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LANGEVIN DYNAMICS IN 4-DIMENSIONAL MODELOF NUCLEUS�NUCLEUS COLLISIONS �J. Bªo
ki, O. Mazonka, J. Wil
zy«skiInstitute for Nu
lear Studies05-400 Otwo
k-�wierk, PolandZ. Sosin and A. Wielo
hInstitute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived April 10, 2000)Des
ription of a realisti
 dynami
 model of nu
leus�nu
leus 
ollisionsand fusion rea
tions, 
ombined with sto
hasti
 e�e
ts (�u
tuations) is given.We solve Langevin equations of motion in whi
h sto
hasti
 white noise termis added to deterministi
 
onservative and dissipative for
es. The equationsof motion are solved in 4-dimensional 
on�guration spa
e in
luding threegeometri
al variables de�ning shape of the system and one variable de�ning
harge asymmetry. Dissipative for
es are 
al
ulated assuming one-body dis-sipation me
hanism. Two sour
es of �u
tuations are 
onsidered: thermal�u
tuations determined by the �u
tuation�dissipation theorem (Einsteinrelation) and �u
tuations asso
iated with ex
hange of nu
leons. The widthof the thermal �u
tuations turns out to dominate sto
hasti
 e�e
ts in fusionrea
tions. It is shown that in near-threshold fusion rea
tions, the �u
tua-tions remove �ux from reseparation pro
esses and dire
t it to fusion (andvi
e versa). Consequently, �u
tuations enhan
e sub-barrier fusion rea
tionsand lower the e�e
tive fusion threshold.PACS numbers: 25.70.�z, 25.70.Jj, 24.60.Ky1. Introdu
tionRe
ent synthesis of superheavy nu
lei of the element Z = 118 [1℄ hasintensi�ed theoreti
al studies aimed to understand the me
hanism of fusingof very heavy systems and to explain the role of �u
tuations whi
h probablyde
isively enhan
e fusion at the lowest near-threshold energies.� Presented at the Kazimierz Grotowski 70th Birthday Symposium �Phases of Nu
learMatter�, Kraków, Poland, January 27�28, 2000.(1513)



1514 J. Bªo
ki et al.In this paper we give des
ription of our 4-dimensional semi
lassi
al modelof nu
leus�nu
leus 
ollisions whi
h had been developed and improved overseveral years and re
ently 
ombined with a des
ription of statisti
al �u
-tuations. Following works of Jarzynski [2℄ and earlier studies of Feldmeier[3℄, we have in
orporated the statisti
al �u
tuations to our 
lassi
al modelof nu
leus�nu
leus 
ollisions in terms of the Langevin dynami
s (see alsoRefs. [4, 5℄ and referen
es therein).2. Lagrange�Rayleigh equations of motionVarious 
lassi
al models of nu
leus�nu
leus 
ollisions are 
hara
terizedby three basi
 ingredients, namely:(a) the 
olle
tive degrees of freedom (qi) whi
h are treated expli
itly, andtheir asso
iated inertial parameters (momenta);(b) the potential energy V (qi);(
) the assumed dissipative for
es (fri
tion) whi
h remove the energy fromthe 
olle
tive degrees of freedom.Having de�ned these basi
 ingredients one 
an 
ompute the time evolu-tion of the 
olle
tive variables by solving the generalized Lagrange equations:ddt �L� _qi � �L�qi = ��F� _qi : (1)Here L(qi; _qi) = T (qi; _qi)� V (qi) is the Lagrangian of the system, andF(qi; _qi) = �12 ddtfT (qi; _qi) + V (qi)gis the Rayleigh dissipation fun
tion. In pra
ti
e, for solving the 
oupleddi�erential equations (1) it is ne
essary to retain only the minimum numberof degrees of freedom qi whi
h are absolutely essential.3. Shape parameterizationWe use in our model the shape parametrization whi
h has been proposedin Ref [6℄. The axially symmetri
 shapes of �xed volume 
onsist of twogenerally unequal spheres modi�ed by a smoothly �tted portion of a thirdquadrati
 surfa
e of revolution. A set of dimensionless degrees of freedomspe
ifying the 
on�guration are the following (see Fig. 1):1) the distan
e variable; � = r=(R1 +R2);2) the ne
k variable; � = (l1 + l2)=(R1 +R2);3) the asymmetry variable; � = (R1 �R2)=(R1 +R2) : (2)
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Fig. 1. Shape parameterization of the evolving 
omposite system (pres
issionshape).In the above, r is the distan
e between the 
enters of the spheres, whoseradii are R1 and R2. The quantities l1, l2 are the distan
es from the inner tipsof the two spheres to the respe
tive jun
tion points with the middle quadrati
surfa
e of revolution. The natural boundaries of the 
on�gurational spa
e(�, �, �) were dis
ussed in Ref. [6℄. They are given by:� � j�j; �1 � � � 1; 2� (1 + ��1)j�j � � � maxf0; 1 � �g: (3)As it 
an be readily veri�ed and seen from Fig. 2, the upper boundary for� 
orresponds to egg-like shapes for whi
h the middle quadrati
 has just
overed up 
ompletely the smaller sphere. At the lower boundary we haveseparated spheres for � = 0 and portions of interse
ting spheres (withoutany middle quadrati
 surfa
e) for � = 1��. At s
ission the 
enter quadrati
degenerates into a 
one, whi
h implies �s
 = 1� ��1s
 .
Fig. 2. A map of di�erent shapes in (�; �)-spa
e for a �xed value of � = 0:3.The straight line, � + � = 1, 
orresponds to two interse
ting spheres. There areno de�ned shapes under that line. S
ission o

