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CONTINUOUS DIFFUSION MODEL FOR THETHERMODIFFUSION IN PERIODIC POTENTIALB. KozarzewskiInstitute of Physi
s, Cra
ow University of Te
hnologyPod
hor¡»y
h 1, 30-084 Krakow, Polande-mail: pukozarz�
yf-kr.edu.pl(Re
eived Mar
h 2, 2000)We study the e�e
t of temperature gradient on di�usion of an inter-stitial impurity in simple 
ubi
 latti
e with the use of Langevin equation.Jump rate and di�usion 
oe�
ient as a fun
tion of temperature gradientat various temperatures are 
al
ulated.PACS numbers: 05.40.+j, 05.60.+w, 66.30.Jt1. Introdu
tionThermodi�usion (thermomigration) is a phenomenon far from being wellunderstood. It is of some importan
e in ioni
 
rystals, where thermomigra-tion is at the origin of the thermoele
tri
 power of these materials and eg.nu
lear rea
tors, where material is subje
ted to a very strong temperaturegradient. Phenomenologi
al theory [1℄ of di�usion under the a
tion of thetemperature gradient predi
ts among others, that interstitials move towardthe 
old end and va
an
ies toward the hot end of the sample. Experimentson selfthermodi�usion in pure metals 
on�rm to some extend predi
tionsmentioned. It means that the material �ux is toward the 
old part, andthe va
an
ies toward the hot end. In the 
ase of interstitials, however, thematerial �ux 
an have one or other dire
tion with respe
t to temperaturegradient.In our re
ent paper [2℄ we studied dynami
s of the system 
onsisting ofa single interstitial impurity atom in a simple 
ubi
 latti
e whi
h dynami
swas des
ribed in harmoni
 approximation. We derived generalized Langevinequation whi
h after some approximations was solved numeri
ally yieldingjump rate, jump lengths distribution and di�usion 
oe�
ient as a fun
tionof temperature.In the present paper the same system is 
onsidered but in the presen
eof temperature gradient. There have been little work done on the dynami
s(1613)



1614 B. Kozarzewskiof the system 
oupled to the phonon bath whi
h itself is not in equilibrium.Here we mention of Ref. [3℄ where dynami
s of Brownian parti
les suspendedIn Se
tion 2 the energy �ux in terms of normal 
oordinates is derived. TheFokker�Plan
k equation for the 
ase is derived among others.In Se
tion 2 the energy �ux in terms of normal 
oordinates is derived.The problem how the temperature gradient modi�es dynami
s of the latti
eis solved in Se
tion 3. In Se
tion 4 we derive the generalized Langevinequation for interstitial impurity whi
h in the next Se
tion is applied to onedimensional motion in 
osine potential. Results of numeri
al solution of theLangevin equation as well as dis
ussion are given in Se
tion 6.2. Flux of energyThe 
ru
ial problem is to in
orporate temperature gradient into dynam-i
s of the system. It is solved by taking into a

ount a lo
al 
onstraint!j (!r ) + �rT = 0 (1)in a variational prin
iple. There !j (!r ) is energy �ux through unit sur-fa
e perpendi
ular to temperature gradient rT and � stands for thermal
ondu
tivity of the latti
e.The energy of the latti
e 
an be expressed asH = Z d3rH(!r ) ;where density of energy operator is given byH(~r) = 12Xl 24m :!Rl2 +Xp6=lU ����!Rl � !R����35 Æ �!r � !Rl� : (2)Obviously m and !Rl denotes mass and radius ve
tor of the latti
e atomrespe
tively. A

ording to e.g. Zubariev [4℄ density of the energy �ux of the�eld represented by Eq. (2) is!j (!r ) = 12Xl 24m :!Rl2 +Xp6=lU �����!Rl � !Rp�����35 :!Rl Æ �!r � !Rl�+ 14Xl;p �� :!Rl + :!Rp� � !F lp��!Rl � !Rp� Æ �!r � !Rl� ; (3)



