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We discuss models of neutrino masses that, in the context of the see-
saw mechanism, could lead to a large mixing angle for the atmospheric
neutrino oscillations without requiring too much fine-tuning between the
Dirac and the Majorana sectors. These models are compatible with Abelian
flavour symmetries and with the picture of flavour expected in grand unified
theories.

PACS numbers: 12.15.Ff

1. Introduction

Recent data from SuperKamiokande [1] have provided a more solid exper-
imental basis for neutrino oscillations as an explanation of the atmospheric
neutrino anomaly. In addition, also the solar neutrino deficit, observed by
several experiments [2], is probably an indication of a different sort of neu-
trino oscillations. Neutrino oscillations imply neutrino masses. The extreme
smallness of neutrino masses in comparison with quark and charged lep-
ton masses indicates a different nature of the former, presumably linked to
lepton-number violation and the Majorana nature of neutrinos. Thus neu-
trino masses provide a window on the very large energy scale where lepton
number is violated and on Grand Unified Theories (GUTs). Experimental
facts on neutrino masses and mixings could give an important feedback on
the problem of quark and charged lepton masses, as all these masses are
possibly related in GUTs. In particular the observation of a nearly maximal
mixing angle for v, — v; is particularly interesting. Perhaps also solar neu-
trinos may occur with large mixing angle. At present solar neutrino mixings
can be either large or very small, depending on which particular solution will
eventually be established by the data. Large mixings in the neutrino sector
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are very interesting because a first guess was in favour of small mixings,
in analogy to what is observed for quarks. If confirmed, single or double
maximal mixings can provide an important hint on the mechanisms that
generate neutrino masses.

The experimental status of neutrino oscillations is still very preliminary.
Thus, in order to be able to proceed, the theorist has to make a number
of assumptions on how the data will finally look when the experimental
situation will be completely clarified.

1.1. Three light neutrinos

Here we assume that only two distinct oscillation frequencies exist, the
largest being associated with atmospheric neutrinos and the smallest with
solar neutrinos. We assume that the hint of an additional frequency from
the LSND experiment [3], not confirmed by the Karmen experiment [4] (but
yet far from being completely excluded), will disappear. Thus we avoid the
introduction of new sterile neutrino species and can deal with only the three
known species of light neutrinos’.

We interpret the atmospheric neutrino oscillations as nearly maximal
v, — v, oscillations, in agreement with the Chooz results [6]. The solar-
neutrino oscillations correspond to the disappearance of v, into nearly equal
fractions of v, and v;. A priori we are open minded about which of the
three most likely solutions for solar neutrino oscillations is adopted: the two
MSW solutions with small (SA) or large (LA) mixing angle, or the vacuum
oscillation solution (VO).

1.2. A useful parametrization

Maximal atmospheric neutrino mixing and the requirement that the elec-
tron neutrino does not participate in the atmospheric oscillations, as indi-
cated by the SuperKamiokande [1] and Chooz [6] data, lead directly to the
following structure of the Uy; (f = e, pu,7, i = 1,2, 3) real orthogonal mixing
matrix, apart from sign convention redefinitions (here we are not interested

! Can three light neutrinos accommodate solar, atmospheric and LSND oscillations?
This would seem a priori possible if the solar Cl experiment were affected by a large
unknown systematic error. In this case an energy—independent suppression of the
solar neutrino flux by approximately a factor of two could reasonably describe the
data, leaving the solar frequency undetermined in a vast range. Thus we might
associate the two independent frequencies to LSND and atmospheric oscillations. It
has been observed that such an attractive scenario is incompatible with the combined
results of the Chooz and SuperKamiokande experiments, when also the atmospheric
neutrino asymmetries are considered [5].
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in CP violation effects: all matrices are taken real)

c -5 0
s c 1
U=|vV2 V2 V2| - (1)
s ¢ 41
V2 V2 V2

This result is obtained by a simple generalization of the analysis of Ref. 7]
(also discussed in Ref. [8]) to the case of arbitrary solar mixing angle (s =
Sinfsun, ¢ = cosfsun): ¢ = s = 1/4/2 for maximal solar mixing (e.g. for
vacuum oscillations sin? 20g,, ~ 0.75) , while sin? 204, ~ 4s% ~ 5.5 x 1073
for the small angle MSW [9] solution. The vanishing of U.3 guarantees
that v, does not participate in the atmospheric oscillations and the relation
\Uus| = |Urs| = 1/+/2 implies maximal mixing for atmospheric neutrinos.
Note that we are assuming only two frequencies, given by

