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Description of a realistic dynamic model of nucleus—nucleus collisions
and fusion reactions, combined with stochastic effects (fluctuations) is given.
We solve Langevin equations of motion in which stochastic white noise term
is added to deterministic conservative and dissipative forces. The equations
of motion are solved in 4-dimensional configuration space including three
geometrical variables defining shape of the system and one variable defining
charge asymmetry. Dissipative forces are calculated assuming one-body dis-
sipation mechanism. Two sources of fluctuations are considered: thermal
fluctuations determined by the fluctuation—dissipation theorem (Einstein
relation) and fluctuations associated with exchange of nucleons. The width
of the thermal fluctuations turns out to dominate stochastic effects in fusion
reactions. It is shown that in near-threshold fusion reactions, the fluctua-
tions remove flux from reseparation processes and direct it to fusion (and
vice versa). Consequently, fluctuations enhance sub-barrier fusion reactions
and lower the effective fusion threshold.

PACS numbers: 25.70.—z, 25.70.Jj, 24.60.Ky

1. Introduction

Recent synthesis of superheavy nuclei of the element Z = 118 [1]| has
intensified theoretical studies aimed to understand the mechanism of fusing
of very heavy systems and to explain the role of fluctuations which probably
decisively enhance fusion at the lowest near-threshold energies.

* Presented at the Kazimierz Grotowski 70*" Birthday Symposium “Phases of Nuclear
Matter”, Krakéw, Poland, January 27-28, 2000.
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In this paper we give description of our 4-dimensional semiclassical model
of nucleus—nucleus collisions which had been developed and improved over
several years and recently combined with a description of statistical fluc-
tuations. Following works of Jarzynski [2] and earlier studies of Feldmeier
[3], we have incorporated the statistical fluctuations to our classical model
of nucleus-nucleus collisions in terms of the Langevin dynamics (see also
Refs. [4,5] and references therein).

2. Lagrange—Rayleigh equations of motion

Various classical models of nucleus—nucleus collisions are characterized
by three basic ingredients, namely:

(a) the collective degrees of freedom (g;) which are treated explicitly, and
their associated inertial parameters (momenta);

(b) the potential energy V(g;);

(c) the assumed dissipative forces (friction) which remove the energy from
the collective degrees of freedom.

Having defined these basic ingredients one can compute the time evolu-
tion of the collective variables by solving the generalized Lagrange equations:
doc_oc__oF "
dtd¢; g 04
Here L(q;,¢;) = T(q;,di) — V(¢;) is the Lagrangian of the system, and
. 1d :
Flai, 6i) = =547 (a,¢) + V(ai)}

is the Rayleigh dissipation function. In practice, for solving the coupled
differential equations (1) it is necessary to retain only the minimum number
of degrees of freedom ¢; which are absolutely essential.

3. Shape parameterization

We use in our model the shape parametrization which has been proposed
in Ref [6]. The axially symmetric shapes of fixed volume consist of two
generally unequal spheres modified by a smoothly fitted portion of a third
quadratic surface of revolution. A set of dimensionless degrees of freedom
specifying the configuration are the following (see Fig. 1):

1) the distance variable, p=r/(Ri+ Ro),
2)  the neck variable, A= (1 +12)/(R1 + R2),
3) the asymmetry variable, A= (Ry — R2)/(R1 + R2) . (2)
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Fig.1. Shape parameterization of the evolving composite system (prescission
shape).

In the above, r is the distance between the centers of the spheres, whose
radii are Ry and Rs. The quantities [1, [ are the distances from the inner tips
of the two spheres to the respective junction points with the middle quadratic
surface of revolution. The natural boundaries of the configurational space
(p, A, A) were discussed in Ref. [6]. They are given by:

p>14,  —1<A<L, 2—(1+p YAl > A > max{0,1 - p}. (3)

As it can be readily verified and seen from Fig. 2, the upper boundary for
A corresponds to egg-like shapes for which the middle quadratic has just
covered up completely the smaller sphere. At the lower boundary we have
separated spheres for A = 0 and portions of intersecting spheres (without
any middle quadratic surface) for A = 1 —p. At scission the center quadratic
degenerates into a cone, which implies A¢e =1 — pg.".