urs when the � = 1 � ��1 line is
rossed. Con�gurations below the s
ission line are two separated fragments. Theupper boundary line, � = 2 � j�j(1 + ��1), 
orresponds to the situation whensmaller of the spheres is en
losed by the ne
k.



1516 J. Bªo
ki et al.We have extended our model by introdu
ing additionally the 
hargeasymmetry variable �Z = Z1=31 � Z1=32Z1=31 + Z1=32 : (4)It was found that this new degree of freedom, independent on the massasymmetry �, plays an important role in early stage of nu
leus�nu
leus
ollisions, during equilibration of the N=Z ratio.In addition to the ma
ros
opi
 variables (�, �, �, �Z) there are threerotational degrees of freedom (�1; �2; �rel) and three angular velo
ities (!1,!2, !rel) 
onne
ted with the rotation of sphere 1 and sphere 2 and therotation of the shape as a whole.As a parameter whi
h 
ontrols the transition from separate nu
lei to 
om-pound nu
leus, we introdu
e the window opening parameter � (see Fig. 3):� = sin �sin �max : (5)
max

θ
θ

Fig. 3. Illustration of the window opening parameter, � = sin �= sin �max4. Kineti
 energyFor the kineti
 energy we take a quadrati
 form in velo
ities with a masstensor 
al
ulated in the Werner�Wheeler approximation [7℄. It has beenfound that in the dynami
al traje
tory 
al
ulations the motion in the �dire
tion was invariably overdamped to su
h an extent that the 
omponentof the inertia tensor Mij asso
iated with � 
ould be safely negle
ted. Thekineti
 energy is then redu
ed to the formT = 12M�� _�2 +M�� _� _�+ 12M�� _�2: (6)The matrix element M�� of the mass tensor for two separated spheres isexa
tly the redu
ed mass.
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s in 4-Dimensional Model of : : : 1517In the rotational degrees of freedom the kineti
 energy is equal to:Tr = 12(Irel!2rel + I1!21 + I2!22) ; (7)where I1 and I2 are the rigid moments of inertia of sphere 1 and 2, respe
-tively and Irel = Itot � I1 � I2 where Itot is the rigid moment of inertia ofthe whole system. Two spheres 
an rotate independently from the relativerotation, but due to the tangential fri
tion, after some time all the frequen-
ies !rel, !1 and !2 be
ome equal and the system rotates as a rigid body(�sti
king� limit).The mass tensor is 
al
ulated from the density distribution (whi
h is as-sumed to be uniform within the shape boundaries) and the 
olle
tive velo
ity�eld. As shown by Feldmeier [3℄), the mass tensor equals to:M%& = �d� Z �12B%B& + P 2A%A&� dz %; & = �; �;�; (8)where P = �� is the equation of the nu
lear surfa
e in 
ylindri
al 
oordinates(��; z; �), and A% = � 1P 2 zZ �P 2�% dz0 � �V0 Z �P 2�% z00 dz00; (9)B% = �12 1P 2 �P 2�z zZ �P 2�% dz0 + �P 2�% ; (10)where V0 is the total volume of the systemV0 = � Z P 2 dz: (11)Moments of inertia are given byItot = Irel + I1 + I2; (12)Itot = �d� Z �12P 4 + P 2z2� dz � �d�2V0 �Z P 2z dz�2 ; (13)I1;2 = �d 4�15R51;2 : (14)



