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COMPOUND POISSON PROCESSESAND CLUSTERED DAMAGE OF RADIATIONINDUCED DNA DOUBLE STRAND BREAKS�E. Gudowska-Nowaka;b, S. Rittera, G. Tauher-Sholzaand G. KraftaaGesellshaft für ShwerionenforshungPlankstr. 1 , 64291 Darmstadt, GermanybM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived Deember 8, 1999)Reent experimental data have demonstrated that DNA damage in-dued by densely ionizing radiation in mammalian ells is distributed alongthe DNA moleule in the form of lusters. The prinipal onstituent of DNAdamage are double-strand breaks (DSB) whih are formed when the breaksour in both DNA strands and are diretly opposite or separated by onlya few base pairs. DSBs are believed to be most important lesions produedin hromosomes by radiation; interation between DSBs an lead to ellkilling, mutation or arinogenesis. The paper disusses a model of lus-tered DSB formation viewed in terms of ompound Poisson proess alongwith the preditive essay of the formalism in appliation to experimentaldata.PACS numbers: 87.10.+e, 87.50.Gi, 05.40.+j1. IntrodutionExposure of living ells to ionizing radiation produes various biologiale�ets suh as mutations, ell lethality or neoplasti transformation [1℄. Itis generally aepted that the primary target for radiation ation is DNAdistributed within the ell's nuleus. Nulear DNA is organized in a hierar-hy of strutures whih omprise the ell's omplement of hromatin. Thelatter is omposed of DNA, histone proteins, other strutural and enzymatiproteins and some assoiated moleules suh as RNA. Organization of DNA� Presented at the XII Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 6�12, 1999.(1109)



1110 E. Gudowska-Nowak et al.within the hromatin varies with the ell type and hanges as the ell pro-gresses through the ell yle. Ionizing radiation produes variety of damageto DNA inluding base alterations, single and double strand breaks (DSB) inthe sugar-phosphate bakbone of the moleule and hromatin breaks [1, 2℄The purpose of theoretial modeling of radiation ation [3℄ is to desribequalitatively and quantitatively the results of radiobiologial e�ets at themoleular, hromosomal and ellular level. The basi onsideration in suhan approah must be then desriptive analysis of breaks in DNA aused byharged partile traks and by the hemial speies produed.Among various experimental methods used to detet DSBs produtionin intraellular DNA [4℄, one of the most popular is the pulse �eld gel ele-trophoresis (PFGE) in whih the gel eletrophoresis is applied to elute highmoleular DNA fragments from whole ellular DNA embedded in agarose.The separation of DNA moleules is then based on how quikly the moleulesreorient in a swithing (pulsed) eletrial �eld. Tehniques applying PFGEhave been proven to be very sensitive, allowing reproduible measurementswith radiation at relatively low doses. The major goal of the experiment isto quantify number of indued DSBs based on relation between frations ofDNA separated on the gel and the average number of DSBs. To analyze thedata, the formalism desribing random depolarization of polymers of �nitesize is usually adopted [5,6℄ giving very well �ts to experimental results withX-ray indued DNA fragmentation. In ontrast to the �ndings for sparselyionizing irradiation (X and  rays) haraterized by low average energy de-position per unit trak length (linear energy transfer, LET� 1 keV/�m),densely ionizing (high LET) partile trak is spatially loalized [7℄. In ef-fet, multipliity of ionizations within the trak of heavy ions an produedlusters of DSBs on rossed hromosomes [8, 9℄. The formation of lustersdepends on hromatin geometry in the ell and radiation trak struture.DSBs multipliity and loation on hromosomes determine distribution ofDNA fragments deteted in PFGE experiments. Modeling DNA fragment-size-distributions provides then a tool whih allows to eluidate experimen-tally observed frequenies of fragments. Even without detailed informationon the geometry of hromatin, models of radiation ation on DNA an servewith some preditive information onerning measured DNA fragment-size-distribution. The purpose of the present paper is to disuss a mathematialmodel whih an be used in analysis of DNA fragment-size- distributionafter heavy ion irradiation. The bakground of the model is the Poissonstatistis of radiation events whih lead to formation of lusters of DNAdamage. The formation of breaks to DNA an be then desribed as general-ized or ompound Poisson proess for whih the overall statistis of damageis an outome of the random sum of random variables. In the next se-tion we brie�y disuss known statistial properties of random sums. Some



