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COMPOUND POISSON PROCESSESAND CLUSTERED DAMAGE OF RADIATIONINDUCED DNA DOUBLE STRAND BREAKS�E. Gudowska-Nowaka;b, S. Rittera, G. Tau
her-S
holzaand G. KraftaaGesells
haft für S
hwerionenfors
hungPlan
kstr. 1 , 64291 Darmstadt, GermanybM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived De
ember 8, 1999)Re
ent experimental data have demonstrated that DNA damage in-du
ed by densely ionizing radiation in mammalian 
ells is distributed alongthe DNA mole
ule in the form of 
lusters. The prin
ipal 
onstituent of DNAdamage are double-strand breaks (DSB) whi
h are formed when the breakso

ur in both DNA strands and are dire
tly opposite or separated by onlya few base pairs. DSBs are believed to be most important lesions produ
edin 
hromosomes by radiation; intera
tion between DSBs 
an lead to 
ellkilling, mutation or 
ar
inogenesis. The paper dis
usses a model of 
lus-tered DSB formation viewed in terms of 
ompound Poisson pro
ess alongwith the predi
tive essay of the formalism in appli
ation to experimentaldata.PACS numbers: 87.10.+e, 87.50.Gi, 05.40.+j1. Introdu
tionExposure of living 
ells to ionizing radiation produ
es various biologi
ale�e
ts su
h as mutations, 
ell lethality or neoplasti
 transformation [1℄. Itis generally a

epted that the primary target for radiation a
tion is DNAdistributed within the 
ell's nu
leus. Nu
lear DNA is organized in a hierar-
hy of stru
tures whi
h 
omprise the 
ell's 
omplement of 
hromatin. Thelatter is 
omposed of DNA, histone proteins, other stru
tural and enzymati
proteins and some asso
iated mole
ules su
h as RNA. Organization of DNA� Presented at the XII Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 6�12, 1999.(1109)



1110 E. Gudowska-Nowak et al.within the 
hromatin varies with the 
ell type and 
hanges as the 
ell pro-gresses through the 
ell 
y
le. Ionizing radiation produ
es variety of damageto DNA in
luding base alterations, single and double strand breaks (DSB) inthe sugar-phosphate ba
kbone of the mole
ule and 
hromatin breaks [1, 2℄The purpose of theoreti
al modeling of radiation a
tion [3℄ is to des
ribequalitatively and quantitatively the results of radiobiologi
al e�e
ts at themole
ular, 
hromosomal and 
ellular level. The basi
 
