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ISING-TYPE MODELSWITH HOPF ALGEBRA SYMMETRIES�Andrzej SitarzInstitute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: sitarz�if.uj.edu.pl(Re
eived January 26, 2000)A generalisation of Ising-type models with symmetries of the intera
-tions, whi
h 
ome from Hopf algebras is 
onstru
ted. General features ofsu
h models and some examples are presented.PACS numbers: 05.50.+q, 02.10.Tq1. Introdu
tionHopf algebras appear as a natural generalisation of groups in the alge-brai
 framework [1, 2℄ of non
ommutative geometry. Like groups they 
anbe seen as generalised symmetries of non
ommutative spa
es and physi
almodels.This o�ers an intriguing problem whether su
h generalised symmetries
an o

ur in nature. Let us stress that there is no fundamental prin
iple,whi
h 
ould tell us that only groups, a parti
ular 
lass of Hopf algebras,might be the symmetries of the physi
al models. On the 
ontrary, quantumme
hani
s and the spe
ulations on quantum gravity [3℄ strongly suggestthat the �ne stru
ture of spa
e-time 
ould possibly be mu
h di�erent fromthe large-s
ale pi
ture of a di�erentiable manifold, and, probably, des
ribedbetter in the language of non
ommutative geometry. Thus, it would benatural to expe
t that symmetries at that level might be related to nontrivialHopf algebras.Another point of interest are �nite Hopf algebras 
oming from quantumgroups at roots of unity. They 
an be understood as �bres in nontrivial, �non-
ommutative� 
overings of 
lassi
al groups. One of the simplest examples, a
overing of SL(2) at the 
ubi
 root of unity seems, surprisingly, to have some� Supported partially by Polish State Committee for S
ienti�
 Resear
h (KBN) grant2P03B02314. (1603)
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onne
tions with the stru
ture of the Standard Model of elementary parti-
les [4�6℄. In the mathemati
al framework of non
ommutative geometry�nite Hopf algebras 
ould be used as symmetries of spe
tral triples [8℄.In this paper we attempt to provide a 
lass of possible model of statisti
alphysi
s, whi
h are based on symmetries represented as �nite Hopf algebras.They appear to generalise the well-known Ising and Potts models. Althoughwe 
annot 
laim that su
h generalisation is relevant for a des
ription of aknown physi
al phenomenon, we shall suggest possible models whi
h mayexhibit su
h properties and links with some real phenomena. The paperis meant to be self-
ontained, providing all ne
essary (basi
) de�nitions ofmathemati
al stru
tures.2. Finite Hopf algebras and �nite groupsBefore we pro
eed with the 
ase of �nite stru
tures, let us present thede�nition and the intuition of Hopf algebras. Roughly speaking, Hopf al-gebras are a generalisation of algebras of fun
tions on a group or a groupalgebra (in the 
ontinuous 
ase, the universal envelope of the Lie algebra).A Hopf algebra H is an algebra equipped with the following data:� an algebra homomorphism � : H ! H 
 H, a 
oprodu
t, to shortenthe notation we shall use Sweedler's notations: �a =P a(1) 
 a(2),� an homomorphism � : H ! C , a 
ounit,� an antihomomorphism S : H ! H, i.e., S(ab) = S(b)S(a), anantipode,whi
h satisfy a set of 
ompatibility relations:� 
oasso
iativity: (�
 id)� = (id
�)�,� 
ounit property: a = �(a(1))a(2) = a(1)�(a(2)),� antipode property: �(a) = S(a(1))a(2) = a(1)S(a(2)).We shall see that their names are appropriate, as the 
oprodu
t 
orre-sponds to the group multipli
ation (hen
e the 
oasso
iativity means that thegroup multipli
ation is asso
iative), the 
ounit property says that the grouphas a neutral element (and the 
ounite property just tells us what de�nesa neutral element of the group) and the antipode 
orrespond to the inversemap in the group.To see this pi
ture 
learly we shall present details of two examples, bothimportant for the rest of the paper. Let us note �rst that a �nite Hopfalgebra is a Hopf algebra, whi
h is �nite dimensional as a ve
tor spa
e.



