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Processes in coupled nonlinear systems are discussed under the influ-
ence of external signals and noise to improve the understanding of dynam-
ical order and function in biological systems. A network of relaxation-type
oscillators with nearest-neighbour coupling is numerically investigated un-
der the influence of exponentially correlated noise. When all oscillators
are exposed to an aperiodic subthreshold signal and to spatially incoherent
noise, two regimes of behaviour are observed depending on the network’s
coupling strength. In the case of weak coupling, noise at an intermediate
level optimizes the correlation of the network oscillators with the aperiodic
signal. In the case of stronger coupling the correlation with the external
signal becomes lost, as intrinsic network dynamics take over. When the
network is locally excited, noise-induced plane waves are built up, which
move through the entire system. It is shown that the spatio-temporal pat-
tern emerges independently of the way of the deterministic forcing. This
effect may be understood as spatio-temporal stochastic resonance, since
noise of an intermediate level optimizes the coherence of the wave-fronts.

PACS numbers: 87.10.+e, 5.40.Ca, 5.45.Xt

1. Introduction

The influence of noise is usually viewed as being detrimental to the occur-
rence and maintenance of regular structures, dynamical states and functional
order. This widely accepted destructive role of noise has to be questioned for
20 years now, when nonlinear processes are to be taken into account. Under
certain conditions, a strong constructive role of noise can be established.
Noise-enhanced and noise-induced order—order and chaos-order transitions
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have been investigated. In [1] the necessary existence of a finite dissipation
in Josephson-junction elements for the occurrence of deterministic chaos is
shown. Noise may have a constructive influence on the behaviour of the
logistic map [2], multiplicative noise can stabilize a system by shifting the
threshold of instability [3,4]. Noise has been shown to cause a slower decay
of correlations [5] and to improve predictability in a certain range of noise
strength [6], when a Belousov—Zhabotinsky map is exposed to noise. With
this rather arbitrary selection of some of the early investigations on the influ-
ence of noise in simple nonlinear systems we proceed to recent developments
with respect to the possible constructive role of noise, mainly noise-induced
or noise-enhanced processes like synchronization, coherence, amplification,
information transfer and wave propagation in nonlinear systems. In gen-
eral the emergence of new properties originating from the synergy of the
combined action of stimuli and noise will briefly be sketched with a main
emphasis on biological systems.

Fluctuations and noise are inevitable in biological systems. Whether
these fluctuations can play an active role in signal detection, transfer and
ordering is a question of ongoing research. Meanwhile, the constructive role
of noise in signal detection and transduction is a well established fact, both
theoretically and experimentally, in many cases being denoted as stochastic
resonance (SR) (for reviews see |7]). This is an effect, wherein the response
of a nonlinear device to a weak input signal is optimized by an intermediate
level of noise. The input signal can be periodic, aperiodic, deterministically
chaotic or stochastic [8]. The noise source may be white or coloured, it may
be applied in an additive or multiplicative way. In the case of dichotomic,
non-Markovian multiplicative noise a linear process can be sufficient [9]. SR
has been observed in a variety of physical and chemical systems, including
an increasing number of biological ones [10].

The constructive role of noise in elementary threshold and oscillatory
devices, in excitable systems and in fluctuation driven transport is discussed
in a series of papers [11]. Array-enhanced stochastic resonance and spatio-
temporal synchronization has been proven to occur in arrays of bistable el-
ements [12,13]. In [14] it is shown that a SR kind of behaviour amplifies an
external, periodic signal and enhances its transfer through a system of cou-
pled oscillators. Noise-induced synchronization of coupled excitable systems
has been reported in [15]. Noise-sustained pulsating patterns and global
oscillations have been observed in an array of activator—inhibitor elements,
where spatially uncorrelated noise acts parametrically on the threshold of
the excitable system [16].

