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LANGEVIN DYNAMICS IN 4-DIMENSIONAL MODELOF NUCLEUS�NUCLEUS COLLISIONS �J. Bªoki, O. Mazonka, J. Wilzy«skiInstitute for Nulear Studies05-400 Otwok-�wierk, PolandZ. Sosin and A. WielohInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived April 10, 2000)Desription of a realisti dynami model of nuleus�nuleus ollisionsand fusion reations, ombined with stohasti e�ets (�utuations) is given.We solve Langevin equations of motion in whih stohasti white noise termis added to deterministi onservative and dissipative fores. The equationsof motion are solved in 4-dimensional on�guration spae inluding threegeometrial variables de�ning shape of the system and one variable de�ningharge asymmetry. Dissipative fores are alulated assuming one-body dis-sipation mehanism. Two soures of �utuations are onsidered: thermal�utuations determined by the �utuation�dissipation theorem (Einsteinrelation) and �utuations assoiated with exhange of nuleons. The widthof the thermal �utuations turns out to dominate stohasti e�ets in fusionreations. It is shown that in near-threshold fusion reations, the �utua-tions remove �ux from reseparation proesses and diret it to fusion (andvie versa). Consequently, �utuations enhane sub-barrier fusion reationsand lower the e�etive fusion threshold.PACS numbers: 25.70.�z, 25.70.Jj, 24.60.Ky1. IntrodutionReent synthesis of superheavy nulei of the element Z = 118 [1℄ hasintensi�ed theoretial studies aimed to understand the mehanism of fusingof very heavy systems and to explain the role of �utuations whih probablydeisively enhane fusion at the lowest near-threshold energies.� Presented at the Kazimierz Grotowski 70th Birthday Symposium �Phases of NulearMatter�, Kraków, Poland, January 27�28, 2000.(1513)



1514 J. Bªoki et al.In this paper we give desription of our 4-dimensional semilassial modelof nuleus�nuleus ollisions whih had been developed and improved overseveral years and reently ombined with a desription of statistial �u-tuations. Following works of Jarzynski [2℄ and earlier studies of Feldmeier[3℄, we have inorporated the statistial �utuations to our lassial modelof nuleus�nuleus ollisions in terms of the Langevin dynamis (see alsoRefs. [4, 5℄ and referenes therein).2. Lagrange�Rayleigh equations of motionVarious lassial models of nuleus�nuleus ollisions are haraterizedby three basi ingredients, namely:(a) the olletive degrees of freedom (qi) whih are treated expliitly, andtheir assoiated inertial parameters (momenta);(b) the potential energy V (qi);() the assumed dissipative fores (frition) whih remove the energy fromthe olletive degrees of freedom.Having de�ned these basi ingredients one an ompute the time evolu-tion of the olletive variables by solving the generalized Lagrange equations:ddt �L� _qi � �L�qi = ��F� _qi : (1)Here L(qi; _qi) = T (qi; _qi)� V (qi) is the Lagrangian of the system, andF(qi; _qi) = �12 ddtfT (qi; _qi) + V (qi)gis the Rayleigh dissipation funtion. In pratie, for solving the oupleddi�erential equations (1) it is neessary to retain only the minimum numberof degrees of freedom qi whih are absolutely essential.3. Shape parameterizationWe use in our model the shape parametrization whih has been proposedin Ref [6℄. The axially symmetri shapes of �xed volume onsist of twogenerally unequal spheres modi�ed by a smoothly �tted portion of a thirdquadrati surfae of revolution. A set of dimensionless degrees of freedomspeifying the on�guration are the following (see Fig. 1):1) the distane variable; � = r=(R1 +R2);2) the nek variable; � = (l1 + l2)=(R1 +R2);3) the asymmetry variable; � = (R1 �R2)=(R1 +R2) : (2)



