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1. Introduction

Hopf algebras appear as a natural generalisation of groups in the alge-
braic framework [1,2] of noncommutative geometry. Like groups they can
be seen as generalised symmetries of noncommutative spaces and physical
models.

This offers an intriguing problem whether such generalised symmetries
can occur in nature. Let us stress that there is no fundamental principle,
which could tell us that only groups, a particular class of Hopf algebras,
might be the symmetries of the physical models. On the contrary, quantum
mechanics and the speculations on quantum gravity [3] strongly suggest
that the fine structure of space-time could possibly be much different from
the large-scale picture of a differentiable manifold, and, probably, described
better in the language of noncommutative geometry. Thus, it would be
natural to expect that symmetries at that level might be related to nontrivial
Hopf algebras.

Another point of interest are finite Hopf algebras coming from quantum
groups at roots of unity. They can be understood as fibres in nontrivial, “non-
commutative” coverings of classical groups. One of the simplest examples, a
covering of SL(2) at the cubic root of unity seems, surprisingly, to have some
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connections with the structure of the Standard Model of elementary parti-
cles [4-6]. In the mathematical framework of noncommutative geometry
finite Hopf algebras could be used as symmetries of spectral triples [8].

In this paper we attempt to provide a class of possible model of statistical
physics, which are based on symmetries represented as finite Hopf algebras.
They appear to generalise the well-known Ising and Potts models. Although
we cannot claim that such generalisation is relevant for a description of a
known physical phenomenon, we shall suggest possible models which may
exhibit such properties and links with some real phenomena. The paper
is meant to be self-contained, providing all necessary (basic) definitions of
mathematical structures.

2. Finite Hopf algebras and finite groups

Before we proceed with the case of finite structures, let us present the
definition and the intuition of Hopf algebras. Roughly speaking, Hopf al-
gebras are a generalisation of algebras of functions on a group or a group
algebra (in the continuous case, the universal envelope of the Lie algebra).

A Hopf algebra H is an algebra equipped with the following data:

e an algebra homomorphism A : H — H ® H, a coproduct, to shorten
the notation we shall use Sweedler’s notations: Aa =) a1y ® a()y,

e an homomorphism e : H — C, a counit,

e an antihomomorphism S : H — H, i.e, S(ab) = S(b)S(a), an
antipode,

which satisfy a set of compatibility relations:
e coassociativity: (A ®1d)A = (id @ A)A,
e counit property: a = e(a(y))a(z) = age(a)),
e antipode property: €(a) = S(a())agp) = a1)S(a))-

We shall see that their names are appropriate, as the coproduct corre-
sponds to the group multiplication (hence the coassociativity means that the
group multiplication is associative), the counit property says that the group
has a neutral element (and the counite property just tells us what defines
a neutral element of the group) and the antipode correspond to the inverse
map in the group.

To see this picture clearly we shall present details of two examples, both
important for the rest of the paper. Let us note first that a finite Hopf
algebra is a Hopf algebra, which is finite dimensional as a vector space.
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2.1. Example: finite groups and commutative Hopf algebras

Let G be a finite group and C(G) be the algebra of complex valued
functions on it. It is convenient to use a basis of this algebra (its basis as a
vector space) given by functions vy, g € G, such that:

Ug(h) = Oa if g 7& ha Ug(g) = 1a

notice that the algebra multiplication rules are very simple, v4vp = 0 unless
g = h and then vyv, = v,.

Then, one may easily verify that the following counit, antipode and the
coproduct introduce a Hopf algebra structure on C(G):

) =0 if g#e ev)=1,
where e is the neutral element of the group G,
Svg = vg-1,
and

Avy = th@)vh_lg.
heaq

This is a standard (“canonical”) example of a commutative Hopf algebra,
in fact, for C*-algebras one may show that all commutative Hopf algebras
are in fact algebras of continuous functions on some group, in a finite case,
on a discrete group.