2 2 2 2
Agun < My — m7, Agtm mz —Mmypg. (2)

The effective light neutrino mass matrix is given by m, = UmdiagUT with
Mdiag = Diag[m1,ma, m3]. For generic s one finds

2e 0 )
my= |0 ani"i‘c‘:Q —m%-i-@ ; (3)
) —73 + &9 73 + &9
with
2 2 _ 2 2
.= mic” + mos ’ 5= (m1 — ma)es ’ ey = mi18* + moc (@)
2 V2 2
We see that the existence of one maximal mixing and Ue3 = 0 are the

most important input that leads to the matrix form in Eqs. (3), (4). The
value of the solar neutrino mixing angle can be left free. While the simple
parametrization of the matrix U in Eq. (1) is quite useful to guide the search
for a realistic pattern of neutrino mass matrices, it should not be taken too
literally. In particular the data do not exclude a non-vanishing U,3 element.
In most of the SuperKamiokande allowed region the bound by Chooz [6]
amounts to |Ues| < 0.2. In the region not covered by Chooz |Ues| can even
be larger [5,10]. Thus neglecting |Ues| with respect to s in Eq. (1) is not
really justified. Also note that in presence of a large hierarchy |ms| > |m 2
the effect of neglected parameters in Eq. (3) can be enhanced by ms/m1 2
and produce sizeable corrections. A non vanishing U, term can lead to
different (my,)12 and (m, )13 terms. Similarly, a deviation from maximal
mixing U,3 # U,3 distorts the €2 terms in the 23 sector of m,. Therefore,
especially for a large hierarchy, there is more freedom in the small terms in
order to construct a model that fits the data than it is apparent from Eq. (3).
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1.3. Hierarchical spectrum

Since neutrino oscillations only measure differences of squared masses,
the observed differences (Am?)am = |m3 — m3| > (Am?)gun = |m3 — m?|
could correspond to (A) hierarchical eigenvalues |mg| > |mo 1| or to partial
or total near degeneracy: (B) |mi| ~ |ma| > |ms| or (C) |my| ~ |ma| ~ |ms|.
The configurations (B) and (C) imply a very precise near degeneracy of
squared masses. For example, the case (C) is the only one that could in
principle accommodate neutrinos as hot dark matter together with solar
and atmospheric neutrino oscillations. We think that it is not at all clear
at the moment that a hot dark matter component is really needed [11]| but
this could be a reason in favour of the fully degenerate solution. Then the
common mass should be around 1-3 eV. The solar frequency could be given
by a small 1-2 splitting, while the atmospheric frequency could be given by
a still small but much larger 1,2-3 splitting. A strong constraint arises in
this case from the non observation of neutrinoless double beta decay which
requires that the ee entry of m, must obey |(m,)ee| < 0.46 €V [12]. As
observed in Ref. [13], this bound can only be satisfied if bimixing is re-
alized (that is double maximal mixing, with solar neutrinos explained by
the VO or MSW-LA solutions). But we would need a relative splitting
|Am/m| ~ Am2,../2m? ~ 1073 — 10~* and a much smaller one for solar
neutrinos explained by vacuum oscillations: |Am/m| ~ 1071 —10711. Such
a tiny relative mass splitting, arranged at the large energy scale where lepton
number is violated, can be easily upset by the renormalization group evolu-
tion down to the electroweak scale [14], unless a suitable flavour symmetry
protects it during the running [15].

1.4. See—saw mechanism

For reasons of simplicity, we consider the simplest version of the see-saw
mechanism with one Dirac, mp, and one Majorana, M, mass matrix, related
to the neutrino mass matrix m,, in the basis where the charged lepton mass
matrix is diagonal, by

my, =mbM tmp. (5)

As well known this is not the most general see-saw mechanism because we
are not including the left-left Majorana mass block. It is implausible that
starting from hierarchical Dirac matrices we end up via the see-saw mecha-
nism into a nearly perfect degeneracy of squared masses and the assumption
of hierarchical Dirac masses and the see-saw mechanism naturally leads to
a pattern of type A with |ms| > |ma| > |m1|. Models with degenerate
neutrinos (see, for example, Refs. [16]) could be natural if the dominant
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contributions directly arise from non renormalizable operators which are a
priori unrelated to other fermion masses, but we will not explore this possi-
bility here.

