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Recent experimental data have demonstrated that DNA damage in-
duced by densely ionizing radiation in mammalian cells is distributed along
the DNA molecule in the form of clusters. The principal constituent of DNA
damage are double-strand breaks (DSB) which are formed when the breaks
occur in both DNA strands and are directly opposite or separated by only
a few base pairs. DSBs are believed to be most important lesions produced
in chromosomes by radiation; interaction between DSBs can lead to cell
killing, mutation or carcinogenesis. The paper discusses a model of clus-
tered DSB formation viewed in terms of compound Poisson process along
with the predictive essay of the formalism in application to experimental
data.

PACS numbers: 87.10.+e, 87.50.Gi, 05.40.+]

1. Introduction

Exposure of living cells to ionizing radiation produces various biological
effects such as mutations, cell lethality or neoplastic transformation [1]. It
is generally accepted that the primary target for radiation action is DNA
distributed within the cell’s nucleus. Nuclear DNA is organized in a hierar-
chy of structures which comprise the cell’s complement of chromatin. The
latter is composed of DNA, histone proteins, other structural and enzymatic
proteins and some associated molecules such as RNA. Organization of DNA
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within the chromatin varies with the cell type and changes as the cell pro-
gresses through the cell cycle. Tonizing radiation produces variety of damage
to DNA including base alterations, single and double strand breaks (DSB) in
the sugar-phosphate backbone of the molecule and chromatin breaks [1,2]
The purpose of theoretical modeling of radiation action [3] is to describe
qualitatively and quantitatively the results of radiobiological effects at the
molecular, chromosomal and cellular level. The basic consideration in such
an approach must be then descriptive analysis of breaks in DNA caused by
charged particle tracks and by the chemical species produced.

Among various experimental methods used to detect DSBs production
in intracellular DNA [4], one of the most popular is the pulse field gel elec-
trophoresis (PFGE) in which the gel electrophoresis is applied to elute high
molecular DNA fragments from whole cellular DNA embedded in agarose.
The separation of DNA molecules is then based on how quickly the molecules
reorient in a switching (pulsed) electrical field. Techniques applying PFGE
have been proven to be very sensitive, allowing reproducible measurements
with radiation at relatively low doses. The major goal of the experiment is
to quantify number of induced DSBs based on relation between fractions of
DNA separated on the gel and the average number of DSBs. To analyze the
data, the formalism describing random depolarization of polymers of finite
size is usually adopted [5,6] giving very well fits to experimental results with
X-ray induced DNA fragmentation. In contrast to the findings for sparsely
ionizing irradiation (X and 7 rays) characterized by low average energy de-
position per unit track length (linear energy transfer, LETa 1 keV/um),
densely ionizing (high LET) particle track is spatially localized [7]. In ef-
fect, multiplicity of ionizations within the track of heavy ions can produced
clusters of DSBs on crossed chromosomes [8,9]. The formation of clusters
depends on chromatin geometry in the cell and radiation track structure.
DSBs multiplicity and location on chromosomes determine distribution of
DNA fragments detected in PFGE experiments. Modeling DNA fragment-
size-distributions provides then a tool which allows to elucidate experimen-
tally observed frequencies of fragments. Even without detailed information
on the geometry of chromatin, models of radiation action on DNA can serve
with some predictive information concerning measured DNA fragment-size-
distribution. The purpose of the present paper is to discuss a mathematical
model which can be used in analysis of DNA fragment-size- distribution
after heavy ion irradiation. The background of the model is the Poisson
statistics of radiation events which lead to formation of clusters of DNA
damage. The formation of breaks to DNA can be then described as general-
ized or compound Poisson process for which the overall statistics of damage
is an outcome of the random sum of random variables. In the next sec-
tion we briefly discuss known statistical properties of random sums. Some
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biologically relevant distributions are derived and further used (Section 3)
in description of fragment size distribution in DNA after irradiation with
heavy ions. Model analysis is then applied to predict dose-response curves
of experimental data displaying potential practical use of the formalism.

