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CONTINUOUS DIFFUSION MODEL FOR THETHERMODIFFUSION IN PERIODIC POTENTIALB. KozarzewskiInstitute of Physis, Craow University of TehnologyPodhor¡»yh 1, 30-084 Krakow, Polande-mail: pukozarz�yf-kr.edu.pl(Reeived Marh 2, 2000)We study the e�et of temperature gradient on di�usion of an inter-stitial impurity in simple ubi lattie with the use of Langevin equation.Jump rate and di�usion oe�ient as a funtion of temperature gradientat various temperatures are alulated.PACS numbers: 05.40.+j, 05.60.+w, 66.30.Jt1. IntrodutionThermodi�usion (thermomigration) is a phenomenon far from being wellunderstood. It is of some importane in ioni rystals, where thermomigra-tion is at the origin of the thermoeletri power of these materials and eg.nulear reators, where material is subjeted to a very strong temperaturegradient. Phenomenologial theory [1℄ of di�usion under the ation of thetemperature gradient predits among others, that interstitials move towardthe old end and vaanies toward the hot end of the sample. Experimentson selfthermodi�usion in pure metals on�rm to some extend preditionsmentioned. It means that the material �ux is toward the old part, andthe vaanies toward the hot end. In the ase of interstitials, however, thematerial �ux an have one or other diretion with respet to temperaturegradient.In our reent paper [2℄ we studied dynamis of the system onsisting ofa single interstitial impurity atom in a simple ubi lattie whih dynamiswas desribed in harmoni approximation. We derived generalized Langevinequation whih after some approximations was solved numerially yieldingjump rate, jump lengths distribution and di�usion oe�ient as a funtionof temperature.In the present paper the same system is onsidered but in the preseneof temperature gradient. There have been little work done on the dynamis(1613)



1614 B. Kozarzewskiof the system oupled to the phonon bath whih itself is not in equilibrium.Here we mention of Ref. [3℄ where dynamis of Brownian partiles suspendedIn Setion 2 the energy �ux in terms of normal oordinates is derived. TheFokker�Plank equation for the ase is derived among others.In Setion 2 the energy �ux in terms of normal oordinates is derived.The problem how the temperature gradient modi�es dynamis of the lattieis solved in Setion 3. In Setion 4 we derive the generalized Langevinequation for interstitial impurity whih in the next Setion is applied to onedimensional motion in osine potential. Results of numerial solution of theLangevin equation as well as disussion are given in Setion 6.2. Flux of energyThe ruial problem is to inorporate temperature gradient into dynam-is of the system. It is solved by taking into aount a loal onstraint!j (!r ) + �rT = 0 (1)in a variational priniple. There !j (!r ) is energy �ux through unit sur-fae perpendiular to temperature gradient rT and � stands for thermalondutivity of the lattie.The energy of the lattie an be expressed asH = Z d3rH(!r ) ;where density of energy operator is given byH(~r) = 12Xl 24m :!Rl2 +Xp6=lU ����!Rl � !R����35 Æ �!r � !Rl� : (2)Obviously m and !Rl denotes mass and radius vetor of the lattie atomrespetively. Aording to e.g. Zubariev [4℄ density of the energy �ux of the�eld represented by Eq. (2) is!j (!r ) = 12Xl 24m :!Rl2 +Xp6=lU �����!Rl � !Rp�����35 :!Rl Æ �!r � !Rl�+ 14Xl;p �� :!Rl + :!Rp� � !F lp��!Rl � !Rp� Æ �!r � !Rl� ; (3)



Continuous Di�usion Model for the Thermodi�usion in : : : 1615where !F lp= � !F pl= �r!RlU ���� !Rl � !Rp ���� ;and Æ(!r ) stands for the produt Æ (x) Æ(y)Æ(z) of Dira delta funtions.We want to express !j (!r ) in terms of small deviations !u l of the lattieatoms from their equilibrium positions !r l!Rl=!r l + !u l :Negleting terms of third and higher orders in !u l we get for energy �uxdensity!j (!r ) = 14Xl;p "X�;� � :u�l + :u�p ����lp �u�l � u�p�#�!r l � !rp� Æ �!r � !r l� ; (4)where ���lp = �2U ����!r l � !rp�����r�l �r�psatis�es the equation Xl ���lp = 0 :Beause there is no soures or sinks of the energy �ux inside the rystaland beause of translational symmetry of the lattie the vetor �eld !j (!r )is also translationally invariant in the bulk of material. To make !j (!r )ontinuous funtion of !r we average it over the rystal volume!jav= 1
 ZZZ !j (!r )dVwith the result!jav= 14m
Xl;pX�;� � _u�l + _u�p ����lp �u�l � u�p��!r l � !rp� :For simpliity we onsider one mode of vibrations only, and express de-viations !u l in terms of normal oordinates a!q!u l= 1pNmX!q !e!q a!q ei!q �!r l :



