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Fluctuations of the fragment-size distribution have been studied in the
framework of a bond percolation model using the method of scaled factorial
moments (SFM). The independence of SFM from fragment-size resolution
but not power-law behavior (intermittency) characterizes the fluctuations
at the percolation transition. The SFM determined for various individual
fragment-size intervals converge to a value of ~ 1 near the critical point.
The convergence occurs even in very small systems, and events may be
sorted according to measurable quantities. This may serve as a new possible
signature of critical behavior in nuclear multifragmentation.

PACS numbers: 24.60.Ky, 25.70.Pq

In recent years the occurrence of critical behavior in nuclear multifrag-
mentation has been the subject of intensive study inspired by the prediction
of liquid—gas phase transition in nuclear matter [1-3], the observation frag-
ment mass distributions exhibiting a power-law dependence [4], and by the
resemblance between nuclear multifragmentation data and predictions of
percolation models which are known to contain critical behavior [5-7]. Var-
ious methods have been proposed to reveal the trace of critical behavior in
fragmenting systems. In particular, Ploszajczak and Tucholski suggested a
search for intermittency in fluctuations of the fragment-size distribution [8].
Intermittency corresponds to self-similar fluctuations on all scales and can
be deduced from the power-law behavior of SFM [9]. Intermittent-like sig-
nals have been found in percolation models [8], classical molecular dynamics
simulations [10-12], and statistical models [13-15], as well as in some nuclear
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multifragmentation data [8,16-18|. However, the interpretation of these sig-
nals as a manifestation of critical behavior is doubtful. The properties of
the anomalous fractal dimensions are inconsistent with those predicted for
second-order phase transitions [8,13,14,17]. On the other hand, such signals
may appear, even in the absence of a critical phenomenon, due to finite-size
effects, the mixing of different types of events, and/or the specific shape
of the mean fragment-size distribution [15,19-24]. The criticality origin of
the signals is not confirmed even for percolation models. A signal sugges-
tive of intermittency, observed for small lattices close to the critical point,
disappears when the size of the system goes to infinity. Moreover, an anal-
ysis made for near-critical events at fixed multiplicity or within some range
of multiplicities shows no evidence of intermittency [22,24|. Campi and
Krivine concluded that the signal has been incorrectly interpreted as a gen-
uine intermittency [22].

If the intermittency concept is irrelevant to fragment-size fluctuations,
it is natural to ask whether any other feature of these fluctuations can be
identified as a sign of critical behavior. We aim to address this question in
the present work. On the first attempt we examine percolation processes.

The intermittency analysis performed in earlier works employs horizon-

tally averaged SEM, F;, defined as |8, 25|

Sl (nj(ng = 1) (nj—i+ 1))_
Zﬁl(nﬂl

Here, the fragment-size axis is divided into M bins of equal size s = Sy/M,
where Sy denotes the system size, n; is the number of fragments in the
j-th bin for a given event, and the brackets indicate averaging over the set
of events under consideration. Intermittency is deduced when the factorial
moments Fj increase like a power-law with decreasing ds. As was already
pointed out [14,22,26], the disadvantage of definition (1) is that the F; are
dominated by the contributions from the first bins containing the lightest
fragments. In order to inspect the whole range of fragment sizes with no
constraints we study SFM for individual fragment-size intervals, [sq4, sp],

Fi(9s) = (1)

(nn=1)...(n—i+1))
(n)? ’

where n = n(s,, $p) is the number of fragments of size s, < s < 3, produced
in an event. All possible intervals 1 < s, < s, < Sy are considered. The cal-
culations have been performed with the three-dimensional bond percolation
model on simple cubic lattices. Events have been generated for randomly
distributed values of the bond-breaking probability, p, and then grouped

Fi(sq,55) = (2)
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in bins of the following variables: the probability p, the fraction of broken
bonds, k, the normalized overall multiplicity, m = n(1,Sy)/So, and the nor-
malized total size of complex fragments, z = Spound/So = 1 — n(1,1)/So.
Below we will show the results of the calculations for the 6 x 6 x 6 lattice,
which are representative of small systems.
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Fig. 1. Predictions of the bond percolation model with 6 sites. The second-order
scaled factorial moment, F, as a function of: (a) the bond-breaking probability,
(b) the fraction of broken bonds, (c) the normalized total multiplicity, (d) the
normalized total size of complex fragments. Lines represent Fh(s,, sp) calculated
for 18 various fragment-size intervals [s,, s3], where s, = 1 (dotted), 2 (dashed),
3,4, 5,6 (solid), and sp = (54 + 3), (sa + 7), 20.