The ability of noise to enhance spatio-temporal patterns and to increase
some coherent or collective dynamical properties may be viewed as a gen-
eralization of the notion of stochastic resonance to spatially extendend sys-
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tems. The phenomenon of spatio-temporal stochastic resonance (STSR) was
first observed by Jung and Mayer—Kress in a noisy cellular automata sys-
tem [17]. STSR has been further observed experimentally in noise-induced
Ca’?*-waves [18] and in noise-supported travelling waves in a chemical reac-
tion [19].

So far most studies were concerned with either noise-induced signal am-
plification and synchronization or noise-induced pattern formation. The
question we study in this paper is how noise can enhance both signal-
detection and the formation of a spatio-temporal pattern within one system.
As a working model we investigate the response of a rectangular lattice of
relaxation-type oscillators with nearest-neighbour coupling to a subthreshold
aperiodic input signal under the influence of spatially coherent and incoher-
ent noise. We show that the system’s behaviour can change from coupling-
enhanced aperiodic stochastic resonance (ASR) to noise-assisted synchro-
nization of the network by raising the global network coupling strength,
thus combining noise-assisted signal detection, synchronization and wave
propagation. It is shown that the latter can be characterized as some type
of spatio-temporal stochastic resonance.

The paper is organized as follows. The working model is introduced in
Section 2. In Section 3, we discuss the numerical results for two different
realizations of the network models and show that they can exhibit both
aperiodic and spatio-temporal stochastic resonance. The paper is concluded
in Section 4.

2. Model

A two-dimensional m x n array, whose elements consist of noisy rela-
xation-type nonlinear oscillators, is investigated. The only requirement for
the oscillators used is their ability to perform transitions from a fixed point
to a limit cycle, when driven by both a deterministic and a noisy signal.
The oscillators’ dynamics have to be determined by a slow recovery process
and a large amplitude of the fast variable. Many other oscillator models
exhibit this behaviour, e.g. the well-known FitzHugh—Nagumo model and
some others [20].

The network is described by the following set of coupled differential equa-
tions:

Tat C YViT T3y v
d;] = a—xij = q(i1j + Tip1j+ Tijo)

— i Text + &coh (t) + fij (t)a (2)
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with 4 < n being the row and j < m being the column index. x;; and y;;
are the fast and the slow recovery variables, respectively. Nearest-neighbour
coupling to only three neighbours is introduced via the coupling constant q.
Eq.(2) has no back coupling gz;j4+1. Hence, excitation can propagate only
in one direction, that is towards higher column indices (from j — 1 to j).
With this assumption we want to realize the fact that many processes in
biological systems exhibit a sense of direction, e.g. in afferent and efferent
nervous signalling [21].

Each uncoupled oscillator exhibits stable foci for |a+0.5] > 0.5, a(1+«)
< 24/e and a Hopf-bifurcation at @« = 0 [22]. An external, periodically
driven oscillator of the same kind is coupled to the network to generate an
aperiodic signal [23], which is globally fed into the network via the coupling
constant

dIext . :L‘gxt ngt
dt - yext 2 3 ? (3)
dZetXt = —Zext + O+ ACOS(Wt) : (4)

The noise terms appearing in the model equation (2) include spatially inco-
herent noise sources (&;;(¢)), i.e. the noise is uncorrelated from site to site,
and spatially coherent noise (£con(t)). These two noise sources can act on
each system oscillator. The numerical simulations use exponentially corre-
lated, coloured noise for both &;; and &con

(€)= 0. )
2 oy
(cwe)) = Zew (<11, )

where 7, is the noise correlation time and ¢? the variance of the Gaussian-
distributed noise amplitudes. Here, o refers to the intensities of both the
spatially incoherent (oinc) as well as the spatially coherent (o¢op ) noise terms.
&j(t) and &eon(t) are generated through a higher-dimensional Ornstein--
Uhlenbeck process using an integral algorithm as described in [24]. The
generating equation reads

. 1
() = — (=€) + (1) ©

c
with n(¢) being some Gaussian, white noise. Application of coloured noise is
preferred, because it provides a more realistic description of real fluctuations
in biological systems, as compared to spectrally flat noise. Although the
functional significance of the colour of the noise still remains elusive [25], it
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has nevertheless been observed in biological systems [26]. The question as
to whether coloured noise can reduce or improve SR is a matter of ongoing
research since the appearance of an excellent paper on this topic [27].