1518 J. Bªo
ki et al.5. Potential energyThe potential energy of a nu
lear system is 
al
ulated for a given shapeas the sum of the nu
lear potential energy and the Coulomb energy. Thenu
lear part is 
al
ulated by the double folding pro
edure developed byKrappe, Nix and Sierk [8℄:Vn = � Cs8�2r20a3 ZZ �1a � 2�� exp(��=a) d3r d3r0; (15)where � = jr � r0j, Cs = as(1� ksI2) and I = (N � Z)=A. The parametersr0, a, as and ks are taken from the �t done in Ref. [8℄. For axially symmetri
shapes formula (15) redu
es to the three dimensional integral of the followingtype: Vn = Cs4�r20 ZZZ �2� ���a�2 + 2�a + 2� exp��a��P2(z; z0)P2(z0; z)�4 dz dz0 d� ; (16)where P2(z; z0) = P (z)�P (z)� P (z0) 
os�� dPdz (z � z0)� ;�2 = P (z)2 + P (z0)2 � 2P (z)P (z0) 
os�+ (z � z0)2 :A similar pro
edure has to be done in 
al
ulating the Coulomb part ofthe potential whi
h for an axially symmetri
 shape 
an be written as:V
 = �3 �z�z0 ZZZ P2(z; z0)P2(z0; z)� dz dz0 d�; (17)where �z and �z0 are the 
harge densities.6. Shell e�e
tsThe importan
e of shell e�e
ts in fusion rea
tions was demonstrated ex-perimentally as an enhan
ed fusion probability in rea
tions involving magi
or near-magi
 nu
lei, su
h as 208Pb or 209Bi. Shell e�e
ts are in
luded inour 
al
ulations in a phenomenologi
al form proposed by Myers and Swiate-
ki [9, 10℄. In this simple approa
h the shell 
orre
tion S0(N;Z) to thepotential energy is written in the formS0(N;Z) = (5:8MeV) FN + FZA2 2=3 � 0:325A1=3! ; (18)
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s in 4-Dimensional Model of : : : 1519where FN = qN (N �Ni�1)� 35 �N5=3 �N5=3i�1�with qN = 35N5=3i �N5=3i�1Ni �Ni�1 :Here Ni�1 and Ni are the 
losed shell neutron numbers adja
ent to thea
tual number of neutrons N of a given nu
leus of mass number A. Identi
alformulae for FZ and qZ des
ribe the shell e�e
t for protons. A

ording tothis pres
ription, for the double 
losed shell nu
leus 208Pb the shell e�e
t isS0 = �11:2 MeV.The shell 
orre
tion S0(N;Z) de�ned above refers to spheri
al shapes.For deformed shapes the shell 
orre
tion is attenuated as suggested inRefs. [9, 10℄: S(N;Z) = S0(N;Z)�1� 2dist2a2 � exp��dist2a2 � ; (19)where dist2 is a measure of deviation from spheri
al shape,dist2 = Z d
4� (r(�; �)�R0)2:Here r(�; �) is the radius ve
tor des
ribing the given shape and R0 is theradius of the equivalent sphere.Considering shape evolution of nu
lear systems, it is ne
essary to inter-polate in a smooth way between the sum of the shell 
orre
tions S1 and S2 ofthe 
olliding nu
lei in the entran
e 
hannel and the shell 
orre
tion S
 of themononu
lear shape. We adopted an interpolation in terms of the degree of
ommuni
ation between the two nu
lei as spe
i�ed by the �window opening�parameter � de�ned by Eq. (5):S = (1� �)(S1 + S2) + �S
: (20)For separated shapes (below the s
ission line) � = 0 and thus S = S1 + S2.When the ne
k loses its 
on
avity at � = 1 the shell 
orre
tion be
omesa pure mononu
leus shell 
orre
tion S
. This is kept for all 
onvex shapeswith � > 1.It should be noted here that we do not 
onsider thermal attenuation ofthe shell 
orre
tions. This 
an be justi�ed as long as our model is restri
tedfor a des
ription of near-threshold fusion rea
tions at low ex
itation energies.