Compound Poisson Proesses and Clustered Damage : : : 1111biologially relevant distributions are derived and further used (Setion 3)in desription of fragment size distribution in DNA after irradiation withheavy ions. Model analysis is then applied to predit dose-response urvesof experimental data displaying potential pratial use of the formalism.2. Sums of random number of random variablesConsider a sum SN of N independent random variables XSN = NXi=1 Xi ; (1)where N is a random variable with a probability generating funtion g(s)g(s) = 1Xi=0 gisi : (2)Let us assume that eahXi has the same probability generating funtion f(s)(that means that X 0is are sampled with the same probability distributionfuntion): f(s) = 1Xj=1 fjsj : (3)By use of the Bayes rule of onditional probabilities the probability that SNtakes value j an be then written asP (SN = j) � hj = 1Xn=0P (SN = jjN = n)P (N = n) : (4)For �xed value of n and by using the statistial independene of Xi's, thesum SN has a probability generating funtion being a diret produt of f(s):F (s) = f(s)n = 1Xj=0 Fjsj (5)from whih it follows that P (SN = jjN = n) = Fj . The formula (4) an bethen rewritten as hj = 1Xn=0Fjgn : (6)



1112 E. Gudowska-Nowak et al.So that the ompound probability generating funtion of SN is thenh(s) = 1Xj=0 hjsj= 1Xj=0 1Xn=0Fjgnsj= 1Xn=0 gnf(s)n � gff(s)g : (7)In a similar way onditional expetations rules an be used to determinemoments of a random sum. Given E[N ℄ = �, E[Xi℄ = �, Var [N ℄ = �2 andVar [Xi℄ = �2, the �rst and the seond moment of the random sum SN areE[SN ℄ = ��; Var [SN ℄ = ��2 + �2�2 : (8)Example 1A ompound Poisson proess is de�ned as time dependent random sum:SN (t) = N(t)Xj=0 Xj ; (9)where the ounting proess N(t) is assumed to be Poissonian with a rate�. If N(t) is independent of Xj whih are random variables with the samedensity funtion p(X) and harateristi funtion �(!) = E[exp(i!X1)℄, theompound Poisson proess SN (t) has a harateristi funtion given by�S(!) � E[ei!SN (t)℄ = 1Xm=0�m(!)Prob [N(t) = m℄ = e�t[�(!)�1℄= exp24�t 1Z�1 p(X) �ei!X � 1� dx35 (10)with momentsE[SN (t)℄ = �tE[X1℄; Var [SN (t)℄ = �t(Var [X1℄ +E[X1℄2) : (11)The above ompound distribution is an example desribing �lusteredstatistis� of events grouped in a number N of lusters whih itself has adistribution. As suh, it is sometimes desribed in literature [10℄ as �mixtureof distributions�. In partiular, the broad lass of Poisson proesses fS(t)g



Compound Poisson Proesses and Clustered Damage : : : 1113with the rate onstant � being also a random variable (or onstituting thestohasti proess of itself) are referred to as Cox proesses [11, 12℄. Themarginal distribution for suh a proess is onstruted by using the Bayesrule: Prob fS(t) = kg = 1Z0 (�t)ke��tk! f(�)d� ; (12)where � has been assumed to be a ontinuous random variable with proba-bility density funtion f(�). One of the most popular working examples isa mixing of Poisson distribution with the Gamma distribution of � of meanarrival times between subsequent events:f(�) = e���r�1 r� (r) : (13)In e�et, Eq. (12) readsProb fS(t) = kg = tkrk!� (r) 1Z0 �k+r�1e��(+t)d�= � (k + r)� (r)k! � + t�r � t+ t�k (14)and the resulting distribution is a negative binomial with parameters r andp = ( + t)�1. Alternatively, negative binomial distribution an be pro-dued as a ompound distribution with a logarithmi distribution of objetsin a �luster� [10℄. It an be shown that a mixture of Poisson distributionsresulting from using any unimodal ontinuous funtion f(�) is a unimodaldisrete distribution. It is not so, however, in ase of unimodal disrete mix-ing as shown in the example below.Example 2The mixture of Poisson distributions an be easily analyzed in terms of ran-dom sums. By virtue of the above formalism and by using the formulae (7),(10), the generating funtion of the ompound Poisson�Poisson distributionis W =PNi=1Wi is given by:g = exp (� �(1� f(s))) ; (15)where the random variables Xi are distributed aording to a Poisson lawf(s) = exp(��+ �s) (16)



