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We study the effect of temperature gradient on diffusion of an inter-
stitial impurity in simple cubic lattice with the use of Langevin equation.
Jump rate and diffusion coefficient as a function of temperature gradient
at various temperatures are calculated.

PACS numbers: 05.40.+j, 05.60.+w, 66.30.Jt

1. Introduction

Thermodiffusion (thermomigration) is a phenomenon far from being well
understood. It is of some importance in ionic crystals, where thermomigra-
tion is at the origin of the thermoelectric power of these materials and eg.
nuclear reactors, where material is subjected to a very strong temperature
gradient. Phenomenological theory [1] of diffusion under the action of the
temperature gradient predicts among others, that interstitials move toward
the cold end and vacancies toward the hot end of the sample. Experiments
on selfthermodiffusion in pure metals confirm to some extend predictions
mentioned. It means that the material flux is toward the cold part, and
the vacancies toward the hot end. In the case of interstitials, however, the
material flux can have one or other direction with respect to temperature
gradient.

In our recent paper [2] we studied dynamics of the system consisting of
a single interstitial impurity atom in a simple cubic lattice which dynamics
was described in harmonic approximation. We derived generalized Langevin
equation which after some approximations was solved numerically yielding
jump rate, jump lengths distribution and diffusion coefficient as a function
of temperature.

In the present paper the same system is considered but in the presence
of temperature gradient. There have been little work done on the dynamics
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of the system coupled to the phonon bath which itself is not in equilibrium.
Here we mention of Ref. [3] where dynamics of Brownian particles suspended
In Section 2 the energy flux in terms of normal coordinates is derived. The
Fokker—Planck equation for the case is derived among others.

In Section 2 the energy flux in terms of normal coordinates is derived.
The problem how the temperature gradient modifies dynamics of the lattice
is solved in Section 3. In Section 4 we derive the generalized Langevin
equation for interstitial impurity which in the next Section is applied to one
dimensional motion in cosine potential. Results of numerical solution of the
Langevin equation as well as discussion are given in Section 6.

2. Flux of energy

The crucial problem is to incorporate temperature gradient into dynam-
ics of the system. It is solved by taking into account a local constraint

%
J

i (F)+oVT =0 (1)

N
in a variational principle. There j (?) is energy flux through unit sur-
face perpendicular to temperature gradient V71 and o stands for thermal
conductivity of the lattice.

The energy of the lattice can be expressed as

H= / PrH (T,
where density of energy operator is given by
1 —'>2 — — — —
0 =33 |m B+ 0 (| -R|)|s(F - 7). 2)
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Obviously m and ]_%l denotes mass and radius vector of the lattice atom

respectively. According to e.g. Zubariev [4] density of the energy flux of the
field represented by Eq. (2) is
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where

— — — —
Fip= = Fp= =V U ‘ R - R, ‘ :

and 5(7) stands for the product § (z) d(y)d(z) of Dirac delta functions.

%
We want to express j (?) in terms of small deviations 1, of the lattice

. e » -
atoms from their equilibrium positions r;
- = —

Ri=r;+ u; .

Neglecting terms of third and higher orders in Zl we get for energy flux
density

7= iz [Z (i + i) 0 (uf =) ] (Fi-n)s(F-7). @
Lp Lag
where N
A (iedzs)
87’?8@

satisfies the equation

Zgzsgf =0.

l
Because there is no sources or sinks of the energy flux inside the crystal

=
and because of translational symmetry of the lattice the vector field j (?)

-
is also translationally invariant in the bulk of material. To make j (?)
continuous function of 7 we average it over the crystal volume

e L[
with the result

Jav— am QZZ uy' +u aﬂ( 5 uﬁ) (7; —7’7,).

Lp a,p

For simplicity we consider one mode of vibrations only, and express de-
. =, .
viations u; in terms of normal coordinates az
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_>
Averaged energy flux density which we call simply j from now on reads

e LN T (Dand = ST T (D) (o 6@ _ @ -(1))
Jj= zz_; I (Q)a?a?}—z I(9q) (a? a3l —ay an' ) (5)
q q
where .
dd — —
I(9)= 552 n sin( ¢ rn)Zeﬁéz‘ﬂe% (6)
n a7ﬁ
and
a— = ag) +1 (_%) .
q q
Because
— —
WH(4) = — cos (4 - 7n) Y _eS Bl
n @B
then under approximation
q.-7 B AY =
Zcos(q rn)zfﬁﬂ \& e%e? =0
n @B
it follows from Eq. (6) that
- = 1 9,
1 (d) = —5 5V 2(0) (7)