2. Two interesting mechanisms

In general large mass splittings correspond to small mixings because
normally only close-by states are strongly mixed. In a 2 by 2 matrix context,
the requirement of large splitting and large mixing leads to a condition of
vanishing determinant. For example the matrix

2

2

X

has eigenvalues 0 and 1 + 22 and for z of O(1) the mixing is large. Thus,
in the limit of neglecting small mass terms of order m; 2, the demands of
large atmospheric neutrino mixing and dominance of mg translate into the
condition that the subdeterminant 23 of the 3 by 3 mass matrix vanishes.
The problem is to show that this vanishing can be arranged in a natural way
without fine tuning.

Without loss of generality we can go to a basis where both the charged
lepton Dirac mass matrix mlD and the Majorana matrix M for the right-
handed neutrinos are diagonal. In fact, after diagonalization of the charged
lepton Dirac mass matrix, we still have the freedom of a change of basis
for the right-handed neutrino fields, in that the right-handed charged lepton
and neutrino fields, as opposed to left-handed fields, are uncorrelated by the
SU(2)xU(1) gauge symmetry. We can use this freedom to make the Majo-
rana matrix diagonal: M~1 = VTdy,V with dy; = Diag[1/My,1/Ms,1/Ms].
Then if we parametrize the matrix Vimp by z,, we have:

— Zeca”
(my)ap = (MEM Lmp)apy = Z MCb . (7)

c

From this expression we see that, while we can always arrange the twelve
parameters z, and M, to arbitrarily fix the six independent matrix ele-
ments of m,, the hierarchical case is special in that it can be approximately
reproduced in two particularly simple ways, without relying on precise can-
cellations among different terms:

(i) there are only two large entries in the z matrix, |z.2| ~ |zc3|, and the
three eigenvalues M, are of comparable magnitude (or, at least, with
a less pronounced hierarchy than for the z matrix elements). Then,
the subdeterminant 23 vanishes and one only needs the ratio |z /23]
to be close to 1. This possibility was discussed for instance in [17];
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(i) one of the right-handed neutrinos is particularly light and, in first
approximation, it is only coupled to p and 7. Thus, M, ~ n (small)
and 2.1 ~ 0. In this case the 23 subdeterminant vanishes, and again
one only needs the ratio |z.9/zc3| to be close to 1. This possibility has
been especially emphasized in Refs. [5,18-20].

In a 2 by 2 matrix context (in the 23 sector), a typical example of mech-
anism (7) is given by a Dirac matrix mp, defined by Rmp L, which takes the
approximate form:

mp X

o OO
8 OO

0
0] . 8)
1

This matrix has the property that for a generic Majorana matrix M one
finds:

0 0 0
my =mEM'mp o [0 22 x| . (9)
0 = 1

The only condition on M~! is that the 33 entry is non zero. It is important
for the following discussion to observe that mp given by Eq. (8) under a
change of basis transforms as mp — VimpU where V and U rotate the
right and left fields respectively. It is easy to check that in order to make
mp diagonal we need large left mixings. More precisely mp is diagonalized
by taking V' =1 and U given by

c —-s 0
U= |scy cc, —s4|, (10)
58y €Sy Cy

with

1
37——§, cy=—, r=vV1+z2. (11)

r r

The matrix U is directly the neutrino mixing matrix. The mixing angle for
atmospheric neutrino oscillations is given by:

472

22 _ 2.2 _
sin 20—48767— m

(12)

Thus the bound sin?260 > 0.8 translates into 0.6 < || < 1.6. As is clear,
this mechanism is based on asymmetric Dirac matrices, with, in the case of
the example, a large left-handed mixing already present in the Dirac matrix.