Langevin Dynamis in 4-Dimensional Model of : : : 1515
R

1l1 2l

r

2R

Fig. 1. Shape parameterization of the evolving omposite system (presissionshape).In the above, r is the distane between the enters of the spheres, whoseradii are R1 and R2. The quantities l1, l2 are the distanes from the inner tipsof the two spheres to the respetive juntion points with the middle quadratisurfae of revolution. The natural boundaries of the on�gurational spae(�, �, �) were disussed in Ref. [6℄. They are given by:� � j�j; �1 � � � 1; 2� (1 + ��1)j�j � � � maxf0; 1 � �g: (3)As it an be readily veri�ed and seen from Fig. 2, the upper boundary for� orresponds to egg-like shapes for whih the middle quadrati has justovered up ompletely the smaller sphere. At the lower boundary we haveseparated spheres for � = 0 and portions of interseting spheres (withoutany middle quadrati surfae) for � = 1��. At sission the enter quadratidegenerates into a one, whih implies �s = 1� ��1s .
Fig. 2. A map of di�erent shapes in (�; �)-spae for a �xed value of � = 0:3.The straight line, � + � = 1, orresponds to two interseting spheres. There areno de�ned shapes under that line. Sission ours when the � = 1 � ��1 line isrossed. Con�gurations below the sission line are two separated fragments. Theupper boundary line, � = 2 � j�j(1 + ��1), orresponds to the situation whensmaller of the spheres is enlosed by the nek.



1516 J. Bªoki et al.We have extended our model by introduing additionally the hargeasymmetry variable �Z = Z1=31 � Z1=32Z1=31 + Z1=32 : (4)It was found that this new degree of freedom, independent on the massasymmetry �, plays an important role in early stage of nuleus�nuleusollisions, during equilibration of the N=Z ratio.In addition to the marosopi variables (�, �, �, �Z) there are threerotational degrees of freedom (�1; �2; �rel) and three angular veloities (!1,!2, !rel) onneted with the rotation of sphere 1 and sphere 2 and therotation of the shape as a whole.As a parameter whih ontrols the transition from separate nulei to om-pound nuleus, we introdue the window opening parameter � (see Fig. 3):� = sin �sin �max : (5)
max

θ
θ

Fig. 3. Illustration of the window opening parameter, � = sin �= sin �max4. Kineti energyFor the kineti energy we take a quadrati form in veloities with a masstensor alulated in the Werner�Wheeler approximation [7℄. It has beenfound that in the dynamial trajetory alulations the motion in the �diretion was invariably overdamped to suh an extent that the omponentof the inertia tensor Mij assoiated with � ould be safely negleted. Thekineti energy is then redued to the formT = 12M�� _�2 +M�� _� _�+ 12M�� _�2: (6)The matrix element M�� of the mass tensor for two separated spheres isexatly the redued mass.



Langevin Dynamis in 4-Dimensional Model of : : : 1517In the rotational degrees of freedom the kineti energy is equal to:Tr = 12(Irel!2rel + I1!21 + I2!22) ; (7)where I1 and I2 are the rigid moments of inertia of sphere 1 and 2, respe-tively and Irel = Itot � I1 � I2 where Itot is the rigid moment of inertia ofthe whole system. Two spheres an rotate independently from the relativerotation, but due to the tangential frition, after some time all the frequen-ies !rel, !1 and !2 beome equal and the system rotates as a rigid body(�stiking� limit).The mass tensor is alulated from the density distribution (whih is as-sumed to be uniform within the shape boundaries) and the olletive veloity�eld. As shown by Feldmeier [3℄), the mass tensor equals to:M%& = �d� Z �12B%B& + P 2A%A&� dz %; & = �; �;�; (8)where P = �� is the equation of the nulear surfae in ylindrial oordinates(��; z; �), and A% = � 1P 2 zZ �P 2�% dz0 � �V0 Z �P 2�% z00 dz00; (9)B% = �12 1P 2 �P 2�z zZ �P 2�% dz0 + �P 2�% ; (10)where V0 is the total volume of the systemV0 = � Z P 2 dz: (11)Moments of inertia are given byItot = Irel + I1 + I2; (12)Itot = �d� Z �12P 4 + P 2z2� dz � �d�2V0 �Z P 2z dz�2 ; (13)I1;2 = �d 4�15R51;2 : (14)