3. Lattice dynamics in presence of temperature gradient

Now we are ready to derive time dependence of normal coordinates
a?(t).The energy of the lattice per one mode of vibrations when expressed

in terms of normal coordinates reads
_>
H=Y :(aaa’: —{—wg(q)aaaﬁ) .
q q a q

—

q

Corresponding Lagrangian L can be derived and when constraint Eq. (1) is
taken into account the following function have to be minimized with respect
to real and imaginary part of ag (t) and d?(t)
~ 1 (12 -(2)2 29, (22 | .(1)2
L = - ol +al" —wi(4g (a_> +al )
22 q q (4) q q
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To find time dependence of normal coordinates when temperature gradient
is applied to the lattice we use the variational principle

5/Edt:0. (8)

%
The components of the vector )\ constitute a set of three Lagrange multi-
pliers, which in general depend on time. The equations of motion of the
system we are looking for in terms of complex normal coordinates are

G2 Ta(Das +ix- 1 (Das +w(d)as =0,
q q q q
= — —
and its approximate (accurate when ) - (q) Jw?(q) < 1 which is usually
fulfilled) solution is
a-(t) = A(Q)e T (DTXO® cog(0o(q )t — 6(q)). (9)

— — —
At each ¢ within the first Brillouin zone both A(¢) and 6(¢) are random
numbers, their statistical properties are given under assumption of local
statistical equilibrium by the Maxwell-Boltzmann distribution

p(A)dA = A?(4) exp <_AQ“’72(3)> dA

kT 2kpT

for the amplitude and uniform distribution within [0, 2] range for the phase

N
3(q).

Having found time dependence of normal coordinates Eq. (9) we insert
them into Eq. (5). However the energy flux density becomes then a random
number and will be difficult to deal with. Therefore it seems that there is no
choice but to average the energy flux density Eq. (5) over amplitudes A(q)

and phases ¢ (3) It becomes then

G = L (07 (@),

() means “statistical average of” with T' being local equilibrium temper-
ature and the constraint Eq. (1), when averaged over volume and random
amplitudes and phases reduces to

Z?(g) (X (3)) o VT . (10)

-
2
7 w(9)
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Equation (10) serves for determination of the Lagrange multipliers \;, it
is seen that as a result of approximations made they do not depend on time.

%
Once )\ is known the normal coordinates of the lattice are uniquely (besides
random amplitudes and phases) determined by
- — —
I q q

0 () = A(D)e 3T cos(w(d)t = 5(7)) . (11)

q
Equations (10) and (11) constitute dynamics of the lattice in the presence
of temperature gradient.

4. Dynamics of the interstitial impurity

The system we are interested in consists of single impurity atom in a
simple cubic lattice of the lattice constant a. The lattice dynamics is de-
scribed in approximation discussed in previous parts of the paper. Impurity
energy when expanded with respect to deviation of the lattice atoms from
their equilibrium positions 7 takes the form [2]

2

1 N — -
Hi= M +V(r )—i-Zf?(r ) ag,

q
here potential energy of the impurity
V() = 3 (7 =T,
l 1
~VNm
and € denotes polarization vector of the lattice wave, m(M) is mass of the

lattice (impurity) atom. Radius vector of the interstitial atom 7" and normal
coordinates of lattice vibration ags constitute set of dynamical variables of

- =

>, ‘%’ Vo =7y el
.

f-(r

q

) =

the total system. The equations of motion of the system follow from the
variational principle Eq. (7) with L of the form of Eq. (8) but supplemented
by the term

1 2

oM v )—Z:f?(?) ay
q

due to the interstitial atom.
The equations of motion that follow are

— —

.. ._> _> . . _>
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—

q) ag —i—w?(z) ay —i—f%(?) =0, (12)
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and
Mr—i—VV +Zaav]u r)=0 (13)

. . . . . . % _> _> %
with initial conditions a?]»(O) = A(q q q q

)

_>
The solution of the first one, when ) does not depend on time and
- - —
M- T ({w?(9q) reads

)cos(d(¢ )) and a;(()) = A(q ) sin(d(

a-(t) = A(g) e~

- =
where notation 'y(;) =)\-1 (3) was introduced. With the use of Eq. (14)
the lattice degrees of freedom can be eliminated, then from Eq. (13) the
generalized Langevin equation follows

ooy — —
M ¥=Fy (7 )+ Fa ()+ Fs (1). (15)
On the right hand side of Eq. (15) there are three forces:
Fo (') = =VV(7)

comes from static periodic potential,

(16)
represents dumping force, which after integrating by parts is rewritten as
follows

t
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=(1)
In the following we neglect the term F; , which stands for correction of

the second order in V( ?) to the periodic force Eo (?) The last term on
the right hand side of Eq. (15)

ZAE> —( 1tVJ%( r ) cos w(a) q

t-o(a)]  as)

is stochastic force. That kind of generalized Langevin equation of motion
for impurity has already been derived in Ref. |2].