2. Sums of random number of random variables

Consider a sum Sy of N independent random variables X
N
Sy =Y Xi, (1)
i=1
where N is a random variable with a probability generating function g(s)
g(s) =Y _gis'. (2)

Let us assume that each X; has the same probability generating function f(s)
(that means that X/s are sampled with the same probability distribution
function):

fls)=> f;s. (3)
j=1

By use of the Bayes rule of conditional probabilities the probability that Sy
takes value j can be then written as

P(Sxy =j)=hj = P(Sy =jIN =n)P(N =n). (4)
n=0

For fixed value of n and by using the statistical independence of X;’s, the
sum Sy has a probability generating function being a direct product of f(s):

F(s) = f(s)" = 3 Fys) (5)
§=0

from which it follows that P(Sy = j|N = n) = F;. The formula (4) can be
then rewritten as

hj=> Fign. (6)
n=0
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So that the compound probability generating function of Sy is then

o.¢]
h(s) = Zhjsj
=0
= D) Figns

7=0n=0
= 3 gl ()" = glf ()} (7)
n=0

In a similar way conditional expectations rules can be used to determine
moments of a random sum. Given E[N] = v, E[X;] = u, Var[N] = 72 and
Var [X;] = 02, the first and the second moment of the random sum Sy are

E[SN] = v, Var [SN] = 1/0'2 + M272 ] (8)

Example 1
A compound Poisson process is defined as time dependent random sum:

N(t)
=y Xj, (9)
7=0

where the counting process N (t) is assumed to be Poissonian with a rate
A. If N(t) is independent of X; which are random variables with the same
density function p(X) and characteristic function ¢(w) = Elexp(iwX1)], the
compound Poisson process Sy (t) has a characteristic function given by

Ds(w) = ElesN Z @™ (w)Prob [N (t) = m] = eMPE) 1
= exp |t / p(X) (e“X — 1) dx (10)
with moments
E[Sn(t)] = ME[X1], Var [Sy(t)] = M(Var [X] + E[X1]?). (11

The above compound distribution is an example describing “clustered
statistics” of events grouped in a number N of clusters which itself has a
distribution. As such, it is sometimes described in literature [10] as “mixture
of distributions”. In particular, the broad class of Poisson processes {S(¢)}
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with the rate constant A being also a random variable (or constituting the
stochastic process of itself) are referred to as Cox processes [11,12]. The
marginal distribution for such a process is constructed by using the Bayes

rule:
(o)
)\t k —)\t
b= [P s, (12)

0

Prob {S(t)

where A has been assumed to be a continuous random variable with proba-
bility density function f(\). One of the most popular working examples is
a mixing of Poisson distribution with the Gamma distribution of A of mean
arrival times between subsequent events:

2\ = —c)\AT—li‘ 1
FO) = N (13)
In effect, Eq. (12) reads
ther T ktr—1 - Me+)
Prob{S(t) =k} = ATRe: /)\ " TN
0

(Y ()

and the resulting distribution is a negative binomial with parameters r and
p = c(c+t)~'. Alternatively, negative binomial distribution can be pro-
duced as a compound distribution with a logarithmic distribution of objects
in a “cluster” [10]. It can be shown that a mixture of Poisson distributions
resulting from using any unimodal continuous function f(A) is a unimodal
discrete distribution. It is not so, however, in case of unimodal discrete mix-
ing as shown in the example below.

Example 2

The mixture of Poisson distributions can be easily analyzed in terms of ran-
dom sums. By virtue of the above formalism and by using the formulae (7),
(10), the generating function of the compound Poisson—Poisson distribution

isW = sz\il W; is given by:
g=-exp(—A(l—f(s))), (15)

where the random variables X; are distributed according to a Poisson law

f(s) = exp(—p + ps) (16)
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and the total Sy is a random variable with a compound Poisson—Poisson
(Neyman type A) distribution:

o
(Np)Te Nu \Ne=A
P(Sy =z) = P(z;p, \) = Z o NT
N=0

(17)

Figures 1, 2 presents function (17) for two various sets of parameters A, y.
The compound Poisson distribution (CPD) has a wide application in
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Fig. 1. Simulated probability density function for the Neyman-type A distribution
(17) with A = 5, 4 = 100 for N = 10000 points

ecology, nuclear chain reactions and queuing theory. It is sometimes known
as the distribution of a “branching process” [11] and as such has been also
commonly used to describe radiobiological effects in cells (see below).
Example 3