NECK VARIABLE A

O.c o Oﬂ D\S%.AZNCE 1\/EAR’\AEZKIEE 0 o ’
Fig.2. A map of different shapes in (p, A)-space for a fixed value of A = 0.3.
The straight line, p + A = 1, corresponds to two intersecting spheres. There are
no defined shapes under that line. Scission occurs when the A = 1 — p~! line is
crossed. Configurations below the scission line are two separated fragments. The
upper boundary line, A = 2 — |A|(1 + p~!), corresponds to the situation when
smaller of the spheres is enclosed by the neck.
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We have extended our model by introducing additionally the charge
asymmetry variable

73 _ 13

Ayp=tL T4
713 4 73/

(4)

It was found that this new degree of freedom, independent on the mass
asymmetry A, plays an important role in early stage of nucleus—nucleus
collisions, during equilibration of the N/Z ratio.

In addition to the macroscopic variables (p, A, A, Ayz) there are three
rotational degrees of freedom (01,609, 6,¢) and three angular velocities (wq,
wa, wre) connected with the rotation of sphere 1 and sphere 2 and the
rotation of the shape as a whole.

As a parameter which controls the transition from separate nuclei to com-
pound nucleus, we introduce the window opening parameter « (see Fig. 3):

o sin 6 (5)

SN Opmax

max

Fig. 3. Tllustration of the window opening parameter, « = sin 6/ sin Opmax

4. Kinetic energy

For the kinetic energy we take a quadratic form in velocities with a mass
tensor calculated in the Werner—Wheeler approximation [7]. It has been
found that in the dynamical trajectory calculations the motion in the A
direction was invariably overdamped to such an extent that the component
of the inertia tensor M;; associated with A could be safely neglected. The
kinetic energy is then reduced to the form

1 . L1 :
T = gMppf + MoypA + gMM,\? (6)

The matrix element M, of the mass tensor for two separated spheres is
exactly the reduced mass.
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In the rotational degrees of freedom the kinetic energy is equal to:
1
T, = §(Ire1w1?e1 + Ilw% + 12“)%) ) (7)

where I; and Iy are the rigid moments of inertia of sphere 1 and 2, respec-
tively and Ie) = Iiot — I1 — Is where Lo is the rigid moment of inertia of
the whole system. Two spheres can rotate independently from the relative
rotation, but due to the tangential friction, after some time all the frequen-
cies wrel, w1 and wo become equal and the system rotates as a rigid body
(“sticking” limit).

The mass tensor is calculated from the density distribution (which is as-
sumed to be uniform within the shape boundaries) and the collective velocity
field. As shown by Feldmeier [3]), the mass tensor equals to:

1
My = Pdﬂ'/ <§Bch + P2A9A<> dz 0,5 = p, A, A, (8)

where P = p is the equation of the nuclear surface in cylindrical coordinates
(ﬁ’ Z7 ¢)5 a’nd

1 [op? T [P

Ag = _ﬁ 8—@ le - - a—QZ” dZ”, (9)
11 oP? aP2 0P?

B, = 55 a5 | o5 d7 + s (10)

where Vj is the total volume of the system
Vo = 7r/P2 dz. (11)

Moments of inertia are given by

Liot = Ive + It + Io, (12)

1, pam? 2
Lot = pdﬂ/ <§P +P222) dz — T </P22 dz) , (13)
0

47
Ly = pdER‘i’g : (14)
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5. Potential energy

The potential energy of a nuclear system is calculated for a given shape
as the sum of the nuclear potential energy and the Coulomb energy. The
nuclear part is calculated by the double folding procedure developed by
Krappe, Nix and Sierk [8]:

v, = 8W2r0a3 / / <———) exp(—c/a) dPr dr', (15)

where 0 = |r — '], Cs = as(1 — ksI?) and I = (N — Z)/A. The parameters
10, @, as and ks are taken from the fit done in Ref. [8]. For axially symmetric
shapes formula (15) reduces to the three dimensional integral of the following

type:
V, = ///(2—[— +2g+2]exp—z>
471'7’0 a a
Py( P.
W Doz 2)42( ) gy do' dg, (16)
o
where

Py(z,7) = P(z) <P(z) — P(2')cos ¢ — %(z - z')) ,
02 = P(2)? + P(¢)* = 2P(2)P(2') cos ¢ + (z — 2)?.