5. One dimensional motion in cosine potential

To proceed further we will follow Ref. [2] and consider simple case of
motion along y = a/2, z = a/2 line in the cosine potential with z = a/2 as
the origin of z-coordinate. When temperature gradient is

V(7)) =V, [1 — cos <QZI>]

with z = a/2 as the origin of z-coordinate. When temperature gradient
—
is along z-axis then energy flux vector and Lagrangian multiplicator ) are

also along z-axis. From Eq. (11) it follows then that single Lagrangian

multiplicator
ya dT/dz

Ao(t) =1 = —2 Z
= (1)

with Eq. (7) yields for constant v = —pgq,, where

_ 18720 d_T
"~ kp@T dz’

(19)

for longitudinal phonons in Debye model.
Now we are ready to calculate z-components of the forces on the right
hand side of Eq. (15). The periodic force becomes simply

Fo(z) = — 20 gin <2”—‘T) , (20)

a a

the dumping force can be expressed as

Fat) = - (%”)4%02 /t cos (%”x(t)) cos (%”x(t’))
0
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o

—}(A]?

Alt,t)=a {E [@] —E

itz A (t:1') cos [w(g )(t — t’)] @ ()t , (21)

}+p(t—tl)

and E(z) stands for integer part of z. And finally the stochastic force,
Eq. (18) now reads

F()= <2%)2\/?_m cos <27rac) ZA ilaB(z/a)+otla oo [W(E )t — 5(3)] .

where
I

z(t)

a

(22)

To perform summation over wave vector 3 we again assume isotropic Debye

model for a longitudinal acoustic phonons i.e. w(z ) =vs ‘3‘ , Vg being sound
velocity in crystal.

Summation over ¢ within Debye sphere of radius ¢p = (672)!/3 /a yields

Fy(t) = <2§)2jn‘§g/tcos <2§x(t)) cos <2§x(t’))
0

X{%%sin(qms(t—t')ﬁr 1—% S(t,t')}
x5 i ()dl (23)

AL, 1)

where S(t,t') = Si[gp(A(t,t) — vs(t — t))] + Si[gp(A(t, 1) + vs(t — t))]
and Si(t) = [ sin(@) gz stands for integral sine function. Eq. (21) can be

. 0 x
rewrlitten as
t

—/qs(t,t’) & (t)dt

0

with the friction kernel (¢, t')obeying the fluctuation dissipation theorem
( F(OF(t)) = kpTo(t,1). (24)
The forces mentioned enter the one dimensional generalized Langevin

equation (15)
M z= Fy(x) + Fy(t) + Fs(1) - (25)
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There is no method to solve stochastic equation (25). However if the
thermal energy kgT of the impurity is smaller than the height of the potential
barriers significant simplification is possible. It is because usually the motion
of the impurity is confined to a single interstitial. If ¢ and ¢ are within that
time then A(t,¢) = p(t —¢ ) . Only after a time long enough to accumulate
action of the random force the impurity will drive over the barrier into
another interstitial. Therefore one can say that A(¢,¢ ) < vs(t—t ) (because
p < vs) holds for most of the time , so we can set approximately

AA(itj'{SﬂqDCA(ﬁtﬁ-—vsﬁ-—f)ﬂ-+SﬂqDCA(ttﬁ—+vs@-—£)ﬂ}
sin(gpos(t —t'))
A(ggo P qpvs(t — t')

With the above approximation dissipative force Eq. (23) becomes

Fyt) = —2a <2—“>2 Ve /tcos(%rx(t))cos (%%(t’))

a ) mv?
0

sin(gpA(t, ¢')) sin(gpvg(t —£)) . v
QDA(t, t’) (t _ t’) f(t )dt .

(26)

Still stochastic force in the form of Eq. (22) precludes numerical solution
of Eq. (25) because of a large number (2N) of random numbers needed and

N
sum over ¢ as well. The remedy is to model Fy(¢) by the random process

Fi(t) = 2y <2§) A/ Q(Zi?fQBT cos(QZI) cos [oqu (aE (2) + pt) - 27r'y]

x cos (nqpust — 2m0) | (27)

where «, 7, d and 7 stand for random numbers of uniform distribution within
[0,1] range. The random quantity ngp mimics variety of phonon wave num-
bers. Dissipative force, Eq. (26) and stochastic force, Eq. (27) are consistent
with the fluctuation dissipation theorem Eq. (24). Damping force as given
by Eq. (26) is still, due to finite memory kernel, hardly tractable. Further

approximation is, therefore, needed w = 71§(7), which becomes cor-
rect for gpvs — 0o. As a result we get position dependent and memory-free

damping

21\ 2 V2 27 .