1520 J. Bªo
ki et al.7. DissipationIn our model, we restri
t ourselves to one-body dissipation [11℄, aris-ing from 
ollisions of independent parti
les with the moving boundary ofthe nu
leus. In the one-body dissipation model [11℄, the energy �ow from
olle
tive to intrinsi
 motion is attributed to the intera
tion of individualnu
leons with the mean �eld produ
ed by all nu
leons in the system. In asimpli�ed pi
ture this intera
tion may be viewed as mediated by 
ollisionsbetween nu
leons and a moving 
ontainer wall, or by the passage of nu
leonsfrom one fragment to the other through a window.There are two limiting 
ases in whi
h two di�erent simple formulae forthe rate of the dissipated energy 
an be derived. The �rst one is so 
alledthe mononu
lear regime when the system of 
olliding ions 
an be 
onsideredas a monosystem with a thi
k ne
k. In that 
ase the gas of nu
leons 
an be
onsidered as a relaxed Fermi gas and the rate of the energy dissipation isgiven by the following wall formula [11℄:_Ewall = ��v I dS ( _n� vd)2; (21)where � is the mass density of nu
leons, �v is their average speed (equal tothree quarters of the Fermi velo
ity in the Fermi gas model), dS is an elementof nu
lear surfa
e, _n is the normal velo
ity of walls and vd is the overall driftvelo
ity of the gas of nu
leons ensuring the invarian
e of Eq. (21) againsttranslations and rotations.In the se
ond limiting 
ase, the dinu
lear regime, when two ions areeither separated or 
onne
ted by a thin ne
k, Eq. (21) 
annot be appliedas we are dealing with two Fermi gases separated by the 
olle
tive velo
ity.In that 
ase the so-
alled �wall-plus-window� formula 
an be applied and itreads as follows:_Ew+w = ��v Z1 dS ( _n�vd1)2+��v Z2 dS ( _n�vd2)2+14��v�(u2t+2u2r)+ 169 ��v� _V 21 :(22)The �rst two terms represent the wall formula, Eq. (21), applied to ea
hfragment separately, with drift velo
ities vd1 and vd2, respe
tively. Thethird term is asso
iated with the dissipation due to the ex
hange of parti
lesthrough the window of the area �, 
onne
ting the two nu
lei moving witha relative velo
ity u. The 
omponents of the relative velo
ity, ut and ur,are parallel and perpendi
ular to the window, respe
tively. The last termin Eq. (22) 
orresponds to the dissipative resistan
e against the asymmetry
hanges [12, 13℄ with _V1 being the rate of the 
hange of the volume of frag-ment 1. Eqs. (21) and (22) express the rate of the dissipated energy in two
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ases of the mononu
lear and dinu
lear regimes. In the interme-diate 
on�gurations a smooth transition between formulae (21) and (22) isused [14℄: _E = f _Ewall + (1� f) _Ew+w (23)with a formfa
tor f approa
hing a value f = 1 for sphere or spheroid-likeshapes, and f = 0 at s
ission.Following Feldmeier [3℄, we have introdu
ed an additional dynami
alequation, a

ounting for the 
oupling between the parti
le and entropy�uxes, whi
h drives parti
les from hotter to 
older gas. The time derivativeof the di�eren
e of ex
itation energies of two parts of the nu
lear system isgiven by: ddt(E�1 �E�2) = _E1 wall � _E2 wall + 2T0 _S21; (24)where the last term represents the e�e
t of the temperature feedba
k whi
his proportional to the average temperature T0 = (T1+T2)=2 and the entropy�ux _S21 taken from Ref. [3℄.8. Langevin equationDes
ription of the nu
leus�nu
leus 
ollisions in terms of the 
lassi
alLagrange�Rayleigh equations Eq. (1) with dissipative for
es dis
ussed in theprevious se
tion does not give satisfa
tory results, espe
ially in attempts toexplain fusion pro
esses at low, near-threshold energies, when apparentlythe tails of �u
tuating phenomena play very important role.The dissipative dynami
s basi
ally stems from nonequilibrium statisti-
al me
hani
s whi
h relates two di�erent ma
ros
opi
 phenomena, �u
tua-tions and dissipation, demonstrating their 
ommon mi
ros
opi
 origin. The
onne
tion between dissipation and ma
ros
opi
 �u
tuations follows fromthe mi
ros
opi
 des
ription, under the 
ondition the physi
al systems 
on-tinuously evolves toward equilibrium. Thus having de�ned the dissipationme
hanism, we 
an stri
tly determine the 
hara
ter of �u
tuations. This isgiven by the Einstein relation (originally derived for Brownian motion),
 = D2T ; (25)whi
h relates the fri
tion 
oe�
ient 
 and the momentum di�usion 
oef-�
ient D at the temperature T . This relation follows from the general�u
tuation�dissipation theorem, one of the most fundamental results ofnonequilibrium statisti
al me
hani
s.
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ki et al.From two alternative possibilities of implementation of �u
tuations tothe dynami
al model, the Fokker�Plan
k and Langevin approa
hes, we have
hosen the latter. The Fokker�Plan
k approa
h is appropriate for des
rip-tion of an ensemble of traje
tories in the 
olle
tive 
oordinate phase spa
e,a type of analysis di�
ult to simulate numeri
ally. On the 
ontrary, theLangevin approa
h 
an be used in mu
h easier numeri
al simulations of asingle traje
tory.Denoting by Q the 
olle
tive degrees of freedom, by P their asso
iatedmomenta and by M the 
orresponding inertia parameters, the Langevinequations of motion for a traje
tory look as follows:dQdt = PM ; dPdt = �dVdQ + Ffri
 + ~F
u
; (26)where Ffri
 = �
 _Q; (27)is an average fri
tion for
e resulting from the 
oupling to the nu
leoni
 �heatbath�, whereas ~F
u
 is a rapidly �u
tuating sto
hasti
 for
e determining�u
tuations in momentum a