Throughout this paper we use the following set of common parameters:
e=001,a=01, A=1.0, w=18s"", 7. = 0.01. The cosine signal drives
the input oscillator into a chaotic state and the coupling constants y;; and ¢
are adjusted in such a way that the array oscillators yield stable foci in the
absence of noise. The differential equations are integrated numerically using
a bth-order Runge-Kutta algorithm [28]|. Network simulations are run with
an integration stepsize of At = 3.49 x 10~3s. Control runs with smaller time
steps and larger networks led to the same results.

3. Results

For sufficiently large coupling strength ¢, an excited array element will be
the nucleus of excitatory waves spreading through the entire network. Here,
by means of the broken symmetry within the nearest-neighbour coupling,
the creation of plane-waves is observed, only. In the following, we refrain
ourselves to values of ¢, below which excitation of the array elements cannot
be sustained through local excitation. We investigate the effect of the noise
intensity o and the coupling strength g on the response of the network to
the aperiodic input signal. The correlation between the response and the
input signal is calculated using the powernorm Cj [29]. Here, Cj is defined
in the following way:

1 m,n

Cext = N Z <(IZ] - <$ij>t)($ext - <Iext>t)>t7 (8)

1]

where (); denotes time averaging and the sum extends over all N = m x n
network elements. For calculating the correlation between network elements,
Cy can be written as:

—1
Cint = <J;[> > @i — (i) )iy — (wingr),)), (9)

{ig4'5'}

where (); denotes time averaging. The sum extends over all (];7 ) different

combinations of 75 with ¢’j', where (];7 ) is the binomial coefficient and N the
number of array elements.

Note that stochastic resonance is associated with optimal input—output
signal coherence as well as signal amplification. In order to account for the
latter effect we use non-normalized correlation measures.
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3.1. Noise-enhanced input—output correlation

For our investigation we take m = n = 8 and apply periodic boundary
conditions. The coherent noise term is zero (ocon = 0). We choose p;; =
0.20 V1, 7, thus all 64 oscillators are driven by the same external signal xeyy.
Figs. 1(a) and (b) show the absolute value of Cey and Ciny as a function
of ¢ and oijne. Dark colours correspond to high values of the powernorm.
Figs. 1(c) and (d) depict a cross-section of the contour plots at oine = 0.008.
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Fig. 1. Contour plots of the absolute values of (a) |Cext| and (b) |Cing| as a function
of the coupling strength ¢ and noise intensity oj,.. The array sizeism =n = 8. All
oscillators are externally driven. The correlation values are linearly greyscale-coded
in 60 steps from 0 up to 0.017 in (a) and up to 0.50 in (b). Data points were obtained
in triplicate by averaging over 15000 periods of the periodic driver. Figures (c) and
(d) show a cross-section of |Cext| and |Cint| at oine = 0.008, respectively. Other
parameters: ocon = 0 and p;; = 0.20.

Figs. 1(a) and (c) reveal that there is an intermediate range of the noise
intensity and coupling strength around o, =0.008 and ¢ =0.10, for which
the correlation Cey; is maximal. Here, the response of the network most
closely resembles the input signal. Note that the embedding of the oscil-
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lators in a network raises the ASR-induced correlation almost by a factor
of two. The absolute maximum at ¢ = 0.10 is Ceyt = 0.017, whereas the
local maximum for ¢ = 0, when all network oscillators act as independent
excitable systems, is Cext = 0.009.