1114 E. Gudowska-Nowak et al.and the total SN is a random variable with a ompound Poisson�Poisson(Neyman type A) distribution:P (SN = x) � P (x;�; �) = 1XN=0 (N�)xe�N�x! �Ne��N ! : (17)Figures 1, 2 presents funtion (17) for two various sets of parameters �; �.The ompound Poisson distribution (CPD) has a wide appliation in
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Fig. 1. Simulated probability density funtion for the Neyman-type A distribution(17) with � = 5; � = 100 for N = 10000 pointseology, nulear hain reations and queuing theory. It is sometimes knownas the distribution of a �branhing proess� [11℄ and as suh has been alsoommonly used to desribe radiobiologial e�ets in ells (see below).Example 3In their luster theory of the e�ets of ionizing radiation, Tobias et al. [13℄have used so alled Neyman [14℄ distribution (see above, Example 2) whihis nothing but a ompound Poisson-binomial (or in a limiting ase Poisson�Poisson) distribution. In the derivation the following reasoning has beenused:� When a single heavy ion rosses a ell nuleus, it may produe DNAstrand breaks and hromatin sissions wherever the ionizing trakstruture overlaps hromatin struture.� The multiple yield of suh lesions depends on the radial distributionof deposited energy and on the mirodistribution of DNA in the ellnuleus.� The number of rossings strongly depends on the geometry of DNAoiling in the ell nuleus (in a human ell nuleus, the total lengthof doubled-stranded DNA is more than one meter and in the nuleus



Compound Poisson Proesses and Clustered Damage : : : 1115the DNA is paked in oiled strands). For a given ell line, a �typial�average number n of possible rossings per a partile is assumed.� If p is a probability that a hromatin break ours at eah partilerossing (and q is the probability that it does not), the distribution ofthe number of hromatin breaks in the luster per one-partile traversalis binomial P (ijn) = �ni�piq(n�i) (18)with the probability generating funtiongs = [sp+ (1� p)℄n : (19)� The probability that j partiles ross the nuleus is given by a Poissondistribution P = (�F )jj! e��F (20)with an expetation value �F whih is proportional to absorbed doseand represents produt of partile �uene F and nulear ross se-tion �.� The overall probability that i lesions will be observed after m partilestraversed the nuleus is given by a Neyman distributionP (ij�; F; n) = 1Xm=1 (nm)!piq(nm�i)(�F )me��Fi!(nm� i)!m! (21)with a ompound probability generating funtionG(s) = exp(��+ �[sp+ 1� p℄nm) ; (22)where � = �F .From the latter, by diret di�erentiation one gets expeted (mean) valueand variane hii = n�p ;hi2i � hii2 = n(n� 1)�p2 + n�p : (23)



1116 E. Gudowska-Nowak et al.Aggregation of observed ellular damage potentially leads to the phenome-non of �overdispersion� � that is, the variane of the aggregate may be largerthan Poisson variane yielding �relative variane� Var rel = (hi2i � hii2)=hiilarger than 1. Assuming thus the Poisson statistis of radiative events,for any distribution of lesions per a partile traversal, the ondition foroverdispersion an be easily rephrased in terms of (11)Var [X1℄E[X1℄ +E[X1℄ > 1 : (24)By assuming a repairless ell line (i.e. no repair proess is involved in di-minishing number of initially produed lesions), one is able to derive thesurviving fration as a zero lass of the initial distribution, i.e. the propor-tion of ells with no breaks:P (0j�; F; n) = 1Xm=1 (nm)!qnm(�F )me��F(nm)!m!= exp[��F (1� qn)℄ : (25)Note the di�erene between Neyman and Poisson distribution, for whihP (0j�; F; n) = exp[��F ℄ = exp[�hii℄ : (26)
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Fig. 2. Simulated probability density funtion for the Neyman-type A distribution(17) with � = 100; � = 5 for N = 10000 pointsThe prodution of lusters of radiolesions an be quantitated in the ex-periments aiming to determine yield of hromatin breaks in ells exposed topartile beams. One of tehniques employed is the premature hromosomeondensation [1,15℄ whih allows to visualize radiation indued damage pro-dued in interphase hromosomes, i.e. before the mitoti division of theell takes plae. The fusion of mitoti and interphase ells results in the