Ising-Type Models with Hopf Algebra Symmetries 16052.1. Example: �nite groups and 
ommutative Hopf algebrasLet G be a �nite group and C (G) be the algebra of 
omplex valuedfun
tions on it. It is 
onvenient to use a basis of this algebra (its basis as ave
tor spa
e) given by fun
tions vg; g 2 G, su
h that:vg(h) = 0; if g 6= h; vg(g) = 1;noti
e that the algebra multipli
ation rules are very simple, vgvh = 0 unlessg = h and then vgvg = vg.Then, one may easily verify that the following 
ounit, antipode and the
oprodu
t introdu
e a Hopf algebra stru
ture on C (G):�(vg) = 0 if g 6= e; �(ve) = 1;where e is the neutral element of the group G,Svg = vg�1 ;and �vg = Xh2G vh 
 vh�1g:This is a standard (�
anoni
al�) example of a 
ommutative Hopf algebra,in fa
t, for C�-algebras one may show that all 
ommutative Hopf algebrasare in fa
t algebras of 
ontinuous fun
tions on some group, in a �nite 
ase,on a dis
rete group.However, Hopf algebras might not ne
essarily be 
ommutative, as wewill show in the next (also standard) example.2.2. Example: group algebras and 
o
ommutative Hopf algebrasConsider a �nite group G and the group algebra C G, whi
h 
an be
onstru
ted as an algebra of linear 
ombination of group elements (with
omplex 
oe�
ients) with the produ
t being the linear extension of thegroup multipli
ation. Clearly, for a nonabelian group this a non
ommutativealgebra. Now, with the following stru
ture we 
an see that it is a Hopfalgebra: �g = g 
 g; �(g) = 1; S(g) = g�1:Note that in this 
ase, the 
oprodu
t is 
o
ommutative, i.e., for anyelement a in the Hopf algebra a(1) 
 a(2) = a(2) 
 a(1). Of 
ourse, this isnot a 
oin
iden
e, as the group algebra C G is dual to the above 
onsideredalgebra C (G).This fa
t (their duals are also Hopf algebras) is a general feature of Hopfalgebras, with the natural 
orresponden
e between produ
t is in the dual



1606 A. Sitarzand the 
oprodu
t, unit and 
ounit and the antipodes. Commutative Hopfalgebras are dual to the 
o
ommutative ones.As a 
onsequen
e we may 
on
lude that 
o
ommutative semisimple �niteHopf algebras are always group algebras for a 
ertain group G.Of 
ourse, the 
ategory of �nite Hopf algebras (even semisimple ones)is mu
h ri
her than this of 
ommutative or 
o
ommutative Hopf algebras,though the full 
lassi�
ation is not known even for low dimensions [7℄.3. The Ising and Potts models in the Hopf algebra languageBefore we propose a generalisation we shall demonstrate the way in whi
hthe Ising, or more generally, the Potts model 
an be easily formulated in thelanguage of Hopf algebras.Let us remind the formulation of the Potts model. Given a latti
e I wehave a �eld, whi
h 
an be treated as a map from I into a dis
rete groupG (in most 
ases a 
y
li
 group Zn). The intera
tion Hamiltonian is thesum of lo
al terms (nearest neighbour intera
tion), whi
h are of the form,for neighbours i; j 2 I: Ekl = H �(gk)�1gl� ; (1)where H is a real-valued fun
tion on G.Note that the intera
tion term has a very simple form due to the fa
t thatthe �eld is group-valued and the intera
tion term has a global G symmetry.In order to transform the above des
ription to the realm of Hopf algebraswe have to make some additional de�nitions and remarks.Let J be a set of irredu
ible distin
t (not equivalent) representationspa
es of the algebra C (G), where G is a dis
rete group with n elements.We 
an prove the following simple proposition:Proposition: J 
ould be identi�ed with G, i.e., there exist n one-dimensional representation labelled by group elements g:�g(f)v = f(g)v; f 2 C (G); v 2 C :To prove it we take representation � and assume that it is irredu
ible. Sin
ewe have vgvg = vg, ea
h �(vg) is a proje
tion. Clearly, sin
e all these pro-je
tions are on orthogonal subspa
es, the representation is irredu
ible if allof them apart from one vanish identi
ally. Therefore there exist a unique gsu
h that only �(vg) does not vanish and this gives our desired identi�
ation.Let Trj, j 2 J be a tra
e on the algebra asso
iated with the representa-tion �j . Sin
e J 
ould be identi�ed with G we have:Trgvh = 0 if g 6= h; Trgvg = 1:



Ising-Type Models with Hopf Algebra Symmetries 1607Next, let H be an arbitrary element of the algebra C (G) and let � bea �eld on the latti
e I, whi
h takes values in J . Consider the followingintera
tion term: Ekl = �Tr�(k) 
Tr�(l)� (S 
 id)�H: (2)Take H =PHgvg. Then, �rst we would have:(S 
 id)�H =Xg;h Hg(Svh)
 vh�1g =Xg;h0 Hgvh0 
 vh0g;where, in the last step we 
hanged the summation index h0 = h�1.Now, by applying the tra
e we obtain:Ekl = �Tr�(k) 
 Tr�(l)� (S 
 id)�H = H�(k)�1�(l) = H ��(k)�1�(l)� ;whi
h is exa
tly the formula for the intera
tion (1) we had presented earlier.4. The generalised Ising modelBy now, we have almost all ingredients ne
essary to make the generali-sation. Let us assume that we have a �nite dimensional Hopf algebra H anda set of its irredu
ible representations J , with asso
iated normalised tra
es1.The �eld on the latti
e takes values in the set J and the Hamiltonian isgiven by the formula (2), for some 
hosen element H of the Hopf algebra.Before we present more examples let us make some simple observations.Observation: If H is a star Hopf algebra (whi
h means that �(h�) =h�(1) 
 h�(2)) and the representations are star representations then for a self-adjoint H the intera
tion term is real.A very interesting situation o

urs (in the previously dis
ussed 
ase ofthe C (G) algebra) if the algebra element 
hosen to des
ribe intera
tions isan integral in H. Let us remind that at " 2 H is an integral (for non
ommu-tative algebras one may distinguish between left and right ones, in a generalsituation, although in many 
ases they 
oin
ide) if for every a 2 H we havea" = �(a)". For the algebra C (G) the integral is ve and, for its dual C G itis just 1nPg g.Observation: If, for an algebra C (G), the intera
tion is des
ribed by theintegral " = ve then the nearest neighbour 
ontribution to the Hamiltonianis 1 if the values of the �eld � 
oin
ide and 0 otherwise.The above observation has an interesting 
on
lusion:Corollary: If the intera
tion term for the generalised Ising model de-s
ribed above with a group G of n-elements is given by the integral in C (G),1 We use normalised tra
es so that always Tr1 = 1