ording to the value of the 
oe�
ient D(Q;P )given by Eq. (25). The for
e ~F
u
 
an be simulated numeri
ally by repeatedlyprodu
ing a random ki
k ÆP in the 
olle
tive momentum. The value of ÆPis 
hosen randomly from a Gaussian distribution, with a mean value andvarian
e given by: ÆP = 0 ; (28)(ÆP )2 = D Æt ; (29)where Æt is a small time step between ki
ks.9. Flu
tuations9.1. Thermal �u
tuationsEquation (25) determines the magnitude of thermal �u
tuations result-ing from the 
oupling of the 
olle
tive degrees of freedom to the nu
leoni
�heat bath�. Applying the Langevin approa
h to our ma
ros
opi
 dynami
model with one-body dissipation we need to derive the momentum di�usion
oe�
ient from the rate of energy dissipation in the �wall� and �window�me
hanisms. For example, in 
ase of the wall formula (21) the fri
tion 
oef-�
ient 
 = �Ffri
= _Q (see Eq. (27)) 
an be expressed as
 = ��v I dS� �n�Q�2 (30)
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s in 4-Dimensional Model of : : : 1523be
ause for a given surfa
e element, _n 
an be written as _Q �n=�Q, where(�n=�Q) dQ gives the normal outward displa
ement of the surfa
e elementa

ompanying an in�nitesimal 
hange dQ in the value of the 
olle
tive 
o-ordinate.Having determined the fri
tion 
oe�
ient 
 resulting from the one-bodydissipation formula (22), the momentum di�usion 
oe�
ient D for thermal�u
tuations is immediately obtained from the Einstein relation (25).9.2. Ex
hange of parti
lesApart from thermal �u
tuations, also �u
tuations in the number of ex-
hanged nu
leons 
ontribute to the sto
hasti
 Langevin for
e. However thise�e
t in�uen
es only the asymmetry degree of freedom. We assume thatthe motion of nu
leons is 
haoti
 and the 
orrelation time is in�nitesimallysmall. Then, for su�
iently short period of time, the ex
hange of nu
leons
an be treated as a Poisson pro
ess with the distribution undergoing thebinomial law. Let us 
onsider the number of parti
les passed from nu
leus1 to nu
leus 2 during a time interval �t to be N1 and from 2 to 1 to be N2.Then the 
hange of the atomi
 mass number of nu
leus 1 is equal to:�A1 = g = N2 �N1 : (31)This quantity 
an be rewritten as a sum of average term and �u
tuatingterm with zero mean value:�A1 = ~g = �g +�L ; h�Li = 0: (32)The di�usion 
oe�
ient DA is de�ned by relation:h�L2i = DA�t = h~g2i � �g2 : (33)Sin
e quantities N1 and N2 are independent and are taken from binomialdistributions, the following equivalen
ies:hN1N2i = hN1ihN2i and hN2i i = hNii2 + hNii�1� hNiiAi � (34)lead to the expli
it expression for h�L2i:h�L2i = hN1i+ hN2i ��hN1i2A1 + hN2i2A2 � : (35)We denote A1 and A2 atomi
 mass numbers and A = A1+A2. As it followsfrom the �window� formula (see the third term in Eq. (22)), the averagenumber of parti
les ex
hanged through the window of the area � is:hN1i � hN2i � 14��vn�t ; (36)



