membranes within a tissue. Such heterogenous systems ex-
hibit frequency-dependent properties, which are different from either of the
constituent phases. The phenomenon of this type is known as the Maxwell-
Wagner effect [3, 8] and is usually modelled by resistor-capacitor networks.

Among other electric models of tissue, there was one [4] arising from
self-similar structure of tissue, based on fractal electric circuit of percola-
tion type. Although it can model dispersion 8 quite well, the results are
constrained by assumption of deterministic self-similar scaling of the tissue
structure and therefore fixed relationship between the impedance of mem-
branes and their interior.
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We should, however, stress that the local randomness is ubiquitous for
biological systems. Thus, there is a variety of membrane dielectric parame-
ters, which results in the diversity of their characteristics. Hence, we propose
another electric recursive model, in which we take into account the random
nature of a biological medium. The elementary membrane structure is rep-
resented by the irreducible circuit of the shape similar to that proposed by
Philippson.

Following the fractal construction (figure 3) we obtain a circuit, which
represents dielectric features of tissue, provided small size of electrodes, in
the range of dispersion 8. It is worth noting that, in contradiction to other
fractal circuits, we do not assume equal, deterministic values of each R and
C values. Instead, we allow for their random distribution. We also assume
independence between electric parameters of each membrane and its interior.
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Fig. 3. Successive embedding of the biological membrane system, such as tissue, in
electric representation.
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It could be fairly easy to predict a behaviour of such a system provided a
small number of components and their constant values [3]. However, we deal
with a large number of randomly distributed R, C elements. In such a case,
instead of the standard electric analysis, we can employ the probabilistic
approach.

3. The probabilistic origins of the power law form
of dispersion § in tissue

For a complex biological system, such as tissue, where the properties
of its elements never take exactly the same constant value and can be ap-
proximated only by their most frequent values, the probabilistic approach
may provide an explanation of global characteristics, without exact param-
eters of each constituent membrane. Such models give strict constraints on
the mathematical form of the relaxation function and in natural way lead
from local randomness to the global determinism, characteristic of complex
biological system.

The objective of our analysis is to provide information on the stochastic
properties of the investigated electric circuit which are responsible for the
CPA behavior (1) of its dielectric characteristics.

Due to the relation between impedance Z(w) of the system and its di-
electric susceptibility x(w):

Z(w) o (iwx(w)) ™"
property (1) may be expressed in terms of the impedance, Z(w), as:
Z'Nw) ox Z"(w) ox w™*, 0<s<1, (2)

for the f response area of frequency. On the other hand impedance Z(w) of
the analyzed electric circuit equals:

N 1 . » N Ry
Z(w) = Z(R—k +iwCy) =) TTaln (3)

k=1

where N represents the number of subcircuits, Ry, and by = (RyC)~"! denote
resistance and relaxation rate of the k-th subcircuit, respectively.
Considering single elements parameters as random variables whose val-
ues reflect the real physical situation one can see that variates Ry, by,
k =1,...,N, form a sample taken from a joint distribution of random
variables R, B, representing the resistance and the relaxation rate of a sin-
gle subcircuit, respectively. Then, in a system consisting of a very large
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number N of subcircuits, formula (3) can be replaced by its approximation

7= r5im)

according to the Law of Large Numbers. Assuming stochastic independence
of random variables R and B one obtains that

1
Z(w) =N -(R) <1+iw/B>' (4)
(Let us notice that such an assumption does not contradict the physical
intuition of the phenomenon since B depends only on dielectric properties
of the material, while R is greatly influenced by its geometry.)

Since the expected value (R) is independent of the frequency w the
impedance Z(w) of the form (4) responds to the CPA type of behavior
(1), expressed in terms of the impedance Z(w) in relation (2), only provided
that:

K(w):<ﬁ>ocws, 0<s<1, (5)

for w taken from the region of dispersion /.
Now, the distribution of relaxation rate B that results in the dependence
(5) should be specified. We have

o

K(w) = 0/ i O

where f(b) is a density function of the random variable B. Since

oo

]‘ —iwty,  —bt
[ eietpe gy
1+ iw/b /e ¢ b

we receive that:

for
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According to the Fourier transform quality [1] we have for 0 < < 1 and
non negative function h(t)

o0
/h(t)e_i“’tdt x w™ T for w— oo
0
if and only if
h(t) oc t"1 for ¢t — 0.
Similarly, from the Tauberian theorem [1,5] the relation

oo

/g(b)e_btdb x ¢ for t — 04
0

for 0 < n < 1 and nonnegative function g(b) is satisfied only provided that
g(b) x b= for b— .

It follows from the above properties of Fourier and Laplace transforms that
K(w), given by formula (6) with k(¢) of the form (7), fulfils relation (5)
(and therefore (2)) for large w if and only if the density function f(b) of the
distribution of B satisfies the condition

f(b) < b*"! for large b. (8)

Condition (8) means [5,13,15] that the relaxation rate of a single R—C unit
has heavy-tailed distribution from the domain of attraction of a Lévy-stable
law with stability index equal to the parameter s.