In their cluster theory of the effects of ionizing radiation, Tobias et al. [13]
have used so called Neyman [14] distribution (see above, Example 2) which
is nothing but a compound Poisson-binomial (or in a limiting case Poisson—
Poisson) distribution. In the derivation the following reasoning has been
used:

e When a single heavy ion crosses a cell nucleus, it may produce DNA
strand breaks and chromatin scissions wherever the ionizing track
structure overlaps chromatin structure.

e The multiple yield of such lesions depends on the radial distribution
of deposited energy and on the microdistribution of DNA in the cell
nucleus.

e The number of crossings strongly depends on the geometry of DNA
coiling in the cell nucleus (in a human cell nucleus, the total length
of doubled-stranded DNA is more than one meter and in the nucleus
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the DNA is packed in coiled strands). For a given cell line, a “typical”
average number n of possible crossings per a particle is assumed.

e If p is a probability that a chromatin break occurs at each particle
crossing (and ¢ is the probability that it does not), the distribution of
the number of chromatin breaks in the cluster per one-particle traversal
is binomial

P(iln) = ( )p g (1)

with the probability generating function

gs = [sp+ (1 —p)]". (19)

e The probability that 7 particles cross the nucleus is given by a Poisson
distribution

(UF)J —oF

P = 7 e (20)

with an expectation value o F' which is proportional to absorbed dose
and represents product of particle fluence F' and nuclear cross sec-
tion o.

e The overall probability that 7 lesions will be observed after m particles
traversed the nucleus is given by a Neyman distribution

o .
’er |p q nm—z)(O.F)m —oF

F, 21

P(ilo, F,n) mz_:l il(nm — 1)lm]! (21)

with a compound probability generating function
G(s) =exp(=A+ Alsp+1—p|"™), (22)
where A =oF.

From the latter, by direct differentiation one gets expected (mean) value
and variance

(i) = nip,
(%) — (i)? = n(n —1)A\p? +nip. (23)
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Aggregation of observed cellular damage potentially leads to the phenome-
non of “overdispersion” — that is, the variance of the aggregate may be larger
than Poisson variance yielding “relative variance” Var o = ((i2) — (i)2)/(3)
larger than 1. Assuming thus the Poisson statistics of radiative events,
for any distribution of lesions per a particle traversal, the condition for
overdispersion can be easily rephrased in terms of (11)

Var [Xl]

E[X1] + E[X1] > 1 (24)

By assuming a repairless cell line (i.e. no repair process is involved in di-
minishing number of initially produced lesions), one is able to derive the
surviving fraction as a zero class of the initial distribution, 4.e. the propor-
tion of cells with no breaks:

2 (nm)!g"™(c F)me=F
Z( g™ (o F)

P(0|o, F,n) ()i

m=1

= exp[-oF(1—¢")]. (25)

Note the difference between Neyman and Poisson distribution, for which

P(0|o, F,n) = exp[—o F] = exp[—(i)] . (26)
80
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Fig. 2. Simulated probability density function for the Neyman-type A distribution
(17) with A =100, u = 5 for N = 10000 points

The production of clusters of radiolesions can be quantitated in the ex-
periments aiming to determine yield of chromatin breaks in cells exposed to
particle beams. One of techniques employed is the premature chromosome
condensation [1,15] which allows to visualize radiation induced damage pro-
duced in interphase chromosomes, ¢.e. before the mitotic division of the
cell takes place. The fusion of mitotic and interphase cells results in the
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premature condensation of interphase chromosomes. Such an induction en-
ables one to measure the breakage and rejoining of chromosomes without
the perturbing influence of processes associated with cell-cycle progression
to mitosis and interphase death of cells which may modify their expression.
Distribution of PCC fragments among cells exposed to sparsely ionizing
radiation (X- and ~-rays) have been reported to be consistent with Pois-
son statistics of “randomly” produced breakage. In contrast, overdispersion
of the distribution appears [16,17] as a general feature of particle induced
fragmentation (¢f. figure 3). The phenomenon is explainable under the as-
sumption that single particle traversals are capable of producing multiple
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Fig. 3. Frequency distribution of PCC fragments after exposure to X-rays and car-
bon ions at doses leading to similar biological effect measured in number of “excess
fragments” being produced (¢f. text). Dotted line represents theoretical Poisson
curves fitted to experimental data; solid line represents Neyman distribution fitted
with g = 3.43+0.59 and A = 3.90+0.65. 75% probability of fit has been estimated
based on “goodness-of-fit” x? test. As can be clearly seen, comparable biological
effect of carbon ions is registered at twice lower dose than for X-rays.
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PCC fragments (“clusters” of damage, as discussed in Example 3 above).
Similar conclusions can be drawn from other PCC studies [18] with heavy
ions: with increasing linear energy transfer of the ion, the number of breaks
per particle traversing the cell nucleus rises and breaks become increasingly
“clustered”.