If, for some reason, one prefers symmetric or nearly so matrices, then one
can use mechanism (7i). For example, one could want to preserve left-right
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symmetry at the GUT scale. Then, the observed smallness of left-handed
mixings for quarks would also demand small right-handed mixings. So we
now assume that mp is nearly diagonal (always in the basis where mlD and
M are diagonal) with all its off-diagonal terms proportional to some small
parameter €. Working in the subsector 23 and starting from

el ze -1 re 0
mDO([xe 1], M oc[o 1], (13)

where z is of O(1) and ro = M3/Ms, we obtain:

(14)

e®ry + 222 zePtlry + ze
zePtlry + 26 22629 + 1

m,,oc[

For sufficiently small M the terms in 79 are dominant. For p = 1,2, which
we consider as typical cases, it is sufficient that e?ry > 1. Assuming that
this condition is satisfied, consider first the case with p = 2. We have

62

2
my ox z2e%ry | T

(15)

—_ 8 |m

€

x

In this case the determinant is naturally vanishing (to the extent that the

terms in 7o are dominant), so that the mass eigenvalues are widely split.

However, the mixing is nominally small: sin26 is of O(2e/z). It could be

numerically large enough if 1/x ~ 2-3 and ¢ is of the order of the Cabibbo

angle € ~ 0.20-0.25. This is what we call “stretching™ the large neutrino

mixing is explained in terms of a small parameter; this is not so small and

can give a perhaps sufficient amount of mixing if enhanced by a possibly
large coefficient. This minimalistic view was endorsed in Refs. [21].

A more peculiar case is obtained for p = 1, which gives:

2 1 €T
my, X €719 [m IQ] . (16)
In this case the small parameter ¢ is completely factored out and for = ~ 1
the mixing is nearly maximal. The see-saw mechanism has created large
mizing from almost nothing [22|: all relevant matrices entering the see-saw
mechanism are nearly diagonal. Clearly, the crucial factorization of the small
parameter 2 only arises for p = 1, that is the light Majorana eigenvalue is
coupled to v, and v; with comparable strength. It is straightforward to
extend the previous model to the 3 by 3 case [22]. In that case it is possible
to reproduce both the SA and the LA MSW solutions. The required hier-
archy among the matrix elements can be supported by a suitable Abelian
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flavour symmetry, which can be realized also at the level of an SU(5) grand
unified theory. Moreover, this hierarchy is not spoiled by the renormaliza-
tion group evolution from the unification scale down to low energy. In a
similar class of models all Dirac mixings are small, but large mixing are
introduced via M [23].

3. An explicit model

We have seen that, in order to explain in a natural way widely split
light neutrino masses together with large mixings, we need an automatic
vanishing of the 23 subdeterminant. This in turn is most simply realized
within mechanism 3, by allowing some large left-handed mixing terms in the
Dirac neutrino matrix. By left-handed mixing we mean non diagonal matrix
elements that can only be eliminated by a large rotation of the left-handed
fields. Thus the question is how to reconcile large left-handed mixings in the
leptonic sector with the observed near diagonal form of Vokw, the quark mix-
ing matrix. Strictly speaking, since Voxm = UJUd, the individual matrices
U, and Uy need not be near diagonal, but Voxum does, while the analogue
for leptons apparently cannot be near diagonal. However nothing forbids for
quarks that, in the basis where m,, is diagonal, the d quark matrix has large
non diagonal terms that can be rotated away by a pure right-handed rota-
tion. We suggest that this is so and that in some way right-handed mixings
for quarks correspond to left-handed mixings for leptons.

In the context of (Susy) SU(5) [24] there is a very attractive hint of how
the present mechanism can be realized [17,25]. In the 5 of SU(5) the d° sin-
glet appears together with the lepton doublet (v, e). The (u,d) doublet and
e“ belong to the 10 and v° to the 1 and similarly for the other families. As a
consequence, in the simplest model with mass terms arising from only Higgs
pentaplets, the Dirac matrix of down quarks is the transpose of the charged
lepton matrix: m® = (m4)T. Thus, indeed, a large mixing for right-handed
down quarks corresponds to a large left-handed mixing for charged leptons.
In the same simplest approximation with 5 or 5 Higgs, the up quark mass
matrix is symmetric, so that left and right mixing matrices are equal in this
case?. Then small mixings for up quarks and small left-handed mixings for
down quarks are sufficient to guarantee small Vg mixing angles even for
large d quark right-handed mixings. When the charged lepton matrix is di-
agonalized the large left-handed mixing of the charged leptons is transferred
to the neutrinos. Note that in SU(5) we can diagonalize the u mass matrix
by a rotation of the fields in the 10, the Majorana matrix M by a rotation
of the 1 and the effective light neutrino matrix m, by a rotation of the 5.