1616 B. KozarzewskiAveraged energy �ux density whih we all simply !j from now on reads!j= �iX!q !I (!q ) _a!q a�!q =X!q !I (!q )�a(1)!q :a(2)!q �a(2)!q :a(1)!q � ; (5)where !I (!q ) = � 12m
Xn !r n sin(!q � !r n)X�;� e�!q ���n e�!q (6)and a!q = a(1)!q + ia(2)!q :Beause !2(!q ) = 1mXn os (!q � !r n)X�;� e�!q ���n e�!qthen under approximationXn os(!q � !r n)X�;����n r!q �e�!q e�!q � = 0it follows from Eq. (6) that!I (!q ) = � 12
r!q !2(!q ): (7)3. Lattie dynamis in presene of temperature gradientNow we are ready to derive time dependene of normal oordinatesa!q (t):The energy of the lattie per one mode of vibrations when expressedin terms of normal oordinates readsHl =X!q � _a!q _a�!q + !2(!q )a!q a�!q � :Corresponding Lagrangian L an be derived and when onstraint Eq. (1) istaken into aount the following funtion have to be minimized with respetto real and imaginary part of a!q (t) and _a!q (t)eL = 12X!q " _a(1)2!q + _a(2)2!q � !2(!q )�a(2)2!q + _a(1)2!q �+2 !� � !I (!q )�a(1)!q _a(2)!q � a(2)!q _a(1)!q �#+ � !� �rT :



Continuous Di�usion Model for the Thermodi�usion in : : : 1617To �nd time dependene of normal oordinates when temperature gradientis applied to the lattie we use the variational prinipleÆ Z eLdt = 0 : (8)The omponents of the vetor !� onstitute a set of three Lagrange multi-pliers, whih in general depend on time. The equations of motion of thesystem we are looking for in terms of omplex normal oordinates are�a!q + 2i !� � !I ~a(!q ) _a!q + i :!� � !I (!q )a!q + !2(!q )a!q = 0 ;and its approximate (aurate when :!� � !I (!q )=!2(!q )� 1 whih is usuallyful�lled) solution isa!q (t) = A(!q )e�i!I (!q )�R!� (t)dt os(!(!q )t� Æ(!q )) : (9)At eah !q within the �rst Brillouin zone both A(!q ) and Æ(!q ) are randomnumbers, their statistial properties are given under assumption of loalstatistial equilibrium by the Maxwell�Boltzmann distributionp(A)dA = A!2(!q )kBT exp �A2!2(!q )2kBT ! dAfor the amplitude and uniform distribution within [0; 2�℄ range for the phaseÆ(!q ).Having found time dependene of normal oordinates Eq. (9) we insertthem into Eq. (5). However the energy �ux density beomes then a randomnumber and will be di�ult to deal with. Therefore it seems that there is nohoie but to average the energy �ux density Eq. (5) over amplitudes A(!q )and phases Æ(!q ): It beomes thenh!j i = kBTX!q !I (!q )!2(!q ) �!� (t)� !I (!q )� ;h i means �statistial average of� with T being loal equilibrium temper-ature and the onstraint Eq. (1), when averaged over volume and randomamplitudes and phases redues toX!q !I (!q )!2(!q ) �!� � !I (!q )�� �kB rTT = 0 : (10)