Continuous Di�usion Model for the Thermodi�usion in : : : 1615where !F lp= � !F pl= �r!RlU ���� !Rl � !Rp ���� ;and Æ(!r ) stands for the produ
t Æ (x) Æ(y)Æ(z) of Dira
 delta fun
tions.We want to express !j (!r ) in terms of small deviations !u l of the latti
eatoms from their equilibrium positions !r l!Rl=!r l + !u l :Negle
ting terms of third and higher orders in !u l we get for energy �uxdensity!j (!r ) = 14Xl;p "X�;� � :u�l + :u�p ����lp �u�l � u�p�#�!r l � !rp� Æ �!r � !r l� ; (4)where ���lp = �2U ����!r l � !rp�����r�l �r�psatis�es the equation Xl ���lp = 0 :Be
ause there is no sour
es or sinks of the energy �ux inside the 
rystaland be
ause of translational symmetry of the latti
e the ve
tor �eld !j (!r )is also translationally invariant in the bulk of material. To make !j (!r )
ontinuous fun
tion of !r we average it over the 
rystal volume!jav= 1
 ZZZ !j (!r )dVwith the result!jav= 14m
Xl;pX�;� � _u�l + _u�p ����lp �u�l � u�p��!r l � !rp� :For simpli
ity we 
onsider one mode of vibrations only, and express de-viations !u l in terms of normal 
oordinates a!q!u l= 1pNmX!q !e!q a!q ei!q �!r l :



1616 B. KozarzewskiAveraged energy �ux density whi
h we 
all simply !j from now on reads!j= �iX!q !I (!q ) _a!q a�!q =X!q !I (!q )�a(1)!q :a(2)!q �a(2)!q :a(1)!q � ; (5)where !I (!q ) = � 12m
Xn !r n sin(!q � !r n)X�;� e�!q ���n e�!q (6)and a!q = a(1)!q + ia(2)!q :Be
ause !2(!q ) = 1mXn 
os (!q � !r n)X�;� e�!q ���n e�!qthen under approximationXn 
os(!q � !r n)X�;����n r!q �e�!q e�!q � = 0it follows from Eq. (6) that!I (!q ) = � 12
r!q !2(!q ): (7)3. Latti
e dynami
s in presen
e of temperature gradientNow we are ready to derive time dependen
e of normal 
oordinatesa!q (t):The energy of the latti
e per one mode of vibrations when expressedin terms of normal 
oordinates readsHl =X!q � _a!q _a�!q + !2(!q )a!q a�!q � :Corresponding Lagrangian L 
an be derived and when 
onstraint Eq. (1) istaken into a

ount the following fun
tion have to be minimized with respe
tto real and imaginary part of a!q (t) and _a!q (t)eL = 12X!q " _a(1)2!q + _a(2)2!q � !2(!q )�a(2)2!q + _a(1)2!q �+2 !� � !I (!q )�a(1)!q _a(2)!q � a(2)!q _a(1)!q �#+ � !� �rT :



Continuous Di�usion Model for the Thermodi�usion in : : : 1617To �nd time dependen
e of normal 
oordinates when temperature gradientis applied to the latti
e we use the variational prin
ipleÆ Z eLdt = 0 : (8)The 
omponents of the ve
tor !� 
onstitute a set of three Lagrange multi-pliers, whi
h in general depend on time. The equations of motion of thesystem we are looking for in terms of 
omplex normal 
oordinates are�a!q + 2i !� � !I ~a(!q ) _a!q + i :!� � !I (!q )a!q + !2(!q )a!q = 0 ;and its approximate (a

urate when :!� � !I (!q )=!2(!q )� 1 whi
h is usuallyful�lled) solution isa!q (t) = A(!q )e�i!I (!q )�R!� (t)dt 
os(!(!q )t� Æ(!q )) : (9)At ea
h !q within the �rst Brillouin zone both A(!q ) and Æ(!q ) are randomnumbers, their statisti
al properties are given under assumption of lo
alstatisti
al equilibrium by the Maxwell�Boltzmann distributionp(A)dA = A!2(!q )kBT exp �A2!2(!q )2kBT ! dAfor the amplitude and uniform distribution within [0; 2�℄ range for the phaseÆ(!q ).Having found time dependen
e of normal 
oordinates Eq. (9) we insertthem into Eq. (5). However the energy �ux density be
omes then a randomnumber and will be di�
ult to deal with. Therefore it seems that there is no
hoi
e but to average the energy �ux density Eq. (5) over amplitudes A(!q )and phases Æ(!q ): It be
omes thenh!j i = kBTX!q !I (!q )!2(!q ) �!� (t)� !I (!q )� ;h i means �statisti
al average of� with T being lo
al equilibrium temper-ature and the 
onstraint Eq. (1), when averaged over volume and randomamplitudes and phases redu
es toX!q !I (!q )!2(!q ) �!� � !I (!q )�� �kB rTT = 0 : (10)