This behaviour is reflected by the time series of one sample oscillator
of the network [Figs. 2(b) and (c)|]. The input signal remains the same
[Fig. 2(a)], but the coupling strength ¢ increases from (b)—(d). The noise
intensities are chosen to optimize the network’s capability as a detector for
the aperiodic spike sequences of the input oscillator. If ¢ is small [Fig. 2(b)],
there are few response relaxation oscillations (spiking events) to the input
signal from (a). Raising the coupling strength leads into a parameter region,
wherein the aperiodicity of the input as well as the variation of the oscilla-
tion amplitudes is rendered the most clearly [Fig. 2(c)]. A further increase of
the coupling strength exhibits a regime of noise-induced oscillations, whose
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Fig. 2. Time series of the oscillators. (a) Time series of the external oscillator (Zext ),
which is driven into a chaotic regime by appropriate forcing. This aperiodic signal
is globally coupled into the network. (b)—(d) Response of one sample network
oscillator (z44) at three different coupling strengths in the regime of optimized,
noise-induced response. All time series show the reponse to the same aperiodic
input signal from (a). Parameter values: (b) ¢ = 0.01, o = 0.01, (c) ¢ = 0.1,
Oine = 0.008, (d) ¢ = 0.20, gine = 0.01. Other parameters are the same as in Fig. 1.
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amplitude and frequency are determined by the intrinsic dynamical prop-
erties of the coupled oscillators, nearly independent of the aperiodic input
signal [Fig. 2(d)].

As a consequence of the reqular network oscillations the correlation Ceyy
starts to decline for ¢ > 0.10 for all values of oj,¢, when a transition from a
noise-enhanced input—output correlation to a noise-induced array synchro-
nization takes place, which can be seen from Ciy [Figs. 1(b) and (d)]. The
local maximum of Cj,; around ¢ = 0.10 corresponds to the absolute maxi-
mum of Cey in Figs. 1(b) and (c), thus revealing the ASR-induced correla-
tion between the network oscillators. Raising the coupling strength further
leads to a small parameter region, in which Cjy tends to zero. Here, the
network’s ability to detect temporal patterns is reduced, whereas a global
phase synchronization of the network oscillators has not yet been estab-
lished. The network shows patchy pulsating patterns, i.e. temporally and
spatially changing areas of activity, which result in a loss of the network-
internal correlation Cins. For stronger coupling ¢, the intrinsic noise starts
to dominate over the influence of the aperiodic input signal and the resulting
phase synchronization between network oscillators causes the buildup of a
spatio-temporal pattern, thus strongly increasing the inner network correla-
tion Cint-

The dependency on ¢ can be explained by the fact, that the network cou-
pling lowers the effective threshold of each oscillator. The regular oscillations
are hence a noisy precursor of the completely synchronized oscillations that
occur for ¢ > 0.25 in the deterministic case.

3.2. Combined influence of spatially coherent and incoherent noise sources

The combined influence of different noise sources reveals the fact that
each subsystem (excitatory /oscillatory unit) may be influenced by both spa-
tially coherent noise (e.g. an external noisy signal acting on the whole sys-
tem) and spatially incoherent noise (e.g. thermal background or environ-
ment). In [30] it has been shown that internal (spatially uncorrelated) noise
plays a constructive role in information transfer through ion channels via
an increase in external (i.e. spatially correlated) noise. In [14]| both a con-
structive and destructive influence of the combined noise sources has been
demonstrated.

In our investigation we expose all array oscillators to spatially incoher-
ent and coherent noise sources, whose intensities are denoted as oj,. and
Ocoh, respectively. The inner network coupling strength is set to ¢ = 0.10.
Fig. 3 depicts a contour plot of the resulting correlation values of Ceyxt. The
correlation can be maximized by both & or §;;, individually. The maxi-
mal correlation induced by the coherent noise (Cext = 0.007) is about two
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Fig. 3. Contour plot of |Cext| in case of the network being exposed to both spatially
coherent (o¢on) and incoherent (oinc) noise of varying intensity. The correlation
values are linearly greyscale-coded in 20 steps from 0 up to 0.017. Data points
were obtained in triplicate by averaging over 15000 periods of the periodic driver.
Other parameters: ¢ = 0.10, Tine = Teon = 0.01.