1618 B. KozarzewskiEquation (10) serves for determination of the Lagrange multipliers �i, itis seen that as a result of approximations made they do not depend on time.One !� is known the normal oordinates of the lattie are uniquely (besidesrandom amplitudes and phases) determined bya!q (t) = A(!q )e�i!�!�I(!q )t os(!(!q )t� Æ(!q )) : (11)Equations (10) and (11) onstitute dynamis of the lattie in the preseneof temperature gradient.4. Dynamis of the interstitial impurityThe system we are interested in onsists of single impurity atom in asimple ubi lattie of the lattie onstant a. The lattie dynamis is de-sribed in approximation disussed in previous parts of the paper. Impurityenergy when expanded with respet to deviation of the lattie atoms fromtheir equilibrium positions ~rl takes the form [2℄Hi = 12M :!r 2 +V (!r )+X!q f!q (!r ) a!q ;here potential energy of the impurityV (!r ) = Xl v( !r � !r l) ;f!q (!r ) = � 1pNmXl !e!q �rv( !r � !r l) ei!q �!r land ~e denotes polarization vetor of the lattie wave, m(M) is mass of thelattie (impurity) atom. Radius vetor of the interstitial atom ~r and normaloordinates of lattie vibration a!q onstitute set of dynamial variables ofthe total system. The equations of motion of the system follow from thevariational priniple Eq. (7) with eL of the form of Eq. (8) but supplementedby the term 12M :!r 2 �V (!r )�X!q f!q (!r ) a!qdue to the interstitial atom.The equations of motion that follow are�a!q + 2i !� � !I (!q ) _a!q + i !� � !I (!q ) a!q + !2(!q ) a!q + f�!q (!r ) = 0 ; (12)



Continuous Di�usion Model for the Thermodi�usion in : : : 1619and M ::!r +rV (!r )+X!q a!qrf!q (!r ) = 0 (13)with initial onditions a!q (0) = A(!q ) os(Æ(!q )) and _a!q (0) = A(!q ) sin(Æ(!q)) : The solution of the �rst one, when !� does not depend on time and!� � !I hh!2(!q ) readsa!q (t) = A(!q ) e�i(!q )t os h!(!q )t� Æ(!q )i� 1!(!q ) tZ0 f�!q (!r (s)) e�i(!q )(t�s) sin h!(!q )(t� s)i ds ; (14)where notation (!q ) =!� � !I (!q ) was introdued. With the use of Eq. (14)the lattie degrees of freedom an be eliminated, then from Eq. (13) thegeneralized Langevin equation followsM ::!r=!F 0 (!r )+ !F d (t)+ !F s (t) : (15)On the right hand side of Eq. (15) there are three fores:!F 0 (!r ) = �rV ( !r )omes from stati periodi potential,!F d (t) =X!q 1!(!q )rf!q (!r ) tZ0 e�i(!q )(t�s)f�!q (!r (s)) sin h!(!q )(t� s)i ds(16)represents dumping fore, whih after integrating by parts is rewritten asfollows!F d (t) = �X!q 1!3(!q )rf!q (!r ) tZ0 e�i(!q )(t�s)rf�!q (!r (s))� :!r (s)�ni(!q ) sin h(!q )(t� s)i+ !(!q ) os h!(!q )(t� s)io ds+ !F (1)d (t):(17)



1620 B. KozarzewskiIn the following we neglet the term !F (1)d , whih stands for orretion ofthe seond order in V ( !r ) to the periodi fore !F 0 (!r ). The last term onthe right hand side of Eq. (15)!F s (t) = �X!q A(!q )e�i(!q )trf!q (!r ) os h!(!q )t� Æ(!q )i (18)is stohasti fore. That kind of generalized Langevin equation of motionfor impurity has already been derived in Ref. [2℄.5. One dimensional motion in osine potentialTo proeed further we will follow Ref. [2℄ and onsider simple ase ofmotion along y = a=2, z = a=2 line in the osine potential with x = a=2 asthe origin of x-oordinate. When temperature gradient isV (!r ) = V0 �1� os�2�xa ��with x = a=2 as the origin of x-oordinate. When temperature gradientis along x-axis then energy �ux vetor and Lagrangian multipliator !� arealso along x-axis. From Eq. (11) it follows then that single Lagrangianmultipliator �x(t) � � = �kB dT=dxTP!q � I(!q )!(!q )�2with Eq. (7) yields for onstant  = ��qx, where� = 18�2�kBq3DT dTdx ; (19)for longitudinal phonons in Debye model.Now we are ready to alulate x-omponents of the fores on the righthand side of Eq. (15). The periodi fore beomes simplyF0(x) = �2�V0a sin�2�xa � ; (20)the dumping fore an be expressed asFd(t) = ��2�a �4 V 20m tZ0 os�2�a x(t)� os�2�a x(t0)�



Continuous Di�usion Model for the Thermodi�usion in : : : 1621� 1NX!q 1!2(!q )eiqx�(t;t0 ) os h!(!q )(t� t0)i :x (t0)dt0 ; (21)where �(t; t0) = a(E �x(t)a ��E "x(t0)a #)+ �(t� t0)and E(x) stands for integer part of x. And �nally the stohasti fore,Eq. (18) now readsFs(t)=�2�a �2 V0pNm os�2�xa �X!q A(!q )ei[aE(x=a)+�t℄qx os h!(!q )t� Æ(!q )i :(22)To perform summation over wave vetor !q we again assume isotropi Debyemodel for a longitudinal aousti phonons i.e. !(!q ) =vs ���!q ��� ; vs being soundveloity in rystal.Summation over !q within Debye sphere of radius qD = (6�2)1=3=a yieldsFd(t) = �2�a �2 aV 20mv3s tZ0 os�2�a x(t)� os�2�a x(t0)��(2�vs sin(qD�(t; t0))qD�(t; t0) sin(qDvs(t� t0)) + "1� �(t� t0)�(t; t0) #S(t; t0))� vs�(t; t0) :x (t0)dt0 ; (23)where S(t; t0) = Si[qD(�(t; t0) � vs(t � t0))℄ + Si[qD(�(t; t0) + vs(t � t0))℄and Si(t) = R t0 sin(x)x dx stands for integral sine funtion. Eq. (21) an berewritten as Fd(t) = � tZ0 �(t; t0) :x (t0)dt0with the frition kernel �(t; t0)obeying the �utuation dissipation theoremh Fs(t)Fs(t0)i = kBT�(t; t0) : (24)The fores mentioned enter the one dimensional generalized Langevinequation (15) M ::x= F0(x) + Fd(t) + Fs(t) : (25)



1622 B. KozarzewskiThere is no method to solve stohasti equation (25). However if thethermal energy kBT of the impurity is smaller than the height of the potentialbarriers signi�ant simpli�ation is possible. It is beause usually the motionof the impurity is on�ned to a single interstitial. If t and t0 are within thattime then �(t; t0) = �(t� t0) . Only after a time long enough to aumulateation of the random fore the impurity will drive over the barrier intoanother interstitial. Therefore one an say that �(t; t0)� vs(t�t0) (beause�� vs) holds for most of the time , so we an set approximately1�(t; t0) nSi[qD(�(t; t0)� vs(t� t0))℄ + Si[qD(�(t; t0) + vs(t� t0))℄o�!�(t;s)!02qD sin(qDvs(t� t0))qDvs(t� t0) :With the above approximation dissipative fore Eq. (23) beomesFd(t) = �2a�2�a �2 V 20mv3s tZ0 os(2�a x(t)) os�2�a x(t0)��sin(qD�(t; t0))qD�(t; t0) sin(qDvs(t� t0))(t� t0) _x(t0)dt0 : (26)Still stohasti fore in the form of Eq. (22) preludes numerial solutionof Eq. (25) beause of a large number (2N) of random numbers needed andsum over !q as well. The remedy is to model Fs(t) by the random proessFs(t) = 2V0�2�a �s2aqDkBTmv2s os(2�xa ) os h�qD �aE �xa�+ �t�� 2�i� os (�qDvst� 2�Æ) ; (27)where �, , Æ and � stand for random numbers of uniform distribution within[0; 1℄ range. The random quantity �qD mimis variety of phonon wave num-bers. Dissipative fore, Eq. (26) and stohasti fore, Eq. (27) are onsistentwith the �utuation dissipation theorem Eq. (24). Damping fore as givenby Eq. (26) is still, due to �nite memory kernel, hardly tratable. Furtherapproximation is, therefore, needed sin(qDvs�)� �= �Æ(�); whih beomes or-ret for qDvs !1. As a result we get position dependent and memory-freedamping Fd(t) = ��a�2�a �2 V 20mv3s os2�2�a x(t)� :x (t) : (28)