A similar procedure has to be done in calculating the Coulomb part of
the potential which for an axially symmetric shape can be written as:

P. NPy (2
Ve= gpzpz’ /// (2, 7) P, 2) dz d2' d¢, (17)
g

where p, and p, are the charge densities.

6. Shell effects

The importance of shell effects in fusion reactions was demonstrated ex-
perimentally as an enhanced fusion probability in reactions involving magic
or near-magic nuclei, such as 2°Pb or 29“Bi. Shell effects are included in
our calculations in a phenomenological form proposed by Myers and Swiate-
cki [9,10]. In this simple approach the shell correction Sy(N,Z) to the
potential energy is written in the form

So(N, Z) = (5.8 MeV) (% - 0.325A1/3> , (18)

2
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where
Fny =gn(N — N;j1) —

o] W

(-2

with
3NN

INZFETN, N,

Here N;_1 and N; are the closed shell neutron numbers adjacent to the
actual number of neutrons N of a given nucleus of mass number A. Identical
formulae for F'z and qz describe the shell effect for protons. According to
this prescription, for the double closed shell nucleus 2°8Pb the shell effect is
Sp = —11.2 MeV.

The shell correction Sy(N, Z) defined above refers to spherical shapes.
For deformed shapes the shell correction is attenuated as suggested in
Refs. [9,10]:

S(N,Z) = Sy(N, Z) <1 _ 2diSt2) exp <—di;’;2) , (19)

a2

where dist? is a measure of deviation from spherical shape,

dist? :/@(r(e,qs) — Ry)>.
4

Here r(0, ¢) is the radius vector describing the given shape and Ry is the

radius of the equivalent sphere.

Considering shape evolution of nuclear systems, it is necessary to inter-
polate in a smooth way between the sum of the shell corrections S; and Sy of
the colliding nuclei in the entrance channel and the shell correction S, of the
mononuclear shape. We adopted an interpolation in terms of the degree of
communication between the two nuclei as specified by the “window opening”
parameter « defined by Eq. (5):

S=(1-a)(S1+S2)+ aS.. (20)

For separated shapes (below the scission line) @ = 0 and thus S = S; + Ss.
When the neck loses its concavity at @ = 1 the shell correction becomes
a pure mononucleus shell correction S.. This is kept for all convex shapes
with o > 1.

It should be noted here that we do not consider thermal attenuation of
the shell corrections. This can be justified as long as our model is restricted
for a description of near-threshold fusion reactions at low excitation energies.
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7. Dissipation

In our model, we restrict ourselves to one-body dissipation [11], aris-
ing from collisions of independent particles with the moving boundary of
the nucleus. In the one-body dissipation model [11], the energy flow from
collective to intrinsic motion is attributed to the interaction of individual
nucleons with the mean field produced by all nucleons in the system. In a
simplified picture this interaction may be viewed as mediated by collisions
between nucleons and a moving container wall, or by the passage of nucleons
from one fragment to the other through a window.

There are two limiting cases in which two different simple formulae for
the rate of the dissipated energy can be derived. The first one is so called
the mononuclear regime when the system of colliding ions can be considered
as a monosystem with a thick neck. In that case the gas of nucleons can be
considered as a relaxed Fermi gas and the rate of the energy dissipation is
given by the following wall formula [11]:

Ewall = pU f ds (n - Ud)27 (21)

where p is the mass density of nucleons, v is their average speed (equal to
three quarters of the Fermi velocity in the Fermi gas model), dS is an element
of nuclear surface, n is the normal velocity of walls and v, is the overall drift
velocity of the gas of nucleons ensuring the invariance of Eq. (21) against
translations and rotations.

In the second limiting case, the dinuclear regime, when two ions are
either separated or connected by a thin neck, Eq. (21) cannot be applied
as we are dealing with two Fermi gases separated by the collective velocity.
In that case the so-called “wall-plus-window” formula can be applied and it
reads as follows:

: . : 2., : o, L o o0y 16pU,
Egyiw = pv/dS (n—vg1) +pv/d8 (n—vg2) +vaa(ut+2ur)+§;V1.