1608 A. Sitarzthen the model is equivalent to the model with Zn group. Indeed, as we haveshown above, the 
ontribution to the intera
tion depends only on whetherthe neighbour values 
oin
ide or not and therefore the physi
al system is thesame as for Zn. 4.1. Example: the group algebra S3The �rst nontrivial example, whi
h we 
onsider takes as an obje
t the
o
ommutative group algebra of permutation of three elements.The group S3 has two generators x; y (and the neutral element e), withthe following multipli
ation rules:x2 = e; y2 = e; xyx = yxy:It is 
onvenient to rename the element xyx = z, z2 = e and use the rules formultipli
ation between x; y; z:xy = yz; xz = yx; yz = zxAs an algebra C S3 is isomorphi
 to the algebra M2(C)�C �C . We shallpresent the form of this isomorphism i for the generators x; y:i(x) = 0BB� 1 00 �1 1 �1 1CCA ; i(y) = 0BB� �12 p32p32 12 1 �1 1CCA ;This tells us immediately that there are three irredu
ible representations,one 2-dimensional and 2 1-dimensional.Now, we shall demonstrate what are the possibilities for the 
hoi
e of theintera
tion term. Clearly, 
hoosing the neutral element (unit of the algebra)we would 
ontribute only to the 
onstant, �eld independent term.Proposition: The intera
tion term depends only on the 
onjuga
y 
lassof the 
hosen element. This follows immediately from the invarian
e of thetra
e under adjoint transformation in the group: g ! h�1gh.For the group S3 we have three 
onjuga
y 
lasses, of the neutral element[e℄, then [x℄ = [y℄ = [z℄ and [xy℄ = [yx℄.We know that [e℄ 
ontributes to a 
onstant term, so let us dis
uss thetwo remaining situations.If H is x then one of the states (asso
iated with the two-dimensionalrepresentation spa
e) de
ouples and does not intera
t at all, whereas theremaining states intera
t like in the standard Ising model.



Ising-Type Models with Hopf Algebra Symmetries 1609If H is xy then the states asso
iated with one-dimensional represen-tations do not intera
t with ea
h other, however, they both intera
t with(giving the same 
ontribution) the state asso
iated the other state.Finally, let us observe what happens if the 
hosen element is the integralin the group.Observation: If the intera
tion is set by the integral in the group (us-ing the dependen
e only on the 
onjuga
y 
lass and the irrelevan
e of the
onstant term we 
ould equally well use 12x+ 13xy) the energy 
ontributionis given (up to a 
onstant term) by the following table:2 + �2 13 �13 �13+ �13 56 �56� �13 �56 56where we have denote the one-dimensional representations as + and � andthe two-dimensional by 2.Su
h model, whi
h seems to be a mixture of Ising and Potts models,has one absolute minimum (maximum) energy state with Z2 symmetry andsome metastable states, whi
h are lo
al extrema. One example of the latteris a state with Z3 translational symmetry of the type (for a one-dimensionallatti
e) � � � 2 +�2 +�2 +�2 � � �.4.2. The Hopf algebra A8Among the low-dimensional �nite Hopf algebras a spe
ial pla
e is takenby the Ka
 algebra, an 8-dimensional Hopf algebra, whi
h is neither 
om-mutative nor 
o
ommutative, thus it does not 
orrespond to a �nite group.It is generated by the elements x; y; z, whi
h satisfy the relations:x2 = 1; y2 = 1; z2 = 12(1 + x+ y � xy); (3)xy = yx; zx = yz; zy = xz; (4)�x = x
 x; �y = y 
 y; (5)�z = 12(1
 1 + 1
 x+ y 
 1� y 
 x)(z 
 z): (6)As an algebra, A8 
ould be represented on C 6 in the following form:x = diag �� 1 00 �1 � ; 1; 1;�1;�1� ; (7)y = diag �� �1 00 1 � ; 1; 1;�1;�1� ; (8)z = diag �� 0 11 0 � ; 1;�1; i;�i� : (9)