onsideration in su
han approa
h must be then des
riptive analysis of breaks in DNA 
aused by
harged parti
le tra
ks and by the 
hemi
al spe
ies produ
ed.Among various experimental methods used to dete
t DSBs produ
tionin intra
ellular DNA [4℄, one of the most popular is the pulse �eld gel ele
-trophoresis (PFGE) in whi
h the gel ele
trophoresis is applied to elute highmole
ular DNA fragments from whole 
ellular DNA embedded in agarose.The separation of DNA mole
ules is then based on how qui
kly the mole
ulesreorient in a swit
hing (pulsed) ele
tri
al �eld. Te
hniques applying PFGEhave been proven to be very sensitive, allowing reprodu
ible measurementswith radiation at relatively low doses. The major goal of the experiment isto quantify number of indu
ed DSBs based on relation between fra
tions ofDNA separated on the gel and the average number of DSBs. To analyze thedata, the formalism des
ribing random depolarization of polymers of �nitesize is usually adopted [5,6℄ giving very well �ts to experimental results withX-ray indu
ed DNA fragmentation. In 
ontrast to the �ndings for sparselyionizing irradiation (X and 
 rays) 
hara
terized by low average energy de-position per unit tra
k length (linear energy transfer, LET� 1 keV/�m),densely ionizing (high LET) parti
le tra
k is spatially lo
alized [7℄. In ef-fe
t, multipli
ity of ionizations within the tra
k of heavy ions 
an produ
ed
lusters of DSBs on 
rossed 
hromosomes [8, 9℄. The formation of 
lustersdepends on 
hromatin geometry in the 
ell and radiation tra
k stru
ture.DSBs multipli
ity and lo
ation on 
hromosomes determine distribution ofDNA fragments dete
ted in PFGE experiments. Modeling DNA fragment-size-distributions provides then a tool whi
h allows to elu
idate experimen-tally observed frequen
ies of fragments. Even without detailed informationon the geometry of 
hromatin, models of radiation a
tion on DNA 
an servewith some predi
tive information 
on
erning measured DNA fragment-size-distribution. The purpose of the present paper is to dis
uss a mathemati
almodel whi
h 
an be used in analysis of DNA fragment-size- distributionafter heavy ion irradiation. The ba
kground of the model is the Poissonstatisti
s of radiation events whi
h lead to formation of 
lusters of DNAdamage. The formation of breaks to DNA 
an be then des
ribed as general-ized or 
ompound Poisson pro
ess for whi
h the overall statisti
s of damageis an out
ome of the random sum of random variables. In the next se
-tion we brie�y dis
uss known statisti
al properties of random sums. Some
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esses and Clustered Damage : : : 1111biologi
ally relevant distributions are derived and further used (Se
tion 3)in des
ription of fragment size distribution in DNA after irradiation withheavy ions. Model analysis is then applied to predi
t dose-response 
urvesof experimental data displaying potential pra
ti
al use of the formalism.2. Sums of random number of random variablesConsider a sum SN of N independent random variables XSN = NXi=1 Xi ; (1)where N is a random variable with a probability generating fun
tion g(s)g(s) = 1Xi=0 gisi : (2)Let us assume that ea
hXi has the same probability generating fun
tion f(s)(that means that X 0is are sampled with the same probability distributionfun
tion): f(s) = 1Xj=1 fjsj : (3)By use of the Bayes rule of 
onditional probabilities the probability that SNtakes value j 
an be then written asP (SN = j) � hj = 1Xn=0P (SN = jjN = n)P (N = n) : (4)For �xed value of n and by using the statisti
al independen
e of Xi's, thesum SN has a probability generating fun
tion being a dire
t produ
t of f(s):F (s) = f(s)n = 1Xj=0 Fjsj (5)from whi
h it follows that P (SN = jjN = n) = Fj . The formula (4) 
an bethen rewritten as hj = 1Xn=0Fjgn : (6)



1112 E. Gudowska-Nowak et al.So that the 
ompound probability generating fun
tion of SN is thenh(s) = 1Xj=0 hjsj= 1Xj=0 1Xn=0Fjgnsj= 1Xn=0 gnf(s)n � gff(s)g : (7)In a similar way 
onditional expe
tations rules 
an be used to determinemoments of a random sum. Given E[N ℄ = �, E[Xi℄ = �, Var [N ℄ = �2 andVar [Xi℄ = �2, the �rst and the se
ond moment of the random sum SN areE[SN ℄ = ��; Var [SN ℄ = ��2 + �2�2 : (8)Example 1A 
ompound Poisson pro
ess is de�ned as time dependent random sum:SN (t) = N(t)Xj=0 Xj ; (9)where the 
ounting pro
ess N(t) is assumed to be Poissonian with a rate�. If N(t) is independent of Xj whi
h are random variables with the samedensity fun
tion p(X) and 
hara
teristi
 fun
tion �(!) = E[exp(i!X1)℄, the
ompound Poisson pro
ess SN (t) has a 
hara
teristi
 fun
tion given by�S(!) � E[ei!SN (t)℄ = 1Xm=0�m(!)Prob [N(t) = m℄ = e�t[�(!)�1℄= exp24�t 1Z�1 p(X) �ei!X � 1� dx35 (10)with momentsE[SN (t)℄ = �tE[X1℄; Var [SN (t)℄ = �t(Var [X1℄ +E[X1℄2) : (11)The above 
ompound distribution is an example des
ribing �
lusteredstatisti
s� of events grouped in a number N of 
lusters whi
h itself has adistribution. As su
h, it is sometimes des
ribed in literature [10℄ as �mixtureof distributions�. In parti
ular, the broad 
lass of Poisson pro
esses fS(t)g



Compound Poisson Pro
esses and Clustered Damage : : : 1113with the rate 
onstant � being also a random variable (or 
onstituting thesto
hasti
 pro
ess of itself) are referred to as Cox pro
esses [11, 12℄. Themarginal distribution for su
h a pro
ess is 
onstru
ted by using the Bayesrule: Prob fS(t) = kg = 1Z0 (�t)ke��tk! f(�)d� ; (12)where � has been assumed to be a 
ontinuous random variable with proba-bility density fun
tion f(�). One of the most popular working examples isa mixing of Poisson distribution with the Gamma distribution of � of meanarrival times between subsequent events:f(�) = e�
��r�1 
r� (r) : (13)In e�e
t, Eq. (12) readsProb fS(t) = kg = tk
rk!� (r) 1Z0 �k+r�1e��(
+t)d�= � (k + r)� (r)k! � 