Fd(t) = —Ta <?) /rn—;))gCOS2 <;I(t)> Zz (t) . (28)
s
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There is also convenient to express Eq. (25) in terms of dimension-
less variables; coordinate ' = 2mz/a and time ¢ = 2xt/Ty, where Ty =
a\/M/Vj is a period of small oscillations of the interstitial atom. With that
and after dropping prime sign we can summarize up the results in the form
of the following stochastic equation

Z= —sinz — Rcos’z & +F cos x cos(a(kpz + wpt) — 2717) cos(nuyt — 278)

(29)

where amplitudes of dissipative and random forces are
R = 2n? 7;22 ]\)I/gg and F =2 (67r2)1/6 \/ 2kBT respectively,

vty = ko [T 0 = koS with ko = ()"

6. Results and discussion

Because of complex structure of Langevin equation (29) the numerical
simulation is the unique tool in the investigation of dynamics of impurity
atom. As a method of integration Eq. (29) we assume a standard Runge—
Kutta procedure. To deal with stochastic term in the equation we indepen-
dently choose and keep constant the random numbers at each time step.
The time steps are relatively long to give the impurity enough time to gain
energy from the thermal bath when a frequency of the stochastic force is
close to impurity’s own frequency. It is the case when the impurity has a
high probability of being resonantly activated over potential barrier.

Once solution z(t) of Eq. (29) is known it can be rewritten as a sum of
lattice constant (equal to 27) times cell number [(¢) and relative coordinate
—m <z, (t) < 7, d.e. z(t) = 2wl(t) + 2, ().

When impurity hopes out of the cell /1 and then thermalizes in another
cell Iy we say that the impurity makes a jump of multiplicity n = Iy — 7.
When the total number N,, of jumps of length n in time ¢ is known the jump
rate (i.e. number of jumps per Ty/27 seconds) to the right r;-L and to the

left T
1 & 1
=7 Z ;=22 N
= n=1
Corresponding probabilities of a jump of length of 27n are

N.
P:l:n _ +n
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Having known probabilities P, we can find dimensionless mean square jump
length

(1?) = (2nm)? i n*(Pyp + P_p). (31)

n=1

Diffusion coefficient is D defined as

D= tim 2 (32)

which have to be multiplied by a?/27T, in order to get D in m?/s units.
We have followed evolution of z(t) as given by Eq. (29) for as long as

10° time units and different temperatures. Three cases of temperature gra-

dient were considered i.e. gradT = 0, £10000K/m. In Fig. 1 we show time

2000 — ! ‘ ,,,,.,J, SN I R I

T=1200K, gradT=-10000K/m

-3000

OE+0 2E+8 4E+8 6E+8 8E+8 1E+9
Time
Fig. 1. An example of time evolution of the cell number occupied by the interstitial
atom.

dependence of cell number [(t) occupied by interstitial atom following from
a particular evolution of the coordinate z(t). We however do not detect a
systematic drift in motion of the interstitial atom. Therefore the model does
not predict a definite relationship between direction of material flux and the
temperature gradient. In Fig. 2 an example of mean square jump length is
reported. We notice that it depends linearly on time with high accuracy so
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Mean square jump length

Fig.2. The time evolution of the mean square jump length

(D(dT/dx)-D(0))/D(0)

8E+6

6E+6 —|

4E+6 —
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T=1200K, gradT=-10000K/m

0E+0
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|
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4E+8 6E+8

Time

8E+8

0.80

0.60 —
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0.20 —
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T - T
1000
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Fig.3. The temperature dependence of thermodiffusion at gradT = 10*K/m
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Eq. (32) defines diffusion coefficient univocally. Its temperature dependence
when fitted to Arrhenius law

Ey

D= Doe’“}TT

yields Dy = 0.48x10 2cm? /s and E; = 0.77eV in the absence of temperature
gradient, which can be compared with Dy = 2x10~2cm? /s and Ef = 0.9eV
for C interstitials in Fe [5]. Our calculations show that the diffusion co-
efficient increases when temperature gradient d7'/dx = 104K /m is applied.
Relative increase (D(dT/dz)— D(0))/D(0) depends on temperature and be-
comes very low above 1200K, as shown in Fig. 3. Our approach however fails
to explain nonzero drift (a particle current) due to the temperature gradient.
The potential reason which needs examination is neglection of temperature
dependence of the lattice constant and sound velocity as well.
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