However, Hopf algebras might not necessarily be commutative, as we
will show in the next (also standard) example.

2.2. Example: group algebras and cocommutative Hopf algebras

Consider a finite group G and the group algebra CG, which can be
constructed as an algebra of linear combination of group elements (with
complex coefficients) with the product being the linear extension of the
group multiplication. Clearly, for a nonabelian group this a noncommutative
algebra. Now, with the following structure we can see that it is a Hopf
algebra:

Ag=g®g, elg)=1, S(g)=g7"

Note that in this case, the coproduct is cocommutative, i.e., for any
element a in the Hopf algebra a(;) ® a2y = a(2) ® a(y). Of course, this is
not a coincidence, as the group algebra CG is dual to the above considered
algebra C(G).

This fact (their duals are also Hopf algebras) is a general feature of Hopf
algebras, with the natural correspondence between product is in the dual
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and the coproduct, unit and counit and the antipodes. Commutative Hopf
algebras are dual to the cocommutative ones.

As a consequence we may conclude that cocommutative semisimple finite
Hopf algebras are always group algebras for a certain group G.

Of course, the category of finite Hopf algebras (even semisimple ones)
is much richer than this of commutative or cocommutative Hopf algebras,
though the full classification is not known even for low dimensions [7].

3. The Ising and Potts models in the Hopf algebra language

Before we propose a generalisation we shall demonstrate the way in which
the Ising, or more generally, the Potts model can be easily formulated in the
language of Hopf algebras.

Let us remind the formulation of the Potts model. Given a lattice Z we
have a field, which can be treated as a map from Z into a discrete group
G (in most cases a cyclic group Zy). The interaction Hamiltonian is the
sum of local terms (nearest neighbour interaction), which are of the form,
for neighbours 4,j € Z:

Ew=H ((9x) 'a1), (1)

where H is a real-valued function on G.

Note that the interaction term has a very simple form due to the fact that
the field is group-valued and the interaction term has a global G symmetry.

In order to transform the above description to the realm of Hopf algebras
we have to make some additional definitions and remarks.

Let J be a set of irreducible distinct (not equivalent) representation
spaces of the algebra C(G), where G is a discrete group with n elements.
We can prove the following simple proposition:

Proposition: J could be identified with G, i.e., there exist n one-
dimensional representation labelled by group elements g:

pe(fv = f(g)v, f€C(G), veC.

To prove it we take representation p and assume that it is irreducible. Since
we have vyvy = vy, each p(v,) is a projection. Clearly, since all these pro-
jections are on orthogonal subspaces, the representation is irreducible if all
of them apart from one vanish identically. Therefore there exist a unique g
such that only p(vg) does not vanish and this gives our desired identification.

Let Trj, y € J be a trace on the algebra associated with the representa-
tion p;. Since J could be identified with G' we have:

Trgvp, =0 if g#h, Tryu,=1.
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Next, let H be an arbitrary element of the algebra C(G) and let @ be
a field on the lattice Z, which takes values in J. Consider the following
interaction term:

En = (Trsb(k) ® TT@(;)) (S®id) AH. (2)

Take H =) Hyvy. Then, first we would have:

(S®I)AH = Hy(Svp) ® vp-1g = Y Hyvow ® vprg,
g9:h g

where, in the last step we changed the summation index A’ = A~ L.
Now, by applying the trace we obtain:

En = (Tragr) ® Trag) (S @id) AH = Hpgy-190) = H (2(k)7'2(1))

which is exactly the formula for the interaction (1) we had presented earlier.

4. The generalised Ising model

By now, we have almost all ingredients necessary to make the generali-
sation. Let us assume that we have a finite dimensional Hopf algebra H and
a set of its irreducible representations J, with associated normalised traces'.
The field on the lattice takes values in the set J and the Hamiltonian is
given by the formula (2), for some chosen element H of the Hopf algebra.

Before we present more examples let us make some simple observations.