(22)
The first two terms represent the wall formula, Eq. (21), applied to each
fragment separately, with drift velocities vg; and wvgo, respectively. The
third term is associated with the dissipation due to the exchange of particles
through the window of the area o, connecting the two nuclei moving with
a relative velocity u. The components of the relative velocity, u; and wu,.,
are parallel and perpendicular to the window, respectively. The last term
in Eq. (22) corresponds to the dissipative resistance against the asymmetry
changes [12,13] with Vi being the rate of the change of the volume of frag-
ment 1. Egs. (21) and (22) express the rate of the dissipated energy in two

1 2
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limiting cases of the mononuclear and dinuclear regimes. In the interme-
diate configurations a smooth transition between formulae (21) and (22) is
used [14]:

E= waall =+ (1 - f)Ew+w (23)

with a formfactor f approaching a value f = 1 for sphere or spheroid-like
shapes, and f = 0 at scission.

Following Feldmeier [3], we have introduced an additional dynamical
equation, accounting for the coupling between the particle and entropy
fluxes, which drives particles from hotter to colder gas. The time derivative
of the difference of excitation energies of two parts of the nuclear system is
given by:

d ) ) )
E(Eik — E3) = E1 wan — E2 wan + 2T Sa1, (24)
where the last term represents the effect of the temperature feedback which
is proportional to the average temperature Ty = (71 +7T%)/2 and the entropy

flux Sy; taken from Ref. [3].

8. Langevin equation

Description of the nucleus—nucleus collisions in terms of the classical
Lagrange-Rayleigh equations Eq. (1) with dissipative forces discussed in the
previous section does not give satisfactory results, especially in attempts to
explain fusion processes at low, near-threshold energies, when apparently
the tails of fluctuating phenomena play very important role.

The dissipative dynamics basically stems from nonequilibrium statisti-
cal mechanics which relates two different macroscopic phenomena, fluctua-
tions and dissipation, demonstrating their common microscopic origin. The
connection between dissipation and macroscopic fluctuations follows from
the microscopic description, under the condition the physical systems con-
tinuously evolves toward equilibrium. Thus having defined the dissipation
mechanism, we can strictly determine the character of fluctuations. This is
given by the Einstein relation (originally derived for Brownian motion),

= — 25
V= op (25)
which relates the friction coefficient 4 and the momentum diffusion coef-
ficient D at the temperature T. This relation follows from the general
fluctuation—dissipation theorem, one of the most fundamental results of
nonequilibrium statistical mechanics.
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From two alternative possibilities of implementation of fluctuations to
the dynamical model, the Fokker—Planck and Langevin approaches, we have
chosen the latter. The Fokker—Planck approach is appropriate for descrip-
tion of an ensemble of trajectories in the collective coordinate phase space,
a type of analysis difficult to simulate numerically. On the contrary, the
Langevin approach can be used in much easier numerical simulations of a
single trajectory.

Denoting by @ the collective degrees of freedom, by P their associated
momenta and by M the corresponding inertia parameters, the Langevin
equations of motion for a trajectory look as follows:

d P dP d .
d_ct?:M’ E:_%‘f’Ffﬁc‘f’Fﬂuca (26)
where

Ffric = _'YQa (27)

is an average friction force resulting from the coupling to the nucleonic “heat
bath”, whereas Fqy. is a rapidly fluctuating stochastic force determining
fluctuations in momentum according to the value of the coefficient D(Q, P)
given by Eq. (25). The force Fy,. can be simulated numerically by repeatedly
producing a random kick 6P in the collective momentum. The value of J P
is chosen randomly from a Gaussian distribution, with a mean value and
variance given by:

0P =0, (28)
(6P)2 = D 6t, (29)

where dt is a small time step between kicks.

9. Fluctuations

9.1. Thermal fluctuations

Equation (25) determines the magnitude of thermal fluctuations result-
ing from the coupling of the collective degrees of freedom to the nucleonic
“heat bath”. Applying the Langevin approach to our macroscopic dynamic
model with one-body dissipation we need to derive the momentum diffusion
coefficient from the rate of energy dissipation in the “wall” and “window”
mechanisms. For example, in case of the wall formula (21) the friction coef-
ficient y = — Fiic/Q (see Eq. (27)) can be expressed as

Y= pajfds (2—5)2 (30)
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because for a given surface element, 1 can be written as Q On/0Q, where
(0n/0Q) dQ gives the normal outward displacement of the surface element
accompanying an infinitesimal change d(@ in the value of the collective co-
ordinate.