1518 J. Bªoki et al.5. Potential energyThe potential energy of a nulear system is alulated for a given shapeas the sum of the nulear potential energy and the Coulomb energy. Thenulear part is alulated by the double folding proedure developed byKrappe, Nix and Sierk [8℄:Vn = � Cs8�2r20a3 ZZ �1a � 2�� exp(��=a) d3r d3r0; (15)where � = jr � r0j, Cs = as(1� ksI2) and I = (N � Z)=A. The parametersr0, a, as and ks are taken from the �t done in Ref. [8℄. For axially symmetrishapes formula (15) redues to the three dimensional integral of the followingtype: Vn = Cs4�r20 ZZZ �2� ���a�2 + 2�a + 2� exp��a��P2(z; z0)P2(z0; z)�4 dz dz0 d� ; (16)where P2(z; z0) = P (z)�P (z)� P (z0) os�� dPdz (z � z0)� ;�2 = P (z)2 + P (z0)2 � 2P (z)P (z0) os�+ (z � z0)2 :A similar proedure has to be done in alulating the Coulomb part ofthe potential whih for an axially symmetri shape an be written as:V = �3 �z�z0 ZZZ P2(z; z0)P2(z0; z)� dz dz0 d�; (17)where �z and �z0 are the harge densities.6. Shell e�etsThe importane of shell e�ets in fusion reations was demonstrated ex-perimentally as an enhaned fusion probability in reations involving magior near-magi nulei, suh as 208Pb or 209Bi. Shell e�ets are inluded inour alulations in a phenomenologial form proposed by Myers and Swiate-ki [9, 10℄. In this simple approah the shell orretion S0(N;Z) to thepotential energy is written in the formS0(N;Z) = (5:8MeV) FN + FZA2 2=3 � 0:325A1=3! ; (18)



Langevin Dynamis in 4-Dimensional Model of : : : 1519where FN = qN (N �Ni�1)� 35 �N5=3 �N5=3i�1�with qN = 35N5=3i �N5=3i�1Ni �Ni�1 :Here Ni�1 and Ni are the losed shell neutron numbers adjaent to theatual number of neutrons N of a given nuleus of mass number A. Identialformulae for FZ and qZ desribe the shell e�et for protons. Aording tothis presription, for the double losed shell nuleus 208Pb the shell e�et isS0 = �11:2 MeV.The shell orretion S0(N;Z) de�ned above refers to spherial shapes.For deformed shapes the shell orretion is attenuated as suggested inRefs. [9, 10℄: S(N;Z) = S0(N;Z)�1� 2dist2a2 � exp��dist2a2 � ; (19)where dist2 is a measure of deviation from spherial shape,dist2 = Z d
4� (r(�; �)�R0)2:Here r(�; �) is the radius vetor desribing the given shape and R0 is theradius of the equivalent sphere.Considering shape evolution of nulear systems, it is neessary to inter-polate in a smooth way between the sum of the shell orretions S1 and S2 ofthe olliding nulei in the entrane hannel and the shell orretion S of themononulear shape. We adopted an interpolation in terms of the degree ofommuniation between the two nulei as spei�ed by the �window opening�parameter � de�ned by Eq. (5):S = (1� �)(S1 + S2) + �S: (20)For separated shapes (below the sission line) � = 0 and thus S = S1 + S2.When the nek loses its onavity at � = 1 the shell orretion beomesa pure mononuleus shell orretion S. This is kept for all onvex shapeswith � > 1.It should be noted here that we do not onsider thermal attenuation ofthe shell orretions. This an be justi�ed as long as our model is restritedfor a desription of near-threshold fusion reations at low exitation energies.



1520 J. Bªoki et al.7. DissipationIn our model, we restrit ourselves to one-body dissipation [11℄, aris-ing from ollisions of independent partiles with the moving boundary ofthe nuleus. In the one-body dissipation model [11℄, the energy �ow fromolletive to intrinsi motion is attributed to the interation of individualnuleons with the mean �eld produed by all nuleons in the system. In asimpli�ed piture this interation may be viewed as mediated by ollisionsbetween nuleons and a moving ontainer wall, or by the passage of nuleonsfrom one fragment to the other through a window.There are two limiting ases in whih two di�erent simple formulae forthe rate of the dissipated energy an be derived. The �rst one is so alledthe mononulear regime when the system of olliding ions an be onsideredas a monosystem with a thik nek. In that ase the gas of nuleons an beonsidered as a relaxed Fermi gas and the rate of the energy dissipation isgiven by the following wall formula [11℄:_Ewall = ��v I dS ( _n� vd)2; (21)where � is the mass density of nuleons, �v is their average speed (equal tothree quarters of the Fermi veloity in the Fermi gas model), dS is an elementof nulear surfae, _n is the normal veloity of walls and vd is the overall driftveloity of the gas of nuleons ensuring the invariane of Eq. (21) againsttranslations and rotations.In the seond limiting ase, the dinulear regime, when two ions areeither separated or onneted by a thin nek, Eq. (21) annot be appliedas we are dealing with two Fermi gases separated by the olletive veloity.In that ase the so-alled �wall-plus-window� formula an be applied and itreads as follows:_Ew+w = ��v Z1 dS ( _n�vd1)2+��v Z2 dS ( _n�vd2)2+14��v�(u2t+2u2r)+ 169 ��v� _V 21 :(22)The �rst two terms represent the wall formula, Eq. (21), applied to eahfragment separately, with drift veloities vd1 and vd2, respetively. Thethird term is assoiated with the dissipation due to the exhange of partilesthrough the window of the area �, onneting the two nulei moving witha relative veloity u. The omponents of the relative veloity, ut and ur,are parallel and perpendiular to the window, respetively. The last termin Eq. (22) orresponds to the dissipative resistane against the asymmetryhanges [12, 13℄ with _V1 being the rate of the hange of the volume of frag-ment 1. Eqs. (21) and (22) express the rate of the dissipated energy in two