Observation: If # is a star Hopf algebra (which means that A(h*) =
h’(kl) ® hz‘2)) and the representations are star representations then for a self-
adjoint H the interaction term is real.

A very interesting situation occurs (in the previously discussed case of
the C(G) algebra) if the algebra element chosen to describe interactions is
an integral in H. Let us remind that at e € H is an integral (for noncommu-
tative algebras one may distinguish between left and right ones, in a general
situation, although in many cases they coincide) if for every a € H we have
ae = €(a)e. For the algebra C(G) the integral is v, and, for its dual CG it
is just %Z 9

Observation: If, for an algebra C(G), the interaction is described by the
integral ¢ = v, then the nearest neighbour contribution to the Hamiltonian
is 1 if the values of the field @ coincide and 0 otherwise.

The above observation has an interesting conclusion:

Corollary: If the interaction term for the generalised Ising model de-
scribed above with a group G of n-elements is given by the integral in C(G),

! We use normalised traces so that always Trl =1
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then the model is equivalent to the model with Z,, group. Indeed, as we have
shown above, the contribution to the interaction depends only on whether
the neighbour values coincide or not and therefore the physical system is the
same as for Z,,.

4.1. Example: the group algebra Ss

The first nontrivial example, which we consider takes as an object the
cocommutative group algebra of permutation of three elements.

The group S3 has two generators x,y (and the neutral element e), with
the following multiplication rules:

?=e, y’=e, azyz=yzy.

2

It is convenient to rename the element zyx = z, z° = e and use the rules for

multiplication between z,y, z:
Ty =yz, TZ=YL, Yz =2T

As an algebra CSj3 is isomorphic to the algebra My (C) @ C@ C. We shall
present the form of this isomorphism i for the generators z,y:

”|S |

Wlho|—

o= m|ﬂ
w

-1 _1

This tells us immediately that there are three irreducible representations,
one 2-dimensional and 2 1-dimensional.

Now, we shall demonstrate what are the possibilities for the choice of the
interaction term. Clearly, choosing the neutral element (unit of the algebra)
we would contribute only to the constant, field independent term.

Proposition: The interaction term depends only on the conjugacy class
of the chosen element. This follows immediately from the invariance of the
trace under adjoint transformation in the group: g — h™'gh.

For the group S3 we have three conjugacy classes, of the neutral element
[¢], then [z] = [y] = [2] and [zy] = [yz].

We know that [e] contributes to a constant term, so let us discuss the
two remaining situations.

If H is z then one of the states (associated with the two-dimensional
representation space) decouples and does not interact at all, whereas the
remaining states interact like in the standard Ising model.
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If H is zy then the states associated with one-dimensional represen-
tations do not interact with each other, however, they both interact with
(giving the same contribution) the state associated the other state.

Finally, let us observe what happens if the chosen element is the integral
in the group.

Observation: If the interaction is set by the integral in the group (us-
ing the dependence only on the conjugacy class and the irrelevance of the
constant term we could equally well use %x + %xy) the energy contribution
is given (up to a constant term) by the following table:

2 4+ -

1 1 1

2| 3 -3 3
15 s

+ 3 6 6
21 s s
3 6 6

where we have denote the one-dimensional representations as + and — and
the two-dimensional by 2.

Such model, which seems to be a mixture of Ising and Potts models,
has one absolute minimum (maximum) energy state with Zs symmetry and
some metastable states, which are local extrema. One example of the latter
is a state with Z3 translational symmetry of the type (for a one-dimensional
lattice) -+ 24+ =24 -2+ —2---

4.2. The Hopf algebra Ag

Among the low-dimensional finite Hopf algebras a special place is taken
by the Kac algebra, an 8-dimensional Hopf algebra, which is neither com-
mutative nor cocommutative, thus it does not correspond to a finite group.

It is generated by the elements z,y, z, which satisfy the relations:

2 =1, y’=1, 22=3(1+z+y—zy),
TY = Yr, T =Yz, 2Y =2z,
Arx = zRz, Ay=yQuy,

Az = {(1®@1+1R2+y®1 —y®2z)(2®2).