Having determined the friction coefficient -y resulting from the one-body
dissipation formula (22), the momentum diffusion coefficient D for thermal
fluctuations is immediately obtained from the Einstein relation (25).

9.2. Ezchange of particles

Apart from thermal fluctuations, also fluctuations in the number of ex-
changed nucleons contribute to the stochastic Langevin force. However this
effect influences only the asymmetry degree of freedom. We assume that
the motion of nucleons is chaotic and the correlation time is infinitesimally
small. Then, for sufficiently short period of time, the exchange of nucleons
can be treated as a Poisson process with the distribution undergoing the
binomial law. Let us consider the number of particles passed from nucleus
1 to nucleus 2 during a time interval At to be N7 and from 2 to 1 to be N.
Then the change of the atomic mass number of nucleus 1 is equal to:

AAlzg:NQ—Nl. (31)

This quantity can be rewritten as a sum of average term and fluctuating
term with zero mean value:

AA=g=g+ AL , (AL) = 0. (32)
The diffusion coefficient D 4 is defined by relation:
(AL?) = DAt = (5%) — *. (33)

Since quantities N1 and Ny are independent and are taken from binomial
distributions, the following equivalencies:

(V0N = (W) and () = (7 v (1= G2) e

lead to the explicit expression for (AL?):

Ni)?2  (Ng)?
(AL?) = (Ny) + (N) — ) + )7 (35)
Ay Ag
We denote A; and A5 atomic mass numbers and A = A; + As. As it follows
from the “window” formula (see the third term in Eq. (22)), the average
number of particles exchanged through the window of the area o is:

1
(N1) =~ (Ng) ~ Zm—mAt, (36)



1524 J. BLOCKI ET AL.

where o is the average velocity and n is the concentration of nucleons (num-
ber per unit volume). Hence we obtain the expression for D 4:

1 1
DA = 50'1_)71 — m021_)2n2At, (37)
where A = A1 A3/(A1 + A). The limit when two containers can be treated
as infinite reservoirs of particles is achieved when the time interval At is

small enough:
8a
Al K —. (38)
oun
Transforming the obtained result to fluctuations in the asymmetry variable
A we use the following relations:

A=fA, Da=fDy, (39)

where

oA 24 + Ag) AT A7

= —1 = (40)
0A1|, 3 (A}/S—f—A%/S)?

10. Parameterization of the potential

Numerical simulations of stochastic fusion processes in our 4-dimensional
model are very time consuming, mostly because the potential energy can-
not be expressed analytically and must be calculated as three-dimensional
integral (Eqgs. (16) and (17)) at each point along the Langevin trajectory.
Each trajectory consists of hundreds of points and at each point one has
to calculate conservative forces in four directions: (p, A\, A, Az). It is clear
that calculation of millions of trajectories, necessary for simulation of the
Langevin dynamics, becomes in practice impossible.

Here we propose a method which can speed up the calculations. Similarly
to Ref. [15], we parameterize the potential in order to avoid calculation of
three-dimensional integral at each point. The simplest way is to create
four-dimensional lattice in the phase space and map the potential. Then,
having values of the potential on the lattice, one can determine a value of
the potential in any intermediate point by interpolation.

Simple estimation shows that a lattice of size 100* takes about 200 Mb
of the computer memory and, of course, a long CPU time to calculate the
potential. However, we can use the property that the potential energy is sym-
metric with respect to the transformation (A, Ayz) — (—A,—Ay). More-
over, it can be noted that the parameter Ay is strongly related to A: the
potential rises fast on the way from its minimum in the direction (A =1,
Az = —1), while it rises much slower in the direction (A = 1,Az = 1).
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224

2l
T

Fig.4. The potential energy in the (A, A’ )-subspace, A = (—0.5,0.5) vs A,
= (-0.05,0.05), for the system 36Kr+136Xe at the point p = 1.26, A = 0.05, which
corresponds to the beginning of the trajectory near touching configuration. Shell
corrections are not included. Contour lines correspond to levels of the potential
energy in MeV with respect to the potential energy of separated nuclei.