+ t�r � t
+ t�k (14)and the resulting distribution is a negative binomial with parameters r andp = 
(
 + t)�1. Alternatively, negative binomial distribution 
an be pro-du
ed as a 
ompound distribution with a logarithmi
 distribution of obje
tsin a �
luster� [10℄. It 
an be shown that a mixture of Poisson distributionsresulting from using any unimodal 
ontinuous fun
tion f(�) is a unimodaldis
rete distribution. It is not so, however, in 
ase of unimodal dis
rete mix-ing as shown in the example below.Example 2The mixture of Poisson distributions 
an be easily analyzed in terms of ran-dom sums. By virtue of the above formalism and by using the formulae (7),(10), the generating fun
tion of the 
ompound Poisson�Poisson distributionis W =PNi=1Wi is given by:g = exp (� �(1� f(s))) ; (15)where the random variables Xi are distributed a

ording to a Poisson lawf(s) = exp(��+ �s) (16)



1114 E. Gudowska-Nowak et al.and the total SN is a random variable with a 
ompound Poisson�Poisson(Neyman type A) distribution:P (SN = x) � P (x;�; �) = 1XN=0 (N�)xe�N�x! �Ne��N ! : (17)Figures 1, 2 presents fun
tion (17) for two various sets of parameters �; �.The 
ompound Poisson distribution (CPD) has a wide appli
ation in
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Fig. 1. Simulated probability density fun
tion for the Neyman-type A distribution(17) with � = 5; � = 100 for N = 10000 pointse
ology, nu
lear 
hain rea
tions and queuing theory. It is sometimes knownas the distribution of a �bran
hing pro
ess� [11℄ and as su
h has been also
ommonly used to des
ribe radiobiologi
al e�e
ts in 
ells (see below).Example 3In their 
luster theory of the e�e
ts of ionizing radiation, Tobias et al. [13℄have used so 
alled Neyman [14℄ distribution (see above, Example 2) whi
his nothing but a 
ompound Poisson-binomial (or in a limiting 
ase Poisson�Poisson) distribution. In the derivation the following reasoning has beenused:� When a single heavy ion 
rosses a 
ell nu
leus, it may produ
e DNAstrand breaks and 
hromatin s
issions wherever the ionizing tra
kstru
ture overlaps 
hromatin stru
ture.� The multiple yield of su
h lesions depends on the radial distributionof deposited energy and on the mi
rodistribution of DNA in the 
ellnu
leus.� The number of 
rossings strongly depends on the geometry of DNA
oiling in the 
ell nu
leus (in a human 
ell nu
leus, the total lengthof doubled-stranded DNA is more than one meter and in the nu
leus



Compound Poisson Pro
esses and Clustered Damage : : : 1115the DNA is pa
ked in 
oiled strands). For a given 
ell line, a �typi
al�average number n of possible 
rossings per a parti
le is assumed.� If p is a probability that a 
hromatin break o

urs at ea
h parti
le
rossing (and q is the probability that it does not), the distribution ofthe number of 
hromatin breaks in the 
luster per one-parti
le traversalis binomial P (ijn) = �ni�piq(n�i) (18)with the probability generating fun
tiongs = [sp+ (1� p)℄n : (19)� The probability that j parti
les 
ross the nu
leus is given by a Poissondistribution P = (�F )jj! e��F (20)with an expe
tation value �F whi
h is proportional to absorbed doseand represents produ
t of parti
le �uen
e F and nu
lear 
ross se
-tion �.� The overall probability that i lesions will be observed after m parti
lestraversed the nu
leus is given by a Neyman distributionP (ij�; F; n) = 1Xm=1 (nm)!piq(nm�i)(�F )me��Fi!(nm� i)!m! (21)with a 
ompound probability generating fun
tionG(s) = exp(��+ �[sp+ 1� p℄nm) ; (22)where � = �F .From the latter, by dire
t di�erentiation one gets expe
ted (mean) valueand varian
e hii = n�p ;hi2i � hii2 = n(n� 1)�p2 + n�p : (23)