Fig. 1 displays Fy(Sq4,Sp) plotted as a function of p, k, m, and z for
various fragment-size intervals. The lines shown in these plots represent
Sa=1,2,...6 with s = (84+3), (s¢+7), 20. The dotted, dashed, and solid
lines are for s, = 1, s = 2, and s, > 2, respectively. Generally, the lines are
steeper for larger clusters, i.e. for larger s, and/or s;. Statistical errors in
these simulations are reflected in the line oscillations. Here, 8 x 10° events
have been generated in the range 0.45 < p < 0.95. The most prominent
feature of these results, observed for all the binnings, is the convergence of
F5(sq, sp) values corresponding to different fragment-size intervals [sq, Sp).
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The exception seen in Fig. 1(d) for s, = 1 (dotted lines) is understandable.
The quantity z is defined by n(1,1), dominant in n(1,s;). As a result, the
fluctuations of n(1, s;) are strongly suppressed when z is fixed. The value of
F5 at the convergence point may be slightly greater or less than 1 depending
on the choice of binning variable. In the case of the control parameter, p,
the lines intersect at p ~ 0.73, which is close to the critical point in the
continuos limit, p. = 0.7512 [7]. This suggests that the convergence effect
is associated with the percolation phase transition. The positions of the
crossing points for other binnings correspond to that for p: events with
p = 0.73 are characterized by (k) = 0.73, (m) ~ 0.344, and (z) ~ 0.787.

Regardless of some possible exceptions, such as that for binning by z
when s, = 1, the convergence of Fy(s,,sp) occurs for all fragment-size in-
tervals [sq, sp] as long as sy is relatively small in comparison to the system
size, Sy. For example, Fig. 2(a) shows Fy(s,,sp) versus p for s, = 3 and sy,
ranging from 4 to Sy = 216. The lines are well focused if s, <~ 30 (solid
lines). The departures of the lines with s, > 30 from the convergence point
seem to be related to the fluctuations of the size of the largest fragment pro-
duced per event, smax. Fig. 2(b) presents the event-by-event correspondence
between Smax and the control parameter. One may observe that around
p = 0.73 fragment-size intervals with s, > 30 overlap the region covered by
Smax- Lhis correlation is confirmed by calculations performed on different
lattices. An approximate limit for the presence of the convergence in small
systems can be given as s < 2v/S5p.
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Fig.2. Bond percolation model with 6° sites. Plotted as a function of p:
(a) Fs(sq,sp) for s, =3 and s, =4, 5, 6, 8, 10, 12, 16, 20, 27 (solid), 54 (dashed),
108 (dot-dashed), 216 (dotted). (b) the size of the largest cluster produced per
event, Smax-
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Besides F5 we have also examined the higher-rank factorial moments Fj
and Fy. They reflect the behavior of F5 according to the following approxi-
mate scaling

(F3 —1) =3(F, = 1),  (Fy—1) =6(F—1), (3)

This scaling is particularly accurate in the critical regime. Given |Fy»—1| < 1
and the relations between the scaled factorial moments, F;, and the scaled
factorial cumulants, K;, [27]

F2 = 1+K27
Fy = 14+ 3Ky + K3,
Fy = 146Ky +4K3 +6K3 + Ky, (4)

the presence of the scaling (3) indicates that F; are determined by Kj, i.e.
contributions from the higher-order cumulants are negligible. It should be
noted that this dominance of two-particle correlations in SFM has been
already found in percolation by Lacroix and Peschanski [26].
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Fig.3. Fy(s4,54+05—1) versus p for the 6% and 182 percolation systems. s, values
are indicated on the figure, s = 6, 10, 14 for the smaller system, ds = 32, 64, 128
for the larger one.

In order to explore how the convergence of Fy(s,, sp) is affected by finite-
size constraints, in Fig. 3 we have compared the results for the small 6 X 6 x 6
and larger 18 x 18 x 18 lattices. In the case of the small system, the lines
representing various [sq, sp] intervals (s, = 1,2, 4, 8;ds = sp — 5o + 1 =
6, 10, 14) intersect in a region located between p = 0.72 and 0.74. The
lines with the same s, are well focused and form a distinct bundle. The
intersection points from different bundles are somewhat dispersed, but this
effect may be not even noticeable in practical tests, such as that in Fig. 1.
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For the larger system, avoiding smax by applying the condition sp < 150,
we have plotted lines for s, = 4, 8, 16, 32 with ds = 32, 64, 128. Here, the
crossing points are much closer to the critical point. This fact corroborates
connection between the convergence effect and the percolation transition.
Departures of the convergence points from p = p, and F5 = 1 can be seen as
a finite-size effect. It is noteworthy that the convergence is clearly observed
even in systems with as few as 64 constituents. For the 4 x 4 x 4 lattice
and s, < 15, the crossings are observed at p ~ 0.70, k ~ 0.72, m ~ 0.39,
z ~ 0.80, and Fy ~ 1.015, 0.97, 0.97, 1.09, respectively.