Therefore one can replace the parameters (A, Az) with (A, A), where
A, = Ay — A, saving the inversion symmetry as for the original pair
of parameters. Disregarding shell effects, the potential around the point
(A =0,4" =0) has a regular well-shape in coordinates z = A and y = A/,
(see Fig. 4). Therefore we have chosen parameterization in that subspace as
a 4-th degree polynomial:

2= fi + fox? + fazy + fay’ + fox' + forPy + fr2’y? + fszy® + foy', (41)

which represents the expansion of the potential z around (0,0)-point. The
symmetry property eliminates the odd degree terms.

The potential in the subspace (p,)\) is parameterized by a bilinear inter-
polation of the lattice points. Eq. (41) can be rewritten:

z:f-;ﬁ(x,y), (42)

where
plz,y) = (1,2%, 2y, v%, 2, 2%y, 2%y, oy, y*)



1526

J. BLOCKI ET AL.

)

Fig.5. Choice of points for determination of the coefficients in polynomial expan-
sion of the potential around (0,0)-point in the (A, Az)-subspace. Point 1 is the

origin of the coordinate system.

and f: (f1, f2, I3, [5, f6, [7, [8, fo). Now let us choose 9 points as shown on
Fig. 5 giving the values 2’ = (21, 29, 23, 25, 26, 27, 28, 29). Then the coefficients
f can be found from the equation:

where

The exact solution for f is the following;:

fi =

2
3
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f —4221 — 1829 + 223 — 324 — 325 + 3026 + 3027 + 228 + 229
4 = )

12b2
621 — 629 + 223 — 24 — 25 — 226 — 227 + 228 + 229
f5 = 4 ’
12a
fo = —32¢ + 327 + 23 — 29
6= 3a3b ’
= 221 — 229 — 223 + 24 + 25
T 2a2b? ’
f N 224—225—526+5Z7—28+Zg
s 3ab? ’
3021 + 1829 + 1023 + 324 + 325 — 302 — 3027 — 228 — 229
fo = 1264 '

(45)

The procedure described above greatly speeds up the calculation espe-
cially when the parametrized potential is used for calculating ensembles of
Langevin trajectories with high statistics.

11. Calculations

In this section we give some examples of calculations carried out with our
model. Emphasis is put on interpretation of fusion reactions, especially at
low, near-threshold energies at which fluctuations play a very important role
and enhance the sub-barrier fusion cross sections by orders of magnitude.

Figure 6 shows an example of a contour map of the potential energy (with
shell corrections included) in the reaction 8¢Kr+79Ge, calculated in the sub-
space (p, A), for fixed value of the mass asymmetry A corresponding to the
entrance channel asymmetry and charge asymmetry Az = 0. There are
two deterministic central-collision trajectories calculated for this system at
energies near the fusion threshold. At F.n = 134 MeV the colliding system
approaches the touching configuration approximately at (p = 1.3,\ = 0),
then moves toward larger A-values (a neck is developed) and finally slides
down behind the saddle point (p = 1.6, = 0.7) undergoing fusion. (For
better understanding the sequence of shapes see also Fig. 3.) The second
trajectory in Fig. 6 starts from the same point in the configurational space,
but at slightly lower energy, E., = 132 MeV. This trajectory, however,
is deflected outward and the system reseparates. Thus, the probability of
fusion of the 8¢Kr+7Ge system, calculated in the classical deterministic
approach, is P = 1 at Eepny = 134 MeV and P = 0 at Ee, = 132 MeV.

Fluctuations bring indeterminism to the reaction dynamics because for
the same initial conditions, trajectories can either go to fusion or to resep-
aration. This is illustrated in Fig. 7 for the same reaction 8¢Kr+"°Ge at
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135 93 69 63 p

Fig.6. Two deterministic trajectories for the 8¢Kr+"°Ge colliding system, starting
with initial kinetic energy 132 and 134 MeV and plotted on the potential energy
map in (p, A)-space. The energy contours are in MeV.