Langevin Dynamis in 4-Dimensional Model of : : : 1521limiting ases of the mononulear and dinulear regimes. In the interme-diate on�gurations a smooth transition between formulae (21) and (22) isused [14℄: _E = f _Ewall + (1� f) _Ew+w (23)with a formfator f approahing a value f = 1 for sphere or spheroid-likeshapes, and f = 0 at sission.Following Feldmeier [3℄, we have introdued an additional dynamialequation, aounting for the oupling between the partile and entropy�uxes, whih drives partiles from hotter to older gas. The time derivativeof the di�erene of exitation energies of two parts of the nulear system isgiven by: ddt(E�1 �E�2) = _E1 wall � _E2 wall + 2T0 _S21; (24)where the last term represents the e�et of the temperature feedbak whihis proportional to the average temperature T0 = (T1+T2)=2 and the entropy�ux _S21 taken from Ref. [3℄.8. Langevin equationDesription of the nuleus�nuleus ollisions in terms of the lassialLagrange�Rayleigh equations Eq. (1) with dissipative fores disussed in theprevious setion does not give satisfatory results, espeially in attempts toexplain fusion proesses at low, near-threshold energies, when apparentlythe tails of �utuating phenomena play very important role.The dissipative dynamis basially stems from nonequilibrium statisti-al mehanis whih relates two di�erent marosopi phenomena, �utua-tions and dissipation, demonstrating their ommon mirosopi origin. Theonnetion between dissipation and marosopi �utuations follows fromthe mirosopi desription, under the ondition the physial systems on-tinuously evolves toward equilibrium. Thus having de�ned the dissipationmehanism, we an stritly determine the harater of �utuations. This isgiven by the Einstein relation (originally derived for Brownian motion), = D2T ; (25)whih relates the frition oe�ient  and the momentum di�usion oef-�ient D at the temperature T . This relation follows from the general�utuation�dissipation theorem, one of the most fundamental results ofnonequilibrium statistial mehanis.



1522 J. Bªoki et al.From two alternative possibilities of implementation of �utuations tothe dynamial model, the Fokker�Plank and Langevin approahes, we havehosen the latter. The Fokker�Plank approah is appropriate for desrip-tion of an ensemble of trajetories in the olletive oordinate phase spae,a type of analysis di�ult to simulate numerially. On the ontrary, theLangevin approah an be used in muh easier numerial simulations of asingle trajetory.Denoting by Q the olletive degrees of freedom, by P their assoiatedmomenta and by M the orresponding inertia parameters, the Langevinequations of motion for a trajetory look as follows:dQdt = PM ; dPdt = �dVdQ + Ffri + ~Fu; (26)where Ffri = � _Q; (27)is an average frition fore resulting from the oupling to the nuleoni �heatbath�, whereas ~Fu is a rapidly �utuating stohasti fore determining�utuations in momentum aording to the value of the oe�ient D(Q;P )given by Eq. (25). The fore ~Fu an be simulated numerially by repeatedlyproduing a random kik ÆP in the olletive momentum. The value of ÆPis hosen randomly from a Gaussian distribution, with a mean value andvariane given by: ÆP = 0 ; (28)(ÆP )2 = D Æt ; (29)where Æt is a small time step between kiks.9. Flutuations9.1. Thermal �utuationsEquation (25) determines the magnitude of thermal �utuations result-ing from the oupling of the olletive degrees of freedom to the nuleoni�heat bath�. Applying the Langevin approah to our marosopi dynamimodel with one-body dissipation we need to derive the momentum di�usionoe�ient from the rate of energy dissipation in the �wall� and �window�mehanisms. For example, in ase of the wall formula (21) the frition oef-�ient  = �Ffri= _Q (see Eq. (27)) an be expressed as = ��v I dS� �n�Q�2 (30)