At the convergence point SFM are independent of the fragment-size res-
olution. We believe that this feature, which contradicts the presence of
intermittency, is attributed to the critical behavior. However, intermittent-
like signals may be found near the convergence point, and thus in the vicinity
of the critical point. For example, Ploszajczak and Tucholski found such sig-
nals in the bond percolation model containing 63 sites within a narrow range
of bond parameters ¢, equivalent to 0.73 < p < 0.79 [8]. As previously men-
tioned, the horizontally averaged SFM, F;, used in that analysis can be well
approximated by F; calculated for the first bins: Fj(ds) ~ Fi(sq = 1, 8s).
The solid lines in Fig. 4(a) display Fy(s, = 1, ds) for ds = 1, 2, 4, 8, 14
(the larger the ds the steeper the line). It is clear that Fy(p = const., ds)
increases with decreasing ds when p > 0.73. In this “overcritical” region,
F, values are less than 1 except for a narrow interval of p close to the con-
vergence point. This exception is possible only in finite systems. The plot
In(F;) versus —In(ds) shown in Fig. 4(b) corresponds to p = 0.77, called in
Ref. 8] the “optimal” value. Fj and Fj follow F, according to the scaling
(3). The points connected by the solid lines are for Fj(s, = 1) ~ F;. As
can be deduced from Fig. 4(a), this is the case when, with the requirement
Fi(sq = 1) > 1 for ds < 15, the slopes are maximal. The linear rise observed
in this plot was interpreted as a signal of intermittency. However, such a
“signal” appears here only for the first bins containing the lightest fragments.
It vanishes when the lightest fragments are excluded from the analysis: the
dashed lines in Fig. 4 show the results for s, = 2. In contrast to the con-
vergence effect, the intermittent-like signal is limited to the specific event
selection. In particular, Fig. 1(c) shows that F; < 1 when selecting events
with the same multiplicity. This example illustrates how the observations
made by the authors of Ref. [8], and also by Campi and Krivine [22], can be
understood in the context of our results.

It is worth noting that the multiplicity distributions in [s,, sp] intervals
at the convergence point cannot be described by a certain type of standard
distributions (binomial, Poissonian, Gaussian, etc.). Their coefficients, such
as the skewness, the sharpness, and the ratio of variance to mean, vary with
the choice of s,, sp and binning variable. The latter coefficient may be
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Fig.4. SFM in the bond percolation model with 62 sites for s, = 1 (solid lines)
and s, = 2 (dashed lines): (a) F»(ds) wversus p for ds = 1, 2,4, 8, 14, (b) the
dependence of Fy, F3, and F; on the width of the fragment-size interval, ds, for
events with p = 0.77.

greater or less than 1, i.e. both sub- and super-Poissonian distributions are
observed. The properties of such coefficients have been discussed recently
in Refs. [26,28]. We have not found any feature of these parameters to be
as distinct as the convergence of SFM, which could serve as an alternative
signature of critical behavior.

In conclusion, a bond percolation model has been used to study event-
to-event fluctuations of the fragment-size distribution in small systems. We
have examined the properties of SFM of the multiplicity distributions in
individual fragment-size intervals [sq, sp], using various quantities to cat-
egorize percolation events: the bond-breaking probability, the fraction of
broken bonds, the total multiplicity and the total size of complex fragments.
For each sorting variable, the values of Fj(s4,sp) calculated for different
intervals (s, < Sp) converge to a value close to 1 near the critical condi-
tion. The higher-order SFM are related to F5 according to the dominance
of the second-order cumulant. Calculations performed for a larger system
confirm that the convergence effect is closely connected with the percolation
transition.

It will be interesting to verify the presence of the convergence in nuclear
multifragmentation. This new possible signature of critical behavior shows
some valuable features. It may be observed in very small systems, and events
may be sorted according to different measurable quantities. In the present
work we have checked the total multiplicity and the total mass/charge of
complex fragments. Presumably, other binning variables can be also applied.
It would be worthwhile to test some selections which are related to interme-
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diate mass fragments to avoid uncertainties associated with light fragments
due to preequilibrium emission and secondary evaporation. Accordingly,
the convergence could be examined for fragment-size intervals which do not
include light particles.

It remains an open question whether the convergence effect for SFM is
characteristic of the percolation transition only, or is a more general feature
of critical behavior. It will be instructive to perform the analysis for mod-
els containing different types of critical behavior, e.g. second-order phase
transitions from other universality classes.

The SFM method is a valuable tool for studying fluctuations in fragment-
size distributions. However, with respect to using averaged SFM, better
insight can be obtained into the properties of the fluctuations when the
set of SFM values corresponding to all individual fragment-size intervals is
examined.
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