2

0

Fig. 7. Stochastic trajectories for the 86Kr+7°Ge reaction. Four trajectories with
included thermal fluctuations start with the same kinetic energy 132 MeV.

Eeny = 132 MeV for which deterministic calculation gives Pgg = 0. Calcu-
lations with thermal fluctuations included produce very irregular trajecto-
ries which show features of “random walk” under influence of the stochastic
Langevin force. Out of four trajectories presented in Fig. 7, three lead to
reseparation of the colliding system, but one trajectory goes now to fusion,
indicating that the fusion probability is in fact about i and not zero, as in
the deterministic calculation.



Langevin Dynamics in 4-Dimensional Model of ... 1529
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Fig.8. Fusion probabilities extracted from measured compound-residue cross sec-
tions in the 8¢Kr+13Xe reaction [16], compared with the stochastic model calcu-
lations.

Having implemented the Langevin dynamics to our 4-dimensional confi-
guration-space model we performed analysis of the near-threshold fusion
probabilities for the 8¢Kr+36Xe reaction studied at GST Darmstadt [16]. As
the calculation are very time consuming, theoretical predictions of the fusion
probabilities obviously are much easier than calculations of unrefined fusion
cross sections requiring integration in [-space. Results of the comparison are
presented in Fig. 8. It is seen that the fusion probabilities deduced from the
measured compound-residue cross sections increase from Ppg &~ 2 x 10~%
at Feyn = 195 MeV to Py = 1 at Eoy = 230 MeV. Our calculations show
that for energies E., > 215 MeV the calculated fusion probabilities agree
with those deduced from experiment, despite the fact that the model in the
deterministic version (without fluctuations) predicts the energy threshold for
fusion (Prs = 0) at a value indicated in Fig. 8 as E:l:fgipush, i.e., at By ~
224 MeV. However the enhancement of the calculated fusion probability
caused by fluctuations is too small to reach agreement with the data. The
calculated fusion threshold is moved down from FE.,, = 224 MeV to about
FEem = 210 MeV, but the curve deduced from measured cross sections extends
to still lower energies, even below E., = 200 MeV.

We admit that it is difficult to draw firm conclusions on the basis of the
comparison presented in Fig. 8 because extraction of the “experimental” val-
ues of the fusion probability P from the compound-residue cross sections
is very model-dependent, especially for such heavy systems as 86Kr+36Xe,
for which fusion—fission reactions dominate, while details of the competition
between neutron emission and fission are strongly influenced by not well
known structural effects.
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The above arguments led us to implementation of the method of parame-
trization of the potential energy (see Section 10) which made Langevin
dynamics calculations of unrefined fusion cross sections feasible, especially
while using additionally the importance sampling method in trajectory sim-
ulations characterized by low Pp,g-values [17,18]. Calculations of fusion cross
sections certainly take much more time than calculations of the fusion prob-
ability in central collisions because the former require inclusion of additional
dimension, the angular momentum. The fusion cross section at the kinetic
energy E can be calculated as a sum of contributions of partial waves:

op=mA>Y (21 + 1)T;, (46)

where X is the de Broglie wavelength, A2 = h?/2uEem, and Ty is the trans-
mission coefficient for a given partial wave. In deterministic version of our
dynamical model the transmission coefficient T} is just a step function:

1 for 1<y,
ﬂ_{o for 1> Iy, (47)

where [y is the critical angular momentum for a given bombarding energy E,
1.e., the largest [-value for which deterministic trajectory still leads to fusion,
while for all higher partial waves the system reseparates. Inclusion of fluctu-
ations causes spreading of Tj-values as shown in Fig. 9: Step-function distri-
butions are replaced by very diffused distributions extending to much larger
[-values than respective critical angular momenta [y. For determination of
the fusion cross sections it is necessary to calculate these Tj-distributions
for each studied energy. Hundreds or even thousands Langevin trajectories
have to be simulated at each (F,l) initial condition.