Langevin Dynamis in 4-Dimensional Model of : : : 1523beause for a given surfae element, _n an be written as _Q �n=�Q, where(�n=�Q) dQ gives the normal outward displaement of the surfae elementaompanying an in�nitesimal hange dQ in the value of the olletive o-ordinate.Having determined the frition oe�ient  resulting from the one-bodydissipation formula (22), the momentum di�usion oe�ient D for thermal�utuations is immediately obtained from the Einstein relation (25).9.2. Exhange of partilesApart from thermal �utuations, also �utuations in the number of ex-hanged nuleons ontribute to the stohasti Langevin fore. However thise�et in�uenes only the asymmetry degree of freedom. We assume thatthe motion of nuleons is haoti and the orrelation time is in�nitesimallysmall. Then, for su�iently short period of time, the exhange of nuleonsan be treated as a Poisson proess with the distribution undergoing thebinomial law. Let us onsider the number of partiles passed from nuleus1 to nuleus 2 during a time interval �t to be N1 and from 2 to 1 to be N2.Then the hange of the atomi mass number of nuleus 1 is equal to:�A1 = g = N2 �N1 : (31)This quantity an be rewritten as a sum of average term and �utuatingterm with zero mean value:�A1 = ~g = �g +�L ; h�Li = 0: (32)The di�usion oe�ient DA is de�ned by relation:h�L2i = DA�t = h~g2i � �g2 : (33)Sine quantities N1 and N2 are independent and are taken from binomialdistributions, the following equivalenies:hN1N2i = hN1ihN2i and hN2i i = hNii2 + hNii�1� hNiiAi � (34)lead to the expliit expression for h�L2i:h�L2i = hN1i+ hN2i ��hN1i2A1 + hN2i2A2 � : (35)We denote A1 and A2 atomi mass numbers and A = A1+A2. As it followsfrom the �window� formula (see the third term in Eq. (22)), the averagenumber of partiles exhanged through the window of the area � is:hN1i � hN2i � 14��vn�t ; (36)



1524 J. Bªoki et al.where �v is the average veloity and n is the onentration of nuleons (num-ber per unit volume). Hene we obtain the expression for DA:DA = 12��vn� 116A�2�v2n2�t ; (37)where A = A1A2=(A1 +A2). The limit when two ontainers an be treatedas in�nite reservoirs of partiles is ahieved when the time interval �t issmall enough: �t� 8a��vn: (38)Transforming the obtained result to �utuations in the asymmetry variable� we use the following relations:_� = f _A1; D� = f2DA; (39)where f = ���A1 ����A = 23 (A1 +A2)A�2=31 A�2=32(A1=31 +A1=32 )2 : (40)10. Parameterization of the potentialNumerial simulations of stohasti fusion proesses in our 4-dimensionalmodel are very time onsuming, mostly beause the potential energy an-not be expressed analytially and must be alulated as three-dimensionalintegral (Eqs. (16) and (17)) at eah point along the Langevin trajetory.Eah trajetory onsists of hundreds of points and at eah point one hasto alulate onservative fores in four diretions: (�; �;�;�Z). It is learthat alulation of millions of trajetories, neessary for simulation of theLangevin dynamis, beomes in pratie impossible.Here we propose a method whih an speed up the alulations. Similarlyto Ref. [15℄, we parameterize the potential in order to avoid alulation ofthree-dimensional integral at eah point. The simplest way is to reatefour-dimensional lattie in the phase spae and map the potential. Then,having values of the potential on the lattie, one an determine a value ofthe potential in any intermediate point by interpolation.Simple estimation shows that a lattie of size 1004 takes about 200 Mbof the omputer memory and, of ourse, a long CPU time to alulate thepotential. However, we an use the property that the potential energy is sym-metri with respet to the transformation (�;�Z) ! (��;��Z). More-over, it an be noted that the parameter �Z is strongly related to �: thepotential rises fast on the way from its minimum in the diretion (� = 1 ;�Z = �1), while it rises muh slower in the diretion (� = 1;�Z = 1).
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Fig. 4. The potential energy in the (�;�0Z)-subspae, � = (�0:5; 0:5) vs �0Z= (�0:05; 0:05), for the system 86Kr+136Xe at the point � = 1:26, � = 0:05, whihorresponds to the beginning of the trajetory near touhing on�guration. Shellorretions are not inluded. Contour lines orrespond to levels of the potentialenergy in MeV with respet to the potential energy of separated nulei.Therefore one an replae the parameters (�;�Z) with (�;�0Z), where�0Z = �Z � �, saving the inversion symmetry as for the original pairof parameters. Disregarding shell e�ets, the potential around the point(� = 0;�0Z = 0) has a regular well-shape in oordinates x = � and y = �0Z(see Fig. 4). Therefore we have hosen parameterization in that subspae asa 4-th degree polynomial:z = f1 + f2x2 + f3xy+ f4y2 + f5x4 + f6x3y+ f7x2y2 + f8xy3 + f9y4; (41)whih represents the expansion of the potential z around (0,0)-point. Thesymmetry property eliminates the odd degree terms.The potential in the subspae (�,�) is parameterized by a bilinear inter-polation of the lattie points. Eq. (41) an be rewritten:z = ~f � ~p(x; y) ; (42)where ~p(x; y) = (1; x2; xy; y2; x4; x3y; x2y2; xy3; y4)
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Fig. 5. Choie of points for determination of the oe�ients in polynomial expan-sion of the potential around (0,0)-point in the (�;�Z)-subspae. Point 1 is theorigin of the oordinate system.and ~f = (f1; f2; f3; f5; f6; f7; f8; f9). Now let us hoose 9 points as shown onFig. 5 giving the values ~z = (z1; z2; z3; z5; z6; z7; z8; z9). Then the oe�ients~f an be found from the equation:̂M � ~f = ~z; (43)where
M̂=0BBBBBBBBBBBB�

~p(0; 0)~p(a; 0)~p(0; b)~p(a; b)~p(a;�b)~p(a2 ; b2 )~p(a2 ;� b2 )~p( 3a2 ; b2 )~p( 3a2 ;� b2 )
1CCCCCCCCCCCCA=0BBBBBBBBBBBB�

1 0 0 0 0 0 0 0 01 a2 0 0 a4 0 0 0 01 0 0 b2 0 0 0 0 b41 a2 ab b2 a4 a3b a2b2 ab3 b41 a2 �ab b2 a4 �a3b a2b2 �ab3 b41 a24 ab4 b24 a416 a3b16 a2b216 ab316 b4161 a24 �ab4 b24 a416 �a3b16 a2b216 �ab316 b4161 9a24 3ab4 b24 81a416 27a3b16 9a2b216 3ab316 b4161 9a24 � 3ab4 b24 81a416 � 27a3b16 9a2b216 � 3ab316 b416
1CCCCCCCCCCCCA :
(44)The exat solution for ~f is the following:f1 = z1 ;f2 = �18z1 + 18z2 � 2z3 + z4 + z5 + 2z6 + 2z7 � 2z8 � 2z912a2 ;f3 = �z4 + z5 + 16z6 � 16z76ab ;



Langevin Dynamis in 4-Dimensional Model of : : : 1527f4 = �42z1 � 18z2 + 2z3 � 3z4 � 3z5 + 30z6 + 30z7 + 2z8 + 2z912b2 ;f5 = 6z1 � 6z2 + 2z3 � z4 � z5 � 2z6 � 2z7 + 2z8 + 2z912a4 ;f6 = �3z6 + 3z7 + z8 � z93a3b ;f7 = 2z1 � 2z2 � 2z3 + z4 + z52a2b2 ;f8 = 2z4 � 2z5 � 5z6 + 5z7 � z8 + z93ab3 ;f9 = 30z1 + 18z2 + 10z3 + 3z4 + 3z5 � 30z6 � 30z7 � 2z8 � 2z912b4 : (45)The proedure desribed above greatly speeds up the alulation espe-ially when the parametrized potential is used for alulating ensembles ofLangevin trajetories with high statistis.11. CalulationsIn this setion we give some examples of alulations arried out with ourmodel. Emphasis is put on interpretation of fusion reations, espeially atlow, near-threshold energies at whih �utuations play a very important roleand enhane the sub-barrier fusion ross setions by orders of magnitude.Figure 6 shows an example of a ontour map of the potential energy (withshell orretions inluded) in the reation 86Kr+70Ge, alulated in the sub-spae (�; �), for �xed value of the mass asymmetry � orresponding to theentrane hannel asymmetry and harge asymmetry �Z = 0. There aretwo deterministi entral-ollision trajetories alulated for this system atenergies near the fusion threshold. At Em = 134 MeV the olliding systemapproahes the touhing on�guration approximately at (� = 1:3; � = 0),then moves toward larger �-values (a nek is developed) and �nally slidesdown behind the saddle point (� = 1:6; � = 0:7) undergoing fusion. (Forbetter understanding the sequene of shapes see also Fig. 3.) The seondtrajetory in Fig. 6 starts from the same point in the on�gurational spae,but at slightly lower energy, Em = 132 MeV. This trajetory, however,is de�eted outward and the system reseparates. Thus, the probability offusion of the 86Kr+70Ge system, alulated in the lassial deterministiapproah, is Pfus = 1 at Em = 134 MeV and Pfus = 0 at Em = 132 MeV.Flutuations bring indeterminism to the reation dynamis beause forthe same initial onditions, trajetories an either go to fusion or to resep-aration. This is illustrated in Fig. 7 for the same reation 86Kr+70Ge at
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Fig. 6. Two deterministi trajetories for the 86Kr+70Ge olliding system, startingwith initial kineti energy 132 and 134 MeV and plotted on the potential energymap in (�; �)-spae. The energy ontours are in MeV.