times smaller than the maximum caused by &;; (Cext = 0.017). Raising oinc
results in an increase of Ceyt, as can be seen for ocn &~ 0.15. The system
thus benefits from the addition of incoherent noise, but not vice versa, be-
cause Ceyxt is maximized in the absense of the coherent noise term. The
addition of spatially coherent noise lowers the correlation. These findings
suggest, that there is no cooperative effect between spatially incoherent and
coherent noise in this system considered. The influence of the different noise
sources on Ceyt is simply additive. The reason for this lies in the fact that
&con and the coupling via ¢ force nearest neighbours in the network into dif-
ferent directions. The coherent noise source drives all oscillators in the same
direction (i.e. either further into the stable regime or towards the threshold),
whereas the coupling drives neighbouring oscillators in opposite directions,
due to the negative sign of the coupling constant ¢ (Eq. 2). Thus, these two
forces are counteracting.

It should be remarked that all the results presented are also valid for free
boundary conditions.
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3.3. Noise enhanced wave propagation

In the last part of this chapter it is shown that the system exhibits
a spatio-temporal stochastic resonance-type of behaviour in the region of
synchronized network oscillations. As an example we present results for a
rectangular lattice (m = 132,n = 32), apply free boundary conditions and
set ¢ = 0.15. The coherent noise term is switched off (o¢on = 0). We choose
pij = 0 except for 7 =1 and 4 = 15,17. By only exciting two oscillators one
can simulate a rather general triggering of the network.

The effect of varying the noise intensity o;; can be seen from Fig. 4
(a)-(d). In the case of low noise intensity, the system remains quiescent
[Fig. 4(a)] except for the two elements on the far left that are determinis-

@

Fig.4. Snapshots of an 32 x 128 array of oscillators under the influence of spatially
incoherent noise. Noise intensity increases from (a)—(d). Two elements in the first
column are deterministically driven by an external oscillator. This generates an
aperiodic triggering of the network. The system is initially at rest. The snapshots
are taken after a transient of 2000 driving periods. The amplitude values increase
in 60 steps from —1.5 to +1.0, whereas dark spots denote the negative deflections,
white spots the positive overshoot (cf. Fig. 2). Parameter values: (a) oinc = 0.001,
(b) Tine = 0.0055, (¢) Tine = 0.008, (d) oinc = 0.03. Other parameters: p;; = 0
except for pi51 = pa7,1 = 0.25 and ocon = 0.
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tically driven. Increasing the level of noise slightly results in small patches
of activity that slowly move from left to right through the entire network
[Fig. 4(b)]. Fig. 4(c) presents the regime of an optimal noise level, at which
plane wave-fronts of excitation move steadily from left to right through the
whole system. Raising the noise intensity further results in the breakup
of the wave-fronts and in independent, noise-dominated oscillations of the
network elements [Fig. 4(d)].

Please note the structure of the wave-fronts, in which every second el-
ement pulses in phase, whereas direct neighbours oscillate in an anti-phase
manner [Figs. 4(b)—(c)]. This is caused by a combinatory effect of the
nearest-neighbour coupling between elements within one column (Eq. 2)
and the elements’ oscillatory behaviour. Figs. 2(a)—(d) show how the z;;-
variables change their sign during one oscillation cycle. Coupling and noise
then force the oscillators to drive each other into the fixed or excited state
in a temporal and spatial alternating fashion. The result is a phase-locked
oscillatory behaviour within one column of the array. The phase synchro-
nization finally extends noise-assisted across the entire network by means of
the unidirectional coupling.