1524 J. Bªo
ki et al.where �v is the average velo
ity and n is the 
on
entration of nu
leons (num-ber per unit volume). Hen
e we obtain the expression for DA:DA = 12��vn� 116A�2�v2n2�t ; (37)where A = A1A2=(A1 +A2). The limit when two 
ontainers 
an be treatedas in�nite reservoirs of parti
les is a
hieved when the time interval �t issmall enough: �t� 8a��vn: (38)Transforming the obtained result to �u
tuations in the asymmetry variable� we use the following relations:_� = f _A1; D� = f2DA; (39)where f = ���A1 ����A = 23 (A1 +A2)A�2=31 A�2=32(A1=31 +A1=32 )2 : (40)10. Parameterization of the potentialNumeri
al simulations of sto
hasti
 fusion pro
esses in our 4-dimensionalmodel are very time 
onsuming, mostly be
ause the potential energy 
an-not be expressed analyti
ally and must be 
al
ulated as three-dimensionalintegral (Eqs. (16) and (17)) at ea
h point along the Langevin traje
tory.Ea
h traje
tory 
onsists of hundreds of points and at ea
h point one hasto 
al
ulate 
onservative for
es in four dire
tions: (�; �;�;�Z). It is 
learthat 
al
ulation of millions of traje
tories, ne
essary for simulation of theLangevin dynami
s, be
omes in pra
ti
e impossible.Here we propose a method whi
h 
an speed up the 
al
ulations. Similarlyto Ref. [15℄, we parameterize the potential in order to avoid 
al
ulation ofthree-dimensional integral at ea
h point. The simplest way is to 
reatefour-dimensional latti
e in the phase spa
e and map the potential. Then,having values of the potential on the latti
e, one 
an determine a value ofthe potential in any intermediate point by interpolation.Simple estimation shows that a latti
e of size 1004 takes about 200 Mbof the 
omputer memory and, of 
ourse, a long CPU time to 
al
ulate thepotential. However, we 
an use the property that the potential energy is sym-metri
 with respe
t to the transformation (�;�Z) ! (��;��Z). More-over, it 
an be noted that the parameter �Z is strongly related to �: thepotential rises fast on the way from its minimum in the dire
tion (� = 1 ;�Z = �1), while it rises mu
h slower in the dire
tion (� = 1;�Z = 1).
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Fig. 4. The potential energy in the (�;�0Z)-subspa
e, � = (�0:5; 0:5) vs �0Z= (�0:05; 0:05), for the system 86Kr+136Xe at the point � = 1:26, � = 0:05, whi
h
orresponds to the beginning of the traje
tory near tou
hing 
on�guration. Shell
orre
tions are not in
luded. Contour lines 
orrespond to levels of the potentialenergy in MeV with respe
t to the potential energy of separated nu
lei.Therefore one 
an repla
e the parameters (�;�Z) with (�;�0Z), where�0Z = �Z � �, saving the inversion symmetry as for the original pairof parameters. Disregarding shell e�e
ts, the potential around the point(� = 0;�0Z = 0) has a regular well-shape in 
oordinates x = � and y = �0Z(see Fig. 4). Therefore we have 
hosen parameterization in that subspa
e asa 4-th degree polynomial:z = f1 + f2x2 + f3xy+ f4y2 + f5x4 + f6x3y+ f7x2y2 + f8xy3 + f9y4; (41)whi
h represents the expansion of the potential z around (0,0)-point. Thesymmetry property eliminates the odd degree terms.The potential in the subspa
e (�,�) is parameterized by a bilinear inter-polation of the latti
e points. Eq. (41) 
an be rewritten:z = ~f � ~p(x; y) ; (42)where ~p(x; y) = (1; x2; xy; y2; x4; x3y; x2y2; xy3; y4)
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Fig. 5. Choi
e of points for determination of the 
oe�
ients in polynomial expan-sion of the potential around (0,0)-point in the (�;�Z)-subspa
e. Point 1 is theorigin of the 
oordinate system.and ~f = (f1; f2; f3; f5; f6; f7; f8; f9). Now let us 
hoose 9 points as shown onFig. 5 giving the values ~z = (z1; z2; z3; z5; z6; z7; z8; z9). Then the 
oe�
ients~f 
an be found from the equation:̂M � ~f = ~z; (43)where
M̂=0BBBBBBBBBBBB�

~p(0; 0)~p(a; 0)~p(0; b)~p(a; b)~p(a;�b)~p(a2 ; b2 )~p(a2 ;� b2 )~p( 3a2 ; b2 )~p( 3a2 ;� b2 )
1CCCCCCCCCCCCA=0BBBBBBBBBBBB�

1 0 0 0 0 0 0 0 01 a2 0 0 a4 0 0 0 01 0 0 b2 0 0 0 0 b41 a2 ab b2 a4 a3b a2b2 ab3 b41 a2 �ab b2 a4 �a3b a2b2 �ab3 b41 a24 ab4 b24 a416 a3b16 a2b216 ab316 b4161 a24 �ab4 b24 a416 �a3b16 a2b216 �ab316 b4161 9a24 3ab4 b24 81a416 27a3b16 9a2b216 3ab316 b4161 9a24 � 3ab4 b24 81a416 � 27a3b16 9a2b216 � 3ab316 b416
1CCCCCCCCCCCCA :
(44)The exa
t solution for ~f is the following:f1 = z1 ;f2 = �18z1 + 18z2 � 2z3 + z4 + z5 + 2z6 + 2z7 � 2z8 � 2z912a2 ;f3 = �z4 + z5 + 16z6 � 16z76ab ;
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s in 4-Dimensional Model of : : : 1527f4 = �42z1 � 18z2 + 2z3 � 3z4 � 3z5 + 30z6 + 30z7 + 2z8 + 2z912b2 ;f5 = 6z1 � 6z2 + 2z3 � z4 � z5 � 2z6 � 2z7 + 2z8 + 2z912a4 ;f6 = �3z6 + 3z7 + z8 � z93a3b ;f7 = 2z1 � 2z2 � 2z3 + z4 + z52a2b2 ;f8 = 2z4 � 2z5 � 5z6 + 5z7 � z8 + z93ab3 ;f9 = 30z1 + 18z2 + 10z3 + 3z4 + 3z5 � 30z6 � 30z7 � 2z8 � 2z912b4 : (45)The pro
edure des
ribed above greatly speeds up the 
al
ulation espe-
ially when the parametrized potential is used for 
al
ulating ensembles ofLangevin traje
tories with high statisti
s.11. Cal
ulationsIn this se
tion we give some examples of 
al
ulations 
arried out with ourmodel. Emphasis is put on interpretation of fusion rea
tions, espe
ially atlow, near-threshold energies at whi
h �u
tuations play a very important roleand enhan
e the sub-barrier fusion 
ross se
tions by orders of magnitude.Figure 6 shows an example of a 
ontour map of the potential energy (withshell 
orre
tions in
luded) in the rea
tion 86Kr+70Ge, 
al
ulated in the sub-spa
e (�; �), for �xed value of the mass asymmetry � 
orresponding to theentran
e 
hannel asymmetry and 
harge asymmetry �Z = 0. There aretwo deterministi
 