2 Up to a diagonal matrix of phases.
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In this basis the d quark mass matrix fixes Vo and the charged lepton
mass matrix fixes neutrino mixings. It is well known that a model where the
down and the charged lepton mass matrices are exactly the transpose of one
another cannot be exactly true because of the e/d and ;1/s mass ratios [24].
It is also known that one remedy to this problem is to add some Higgs
component in the 45 representation of SU(5) [26]. A different solution [27]
will be described later. But the symmetry under transposition can still be
a good guideline if we are only interested in the order of magnitude of the
matrix entries and not in their exact values. Similarly, the Dirac neutrino
mass matrix mp is the same as the up quark mass matrix in the very crude
model where the Higgs pentaplets come from a pure 10 representation of
SO(10): mp = m{,. For mp the dominance of the third family eigenvalue as
well as a near diagonal form could be an order of magnitude remnant of this
broken symmetry. Thus, neglecting small terms, the neutrino Dirac matrix
in the basis where charged leptons are diagonal could be directly obtained
in the form of Eq. (8).

We give here an explicit example of the mechanism under discussion
in the framework of a unified Susy SU(5) theory with an additional U(1)p
flavour symmetry [28]. This model is to be taken as merely indicative, in
that some important problems, like, for example, the cancellation of chiral
anomalies are not tackled here. But we find it impressive that the general
pattern of all what we know on fermion masses and mixings is correctly
reproduced at the level of orders of magnitude. We regard the present model
as a low-energy effective theory valid at energies close to Mgyt < Mp;. We
can think to obtain it by integrating out the heavy modes from an unknown
underlying fundamental theory defined at an energy scale close to Mp;. From
this point of view the gauge anomalies generated by the light supermultiplets
listed below can be compensated by another set of supermultiplets with
masses above Mgur, already eliminated from the low-energy theory. In
particular, we assume that these additional supermultiplets are vector-like
with respect to SU(5) and chiral with respect to U(1)p. Their masses are
then naturally expected to be of the order of the U(1)r breaking scale,
which, in the following discussion, turns out to be near Mp;. We have
explicitly checked the possibility of cancelling the gauge anomalies in this
way but, due to our ignorance about the fundamental theory, we do not
find particularly instructive to illustrate the details here. In this model the
known generations of quarks and leptons are contained in triplets ¥{; and
¢, (a = 1,2,3) transforming as 10 and 5 of SU(5), respectively. Three more
SU(5) singlets ¥{" describe the right-handed neutrinos. We assign to these
fields the following F'-charges:
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Ty ~ (3,2,0), (17)
Ts ~ (3,0,0), (18)
¥~ (1,-1,0). (19)

We start by discussing the Yukawa coupling allowed by U(1)p-neutral Higgs
multiplets ¢5 and ¢z in the 5 and 5 SU(5) representations and by a pair
and 6 of SU(5) singlets with F = 1 and F = —1, respectively.

In the quark sector we obtain®:

)\6 )\5 )\3 )\6 )\5 )\3
m¥ = m%)T =2 M A2, mb =12 X 1w, (20
XA 1 XA 1

from which we get the order-of-magnitude relations:

My 2 Me 2 My = )\6:)\4:1,
mg:ms:my = N0:A2:1, (21)
and
Vs~ X, Ve ~A3, 0 Vo~ A2, (22)

Here v, = (¢5), vq = (v5) and A denotes the ratio between the vacuum
expectation value of # and an ultraviolet cut-off identified with the Planck
mass Mpi: A = (0)/Mp,. To correctly reproduce the observed quark mixing
angles, we take A of the order of the Cabibbo angle. For non-negative
F-charges, the elements of the quark mixing matrix Vexy depend only on
the charge differences of the left-handed quark doublet [28]. Up to a constant
shift, this defines the choice in Eq. (17). Equal F-charges for lpg 3 (see
Eq. (18)) are then required to fit m; and ms. We will comment on the
lightest quark masses later on.