1618 B. KozarzewskiEquation (10) serves for determination of the Lagrange multipliers �i, itis seen that as a result of approximations made they do not depend on time.On
e !� is known the normal 
oordinates of the latti
e are uniquely (besidesrandom amplitudes and phases) determined bya!q (t) = A(!q )e�i!�!�I(!q )t 
os(!(!q )t� Æ(!q )) : (11)Equations (10) and (11) 
onstitute dynami
s of the latti
e in the presen
eof temperature gradient.4. Dynami
s of the interstitial impurityThe system we are interested in 
onsists of single impurity atom in asimple 
ubi
 latti
e of the latti
e 
onstant a. The latti
e dynami
s is de-s
ribed in approximation dis
ussed in previous parts of the paper. Impurityenergy when expanded with respe
t to deviation of the latti
e atoms fromtheir equilibrium positions ~rl takes the form [2℄Hi = 12M :!r 2 +V (!r )+X!q f!q (!r ) a!q ;here potential energy of the impurityV (!r ) = Xl v( !r � !r l) ;f!q (!r ) = � 1pNmXl !e!q �rv( !r � !r l) ei!q �!r land ~e denotes polarization ve
tor of the latti
e wave, m(M) is mass of thelatti
e (impurity) atom. Radius ve
tor of the interstitial atom ~r and normal
oordinates of latti
e vibration a!q 
onstitute set of dynami
al variables ofthe total system. The equations of motion of the system follow from thevariational prin
iple Eq. (7) with eL of the form of Eq. (8) but supplementedby the term 12M :!r 2 �V (!r )�X!q f!q (!r ) a!qdue to the interstitial atom.The equations of motion that follow are�a!q + 2i !� � !I (!q ) _a!q + i !� � !I (!q ) a!q + !2(!q ) a!q + f�!q (!r ) = 0 ; (12)



Continuous Di�usion Model for the Thermodi�usion in : : : 1619and M ::!r +rV (!r )+X!q a!qrf!q (!r ) = 0 (13)with initial 
onditions a!q (0) = A(!q ) 
os(Æ(!q )) and _a!q (0) = A(!q ) sin(Æ(!q)) : The solution of the �rst one, when !� does not depend on time and!� � !I hh!2(!q ) readsa!q (t) = A(!q ) e�i
(!q )t 
os h!(!q )t� Æ(!q )i� 1!(!q ) tZ0 f�!q (!r (s)) e�i
(!q )(t�s) sin h!(!q )(t� s)i ds ; (14)where notation 
(!q ) =!� � !I (!q ) was introdu
ed. With the use of Eq. (14)the latti
e degrees of freedom 
an be eliminated, then from Eq. (13) thegeneralized Langevin equation followsM ::!r=!F 0 (!r )+ !F d (t)+ !F s (t) : (15)On the right hand side of Eq. (15) there are three for
es:!F 0 (!r ) = �rV ( !r )
omes from stati
 periodi
 potential,!F d (t) =X!q 1!(!q )rf!q (!r ) tZ0 e�i
(!q )(t�s)f�!q (!r (s)) sin h!(!q )(t� s)i ds(16)represents dumping for
e, whi
h after integrating by parts is rewritten asfollows!F d (t) = �X!q 1!3(!q )rf!q (!r ) tZ0 e�i
(!q )(t�s)rf�!q (!r (s))� :!r (s)�ni
(!q ) sin h
(!q )(t� s)i+ !(!q ) 
os h!(!q )(t� s)io ds+ !F (1)d (t):(17)



1620 B. KozarzewskiIn the following we negle
t the term !F (1)d , whi
h stands for 
orre
tion ofthe se
ond order in V ( !r ) to the periodi
 for
e !F 0 (!r ). The last term onthe right hand side of Eq. (15)!F s (t) = �X!q A(!q )e�i
(!q )trf!q (!r ) 
os h!(!q )t� Æ(!q )i (18)is sto
hasti
 for
e. That kind of generalized Langevin equation of motionfor impurity has already been derived in Ref. [2℄.5. One dimensional motion in 
osine potentialTo pro
eed further we will follow Ref. [2℄ and 
onsider simple 
ase ofmotion along y = a=2, z = a=2 line in the 
osine potential with x = a=2 asthe origin of x-
oordinate. When temperature gradient isV (!r ) = V0 �1� 
os�2�xa ��with x = a=2 as the origin of x-
oordinate. When temperature gradientis along x-axis then energy �ux ve
tor and Lagrangian multipli
ator !� arealso along x-axis. From Eq. (11) it follows then that single Lagrangianmultipli
ator �x(t) � � = �kB dT=dxTP!q � I(!q )!(!q )�2with Eq. (7) yields for 
onstant 
 = ��qx, where� = 18�2�kBq3DT dTdx ; (19)for longitudinal phonons in Debye model.Now we are ready to 
al
ulate x-
omponents of the for
es on the righthand side of Eq. (15). The periodi
 for
e be
omes simplyF0(x) = �2�V0a sin�2�xa � ; (20)the dumping for
e 
an be expressed asFd(t) = ��2�a �4 V 20m tZ0 
os�2�a x(t)� 
os�2�a x(t0)�



Continuous Di�usion Model for the Thermodi�usion in : : : 1621� 1NX!q 1!2(!q )eiqx�(t;t0 ) 
os h!(!q )(t� t0)i :x (t0)dt0 ; (21)where �(t; t0) = a(E �x(t)a ��E "x(t0)a #)+ �(t� t0)and E(x) stands for integer part of x. And �nally the sto
hasti
 for
e,Eq. (18) now readsFs(t)=�2�a �2 V0pNm 
os�2�xa �X!q A(!q )ei[aE(x=a)+�t℄qx 
os h!(!q )t� Æ(!q )i :(22)To perform summation over wave ve
tor !q we again assume isotropi
 Debyemodel for a longitudinal a
ousti
 phonons i.e. !(!q ) =vs ���!q ��� ; vs being soundvelo
ity in 
rystal.Summation over !q within Debye sphere of radius qD = (6�2)1=3=a yieldsFd(t) = �2�a �2 aV 20mv3s tZ0 
os�2�a x(t)� 
os�2�a x(t0)��(2�vs sin(qD�(t; t0))qD�(t; t0) sin(qDvs(t� t0)) + "1� �(t� t0)�(t; t0) #S(t; t0))� vs�(t; t0) :x (t0)dt0 ; (23)where S(t; t0) = Si[qD(�(t; t0) � vs(t � t0))℄ + Si[qD(�(t; t0) + vs(t � t0))℄and Si(t) = R t0 sin(x)x dx stands for integral sine fun
tion. Eq. (21) 
an berewritten as Fd(t) = � tZ0 �(t; t0) :x (t0)dt0with the fri
tion kernel �(t; t0)obeying the �u
tuation dissipation theoremh Fs(t)Fs(t0)i = kBT�(t; t0) : (24)The for
es mentioned enter the one dimensional generalized Langevinequation (15) M ::x= F0(x) + Fd(t) + Fs(t) : (25)



1622 B. KozarzewskiThere is no method to solve sto
hasti
 equation (25). However if thethermal energy kBT of the impurity is smaller than the height of the potentialbarriers signi�
ant simpli�
ation is possible. It is be
ause usually the motionof the impurity is 
on�ned to a single interstitial. If t and t0 are within thattime then �(t; t0) = �(t� t0) . Only after a time long enough to a