Fig. 7. Stohasti trajetories for the 86Kr+70Ge reation. Four trajetories withinluded thermal �utuations start with the same kineti energy 132 MeV.Em = 132 MeV for whih deterministi alulation gives Pfus = 0. Calu-lations with thermal �utuations inluded produe very irregular trajeto-ries whih show features of �random walk� under in�uene of the stohastiLangevin fore. Out of four trajetories presented in Fig. 7, three lead toreseparation of the olliding system, but one trajetory goes now to fusion,indiating that the fusion probability is in fat about 14 and not zero, as inthe deterministi alulation.
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Fig. 8. Fusion probabilities extrated from measured ompound�residue ross se-tions in the 86Kr+136Xe reation [16℄, ompared with the stohasti model alu-lations.Having implemented the Langevin dynamis to our 4-dimensional on�-guration-spae model we performed analysis of the near-threshold fusionprobabilities for the 86Kr+136Xe reation studied at GSI Darmstadt [16℄. Asthe alulation are very time onsuming, theoretial preditions of the fusionprobabilities obviously are muh easier than alulations of unre�ned fusionross setions requiring integration in l-spae. Results of the omparison arepresented in Fig. 8. It is seen that the fusion probabilities dedued from themeasured ompound�residue ross setions inrease from Pfus � 2 � 10�4at Em = 195 MeV to Pfus � 1 at Em = 230 MeV. Our alulations showthat for energies Em > 215 MeV the alulated fusion probabilities agreewith those dedued from experiment, despite the fat that the model in thedeterministi version (without �utuations) predits the energy threshold forfusion (Pfus = 0) at a value indiated in Fig. 8 as Eshellextra�push, i.e., at Em �224 MeV. However the enhanement of the alulated fusion probabilityaused by �utuations is too small to reah agreement with the data. Thealulated fusion threshold is moved down from Em = 224 MeV to aboutEm = 210MeV, but the urve dedued from measured ross setions extendsto still lower energies, even below Em = 200 MeV.We admit that it is di�ult to draw �rm onlusions on the basis of theomparison presented in Fig. 8 beause extration of the �experimental� val-ues of the fusion probability Pfus from the ompound�residue ross setionsis very model-dependent, espeially for suh heavy systems as 86Kr+136Xe,for whih fusion��ssion reations dominate, while details of the ompetitionbetween neutron emission and �ssion are strongly in�uened by not wellknown strutural e�ets.