1610 A. SitarzTherefore there are four one-dimensional representations and one 2-dimen-sional. Pro
eeding in a similar way as in the C S3 
ase, by taking the energyfun
tional from the integral in the algebra (for the dis
ussed algebra it isjust 1 + x+ y + z + xy + xz + yz + xyz) after some 
al
ulations we obtainthe following table of the intera
tion energy between the �ve possible states:(whi
h we denote here by i = 0; 1; 2; 3; 4.0 1 2 3 40 1 -1 -1 -1 -11 -1 8 0 0 02 -1 0 8 0 03 -1 0 0 8 04 -1 0 0 0 8Again, we observe that the model des
ribes a Potts model slightly de-formed by the presen
e of an additional �eld. Apart from the global Z4symmetri
 states (as one might have supposed), it has some metastable lo-
al extrema of energy fun
tional of Z2 symmetry.4.3. Nonsemisimple Hopf algebrasAnother interesting 
lass of examples of �nite Hopf algebras are non-semisiple algebras, whi
h 
ontain nilpotent elements. Clearly, they 
annotbe realised as groups algebras or fun
tion algebras on groups. Interestingexamples arise of su
h obje
ts arise from �nite 
overing of 
ontinuous groupsby their quantum deformations at roots of unity, then, they 
ould be inter-preted as �nite quantum groups.The natural question is, whether su
h obje
ts may provide interestingexamples of the models, whi
h we dis
uss here. For simpli
ity we shallrestri
t ourselves to one of the simplest possible nonsemisimple Hopf algebraintrodu
ed by Sweedler, A2. It has two generators x; g, with:g2 = 1; x2 = 0; gx = �xg; (10)�g = g 
 g; �x = x
 g + 1
 x: (11)As an algebra A2 has two one-dimensional representations and one two-dimensional. Let us take an arbitrary element of the algebra for the energyfun
tional. Then, after little 
al
ulation we may observe:Observation: For every element h 2 A2, the intera
tion between theneighbours is the same as for the Ising model and the additional �eld (relatedwith the nilpotent element) de
ouples.



Ising-Type Models with Hopf Algebra Symmetries 1611Therefore in this 
ase the algebra A2, whi
h is a nonsemisimple extensionof Z2, des
ribes pre
isely the Z2-symmetri
 Ising model and a free noninter-a
ting �eld. 5. Con
lusionsThe presented examples of models are 
onstru
ted using Hopf algebras.Our understanding of them as symmetries 
ould be formulated in the fol-lowing way. Suppose that instead of using Tri, i.e.; a tra
e asso
iated withthe representation i we use (�
Tri)�, where � is a 
hara
ter of the algebra.Let us have a look at the energy fun
tional:((� 
 Tri)(� 
 Trj)) (�
�)(S 
 id)h= Trk(Sh(2))Tri(Sh(1)Trk(h(3))Trj(h(4))= �(Sh(2)h(3))Tri(Sh(1)Trj(h(4))= �(�(h(2))Tri(Sh(1)Trj(h(3)) = Tri(Sh(1)Trj(h(2)));whi
h is the starting formula for the intera
tion, therefore su
h invarian
emight be interpreted as the symmetry.All of the dis
ussed examples 
ould be 
onstru
ted and analysed in thesame way as the 
lassi
al Potts model, in parti
ular it would be interestingto �nd out their 
riti
al behaviour and 
riti
al parameters for some lat-ti
es. Then, it would be interesting to 
he
k whether they 
orrespond inthe 
ontinuum limit to any �eld theory models. This would throw a lighton the issue what might be the physi
al setup for nontrivial Hopf algebrasymmetries.Parti
ularly appealing seems the idea [9℄ that �nite Hopf algebras ap-pear as symmetries of quantum states obtained via the symmetry breaking,where some bigger 
ontinuous symmetry is broken to a �nite-dimensionalone. Another possibility is the restri
tion of Heisenberg spin 
hains withquantum symmetries to some of its nontrivial �nite Hopf subalgebras.REFERENCES[1℄ S. Majid, Foundations of Quantum Group Theory, Cambridge University Press,1995.[2℄ V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge UniversityPress, 1994.[3℄ M. Heller, W. Sasin, Parti
les, Fields and Gravitation, AIP 1998, p. 234[gr-q
/9806011℄.[4℄ A. Connes, J. Math. Phys. 36, 6194 (1995).
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o, Int. J. Mod. Phys. A13, 4147 (1998).[7℄ S. Montgomery, Classifying Finite-Dimensional Semisimple Hopf Algebras,AMS Contemporary Math, to appear.[8℄ M. Pas
hke, A. Sitarz, J. Math. Phys. 39, 6191 (1998).[9℄ M. de Wild Propitius, F. Bais, Dis
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