entral-
ollision traje
tories 
al
ulated for this system atenergies near the fusion threshold. At E
m = 134 MeV the 
olliding systemapproa
hes the tou
hing 
on�guration approximately at (� = 1:3; � = 0),then moves toward larger �-values (a ne
k is developed) and �nally slidesdown behind the saddle point (� = 1:6; � = 0:7) undergoing fusion. (Forbetter understanding the sequen
e of shapes see also Fig. 3.) The se
ondtraje
tory in Fig. 6 starts from the same point in the 
on�gurational spa
e,but at slightly lower energy, E
m = 132 MeV. This traje
tory, however,is de�e
ted outward and the system reseparates. Thus, the probability offusion of the 86Kr+70Ge system, 
al
ulated in the 
lassi
al deterministi
approa
h, is Pfus = 1 at E
m = 134 MeV and Pfus = 0 at E
m = 132 MeV.Flu
tuations bring indeterminism to the rea
tion dynami
s be
ause forthe same initial 
onditions, traje
tories 
an either go to fusion or to resep-aration. This is illustrated in Fig. 7 for the same rea
tion 86Kr+70Ge at
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Fig. 6. Two deterministi
 traje
tories for the 86Kr+70Ge 
olliding system, startingwith initial kineti
 energy 132 and 134 MeV and plotted on the potential energymap in (�; �)-spa
e. The energy 
ontours are in MeV.

Fig. 7. Sto
hasti
 traje
tories for the 86Kr+70Ge rea
tion. Four traje
tories within
luded thermal �u
tuations start with the same kineti
 energy 132 MeV.E
m = 132 MeV for whi
h deterministi
 
al
ulation gives Pfus = 0. Cal
u-lations with thermal �u
tuations in
luded produ
e very irregular traje
to-ries whi
h show features of �random walk� under in�uen
e of the sto
hasti
Langevin for
e. Out of four traje
tories presented in Fig. 7, three lead toreseparation of the 
olliding system, but one traje
tory goes now to fusion,indi
ating that the fusion probability is in fa
t about 14 and not zero, as inthe deterministi
 