Number of oscillators

T
0.001 0.010
O-inc

Fig.5. Plot of the array- and time-averaged (16 < j < 128) number of oscillators
per column spiking within a time intervall Af. At increases from At = 0.1s to
At = 0.5s8 from bottom to top in intervalls of 0.1s. A spike is counted when an
oscillator crosses a threshold of zy, = —0.5 from above. Data points have been
obtained in triplicate with time series running over 15000 forcing cycles each. The
recording of spike events started after a transient of 1000 forcing cycles of the cosine
driver. Error bars represent standard deviations. Other parameters are the same
as in Fig. 4.
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The propagation speed of the plane wave-fronts within an active zone
is fairly independent of the noise intensity applied, mainly because the re-
laxation oscillations are robust against fluctuations added to them. So each
element oscillates with a frequency of v ~ 0.62s!.

A way of quantifying STSR in the above system is to calculate the aver-
age number of oscillators within each column of the array that are spiking
within a short time intervall At. Fig. 5 reveals that this quantity is maxi-
mized at a finite level of noise. The maxima become more pronounced with
longer time intervalls At, whereas their positions remain unchanged. This
means that the oscillations of the array elements within one column are the
most synchronized around ojy,. = 0.008, i.e. that the wave-fronts are the
most coherent for this intermediate noise intensity.

4. Conclusions

In this study a two-dimensional array of excitable systems under the
influence of an external signal together with spatially incoherent and coher-
ent noise is discussed. The system models some aspects of neuronal action
potential dynamics and signalling in a noisy environment. The above sim-
ulations lead to the conclusions that the ordering role of noise can be used
by the system in two ways, depending on its excitability.

Weak network coupling strength, i.e. low excitability, shows a noise-
enhanced sensitivity towards a subthreshold, aperiodic input signal. The
excitable foci of the network oscillators are collectively capable of detecting
temporal patterns of the signal. This behaviour can thus be regarded as
some kind of frequency encoding and network-enhanced aperiodic stochastic
resonance. The conditions leading to ASR are very general, as the input
signal varies on a time scale that is comparable to the characteristic time of
the responding network.

Raising the network coupling strength, which is equivalent to lowering
the network elements’ effective thresholds, results in a different network be-
haviour. External signals merely serve as a trigger for excitation, whereas
the global dynamics of the system are determined by the intrinsic properties
of the individual network oscillators. Feedback coupling causes a mutual in-
hibition of neighbouring array elements that leads to a synchronizing effect.
This is the reason for the noise-assisted buildup of a spatio-temporal pat-
tern of plane wave-fronts moving in the direction given by the unidirectional
coupling. The roughness of the wave-fronts can be optimized by an inter-
mediate level of noise. This suggests a kind of spatio-temporal stochastic
resonance behaviour as shown by calculating the average number of syn-
chronously oscillating array elements. The transition between the above
described regimes of behaviour can be discerned clearly through the loss of
inner-network coherence despite increasing coupling strength [Fig. 1 (c),(d)].
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Finally it is worth mentioning, that the optimal noise strengths for both
noise-induced input—output correlation and noise-induced wave propagation
are the same. Which of the phenomena are predominant depends on the
coupling strength ¢ and therefore on the height of the threshold barrier of
the array oscillators, only.

Although this model is far from simulating real neural processes, it nev-
ertheless suggests a noise-assisted mechanism, how neural networks in the
brain could switch from individual signalling to a global, coherent pulsing
that is controlled by the intrinsic features of the neurons and sustained
through noise, regardless of an external signal. Such a transition to a syn-
chronized state could be mediated by altering the neurons’ excitability, e.g.
through a lowered firing threshold. The regime of coherent oscillations is
reminiscent of the synchronous discharges of neurons in epileptic seizures,
whereas the contructive role of noise in the brain and the level of inhibitory
or excitatory coupling between neurons still is a matter of ongoing experi-
mental research. Quite general, it remains an open question, whether biolog-
ical systems have any functional benefit in applying noise-enhanced signal
propagation and detection, though it could be shown in several biological
systems that the process of SR can work [31]. A first demonstration that
noise-enhanced sensory dynamics can lead to improved functional behaviour
has been shown quite recently [32].
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