3. A model of DNA fragments distribution generated
by irradiation with heavy ions

Lesions observed in PCC experiments are known to be the 104+15% sub-
set of breaks produced at the DNA level. DNA double strands in a size range
from a few hundred kilobase pairs to several megabase pairs can be observed
by PFGE technique. Randomly distributed DSBs are detected as smears of
DNA fragments. To interpret the experimental material one needs to relate
percentage of fragments in defined size ranges to number of induced DSBs.
For that purpose several models have been derived, mainly based on the
description of random depolarization of polymers of finite size [5,6,19]. Al-
though the models give satisfactory prediction of size-frequency distribution
of fragments after sparsely ionizing radiation (i.e for X-rays and ), they gen-
erally fail to describe the data after densely ionizing radiation [3,9,19|. The
experiments with heavy ions [7,20] demonstrate that exposure to densely
ionizing particles gives rise to substantially overdispersed distribution of
DNA fragments which indicates the occurrence of clusters of damage. The
following analysis presents a model which takes into account formation of
aggregates of lesions after heavy ion irradiation.

Fragment distribution in PFGE studies is measured with fluorescence
technique or radioactive labeling with the result being the intensity distri-
bution. Generated signal is proportional to the relative intensity distribution
of DNA fragments and can be expressed as

I(z) = zD(x) (27)
with
D(z) =Y D(«lf)P(j; . V). (28)
=0

where D(z|j) stands for the density of fragments of length x provided j DSBs
occur on the chromosome of size S. Frequency distribution of the number
of DSBs is assumed here in the form of CPD (17) with parameters p and A
representing average number of breaks produced by a single particle traversal
and average number of particle traversals, respectively (¢f. Example 3
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above). The “broken-stick” distribution [19,21] for j breaks on a chromosome
of size S yields a frequency of fragments of size z:

1 z\J-1 1 r\Jj-1
Dialj) =dx -9 +2i5 (1-5) +ii-D5(1-35) . 29
where the first two terms describe contributions from the edge fragments of
the chromosome and the third term describes contribution from the internal
fragments of length < S. The first term applies to the situation when
j = 0; the edge contribution can be understood by observing that the first
and the j + 1 fragment have the same probability of being size z. Direct
summation in formula (28) leads to

D(z) = exp(—A(1—e #))o(z—S5)

+2)\T'uexp(—,u% + A5
2
Fe M1 — %)%(1 Fde ) exp(—pg + e tE) . (30)

Integration of I(z) from 0 to some average (marker) size X* and division by
S yields the relative fraction of DNA content. For A > 1 and p < 1, the
Neyman-type A distribution converges to a simple Poisson. In such a case,
simplified expression (30) leads to results known in literature as “Blocher
formalism” [5,6] which describes well the DNA content in probes irradiated
with X-rays and 7.

Figures 4, 5 present predicted dose-response curves for the model. The
amount of DNA content is shown in function of dose and fragment size. In

0.7
DNA content o

Fig.4. Distribution of DNA content (integrated Eq. (27)) as a function of the dose
and fragment size for S = 245Mbp, p = 5. The fragments length is in Mbp units.
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Fig.5. Predicted intensity I(z) of the signal in function of fragment length for
different mean values p of number of DSBs produced at the same dose (fluence) of
particles. In calculations the distribution of inner fragments D;,(z), Eq. (30) has
been used.
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Fig.6. Fraction of DNA content observed experimentally within the range of sizes
0.1-1.0 Mbp. Data show higher probability of producing short fragments after
irradiation with particles than for sparsely ionizing radiation at comparative dose.
Lines represent the “best-eye” fit through experimental points.

calculation, the parameter S = 245 mega base pairs has been used which
is the mean chromosome size for Chinese hamster cells, the cell line for
which experimental data are displayed in figures 3 and 6. The increase
in multiplicity of DSBs produced per one traversal of a particle leads to
pronounced increase in production of shorter fragments which is illustrated
in the shift of the peak intensity towards smaller z values.
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4. Spatial clustering of breaks and non-Poisson statistics