1116 E. Gudowska-Nowak et al.Aggregation of observed 
ellular damage potentially leads to the phenome-non of �overdispersion� � that is, the varian
e of the aggregate may be largerthan Poisson varian
e yielding �relative varian
e� Var rel = (hi2i � hii2)=hiilarger than 1. Assuming thus the Poisson statisti
s of radiative events,for any distribution of lesions per a parti
le traversal, the 
ondition foroverdispersion 
an be easily rephrased in terms of (11)Var [X1℄E[X1℄ +E[X1℄ > 1 : (24)By assuming a repairless 
ell line (i.e. no repair pro
ess is involved in di-minishing number of initially produ
ed lesions), one is able to derive thesurviving fra
tion as a zero 
lass of the initial distribution, i.e. the propor-tion of 
ells with no breaks:P (0j�; F; n) = 1Xm=1 (nm)!qnm(�F )me��F(nm)!m!= exp[��F (1� qn)℄ : (25)Note the di�eren
e between Neyman and Poisson distribution, for whi
hP (0j�; F; n) = exp[��F ℄ = exp[�hii℄ : (26)
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Fig. 2. Simulated probability density fun
tion for the Neyman-type A distribution(17) with � = 100; � = 5 for N = 10000 pointsThe produ
tion of 
lusters of radiolesions 
an be quantitated in the ex-periments aiming to determine yield of 
hromatin breaks in 
ells exposed toparti
le beams. One of te
hniques employed is the premature 
hromosome
ondensation [1,15℄ whi
h allows to visualize radiation indu
ed damage pro-du
ed in interphase 
hromosomes, i.e. before the mitoti
 division of the
ell takes pla
e. The fusion of mitoti
 and interphase 
ells results in the



Compound Poisson Pro
esses and Clustered Damage : : : 1117premature 
ondensation of interphase 
hromosomes. Su
h an indu
tion en-ables one to measure the breakage and rejoining of 
hromosomes withoutthe perturbing in�uen
e of pro
esses asso
iated with 
ell-
y
le progressionto mitosis and interphase death of 
ells whi
h may modify their expression.Distribution of PCC fragments among 
ells exposed to sparsely ionizingradiation (X- and 
-rays) have been reported to be 
onsistent with Pois-son statisti
s of �randomly� produ
ed breakage. In 
ontrast, overdispersionof the distribution appears [16, 17℄ as a general feature of parti
le indu
edfragmentation (
f. �gure 3). The phenomenon is explainable under the as-sumption that single parti
le traversals are 
apable of produ
ing multiple

Fig. 3. Frequen
y distribution of PCC fragments after exposure to X-rays and 
ar-bon ions at doses leading to similar biologi
al e�e
t measured in number of �ex
essfragments� being produ
ed (
f. text). Dotted line represents theoreti
al Poisson
urves �tted to experimental data; solid line represents Neyman distribution �ttedwith � = 3:43�0:59 and � = 3:90�0:65. 75% probability of �t has been estimatedbased on �goodness-of-�t� �2 test. As 
an be 
learly seen, 
omparable biologi
ale�e
t of 
arbon ions is registered at twi
e lower dose than for X-rays.



1118 E. Gudowska-Nowak et al.PCC fragments (�
lusters� of damage, as dis
ussed in Example 3 above).Similar 
on
lusions 
an be drawn from other PCC studies [18℄ with heavyions: with in
reasing linear energy transfer of the ion, the number of breaksper parti
le traversing the 
ell nu
leus rises and breaks be
ome in
reasingly�
lustered�.3. A model of DNA fragments distribution generatedby irradiation with heavy ionsLesions observed in PCC experiments are known to be the 10�15% sub-set of breaks produ
ed at the DNA level. DNA double strands in a size rangefrom a few hundred kilobase pairs to several megabase pairs 
an be observedby PFGE te
hnique. Randomly distributed DSBs are dete
ted as smears ofDNA fragments. To interpret the experimental material one needs to relateper
entage of fragments in de�ned size ranges to number of indu
ed DSBs.For that purpose several models have been derived, mainly based on thedes
ription of random depolarization of polymers of �nite size [5, 6, 19℄. Al-though the models give satisfa
tory predi
tion of size-frequen
y distributionof fragments after sparsely ionizing radiation (i.e for X-rays and 
), they gen-erally fail to des
ribe the data after densely ionizing radiation [3,9,19℄. Theexperiments with heavy ions [7, 20℄ demonstrate that exposure to denselyionizing parti
les gives rise to substantially overdispersed distribution ofDNA fragments whi
h indi
ates the o