umulatea
tion of the random for
e the impurity will drive over the barrier intoanother interstitial. Therefore one 
an say that �(t; t0)� vs(t�t0) (be
ause�� vs) holds for most of the time , so we 
an set approximately1�(t; t0) nSi[qD(�(t; t0)� vs(t� t0))℄ + Si[qD(�(t; t0) + vs(t� t0))℄o�!�(t;s)!02qD sin(qDvs(t� t0))qDvs(t� t0) :With the above approximation dissipative for
e Eq. (23) be
omesFd(t) = �2a�2�a �2 V 20mv3s tZ0 
os(2�a x(t)) 
os�2�a x(t0)��sin(qD�(t; t0))qD�(t; t0) sin(qDvs(t� t0))(t� t0) _x(t0)dt0 : (26)Still sto
hasti
 for
e in the form of Eq. (22) pre
ludes numeri
al solutionof Eq. (25) be
ause of a large number (2N) of random numbers needed andsum over !q as well. The remedy is to model Fs(t) by the random pro
essFs(t) = 2V0�2�a �s2aqDkBTmv2s 
os(2�xa ) 
os h�qD �aE �xa�+ �t�� 2�
i� 
os (�qDvst� 2�Æ) ; (27)where �, 
, Æ and � stand for random numbers of uniform distribution within[0; 1℄ range. The random quantity �qD mimi
s variety of phonon wave num-bers. Dissipative for
e, Eq. (26) and sto
hasti
 for
e, Eq. (27) are 
onsistentwith the �u
tuation dissipation theorem Eq. (24). Damping for
e as givenby Eq. (26) is still, due to �nite memory kernel, hardly tra
table. Furtherapproximation is, therefore, needed sin(qDvs�)� �= �Æ(�); whi
h be
omes 
or-re
t for qDvs !1. As a result we get position dependent and memory-freedamping Fd(t) = ��a�2�a �2 V 20mv3s 
os2�2�a x(t)� :x (t) : (28)
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onvenient to express Eq. (25) in terms of dimension-less variables; 
oordinate x0 = 2�x=a and time t0 = 2�t=T0, where T0 =apM=V0 is a period of small os
illations of the interstitial atom. With thatand after dropping prime sign we 
an summarize up the results in the formof the following sto
hasti
 equation::x= � sinx�R 
os2 x :x +F 
os x 
os(�(kDx+ !�t)� 2�
) 
os(�!vt� 2�Æ) ;(29)where amplitudes of dissipative and random for
es areR = 2�2 V0mv2sq V0Mv2s and F = 2 �6�2�1=6q2kBTmv2s respe
tively,and !� = kDqM�2V0 , !v = kDqMv2sV0 with kD = � 34��1=3.6. Results and dis
ussionBe
ause of 
omplex stru
ture of Langevin equation (29) the numeri
alsimulation is the unique tool in the investigation of dynami
s of impurityatom. As a method of integration Eq. (29) we assume a standard Runge�Kutta pro
edure. To deal with sto
hasti
 term in the equation we indepen-dently 
hoose and keep 
onstant the random numbers at ea
h time step.The time steps are relatively long to give the impurity enough time to gainenergy from the thermal bath when a frequen
y of the sto
hasti
 for
e is
lose to impurity's own frequen
y. It is the 
ase when the impurity has ahigh probability of being resonantly a
tivated over potential barrier.On
e solution x(t) of Eq. (29) is known it 
an be rewritten as a sum oflatti
e 
onstant (equal to 2�) times 
ell number l(t) and relative 
oordinate�� � xr(t) � �, i.e. x(t) = 2�l(t) + xr(t).When impurity hopes out of the 
ell l1 and then thermalizes in another
ell l2 we say that the impurity makes a jump of multipli
ity n = l2 � l1.When the total number Nn of jumps of length n in time t is known the jumprate (i.e. number of jumps per T0=2� se
onds) to the right r+j and to theleft r�j r+j = 1t 1Xn=1Nn; r�j = 1t 1Xn=1N�n :Corresponding probabilities of a jump of length of 2�n areP�n = N�n1Pn=1(Nn +N�n) : (30)



1624 B. KozarzewskiHaving known probabilities P�n we 
an �nd dimensionless mean square jumplength h l2i = (2�)2 1Xn=1n2(P+n + P�n) : (31)Di�usion 
oe�
ient is D de�ned asD = limt!1h l2i2t (32)whi
h have to be multiplied by a2=2�T0 in order to get D in m2/s units.We have followed evolution of x(t) as given by Eq. (29) for as long as109 time units and di�erent temperatures. Three 
ases of temperature gra-dient were 
onsidered i.e. gradT = 0;�10000K/m. In Fig. 1 we show time

Fig. 1. An example of time evolution of the 
ell number o

upied by the interstitialatom.dependen
e of 
ell number l(t) o

upied by interstitial atom following froma parti
ular evolution of the 
oordinate x(t). We however do not dete
t asystemati
 drift in motion of the interstitial atom. Therefore the model doesnot predi
t a de�nite relationship between dire
tion of material �ux and thetemperature gradient. In Fig. 2 an example of mean square jump length isreported. We noti
e that it depends linearly on time with high a

ura
y so
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Fig. 2. The time evolution of the mean square jump length

Fig. 3. The temperature dependen
e of thermodi�usion at gradT = 104K/m



1626 B. KozarzewskiEq. (32) de�nes di�usion 
oe�
ient univo
ally. Its temperature dependen
ewhen �tted to Arrhenius law D = D0e EfkBTyields D0 = 0:48x10�2
m2/s and Ef = 0:77eV in the absen
e of temperaturegradient, whi
h 
an be 
ompared with D0 = 2x10�2
m2/s and Ef = 0:9eVfor C interstitials in Fe [5℄. Our 
al
ulations show that the di�usion 
o-e�
ient in
reases when temperature gradient dT=dx = 104K/m is applied.Relative in
rease (D(dT=dx)�D(0))=D(0) depends on temperature and be-
omes very low above 1200K, as shown in Fig. 3. Our approa
h however failsto explain nonzero drift (a parti
le 
urrent) due to the temperature gradient.The potential reason whi
h needs examination is negle
tion of temperaturedependen
e of the latti
e 
onstant and sound velo
ity as well.REFERENCES[1℄ Ele
tro- and ThermoTransport in Alloys, R.E. Hummel, H.B. Huntington, eds.,New York 1977.[2℄ B. Kozarzewski, A
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