1530 J. Bªoki et al.The above arguments led us to implementation of the method of parame-trization of the potential energy (see Setion 10) whih made Langevindynamis alulations of unre�ned fusion ross setions feasible, espeiallywhile using additionally the importane sampling method in trajetory sim-ulations haraterized by low Pfus-values [17,18℄. Calulations of fusion rosssetions ertainly take muh more time than alulations of the fusion prob-ability in entral ollisions beause the former require inlusion of additionaldimension, the angular momentum. The fusion ross setion at the kinetienergy E an be alulated as a sum of ontributions of partial waves:�E = ��2X(2l + 1)Tl ; (46)where � is the de Broglie wavelength, �2 = ~2=2�Em, and Tl is the trans-mission oe�ient for a given partial wave. In deterministi version of ourdynamial model the transmission oe�ient Tl is just a step funtion:Tl = � 1 for l � l0;0 for l > l0; (47)where l0 is the ritial angular momentum for a given bombarding energy E,i.e., the largest l-value for whih deterministi trajetory still leads to fusion,while for all higher partial waves the system reseparates. Inlusion of �utu-ations auses spreading of Tl-values as shown in Fig. 9: Step-funtion distri-butions are replaed by very di�used distributions extending to muh largerl-values than respetive ritial angular momenta l0. For determination ofthe fusion ross setions it is neessary to alulate these Tl-distributionsfor eah studied energy. Hundreds or even thousands Langevin trajetorieshave to be simulated at eah (E; l) initial ondition.In order to investigate to what extent �utuations an explain the en-hanement of the fusion ross setions at near-barrier energies we seletedthe 86Kr+70Ge reation for whih Reisdorf et al. [19℄ preisely measured thefusion exitation funtion in the whole sub-barrier region. The 86Kr+70Gesystem is only moderately heavy, so the measured ompound�residue rosssetions still well represent the total fusion ross setions, i.e., ontributionof the fusion��ssion proesses is small, at least at near threshold energies.Figure 10 displays results of our alulations for this system. The dashedline shows preditions of our model without �utuations. In this determin-isti approah, the fusion ross setion has a sharp threshold at Em � 133MeV, representing the height of the s-wave barrier inreased by the dissi-pative loss of kineti energy on the way to the barrier. As it is seen fromFig. 10, the deterministi fusion threshold is loated about 10 MeV abovethe experimental threshold.
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Fig. 9. Examples of �di�usion� of the transmission oe�ients aused by thermal�utuations. The transmission oe�ients are alulated for the 86Kr+104Ru rea-tion at Em = 190 MeV (upper urve) and 185 MeV (lower urve). Limits of sharput-o� distributions orresponding to deterministi alulation without �utuationsare indiated by arrows.

Fig. 10. Fusion exitation funtion for the 86Kr+70Ge reation measured by Reis-dorf et al. [19℄ (irles), ompared with the stohasti model alulations (squares).The dashed line shows the exitation funtion obtained in deterministi limit with-out �utuations.



1532 J. Bªoki et al.Inlusion of �utuations onsiderably enhanes the fusion ross setionsbelow the deterministi energy threshold, but the alulated exitation fun-tion moves only half-way toward the experimental urve. Our stohastimodel alulations have been arried out assuming both thermal �utuationsand �utuations assoiated with exhange of nuleons (see Setion 9). Thealulations have demonstrated that thermal �utuations play deisive role,espeially at near-threshold energies. Magnitude of the thermal �utuationsis determined by Einstein relation (25) and ertainly annot be treated asfree parameter. Nevertheless, we performed alulations with larger valuesof the momentum di�usion oe�ient and found that experimental fusionexitation funtion an be well reprodued assuming a value of D approxi-mately two times larger than that resulting from Eq. (25). Of ourse suh alarge value of D has no physial justi�ation.We onlude that thermal �utuations play a very important role innear-threshold and sub-barrier fusion reations. The �utuations remove�ux from reseparation proesses and diret it to fusion (and vie versa).Consequently, �utuations enhane sub-barrier fusion reations and lowerthe e�etive fusion threshold. However magnitude of thermal �utuationsdetermined by the Einstein relation is too small to obtain good quantitativeagreement with experimental results.This work was supported by the Polish�Amerian Maria Skªodowska-Curie Joint Fund II, under Projet No. PAA/DOE-98-34, and by the Polish�Frenh projet POLONIUM. REFERENCES[1℄ V. Ninov et al., Phys. Rev. Lett. 83, 1104 (1999).[2℄ C. Jarzynski, Phys. Rev. E56, 5018 (1997); also private ommuniation.[3℄ H. Feldmeier, Rep. Prog. Phys. 50, 915 (1987).[4℄ P. Fröbrih, I.I. Gonthar, Phys. Rep. 292, 131 (1998).[5℄ Y. Aritomo, T. Wada, M. Ohta, Y. Abe, Phys. Rev. C59, 796 (1999).[6℄ J. Bªoki, W.J. Swiateki, report LBL-12811 (1982).[7℄ I. Kelson, Phys. Rev. B136, 1667 (1964).[8℄ H. Krappe, J.R. Nix, A.J. Sierk, Phys. Rev. C20, 992 (1979).[9℄ W.D. Myers, W.J. Swiateki, Nul. Phys. 81, 1 (1966).[10℄ W.D. Myers, W.J. Swiateki, Art. Fys. 36, 343 (1967).[11℄ J. Bªoki, Y. Boneh, J.R. Nix, J. Randrup, M. Robel, A.J. Sierk,W.J. Swiateki, Ann. Phys. (NY) 113, 330 (1978).[12℄ J. Randrup, W.J. Swiateki, Nul. Phys. A429, 105 (1984).
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