urren
e of 
lusters of damage. Thefollowing analysis presents a model whi
h takes into a

ount formation ofaggregates of lesions after heavy ion irradiation.Fragment distribution in PFGE studies is measured with �uores
en
ete
hnique or radioa
tive labeling with the result being the intensity distri-bution. Generated signal is proportional to the relative intensity distributionof DNA fragments and 
an be expressed asI(x) = xD(x) (27)with D(x) = 1Xj=0D(xjj)P (j;�; �) ; (28)whereD(xjj) stands for the density of fragments of length x provided j DSBso

ur on the 
hromosome of size S. Frequen
y distribution of the numberof DSBs is assumed here in the form of CPD (17) with parameters � and �representing average number of breaks produ
ed by a single parti
le traversaland average number of parti
le traversals, respe
tively (
f. Example 3



Compound Poisson Pro
esses and Clustered Damage : : : 1119above). The �broken-sti
k� distribution [19,21℄ for j breaks on a 
hromosomeof size S yields a frequen
y of fragments of size x:D(xjj) = Æ(x� S) + 2j 1S �1� xS�j�1 + j(j � 1) 1S �1� xS�j�1 ; (29)where the �rst two terms des
ribe 
ontributions from the edge fragments ofthe 
hromosome and the third term des
ribes 
ontribution from the internalfragments of length x < S. The �rst term applies to the situation whenj = 0; the edge 
ontribution 
an be understood by observing that the �rstand the j + 1 fragment have the same probability of being size x. Dire
tsummation in formula (28) leads toD(x) = exp(��(1� e��))Æ(x � S)+2��S exp(��xS + �(e�� xS�1))+e��(1� xS )�2�S (1 + �e�� xS ) exp(��xS + �e�� xS ) : (30)Integration of I(x) from 0 to some average (marker) size X� and division byS yields the relative fra
tion of DNA 
ontent. For � � 1 and � � 1, theNeyman-type A distribution 
onverges to a simple Poisson. In su
h a 
ase,simpli�ed expression (30) leads to results known in literature as �Blö
herformalism� [5,6℄ whi
h des
ribes well the DNA 
ontent in probes irradiatedwith X-rays and 
.Figures 4, 5 present predi
ted dose-response 
urves for the model. Theamount of DNA 
ontent is shown in fun
tion of dose and fragment size. In
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Fig. 5. Predi
ted intensity I(x) of the signal in fun
tion of fragment length fordi�erent mean values � of number of DSBs produ
ed at the same dose (�uen
e) ofparti
les. In 
al
ulations the distribution of inner fragments Din(x), Eq. (30) hasbeen used.

Fig. 6. Fra
tion of DNA 
ontent observed experimentally within the range of sizes0.1-1.0 Mbp. Data show higher probability of produ
ing short fragments afterirradiation with parti
les than for sparsely ionizing radiation at 
omparative dose.Lines represent the �best-eye� �t through experimental points.
al
ulation, the parameter S = 245 mega base pairs has been used whi
his the mean 
hromosome size for Chinese hamster 
ells, the 
ell line forwhi
h experimental data are displayed in �gures 3 and 6. The in
reasein multipli
ity of DSBs produ
ed per one traversal of a parti
le leads topronoun
ed in
rease in produ
tion of shorter fragments whi
h is illustratedin the shift of the peak intensity towards smaller x values.
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esses and Clustered Damage : : : 11214. Spatial 
lustering of breaks and non-Poisson statisti
sClustering of breakage events 
an be viewed as the pro
ess leading to non-exponential �spa
ing� between subsequent events, similar to the standardanalysis of level repulsion in spe
tra of polyatomi
 mole
ules and 
omplexnu
lei [22℄. For a random sequen
e, the probability that a DSB will be inthe in�nitesimal interval (X + x;X + x+ dx) ; (31)proportional to dx is independent of whether or not there is a break at X.This result 
an be easily 
hanged by using the 
on
ept of breaks �repulsion'.Given a break at X, let P (x)dx be the probability that the next break(x � 0) be found in the interval (X + x;X + x+ dx). We then have for thenearest-neighbour spa
ing distribution of breaks the following formula:P (x)dx = Prob (1 2 dxj0 2 x)Prob (0 2 x) ; (32)where Prob (n 2 dxjm 2 x) is the 
onditional probability that the in�nitesi-mal interval of length dx 
ontains n breaks whereas that of length x 
ontainsm of those. The �rst term on the right-hand side of the above equation isdx times a fun
tion of x whi
h we denote by r(x), depending expli
itly onthe 
hoi
es 1 and 0 of the dis
rete variables n and m. The se
ond term isgiven by the probability that the spa
ing is larger than x:1Zx P (y)dy : (33)A