Compound Poisson Proesses and Clustered Damage : : : 1117premature ondensation of interphase hromosomes. Suh an indution en-ables one to measure the breakage and rejoining of hromosomes withoutthe perturbing in�uene of proesses assoiated with ell-yle progressionto mitosis and interphase death of ells whih may modify their expression.Distribution of PCC fragments among ells exposed to sparsely ionizingradiation (X- and -rays) have been reported to be onsistent with Pois-son statistis of �randomly� produed breakage. In ontrast, overdispersionof the distribution appears [16, 17℄ as a general feature of partile induedfragmentation (f. �gure 3). The phenomenon is explainable under the as-sumption that single partile traversals are apable of produing multiple

Fig. 3. Frequeny distribution of PCC fragments after exposure to X-rays and ar-bon ions at doses leading to similar biologial e�et measured in number of �exessfragments� being produed (f. text). Dotted line represents theoretial Poissonurves �tted to experimental data; solid line represents Neyman distribution �ttedwith � = 3:43�0:59 and � = 3:90�0:65. 75% probability of �t has been estimatedbased on �goodness-of-�t� �2 test. As an be learly seen, omparable biologiale�et of arbon ions is registered at twie lower dose than for X-rays.



1118 E. Gudowska-Nowak et al.PCC fragments (�lusters� of damage, as disussed in Example 3 above).Similar onlusions an be drawn from other PCC studies [18℄ with heavyions: with inreasing linear energy transfer of the ion, the number of breaksper partile traversing the ell nuleus rises and breaks beome inreasingly�lustered�.3. A model of DNA fragments distribution generatedby irradiation with heavy ionsLesions observed in PCC experiments are known to be the 10�15% sub-set of breaks produed at the DNA level. DNA double strands in a size rangefrom a few hundred kilobase pairs to several megabase pairs an be observedby PFGE tehnique. Randomly distributed DSBs are deteted as smears ofDNA fragments. To interpret the experimental material one needs to relateperentage of fragments in de�ned size ranges to number of indued DSBs.For that purpose several models have been derived, mainly based on thedesription of random depolarization of polymers of �nite size [5, 6, 19℄. Al-though the models give satisfatory predition of size-frequeny distributionof fragments after sparsely ionizing radiation (i.e for X-rays and ), they gen-erally fail to desribe the data after densely ionizing radiation [3,9,19℄. Theexperiments with heavy ions [7, 20℄ demonstrate that exposure to denselyionizing partiles gives rise to substantially overdispersed distribution ofDNA fragments whih indiates the ourrene of lusters of damage. Thefollowing analysis presents a model whih takes into aount formation ofaggregates of lesions after heavy ion irradiation.Fragment distribution in PFGE studies is measured with �uoresenetehnique or radioative labeling with the result being the intensity distri-bution. Generated signal is proportional to the relative intensity distributionof DNA fragments and an be expressed asI(x) = xD(x) (27)with D(x) = 1Xj=0D(xjj)P (j;�; �) ; (28)whereD(xjj) stands for the density of fragments of length x provided j DSBsour on the hromosome of size S. Frequeny distribution of the numberof DSBs is assumed here in the form of CPD (17) with parameters � and �representing average number of breaks produed by a single partile traversaland average number of partile traversals, respetively (f. Example 3



Compound Poisson Proesses and Clustered Damage : : : 1119above). The �broken-stik� distribution [19,21℄ for j breaks on a hromosomeof size S yields a frequeny of fragments of size x:D(xjj) = Æ(x� S) + 2j 1S �1� xS�j�1 + j(j � 1) 1S �1� xS�j�1 ; (29)where the �rst two terms desribe ontributions from the edge fragments ofthe hromosome and the third term desribes ontribution from the internalfragments of length x < S. The �rst term applies to the situation whenj = 0; the edge ontribution an be understood by observing that the �rstand the j + 1 fragment have the same probability of being size x. Diretsummation in formula (28) leads toD(x) = exp(��(1� e��))Æ(x � S)+2��S exp(��xS + �(e�� xS�1))+e��(1� xS )�2�S (1 + �e�� xS ) exp(��xS + �e�� xS ) : (30)Integration of I(x) from 0 to some average (marker) size X� and division byS yields the relative fration of DNA ontent. For � � 1 and � � 1, theNeyman-type A distribution onverges to a simple Poisson. In suh a ase,simpli�ed expression (30) leads to results known in literature as �Blöherformalism� [5,6℄ whih desribes well the DNA ontent in probes irradiatedwith X-rays and .Figures 4, 5 present predited dose-response urves for the model. Theamount of DNA ontent is shown in funtion of dose and fragment size. In
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1120 E. Gudowska-Nowak et al.

