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THE TWO-DIMENSIONAL QUANTUMGALILEI GROUPS�Emil Kowal
zykDepartment of Theoreti
al Physi
s II, University of �ód¹Pomorska 149/153, 90-236 �ód¹, Polande-mail: emilkow�krysia.uni.lodz.pl(Re
eived Mar
h 15, 2000)The Poisson stru
tures on two-dimensional Galilei Group, 
lassi�ed inauthor's previous paper are quantized. The dual quantum Galilei Lie alge-bras are found.PACS numbers: 02.20.Sv, 03.65.Fd1. Introdu
tionIn the present paper we 
ontinue the study of deformed nonrelativisti
symmetries. In the previous paper [1℄ all Lie�Poisson stru
tures on two-dimensional Galilei Group were 
lassi�ed up to automorphism. Below wequantize these stru
tures showing that the 
onsistent Hopf algebras are ob-tained. We �nd also the 
orresponding quantum Lie algebras by straight-forward appli
ation of duality rules.As a result we obtain two families of quantum groups and quantum Liealgebras, one depends on two and the other depends on three parameters.Various limiting 
ases appear after sending appropriate subsets of parame-ters to in�nity.2. Poisson stru
tures on two-dimensional Galilei GroupRe
ently all Lie bialgebra stru
tures on two-dimensional Galilei alge-bra have been found and their Lie-Poisson 
ounterparts have been 
lassi�ed[1℄. It appeared that, up to the automorphisms, there are nine inequivalentbialgebra stru
tures on two-dimensional Galilean Lie algebra (see Table Iin Ref. [1℄). The 
orresponding Lie�Poisson stru
tures on two-dimensionalGalilei Group read:� Supported by �ód¹ University Grant no 580.(1627)
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zykfa; vg fa; �g fv; �g Remarks1 � �0v22 �0a+ "�20 v �0v " 2 R2 �v20� � "v0�0v �"v0�0� + �20 v 0 " � 03 v20� � "v0�0v �"v0�0� � �20 v 0 " � 04 v20� � "v0�0v �"v0�0� + �20 v 0 " � 05 0 �20 v 06 �v0�0v �v0�0� + �20 v 07 0 ��20 v 08 �v0�0v �v0�0� � �20 v 09 �v0�0v ��0v0� 0Let us note that the �rst stru
ture 
an be rewritten in the formfa; vg = �12� v2 ;fa; �g = 1�a+ 1�v ; (A)fv; �g = 1�v ;and the remaining stru
tures in the following formfa; vg = 1�� � 1�v ;fa; �g = 1�� + 1�v ; (B)fv; �g = 0 ;where �; �; �; �; �; are parameters 
hosen appropriately. This forms will beuse latter and now let us go to the Table. As it is seen from this Table,in order to impose Lie-Poisson stru
tures on Galilei Group two dimension-ful 
onstants v0; �0 are needed. They 
an attain arbitrary nonzero values,di�erent 
hoi
e being related by automorphisms. The only relevant free pa-rameter is the dimensionless parameter "; di�erent values of " 
orrespond tononequivalent Lie�Poisson stru
tures.



The Two-Dimensional Quantum Galilei Groups 1629It is worth to note that this relatively ri
h family of nonequivalent Lie�Poisson stru
tures 
ontains only one 
oboundary. It is in a sharp 
ontrastwith semisimple 
ase [2℄ as well as the 
ase of four-dimensional Poin
areGroup [3℄.The Lie�Poisson stru
tures des
ribed provide the starting point for ob-taining two-dimensional quantum Galilei groups. These groups will be here
onstru
ted by applying the naive quantization pro
edure 
onsisting in re-pla
ing the Poisson bra
kets by 
ommutators (and supplying the resulting
ommutation rules with imaginary unit and appropriate dimensionful 
on-stants). It is obvious from the Table that no ordering problems 
an appear.As it was mentioned, the above 
lassi�
ation of Lie�Poisson stru
tures is
omplete up to the automorphisms. However, this 
an not be a priori takenfor granted in the quantum 
ase due to the non
ommutativity of generators.This phenomenon is well known in quantum me
hani
s: not every 
anoni
altransformation 
an be lifted to the unitary one.We do not attempt here to 
lassify all nonequivalent quantum stru
tures;rather we �nd the quantum 
ounterparts of �
anoni
al� Poisson stru
turesdes
ribed in the Table.3. Two-dimensional quantum Galilei GroupsWe apply the standard quantization pro
edure to the Poisson stru
turesgiven in Ref. [1℄. The result 
an be summarised as follows. There are twofamilies of quantum groups, one depending on two and the other dependingon three dimensionful parameters. The relevant 
ommutation rules read,respe
tively: [a; v℄ = �i2�v2 ;[a; � ℄ = i�a+ i�v ; (A)[v; � ℄ = i�v ;and [a; v℄ = i�� � i� v ;[a; � ℄ = i� � + i�v ; (B)[v; � ℄ = 0 :The algebra (A) 
orresponds to the 
ase 1 of our Table while the algebra(B) to all remaining stru
tures. (Some of them 
an be obtained by takingan appropriate parameters to in�nity.)