Clustering of breakage events can be viewed as the process leading to non-
exponential “spacing” between subsequent events, similar to the standard
analysis of level repulsion in spectra of polyatomic molecules and complex
nuclei [22]. For a random sequence, the probability that a DSB will be in
the infinitesimal interval

X4z, X+z+dx), (31)

proportional to dz is independent of whether or not there is a break at X.
This result can be easily changed by using the concept of breaks “repulsion’.
Given a break at X, let P(x)dz be the probability that the next break
(z > 0) be found in the interval (X + z, X + z + dz). We then have for the
nearest-neighbour spacing distribution of breaks the following formula:

P(z)dz = Prob (1 € dz|0 € z)Prob (0 € ), (32)

where Prob (n € dz|m € z) is the conditional probability that the infinitesi-
mal interval of length dz contains n breaks whereas that of length x contains
m of those. The first term on the right-hand side of the above equation is
dz times a function of z which we denote by r(z), depending explicitly on
the choices 1 and 0 of the discrete variables n and m. The second term is
given by the probability that the spacing is larger than z:

/ P(y)dy. (33)

Accordingly, one obtains

P(z) = r(z) / P(y)dy. (34)

whose solution can be easily found to be

x

P(z) = Cr(zx)exp —/r(y)dy , (35)

where C is a constant. The Poisson law, which reflects lack of correlation
between breaks, follows if one takes r(z) = A, where A~! is the mean spacing
between DSBs. If choosing on the other hand

r(z) = ax (36)
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i.e. by assuming a linear repulsion, one ends up with the Wigner’s law. The
constants C' and « can then be determined from appropriate conditions, e.g.

/ P(z)dz =1, (37)
and
/ 5P (x)ds = A~ (39)
One then finds that
P(z) = Xe ® (39)

for the Poisson distribution and

P(.’L‘) _ 7T"L‘2>‘2 ef7r()\z)2/4 (40)
for the Wigner’s distribution. The latter displays “repulsion”, since P(0) = 0,
in contrast to the Poisson case which gives maximum at z = 0. The Wigner
distribution is a standard in statistics. It is the distribution for the square
root of the sum of the squares of two independent Gaussian random variables
of type N(0,A"'y/2/7) and is sometimes called the Rayleigh distribution.
The above result Eq. (40) is widely known in literature on random matrices
and chaotic systems. The onset of chaos in classical Hamiltonian system is
due to the breaking of symmetries. In quantum systems, symmetry breaking
manifests itself as a change in the spectral spacing statistics of the energy-
level spectrum. Quite similarly, in random walks [23-25] symmetry breaking
transition manifests itself as a change in the spectral spacing statistics of de-
cay rates. In all those cases, the statistics of events of interest deviates, as a
counting process, from the regularity of Poisson process, for which the sub-
sequent event arrivals are spaced with a constant mean A~!'. The clustered
statistics of breakage can be thus viewed as a Cox process (¢f. Section 1,
Example 1) for which the process increments over disjoint intervals are, in
general, statistically dependent. In this sense, Neyman distribution Eq. (17)
is a model example which could be also derived as a marginal one for the
Cox process Eq. (12) with Poisson distribution of A.

5. Conclusions

An existing substantial evidence demonstrates that exposure to densely
ionizing charged particles gives rise to overdispersed distribution of chro-
matin breaks and DNA fragments which is indicative of clustered damage
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occurring in irradiated cells. The clustering process can be expressed for any
particular class of events such as ionizations or radical species formation and
is a consequence of energy localization in the radiation track. Chromosomal
aberrations expressed in irradiated cells are formed in process of misrejoining
of fragments which result from production of double strand breaks in DNA.
The location of double strand breaks along chromosomes determines DNA
fragment-size distribution which can be observed experimentally. The task
of stochastic modeling is then to relate parameters of such distributions to
relevant quantities describing number of induced DSBs. Application of the
formalism of clustered breakage offers thus a tool in evaluation of the radia-
tion response of DNA fragment-size distribution and assessment of radiation
induced biological damage.

The authors acknowledge many discussions with Drs. Michael Scholz
and Michael Kraemer. The project has been partially supported by the
KBN grant 2PO3 98 14.
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