At this level, the mass matrix for the charged leptons is the transpose
of mé:

mp = (m)" (23)
and we find:
me smy imy =021 (24)

The O(1) off-diagonal entry of m!, gives rise to a large left-handed mixing
in the 23 block which corresponds to a large right-handed mixing in the d

3 In Eq. (20) the entries denoted by 1 in m% and m{ are not necessarily equal. As
usual, such a notation allows for O(1) deviations.
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mass matrix. In the neutrino sector, the Dirac and Majorana mass matrices
are given by:

Mo A A1 N
mp= | A2 N XN|ou,, M=|1 XN XN|M, (25)
A1 AN 1

where )\ = (f)/Mp; and M denotes the large mass scale associated to the
right-handed neutrinos: M > Vo, d-

After diagonalization of the charged lepton sector and after integrating
out the heavy right-handed neutrinos we obtain the following neutrino mass
matrix in the low-energy effective theory:

XA N o
m,= | 1 1|2, (26)
¥o1 1| M

where we have taken A ~ A'. The O(1) elements in the 23 block are produced
by combining the large left-handed mixing induced by the charged lepton
sector and the large left-handed mixing in mp. A crucial property of m,, is
that, as a result of the sea-saw mechanism and of the specific U(1)r charge
assignment, the determinant of the 23 block is automatically of O(A\?) (for
this the presence of negative charge values, leading to the presence of both
A and )\ is essential [17]).
It is easy to verify that the eigenvalues of m, satisfy the relations:

myime img =A% 1. (27)

The atmospheric neutrino oscillations require m% ~ 1073 V2. From Eq. (26),
taking v, ~ 250 GeV, the mass scale M of the heavy Majorana neutrinos
turns out to be close to the unification scale, M ~ 10 GeV. The squared
mass difference between the lightest states is of O(\*) m2, appropriate to
the MSW solution to the solar neutrino problem. Finally, beyond the large
mixing in the 23 sector, corresponding to s, ~ ¢y in Eq. (10), m, provides
a mixing angle s ~ (A/2) in the 12 sector, close to the range preferred by
the small angle MSW solution. In general U3 is non-vanishing, of O(\3).

In general, the charge assignment under U(1)r allows for non-canonical
kinetic terms that represent an additional source of mixing. Such terms
are allowed by the underlying flavour symmetry and it would be unnatural
to tune them to the canonical form. We have checked that all the results
quoted up to now remain unchanged after including the effects related to
the most general kinetic terms, via appropriate rotations and rescaling in
the flavour space (see also Ref. [29]).
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Obviously, the order of magnitude description offered by this model is
not intended to account for all the details of fermion masses. Even neglect-
ing the parameters associated with the CP violating observables, some of
the relevant observables are somewhat marginally reproduced. For instance
we obtain m,/m; ~ A® which is perhaps too large. However we find it re-
markable that in such a simple scheme most of the 12 independent fermion
masses and the 6 mixing angles turn out to have the correct order of mag-
nitude. Notice also that our model prefers large values of tan 8 = v, /vq.
This is a consequence of the equality F(¥})) = F(¥2) (see Eqs. (17) and
(18)). In this case the Yukawa couplings of top and bottom quarks are ex-
pected to be of the same order of magnitude, while the large m;/my ratio
is attributed to v, > vy (there may be factors O(1) modifying these con-
siderations, of course). We recall here that in supersymmetric grand unified
models large values of tan 8 are one possible solution to the problem of
reconciling the boundary condition mp = m, at the GUT scale with the
low-energy data [30]. Alternatively, to keep tan 8 small, one could suppress
my/my by adopting different F-charges for the Wg’ and ¥3,.

Additional contributions to flavour changing processes and to CP vio-
lating observables are generally expected in a supersymmetric grand unified
theory. However, a reliable estimate of the corresponding effects would re-
quire a much more detailed definition of the theory than attempted here.
Crucial ingredients such as the mechanism of supersymmetry breaking and
its transmission to the observable sector have been ignored in the present
note. We are implicitly assuming that the omission of this aspect of the
flavour problem does not substantially alter our discussion.