al
ulation.
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Fig. 8. Fusion probabilities extra
ted from measured 
ompound�residue 
ross se
-tions in the 86Kr+136Xe rea
tion [16℄, 
ompared with the sto
hasti
 model 
al
u-lations.Having implemented the Langevin dynami
s to our 4-dimensional 
on�-guration-spa
e model we performed analysis of the near-threshold fusionprobabilities for the 86Kr+136Xe rea
tion studied at GSI Darmstadt [16℄. Asthe 
al
ulation are very time 
onsuming, theoreti
al predi
tions of the fusionprobabilities obviously are mu
h easier than 
al
ulations of unre�ned fusion
ross se
tions requiring integration in l-spa
e. Results of the 
omparison arepresented in Fig. 8. It is seen that the fusion probabilities dedu
ed from themeasured 
ompound�residue 
ross se
tions in
rease from Pfus � 2 � 10�4at E
m = 195 MeV to Pfus � 1 at E
m = 230 MeV. Our 
al
ulations showthat for energies E
m > 215 MeV the 
al
ulated fusion probabilities agreewith those dedu
ed from experiment, despite the fa
t that the model in thedeterministi
 version (without �u
tuations) predi
ts the energy threshold forfusion (Pfus = 0) at a value indi
ated in Fig. 8 as Eshellextra�push, i.e., at E
m �224 MeV. However the enhan
ement of the 
al
ulated fusion probability
aused by �u
tuations is too small to rea
h agreement with the data. The
al
ulated fusion threshold is moved down from E
m = 224 MeV to aboutE
m = 210MeV, but the 
urve dedu
ed from measured 
ross se
tions extendsto still lower energies, even below E
m = 200 MeV.We admit that it is di�
ult to draw �rm 
on
lusions on the basis of the
omparison presented in Fig. 8 be
ause extra
tion of the �experimental� val-ues of the fusion probability Pfus from the 
ompound�residue 
ross se
tionsis very model-dependent, espe
ially for su
h heavy systems as 86Kr+136Xe,for whi
h fusion��ssion rea
tions dominate, while details of the 
ompetitionbetween neutron emission and �ssion are strongly in�uen
ed by not wellknown stru
tural e�e
ts.
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ki et al.The above arguments led us to implementation of the method of parame-trization of the potential energy (see Se
tion 10) whi
h made Langevindynami
s 
al
ulations of unre�ned fusion 
ross se
tions feasible, espe
iallywhile using additionally the importan
e sampling method in traje
tory sim-ulations 
hara
terized by low Pfus-values [17,18℄. Cal
ulations of fusion 
rossse
tions 
ertainly take mu
h more time than 
al
ulations of the fusion prob-ability in 
entral 
ollisions be
ause the former require in
lusion of additionaldimension, the angular momentum. The fusion 
ross se
tion at the kineti
energy E 
an be 
al
ulated as a sum of 
ontributions of partial waves:�E = ��2X(2l + 1)Tl ; (46)where � is the de Broglie wavelength, �2 = ~2=2�E
m, and Tl is the trans-mission 
oe�
ient for a given partial wave. In deterministi
 version of ourdynami
al model the transmission 
oe�
ient Tl is just a step fun
tion:Tl = � 1 for l � l0;0 for l > l0; (47)where l0 is the 
riti
al angular momentum for a given bombarding energy E,i.e., the largest l-value for whi
h deterministi
 traje
tory still leads to fusion,while for all higher partial waves the system reseparates. In
lusion of �u
tu-ations 
auses spreading of Tl-values as shown in Fig. 9: Step-fun
tion distri-butions are repla
ed by very di�used distributions extending to mu
h largerl-values than respe
tive 
riti
al angular momenta l0. For determination ofthe fusion 
ross se
tions it is ne
essary to 
al
ulate these Tl-distributionsfor ea
h studied energy. Hundreds or even thousands Langevin traje
torieshave to be simulated at ea
h (E; l) initial 
ondition.In order to investigate to what extent �u
tuations 
an explain the en-han
ement of the fusion 
ross se
tions at near-barrier energies we sele
tedthe 86Kr+70Ge rea
tion for whi
h Reisdorf et al. [19℄ pre
isely measured thefusion ex
itation fun
tion in the whole sub-barrier region. The 86Kr+70Gesystem is only moderately heavy, so the measured 
ompound�residue 
rossse
tions still well represent the total fusion 
ross se
tions, i.e., 
ontributionof the fusion��ssion pro
esses is small, at least at near threshold energies.Figure 10 displays results of our 
al
ulations for this system. The dashedline shows predi
tions of our model without �u
tuations. In this determin-isti
 approa
h, the fusion 
ross se
tion has a sharp threshold at E
m � 133MeV, representing the height of the s-wave barrier in
reased by the dissi-pative loss of kineti
 energy on the way to the barrier. As it is seen fromFig. 10, the deterministi
 fusion threshold is lo
ated about 10 MeV abovethe experimental threshold.
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Fig. 9. Examples of �di�usion� of the transmission 
oe�
ients 
aused by thermal�u
tuations. The transmission 
oe�
ients are 
al
ulated for the 86Kr+104Ru rea
-tion at E
m = 190 MeV (upper 
urve) and 185 MeV (lower 
urve). Limits of sharp
ut-o� distributions 
orresponding to deterministi
 
al
ulation without �u
tuationsare indi
ated by arrows.

Fig. 10. Fusion ex
itation fun
tion for the 86Kr+70Ge rea
tion measured by Reis-dorf et al. [19℄ (
ir
les), 
ompared with the sto
hasti
 model 
al
ulations (squares).The dashed line shows the ex
itation fun
tion obtained in deterministi
 limit with-out �u
tuations.
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lusion of �u
tuations 
onsiderably enhan
es the fusion 
ross se
tionsbelow the deterministi
 energy threshold, but the 
al
ulated ex
itation fun
-tion moves only half-way toward the experimental 
urve. Our sto
hasti
model 
al
ulations have been 
arried out assuming both thermal �u
tuationsand �u
tuations asso
iated with ex
hange of nu
leons (see Se
tion 9). The
al
ulations have demonstrated that thermal �u
tuations play de
isive role,espe
ially at near-threshold energies. Magnitude of the thermal �u
tuationsis determined by Einstein relation (25) and 
ertainly 
annot be treated asfree parameter. Nevertheless, we performed 
al
ulations with larger valuesof the momentum di�usion 
oe�
ient and found that experimental fusionex
itation fun
tion 
an be well reprodu
ed assuming a value of D approxi-mately two times larger than that resulting from Eq. (25). Of 
ourse su
h alarge value of D has no physi
al justi�
ation.We 
on
lude that thermal �u
tuations play a very important role innear-threshold and sub-barrier fusion rea
tions. The �u
tuations remove�ux from reseparation pro
esses and dire
t it to fusion (and vi
e versa).Consequently, �u
tuations enhan
e sub-barrier fusion rea
tions and lowerthe e�e
tive fusion threshold. However magnitude of thermal �u
tuationsdetermined by the Einstein relation is too small to obtain good quantitativeagreement with experimental results.This work was supported by the Polish�Ameri
an Maria Skªodowska-Curie Joint Fund II, under Proje
t No. PAA/DOE-98-34, and by the Polish�Fren
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