ordingly, one obtainsP (x) = r(x) 1Zx P (y)dy ; (34)whose solution 
an be easily found to beP (x) = Cr(x) exp0�� xZ r(y)dy1A ; (35)where C is a 
onstant. The Poisson law, whi
h re�e
ts la
k of 
orrelationbetween breaks, follows if one takes r(x) = �, where ��1 is the mean spa
ingbetween DSBs. If 
hoosing on the other handr(x) = �x (36)



1122 E. Gudowska-Nowak et al.i.e. by assuming a linear repulsion, one ends up with the Wigner's law. The
onstants C and � 
an then be determined from appropriate 
onditions, e.g.Z P (x)dx = 1; (37)and Z xP (x)dx = ��1 : (38)One then �nds that P (x) = �e��x (39)for the Poisson distribution andP (x) = �x�22 e��(�x)2=4 (40)for the Wigner's distribution. The latter displays �repulsion�, sin
e P (0) = 0,in 
ontrast to the Poisson 
ase whi
h gives maximum at x = 0. The Wignerdistribution is a standard in statisti
s. It is the distribution for the squareroot of the sum of the squares of two independent Gaussian random variablesof type N(0; ��1p2=�) and is sometimes 
alled the Rayleigh distribution.The above result Eq. (40) is widely known in literature on random matri
esand 
haoti
 systems. The onset of 
haos in 
lassi
al Hamiltonian system isdue to the breaking of symmetries. In quantum systems, symmetry breakingmanifests itself as a 
hange in the spe
tral spa
ing statisti
s of the energy-level spe
trum. Quite similarly, in random walks [23�25℄ symmetry breakingtransition manifests itself as a 
hange in the spe
tral spa
ing statisti
s of de-
ay rates. In all those 
ases, the statisti
s of events of interest deviates, as a
ounting pro
ess, from the regularity of Poisson pro
ess, for whi
h the sub-sequent event arrivals are spa
ed with a 
onstant mean ��1. The 
lusteredstatisti
s of breakage 
an be thus viewed as a Cox pro
ess (
f. Se
tion 1,Example 1) for whi
h the pro
ess in
rements over disjoint intervals are, ingeneral, statisti
ally dependent. In this sense, Neyman distribution Eq. (17)is a model example whi
h 
ould be also derived as a marginal one for theCox pro
ess Eq. (12) with Poisson distribution of �.5. Con
lusionsAn existing substantial eviden
e demonstrates that exposure to denselyionizing 
harged parti
les gives rise to overdispersed distribution of 
hro-matin breaks and DNA fragments whi
h is indi
ative of 
lustered damage
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urring in irradiated 
ells. The 
lustering pro
ess 
an be expressed for anyparti
ular 
lass of events su
h as ionizations or radi
al spe
ies formation andis a 
onsequen
e of energy lo
alization in the radiation tra
k. Chromosomalaberrations expressed in irradiated 
ells are formed in pro
ess of misrejoiningof fragments whi
h result from produ
tion of double strand breaks in DNA.The lo
ation of double strand breaks along 
hromosomes determines DNAfragment-size distribution whi
h 
an be observed experimentally. The taskof sto
hasti
 modeling is then to relate parameters of su
h distributions torelevant quantities des
ribing number of indu
ed DSBs. Appli
ation of theformalism of 
lustered breakage o�ers thus a tool in evaluation of the radia-tion response of DNA fragment-size distribution and assessment of radiationindu
ed biologi
al damage.The authors a
knowledge many dis
ussions with Drs. Mi
hael S
holzand Mi
hael Kraemer. The proje
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