A common problem of all SU(5) unified theories based on a minimal
Higgs structure is represented by the relation ml = (m%)T that, while
leading to the successful m; = m, boundary condition at the GUT scale,
provides the wrong prediction mg/ms = m./m, (which, however, is an ac-
ceptable order of magnitude equality). We can easily overcome this problem
and improve the picture [27] by introducing an additional supermultiplet 64
transforming in the adjoint representation of SU(5) and possessing a nega-
tive U(1)p charge, —n (n > 0). Under these conditions, a positive F-charge
f carried by the matrix elements W{‘OW£ can be compensated in several dif-
ferent ways by monomials of the kind (0)P(f24)9, with p +ng = f. Each
of these possibilities represents an independent contribution to the down
quark and charged lepton mass matrices, occurring with an unknown coef-
ficient of O(1). Moreover the product (624)9¢z contains both the 5 and the
45 SU(5) representations, allowing for a differentiation between the down
quarks and the charged leptons. The only, welcome, exceptions are given by
the O(1) entries that do not require any compensation and, at the leading
order, remain the same for charged leptons and down quarks. This pre-
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serves the good my = m, prediction. Since a perturbation of O(1) in the
subleading matrix elements is sufficient to cure the bad mgq/ms = m./m,,
relation, we can safely assume that (fa4)/Mp) ~ A", to preserve the correct
order-of-magnitude predictions in the remaining sectors.

We have not dealt here with the problem of recovering the correct vacuum
structure by minimizing the effective potential of the theory. It may be
noticed that the presence of two multiplets 6 and @ with opposite F charges
could hardly be reconciled, without adding extra structure to the model,
with a large common VEV for these fields, due to possible analytic terms
of the kind (#9)" in the superpotential. We find therefore instructive to
explore the consequences of allowing only the negatively charged 6 field in
the theory.

It can be immediately recognized that, while the quark mass matrices
of Egs. (20) are unchanged, in the neutrino sector the Dirac and Majorana
matrices get modified into:

AN 221 A
mp= | 0 0]w,, M=|1 0 0|M. (28)
A1 A0 1

The zeros are due to the analytic property of the superpotential that makes
impossible to form the corresponding F invariant by using § alone. These
zeros should not be taken literally, as they will be eventually filled by small
terms coming, for instance, from the diagonalization of the charged lepton
mass matrix and from the transformation that put the kinetic terms into
canonical form. It is however interesting to work out, in first approximation,
the case of exactly zero entries in mp and M, when forbidden by F.

The neutrino mass matrix obtained via see-saw from mp and M has the
same pattern as the one displayed in Eq. (26). A closer inspection reveals
that the determinant of the 23 block is identically zero, independently from
A. This leads to the following pattern of masses:

miimg:mz=X:2:1,  mi—m3=0(% m3. (29)
Moreover the mixing in the 12 sector is almost maximal:

E = Z + O()\g) . (30)

For A ~ 0.2, both the squared mass difference (m? — m2)/m2 and sin? 205yn

are remarkably close to the values required by the vacuum oscillation solu-
tion to the solar neutrino problem. We have also checked that this prop-
erty is reasonably stable against the perturbations induced by small terms
(of order A3) replacing the zeros, coming from the diagonalization of the
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charged lepton sector and by the transformations that render the kinetic
terms canonical. We find quite interesting that also the just-so solution,
requiring an intriguingly small mass difference and a bimaximal mixing, can
be reproduced, at least at the level of order of magnitudes, in the context of
a “minimal” model of flavour compatible with supersymmetric SU(5). In this
case the role played by supersymmetry is essential, a non-supersymmetric
model with @ alone not being distinguishable from the version with both 6
and 0, as far as low-energy flavour properties are concerned.

4. Conclusions

If we start from three light neutrinos and the see-saw mechanism then
a natural interpretation of the present data on neutrino oscillations is in
terms of hierarchical light neutrino masses and asymmetric mass matrices
(at least for d quarks and charged leptons). This has the advantage that no
conspiracy is required between the Dirac and the Majorana sectors. There
is also the peculiar possibility that large neutrino mixing is only produced
by the see-saw mechanism starting from all nearly diagonal matrices. Al-
though this possibility is certainly rather special, models of this sort can be
constructed without an unrealistic amount of fine tuning. Both scenarios are
well compatible with Abelian flavour symmetries and with grand unification
ideas and the related phenomenology for quark and lepton masses.

It is a pleasure to thank Marek Jezabek for the organization of a very
stimulating meeting and the warm hospitality enjoyed in Cracow. I would
like to thank Guido Altarelli and Isabella Masina for the pleasant collabo-
ration on which this talk is based.
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