4. Model and details of computer simulation

The theoretical result of the previous section suggests that the CPA
characteristics (1), for the systems represented by the electric circuit of the
proposed shape with randomly distributed R and C values, requires heavy—
tailed, satisfying condition (8) distribution of relaxation rate B = (RC)~!.
However, it was formally derived only for w — oo, which is not a physi-
cal situation. To show the usefulness of the above considerations for finite
frequency values (from £ response region) the departure from the theoreti-
cal result has been examined by means of computer simulations. We have
investigated the dielectric susceptibility characteristics, obtained from the
electric model according to the formula

N 1 -1
x(w) = (iW<R> Z m) )

k=1
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where by, ..., by are variates of a heavy-tailed random variable (RC)™".
Computations were conducted for three distributions satisfying condition
(8): astable distribution [13,15] with appropriate index of stability, and two,
Pareto and Burr, distributions from its domain of attraction [2,7,14]. Values
of random variable S, 0 < k < 1, distributed according to the Lévy-stable
law with stability index x have been generated by means of the relation [6]:

sin(r(V +7/2)) <cos(V — K (V +7/2) ) (=)

S = wo A,
0 cos(V)) U E

where: )
R\ 2k
AK = (1+tan2 %)2 ,

V is a random variable uniformly distributed on (—%; %), F is independent
of V exponential random variable with mean value 1, and wy > 0 is a scale
parameter.

Variates of the Pareto random variable P, with parameter k& have been
obtained via the transformation [14]

Py =wo(U V% —1) (9)

from a uniform random variable U on [0, 1]. Similarly, for generating values
of Burr random variable B, ; with parameters p, k the transformation

By = w (U1 1)1/p (10)

has been used. In both formulas wqg > 0 is a scale parameter. Additionally, to
provide that the distribution of Py, B, ) belongs to the domain of attraction
of stable law S, 0 < k < 1, we have taken k = 1/k in case of Pareto formula
(9), and k = p/k in case of Burr transformation (10).

5. Results

The results of simulation for Pareto distribution for & = 2 (s = 0.5),
wo = 1079, for two different numbers of elementary circuits are presented in
figures 4 and 5. In accordance with the theoretical results, for N = 10°, we
have received the linear dependence of x/(w) and x”(w) in the log-log scale
with the slopes ag,, = —0.49, af,, = —0.52, while the theoretical values are
a’ = a"” = —0.50. Tt has been also observed that an increase in the number
of subcircuits results in the expansion of the CPA region to the direction of
higher frequencies.

The simulations for Burr distribution (figure 6) for p = 5, k = 10
(s = 0.5), wg = 1077, and for the stable distribution (figure 7) with stability
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Fig. 4. Dielectric characteristics of the investigated electric circuit for Pareto distri-
bution (s = 0.5, wg = 1077) of each subcircuit relaxation time and 10% subcircuits.
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Fig. 5. Dielectric characteristics of the investigated electric circuit for Pareto distri-
bution (s = 0.5, wg = 1077) of each subcircuit relaxation time and 10° subcircuits.

index k = 0.5 (s = 0.5), w = 10~°, have also been close to the theoretical
result. The examination for other values of distribution parameters (which
correspond to different values of parameter s), for all investigated distri-



1094 M. KOTULSKA, A. JURLEWICZ

butions, did not show any significant departure from the theoretical slopes
either. At the end of the simulation we executed reliability tests, in which
the computations were repeated one hundred times for each case. The tests
proved that the mean linear slopes are very close to their theoretical values
and the standard deviations are very minor.
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Fig.6. Dielectric characteristics of the investigated electric circuit for Burr distri-
bution (p = 5, k = 10, wo = 107%) of each subcircuit relaxation time and 103
subcircuits.

The results confirmed that the theoretical model can be applied for phys-
ical phenomenon modelling, also in the finite range 3 of frequency values.

It should be noted, however, that the simulation revealed two limits
of the CPA region. While the low frequency boundary was theoretically
predicted since the reasoning is valid only for high enough frequencies, the
upper limit origin should be clarified. The explanation of this phenomenon
is obvious if we take into regard the difference between electrical and prob-
abilistic approaches. The probabilistic model assumes infinite number of
subcircuits in order to introduce the averaging procedure (4), which is then
used to obtain condition (8) for the distribution of the relaxation rate. The
simulation based on more realistic electrical model, has been conducted for
finite number of subcircuits, without the averaging. Therefore, for larger
number of subcircuits the upper boundary is shifted to higher frequencies
(compare figures 4 and 5). Nevertheless, this limitation does not stand in
the way to apply the model. In the experimental characteristics the CPA
regions are also limited from both sides.
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Fig. 7. Dielectric characteristics of the investigated electric circuit for stable distri-
bution (s = 0.5, wy = 107%) of each subcircuit relaxation time and 10° subcircuits.

6. Summary

In this paper we have proposed an alternative to deterministic fractal
approach in modelling dielectric phenomena by electric circuits. The analy-
sis was presented for a circuit constructed as a series of parallel subcircuits,
which is often used to model Maxwell-Wagner phenomenon. We have shown
that CPA characteristics of power-law form can be obtained not only for the
circuit of the deterministic nature. Namely, in the framework of a proba-
bilistic approach which assumes randomly distributed R and C elements, we
have found the relation between the CPA characteristics and heavy tails of
the distribution of a single subcircuit’s relaxation rate b = (RC)!. The-
oretical asymptotical results have been illustrated by computer simulations
for finite frequency values.
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