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zykThe dimensions of 
onstans �; �; �; �; �; are as follows:[�℄ = s2m2 ; [�℄ = 1s ; [�℄ = 1s2 ; [�℄ = 1s2 ; [�℄ = 1m : (3.1)The 
ommutation rules (A) and (B) are supplied with the standard 
o-produ
t, antipode, 
ounit and *- stru
tures,�(a) = a
 I + I 
 a+ v 
 � ;S(a) = �a+ v�"(a) = 0a� = a ; (3.2)�(v) = v 
 I + I 
 v ;S(v) = �v ;"(v) = 0 ;v� = v ; (3.3)�(�) = � 
 I + I 
 � ;S(�) = �� ;"(�) = 0 ;�� = � : (3.4)We have 
he
ked that all relations providing our 
ommutation rules withthe stru
ture of *-Hopf algebra are ful�lled. Therefore, we obtain two Hopfalgebra stru
tures ((A) and (B)).4. Duality and quantum Lie algebrasHaving found the quantum Galilei groups one 
an ask what is the stru
-ture of their dual Hopf algebras, i.e. the quantum Lie algebras.In the present se
tion we �nd them by straightforward appli
ation ofduality rules. It is well known that the dual Hopf algebra 
an be de�ned bythe following duality ruleshXY;�i = hX 
 Y;��i ; (4.1)hX;�	i = h�X;�
 	i ; (4.2)also the *-stru
ture 
an be de�ned by the formulae [4℄hX�; �i = hX;S�1(��)i (4.3)



The Two-Dimensional Quantum Galilei Groups 1631provided the following identity holdsS�1(�) = [S(��)℄�: (4.4)It is easy to 
he
k that the equation (4.4) is in our 
ase ful�lled.In order to �nd expli
it form of quantum Lie algebras we used the fol-lowing s
heme [4℄. First, we de�ne the Lie algebra generators by adoptingthe 
lassi
al duality relationshX;�i = �i ddt�(eitX) jt=0 ; (4.5)i :e: hH; �kalvmi = iÆ1kÆ0mÆ0l ; (4.6)hP; �kalvmi = iÆ0kÆ0mÆ1l ; (4.7)hK; �kalvmi = iÆ0kÆ1mÆ0l : (4.8)These rules 
an be 
ompa
tly summarised by introdu
ing the fun
tions(A) f(�; �; �) = e�ae�ve�� ; (4.9)(B) f(�; �; �) = e�ae�� e�v : (4.10)The 
hoi
e of f(�; �; �) in both 
ases was di
tated by simpli
ity of 
al-
ulations. It is now obvious that any element X of quantum Lie algebra isuniquely determined by the numeri
al fun
tion fx(�; �; �) de�ned asfx(�; �; �) � hX; f(�; �; �)i: (4.11)By applying the duality rules (4.1)�(4.4) and by multiple use of Hausdor�formula and some other tri
ks (
f. Appendix) we arrive at the followingquantum Lie algebra stru
tures.� Case (A) �(H) = H 
 I + I 
H ;S(H) = �H ;"(H) = 0 ; (4.12)�(K) = K 
 I + e(�1=�)H 
K � 1�He(�1=�)H 
 P ;S(K) = �Ke(�1=�)H � 1�HP e(�1=�)H ;"(K) = 0 ; (4.13)
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zyk�(P ) = P 
 I + e(�1=�)H 
 P ;S(P ) = �P e(�1=�)H ;"(P ) = 0 ; (4.14)[H;P ℄ = 0 ;[K;P ℄ = �i2�P 2 ;[K;H℄ = iP : (4.15)� Case (B)�(H) = I 
H +H 
 e�P=�
osh� Pp���� �p��K 
 e�P=� sinh� Pp��� ;S(H) = �HeP=� 
osh� Pp���� �p��KeP=� sinh� Pp��� ;"(H) = 0 ; (4.16)�(K) = I 
K +K 
 e�P=�
osh� Pp���� �p��H 
 e�P=� sinh� Pp��� ;S(K) = �KeP=� 
osh� Pp���� �p��HeP=� sinh� Pp��� ;"(K) = 0 ; (4.17)�(P ) = I 
 P + P 
 I ;S(P ) = �P ;"(P ) = 0 ; (4.18)[H;P ℄ = 0 ;[K;P ℄ = 0 ;[K;H℄ = i��2 �e�2P=� � 1� (4.19)and, in both 
ases, H;P , and K are Hermitian. Some examples of a
tual
al
ulations are given in Appendix.