Fig. 5. Predited intensity I(x) of the signal in funtion of fragment length fordi�erent mean values � of number of DSBs produed at the same dose (�uene) ofpartiles. In alulations the distribution of inner fragments Din(x), Eq. (30) hasbeen used.

Fig. 6. Fration of DNA ontent observed experimentally within the range of sizes0.1-1.0 Mbp. Data show higher probability of produing short fragments afterirradiation with partiles than for sparsely ionizing radiation at omparative dose.Lines represent the �best-eye� �t through experimental points.alulation, the parameter S = 245 mega base pairs has been used whihis the mean hromosome size for Chinese hamster ells, the ell line forwhih experimental data are displayed in �gures 3 and 6. The inreasein multipliity of DSBs produed per one traversal of a partile leads topronouned inrease in prodution of shorter fragments whih is illustratedin the shift of the peak intensity towards smaller x values.



Compound Poisson Proesses and Clustered Damage : : : 11214. Spatial lustering of breaks and non-Poisson statistisClustering of breakage events an be viewed as the proess leading to non-exponential �spaing� between subsequent events, similar to the standardanalysis of level repulsion in spetra of polyatomi moleules and omplexnulei [22℄. For a random sequene, the probability that a DSB will be inthe in�nitesimal interval (X + x;X + x+ dx) ; (31)proportional to dx is independent of whether or not there is a break at X.This result an be easily hanged by using the onept of breaks �repulsion'.Given a break at X, let P (x)dx be the probability that the next break(x � 0) be found in the interval (X + x;X + x+ dx). We then have for thenearest-neighbour spaing distribution of breaks the following formula:P (x)dx = Prob (1 2 dxj0 2 x)Prob (0 2 x) ; (32)where Prob (n 2 dxjm 2 x) is the onditional probability that the in�nitesi-mal interval of length dx ontains n breaks whereas that of length x ontainsm of those. The �rst term on the right-hand side of the above equation isdx times a funtion of x whih we denote by r(x), depending expliitly onthe hoies 1 and 0 of the disrete variables n and m. The seond term isgiven by the probability that the spaing is larger than x:1Zx P (y)dy : (33)Aordingly, one obtainsP (x) = r(x) 1Zx P (y)dy ; (34)whose solution an be easily found to beP (x) = Cr(x) exp0�� xZ r(y)dy1A ; (35)where C is a onstant. The Poisson law, whih re�ets lak of orrelationbetween breaks, follows if one takes r(x) = �, where ��1 is the mean spaingbetween DSBs. If hoosing on the other handr(x) = �x (36)



1122 E. Gudowska-Nowak et al.i.e. by assuming a linear repulsion, one ends up with the Wigner's law. Theonstants C and � an then be determined from appropriate onditions, e.g.Z P (x)dx = 1; (37)and Z xP (x)dx = ��1 : (38)One then �nds that P (x) = �e��x (39)for the Poisson distribution andP (x) = �x�22 e��(�x)2=4 (40)for the Wigner's distribution. The latter displays �repulsion�, sine P (0) = 0,in ontrast to the Poisson ase whih gives maximum at x = 0. The Wignerdistribution is a standard in statistis. It is the distribution for the squareroot of the sum of the squares of two independent Gaussian random variablesof type N(0; ��1p2=�) and is sometimes alled the Rayleigh distribution.The above result Eq. (40) is widely known in literature on random matriesand haoti systems. The onset of haos in lassial Hamiltonian system isdue to the breaking of symmetries. In quantum systems, symmetry breakingmanifests itself as a hange in the spetral spaing statistis of the energy-level spetrum. Quite similarly, in random walks [23�25℄ symmetry breakingtransition manifests itself as a hange in the spetral spaing statistis of de-ay rates. In all those ases, the statistis of events of interest deviates, as aounting proess, from the regularity of Poisson proess, for whih the sub-sequent event arrivals are spaed with a onstant mean ��1. The lusteredstatistis of breakage an be thus viewed as a Cox proess (f. Setion 1,Example 1) for whih the proess inrements over disjoint intervals are, ingeneral, statistially dependent. In this sense, Neyman distribution Eq. (17)is a model example whih ould be also derived as a marginal one for theCox proess Eq. (12) with Poisson distribution of �.5. ConlusionsAn existing substantial evidene demonstrates that exposure to denselyionizing harged partiles gives rise to overdispersed distribution of hro-matin breaks and DNA fragments whih is indiative of lustered damage
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