In order to investigate to what extent fluctuations can explain the en-
hancement of the fusion cross sections at near-barrier energies we selected
the 8Kr+0Ge reaction for which Reisdorf et al. [19] precisely measured the
fusion excitation function in the whole sub-barrier region. The 8Kr470Ge
system is only moderately heavy, so the measured compound-residue cross
sections still well represent the total fusion cross sections, i.e., contribution
of the fusion—fission processes is small, at least at near threshold energies.
Figure 10 displays results of our calculations for this system. The dashed
line shows predictions of our model without fluctuations. In this determin-
istic approach, the fusion cross section has a sharp threshold at F.n ~ 133
MeV, representing the height of the s-wave barrier increased by the dissi-
pative loss of kinetic energy on the way to the barrier. As it is seen from
Fig. 10, the deterministic fusion threshold is located about 10 MeV above
the experimental threshold.
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Inclusion of fluctuations considerably enhances the fusion cross sections
below the deterministic energy threshold, but the calculated excitation func-
tion moves only half-way toward the experimental curve. Our stochastic
model calculations have been carried out assuming both thermal fluctuations
and fluctuations associated with exchange of nucleons (see Section 9). The
calculations have demonstrated that thermal fluctuations play decisive role,
especially at near-threshold energies. Magnitude of the thermal fluctuations
is determined by Einstein relation (25) and certainly cannot be treated as
free parameter. Nevertheless, we performed calculations with larger values
of the momentum diffusion coefficient and found that experimental fusion
excitation function can be well reproduced assuming a value of D approxi-
mately two times larger than that resulting from Eq. (25). Of course such a
large value of D has no physical justification.

We conclude that thermal fluctuations play a very important role in
near-threshold and sub-barrier fusion reactions. The fluctuations remove
flux from reseparation processes and direct it to fusion (and wice versa).
Consequently, fluctuations enhance sub-barrier fusion reactions and lower
the effective fusion threshold. However magnitude of thermal fluctuations
determined by the Einstein relation is too small to obtain good quantitative
agreement with experimental results.
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Curie Joint Fund II, under Project No. PAA/DOE-98-34, and by the Polish—
French project POLONIUM.

REFERENCES

[1] V. Ninov et al., Phys. Rev. Lett. 83, 1104 (1999).
[2] C. Jarzynski, Phys. Rev. E56, 5018 (1997); also private communication.
[3] H. Feldmeier, Rep. Prog. Phys. 50, 915 (1987).
[4] P. Frobrich, I.I. Gontchar, Phys. Rep. 292, 131 (1998).
[5] Y. Aritomo, T. Wada, M. Ohta, Y. Abe, Phys. Rev. C59, 796 (1999).
[6] J. Blocki, W.J. Swiatecki, report LBL-12811 (1982).
[7] 1. Kelson, Phys. Rev. B136, 1667 (1964).
[8] H. Krappe, J.R. Nix, A.J. Sierk, Phys. Rev. C20, 992 (1979).
[9] W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966).
[10] W.D. Myers, W.J. Swiatecki, Art. Fys. 36, 343 (1967).

[11] J. Blocki, Y. Boneh, J.R. Nix, J. Randrup, M. Robel, A.J. Sierk,
W.J. Swiatecki, Ann. Phys. (NY) 113, 330 (1978).

[12] J. Randrup, W.J. Swiatecki, Nucl. Phys. A429, 105 (1984).



Langevin Dynamics in 4-Dimensional Model of ... 1533

[13] H. Feldmeier, H. Spangenberger, Nucl. Phys. A428, 223 (1984).

[14] J. Blocki, H. Feldmeier, W.J. Swiatecki, Nucl. Phys. A459, 145 (1986).
[15] A. Wieloch, Z. Sosin, J. Blocki, Acta Phys. Pol. B30, 1087 (1999).

[16] Ch. Stodel et al., to be published.

[17] O. Mazonka, C. Jarzynski, J. Blocki, Nucl. Phys. A641, 335 (1998).
[18] O. Mazonka, J. Blocki, J. Wilczynski, Acta Phys. Pol. B30, 469 (1999).

[19] W. Reisdorf, F.P. Hessberger, K.D. Hildenbrand, S. Hofmann,
G. Miinzenberg, K.H. Schmidt, W.F.W. Schneider, K. Stimmerer, G. Wirth,
J.V. Kratz, K. Schlitt, C.C. Sahm, Nucl. Phys. A444, 154 (1985).