The Two-Dimensional Quantum Galilei Groups 16335. The Lyakhovsky�Mudrov formalismIn order to �nd the quantum Lie algebras dual to our groups we 
an alsouse the formalism developed by Lyakhovsky and Mudrov [5,6℄. It is basedon following theorem (Lyakhovsky�Mudrov):Let fI;H1; : : : ;Hn;X1; : : : ;Xmg be a basis of an asso
iative algebra Eover C verifying the 
onditions[Hi;Hj ℄ = 0; i; j = 1; : : : ; n: (5.1)Let �i; �j(i; j = 1; : : : ; n) be a set of m� n 
omplex matri
es su
h that[�i; �j ℄ = [�i; �j ℄ = [�i; �j ℄ = 0; i; j = 1; : : : ; n: (5.2)Let ~X be a ve
tor with 
omponents Xl(l = 1; : : : ;m).The 
o-produ
t�(I) = I 
 I ; �(Hi) = I 
Hi +Hi 
 I ;�( ~X) = exp nXi=1 �iHi! _
 ~X + � exp( nXi=1 �iHi) _
 ~X! (5.3)and the 
ounit"(I) = I ; "(Hi) = 0 ; i = 1; : : : ; n ;"(Xl) = 0 ; l = 1; : : : ;m ; (5.4)endow (E;�; ") with a 
oalgebra stru
ture.With the help of this theorem we 
an �nd 
oalgebra stru
ture. To thisend we re
all that the 
o-
ommutator Æ 
orresponds to the leading part ofthe 
o-antisymmetri
 part of the 
o-produ
tsÆ( ~X) = �(1)( ~X)� � Æ�(1)( ~X); (5.5)where �(1)( ~X) =  nXi=1 �iHi! _
 ~X + �  nXi=1 �iHi! _
 ~X! (5.6)is the �rst order term in all the parameters of (5.6).Therefore matri
es �i and �i 
an be determined from the known formof Æ(X):Now, if one is able to �nd a 
ommutation rules 
ompatible with the 
o-produ
t one obtains a quantum algebra. By applying this formalism to our
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ase (whi
h, a
tually, has been done in Ref. [6℄) we arrive at the same formof 
o-produ
t as given by duality rules, Eqs. (4.12)�(4.14); (4.16)�(4.18).Therefore, we have an alternative way to 
onstru
t our quantum Galileialgebras.The author a
knowledges Prof. P. Ma±lanka and Prof. P. Kosi«ski fora 
areful reading of the manus
ript and many helpful suggestions. Spe
ialthanks are also due to Prof. S. Giller, Dr. C. Gonera and Mrs A. Opanowi
zfor valuable dis
ussion. AppendixWe present some sample 
al
ulations 
on
erning the dual stru
tures. Letus 
onsider the (B) 
ase,[a; v℄ = i�� � i� v ;[a; � ℄ = i� � + i�v ;[v; � ℄ = 0 ; (A.1)"2�2 = ��:Let us 
al
ulateff 0 = e�ae�� e�ve�0ae�0� e�0v= e�a+�0ae�(e��0a�e�0a)e�(e��0ave�0a)e�0� e�0v; (A.2)here prime means the se
ond fa
tor of tensor produ
t and the tensor produ
tsymbol 
 has been omitted. Denotingx(�0) = e��0a�e�0a ; x(0) = � ; (A.3)y(�0) = e��0ave�0a ; y(0) = v ; (A.4)we obtain the following di�erential equations_x(�0) = e��0a[�; a℄e�0a = i�x(�0)� i�y(�0) ; (A.5)_y(�0) = e��0a[v; a℄e�0a = i� y(�0)� i�x(�0) (A.6)or, in matrix form � x(�0)y(�0) !=  i� �i��i� i� ! x(�0)y(�0) ! : (A.7)



The Two-Dimensional Quantum Galilei Groups 1635Thus the solution to Eq. (A.7) reads x(�0)y(�0) ! = ei�0A �v ! ; (A.8)where A =  1� �1��1� 1� ! :It is easy to 
he
k thatei�0A = ei�0=�0BB� 