As an algebra, Ag could be represented on C® in the following form:
. [f1 0
z = diag < 0 1 > ,1,1,—1,—1] , (7)

y = diag < _(1] (1) ),1,1,—1,—1], (8)

z = diag <? (1)),1,—1,1',—1']. (9)
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Therefore there are four one-dimensional representations and one 2-dimen-
sional. Proceeding in a similar way as in the CS3 case, by taking the energy
functional from the integral in the algebra (for the discussed algebra it is
just 1+ x4+ y+ 2+ 2y + 22+ yz + xyz) after some calculations we obtain
the following table of the interaction energy between the five possible states:
(which we denote here by i =0,1,2,3,4.

0o 1 2 3 4
o1 -1 -1 -1 -1
17-1 8 0 0 0
21-1 0 8 0 0
31-1 0 0 8 0
41-1 0 0 0 8

Again, we observe that the model describes a Potts model slightly de-
formed by the presence of an additional field. Apart from the global Z4
symmetric states (as one might have supposed), it has some metastable lo-
cal extrema of energy functional of Zo symmetry.

4.8. Nonsemisimple Hopf algebras

Another interesting class of examples of finite Hopf algebras are non-
semisiple algebras, which contain nilpotent elements. Clearly, they cannot
be realised as groups algebras or function algebras on groups. Interesting
examples arise of such objects arise from finite covering of continuous groups
by their quantum deformations at roots of unity, then, they could be inter-
preted as finite quantum groups.

The natural question is, whether such objects may provide interesting
examples of the models, which we discuss here. For simplicity we shall
restrict ourselves to one of the simplest possible nonsemisimple Hopf algebra
introduced by Sweedler, As. It has two generators z, g, with:

92 = 1, 552:0, gr = —1g, (10)
Ag = gRg, Az=zQg¢+1Qu=. (11)

As an algebra A, has two one-dimensional representations and one two-
dimensional. Let us take an arbitrary element of the algebra for the energy
functional. Then, after little calculation we may observe:

Observation: For every element h € As, the interaction between the
neighbours is the same as for the Ising model and the additional field (related
with the nilpotent element) decouples.



Ising-Type Models with Hopf Algebra Symmetries 1611

Therefore in this case the algebra Ay, which is a nonsemisimple extension
of Zs, describes precisely the Zo-symmetric Ising model and a free noninter-
acting field.

5. Conclusions

The presented examples of models are constructed using Hopf algebras.
Our understanding of them as symmetries could be formulated in the fol-
lowing way. Suppose that instead of using Tr;, i.e.; a trace associated with
the representation i we use (£ ® Tr;)A, where ¢ is a character of the algebra.
Let us have a look at the energy functional:

(£ ®Try)(E @ Trj)) (A® A)(S @id)h

= Trk(Sh@))Trz(Sh( 1) Tri(h3)) Trj (b))
= {(Sh(a)h3)) Tri(Sh(1)Trj(hy)
= £(e(h(2)) Tri(Sh(yTrj(hesy) = Tri(ShyTrj(h))),

which is the starting formula for the interaction, therefore such invariance
might be interpreted as the symmetry.

All of the discussed examples could be constructed and analysed in the
same way as the classical Potts model, in particular it would be interesting
to find out their critical behaviour and critical parameters for some lat-
tices. Then, it would be interesting to check whether they correspond in
the continuum limit to any field theory models. This would throw a light
on the issue what might be the physical setup for nontrivial Hopf algebra
symmetries.

Particularly appealing seems the idea [9] that finite Hopf algebras ap-
pear as symmetries of quantum states obtained via the symmetry breaking,
where some bigger continuous symmetry is broken to a finite-dimensional
one. Another possibility is the restriction of Heisenberg spin chains with
quantum symmetries to some of its nontrivial finite Hopf subalgebras.
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