Continuous Di�usion Model for the Thermodi�usion in : : : 1623There is also onvenient to express Eq. (25) in terms of dimension-less variables; oordinate x0 = 2�x=a and time t0 = 2�t=T0, where T0 =apM=V0 is a period of small osillations of the interstitial atom. With thatand after dropping prime sign we an summarize up the results in the formof the following stohasti equation::x= � sinx�R os2 x :x +F os x os(�(kDx+ !�t)� 2�) os(�!vt� 2�Æ) ;(29)where amplitudes of dissipative and random fores areR = 2�2 V0mv2sq V0Mv2s and F = 2 �6�2�1=6q2kBTmv2s respetively,and !� = kDqM�2V0 , !v = kDqMv2sV0 with kD = � 34��1=3.6. Results and disussionBeause of omplex struture of Langevin equation (29) the numerialsimulation is the unique tool in the investigation of dynamis of impurityatom. As a method of integration Eq. (29) we assume a standard Runge�Kutta proedure. To deal with stohasti term in the equation we indepen-dently hoose and keep onstant the random numbers at eah time step.The time steps are relatively long to give the impurity enough time to gainenergy from the thermal bath when a frequeny of the stohasti fore islose to impurity's own frequeny. It is the ase when the impurity has ahigh probability of being resonantly ativated over potential barrier.One solution x(t) of Eq. (29) is known it an be rewritten as a sum oflattie onstant (equal to 2�) times ell number l(t) and relative oordinate�� � xr(t) � �, i.e. x(t) = 2�l(t) + xr(t).When impurity hopes out of the ell l1 and then thermalizes in anotherell l2 we say that the impurity makes a jump of multipliity n = l2 � l1.When the total number Nn of jumps of length n in time t is known the jumprate (i.e. number of jumps per T0=2� seonds) to the right r+j and to theleft r�j r+j = 1t 1Xn=1Nn; r�j = 1t 1Xn=1N�n :Corresponding probabilities of a jump of length of 2�n areP�n = N�n1Pn=1(Nn +N�n) : (30)



1624 B. KozarzewskiHaving known probabilities P�n we an �nd dimensionless mean square jumplength h l2i = (2�)2 1Xn=1n2(P+n + P�n) : (31)Di�usion oe�ient is D de�ned asD = limt!1h l2i2t (32)whih have to be multiplied by a2=2�T0 in order to get D in m2/s units.We have followed evolution of x(t) as given by Eq. (29) for as long as109 time units and di�erent temperatures. Three ases of temperature gra-dient were onsidered i.e. gradT = 0;�10000K/m. In Fig. 1 we show time

Fig. 1. An example of time evolution of the ell number oupied by the interstitialatom.dependene of ell number l(t) oupied by interstitial atom following froma partiular evolution of the oordinate x(t). We however do not detet asystemati drift in motion of the interstitial atom. Therefore the model doesnot predit a de�nite relationship between diretion of material �ux and thetemperature gradient. In Fig. 2 an example of mean square jump length isreported. We notie that it depends linearly on time with high auray so



Continuous Di�usion Model for the Thermodi�usion in : : : 1625

Fig. 2. The time evolution of the mean square jump length

Fig. 3. The temperature dependene of thermodi�usion at gradT = 104K/m



1626 B. KozarzewskiEq. (32) de�nes di�usion oe�ient univoally. Its temperature dependenewhen �tted to Arrhenius law D = D0e EfkBTyields D0 = 0:48x10�2m2/s and Ef = 0:77eV in the absene of temperaturegradient, whih an be ompared with D0 = 2x10�2m2/s and Ef = 0:9eVfor C interstitials in Fe [5℄. Our alulations show that the di�usion o-e�ient inreases when temperature gradient dT=dx = 104K/m is applied.Relative inrease (D(dT=dx)�D(0))=D(0) depends on temperature and be-omes very low above 1200K, as shown in Fig. 3. Our approah however failsto explain nonzero drift (a partile urrent) due to the temperature gradient.The potential reason whih needs examination is negletion of temperaturedependene of the lattie onstant and sound veloity as well.REFERENCES[1℄ Eletro- and ThermoTransport in Alloys, R.E. Hummel, H.B. Huntington, eds.,New York 1977.[2℄ B. Kozarzewski, Ata Phys. Pol. B29, 513 (1998).[3℄ A. Perez-Madrid, J.M. Rubi, P. Mazur, Physia A212, 231 (1994).[4℄ D.N. Zubariew, Nonequlibrium Statistial Thermodynamis, Consultant Bu-reau, New York 1974.[5℄ W. Seith, Di�usion in Metallen, Springer-Verlag, Berlin 1955.