osh� �0p��� ��p��sinh� �0p�����p�� sinh� �0p��� 
osh� �0p��� 1CCA (A.9)and, 
onsequentlyx = ei�0=���
osh� �0p���� �p��v sinh� �0p����;y = ei�0=�� ��p��� sinh� �0p���+ v 
osh� �0p���� : (A.10)Thereforeff 0 = exp (�+ �0)a� exp �ei�0=�� ��p��� sinh� �0p���+ � 
osh� �0p����+ �0� �� exp �ei�0=���
osh� �0p���� �p��� sinh� �p����+ �0� v(A.11)and from this formula we obtain�(H) = I 
H +H 
 e�P� 
osh� Pp���� �p��K 
 e�P� sinh� Pp��� ;�(K) = I 
K +K 
 e�P� 
osh� Pp���� �p��H 
 e�P� sinh� Pp��� ;�(P ) = I 
 P + P 
 I: (A.12)On the other hand �(f) = e�(a+a0+v� 0)e�(�+� 0)e�(v+v0): (A.13)
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zykIn order to 
al
ulate �(f) we use the following tri
k: we write�(f) = e�(a+a0)�e�(�+� 0)e�(v+v0) ; (A.14)where � = e��(a+a0)e�(a+a0+v� 0) ; �(0) = 1 : (A.15)Again di�erentiating both sides with respe
t to � we got_� = (e��ave�a)(e��a0� 0e�a0)� (A.16)and _�� = e 2i�� �v
osh� �p���� �p��� sinh� �p������� 0
osh( �p�� )� �p��v0 sinh� �p���� : (A.17)The terms vv0 and �� 0 do not 
ontribute to the produ
t of di�erent gener-ators, so they 
an be negle
ted in what follows. Therfore, up to irrelevantterms�(f)=e�ae�a0e�� e�� 0e�ve�v0�e�v0"�ip�� e( 2i�� )2(1����2 )�sinh( i�p�� )�
osh( i�p�� )+p��� sinh( i�p�� )�� �2p���!+ �4p��(1����2 )#�e� 0v"�ip�� e( 2i�� )2(1����2 )�
osh( i�p�� )�sinh( i�p�� )+p��� 
osh( i�p�� )�+ �2p���!� �(1�2p���2 )4p��(1����2 )#:(A.18)Hen
e, the duality rule (4.1) gives[H;P ℄ = 0 ;[K;P ℄ = 0 ;[K;H℄ = i�2 �1� e�2P=�� : (A.19)The antipode and 
ounit 
an be obtained either from the relevant dualityrelations or dire
tly from the Hopf algebra rules:(id
 ")� = id ; (A.20)m Æ (id 
 S)� = " : (A.21)



The Two-Dimensional Quantum Galilei Groups 1637In this way we have"(X) = 0 ; (A.22)S(H) = �He(P=�) 
osh� Pp���� �p��Ke(P=�) sinh� Pp��� ;S(K) = �Ke(P=�) 
osh� Pp���� �p��He(P=�) sinh� Pp��� ;S(P ) = �P ; (A.23)moreover 
o-produ
t is homomorphism of this algebra i.e.�([; ℄) = [�;�℄ :Let us now 
he
k Eq. (4.4):S�1 ��e�� e�ae�v��� = S�1 �e��ve��ae����= e����e��(�a+�v)e���v: (A.24)hS ��e�� e�ae�v���i� = hS �e��ve��ae����i�= �e����e��(�a+�v)e���v��= e��ve�(�a+v�)e���= S�1 �e�� e�ae�v� : (A.25)By applying the formula (4.3) we gethH�; e�� e�ae�vi = hH; e����e��(�a+�v)e���vi�= (�i��)� = i�= hH; e�� e�ae�vi ; (A.26)hen
e H� = H :In this same way one obtains K� = K; P � = P:



1638 E. Kowal
zykREFERENCES[1℄ E. Kowal
zyk, A
ta Phys. Pol. B28, 1893 (1997).[2℄ V. Chan, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press,1994.[3℄ S. Zakrzewski, Comm. Math. Phys. 185, 285 (1997). .[4℄ P. Ma±lanka, J. Math. Phys 35, 1976 (1994).[5℄ A. Ballesteros, F.J. Herranz, P. Parashar, J. Phys. A: Math. Gen. 30, L149(1997).[6℄ A. Ballesteros, F. J. Herranz, Lie Bialgebra Quantizations of the Os
illatorAlgebra and their Universal R-Matri
es, XXI ICGTMP, Goslar (Germany)1996.


