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THE TWO-DIMENSIONAL QUANTUMGALILEI GROUPS�Emil KowalzykDepartment of Theoretial Physis II, University of �ód¹Pomorska 149/153, 90-236 �ód¹, Polande-mail: emilkow�krysia.uni.lodz.pl(Reeived Marh 15, 2000)The Poisson strutures on two-dimensional Galilei Group, lassi�ed inauthor's previous paper are quantized. The dual quantum Galilei Lie alge-bras are found.PACS numbers: 02.20.Sv, 03.65.Fd1. IntrodutionIn the present paper we ontinue the study of deformed nonrelativistisymmetries. In the previous paper [1℄ all Lie�Poisson strutures on two-dimensional Galilei Group were lassi�ed up to automorphism. Below wequantize these strutures showing that the onsistent Hopf algebras are ob-tained. We �nd also the orresponding quantum Lie algebras by straight-forward appliation of duality rules.As a result we obtain two families of quantum groups and quantum Liealgebras, one depends on two and the other depends on three parameters.Various limiting ases appear after sending appropriate subsets of parame-ters to in�nity.2. Poisson strutures on two-dimensional Galilei GroupReently all Lie bialgebra strutures on two-dimensional Galilei alge-bra have been found and their Lie-Poisson ounterparts have been lassi�ed[1℄. It appeared that, up to the automorphisms, there are nine inequivalentbialgebra strutures on two-dimensional Galilean Lie algebra (see Table Iin Ref. [1℄). The orresponding Lie�Poisson strutures on two-dimensionalGalilei Group read:� Supported by �ód¹ University Grant no 580.(1627)



1628 E. Kowalzykfa; vg fa; �g fv; �g Remarks1 � �0v22 �0a+ "�20 v �0v " 2 R2 �v20� � "v0�0v �"v0�0� + �20 v 0 " � 03 v20� � "v0�0v �"v0�0� � �20 v 0 " � 04 v20� � "v0�0v �"v0�0� + �20 v 0 " � 05 0 �20 v 06 �v0�0v �v0�0� + �20 v 07 0 ��20 v 08 �v0�0v �v0�0� � �20 v 09 �v0�0v ��0v0� 0Let us note that the �rst struture an be rewritten in the formfa; vg = �12� v2 ;fa; �g = 1�a+ 1�v ; (A)fv; �g = 1�v ;and the remaining strutures in the following formfa; vg = 1�� � 1�v ;fa; �g = 1�� + 1�v ; (B)fv; �g = 0 ;where �; �; �; �; �; are parameters hosen appropriately. This forms will beuse latter and now let us go to the Table. As it is seen from this Table,in order to impose Lie-Poisson strutures on Galilei Group two dimension-ful onstants v0; �0 are needed. They an attain arbitrary nonzero values,di�erent hoie being related by automorphisms. The only relevant free pa-rameter is the dimensionless parameter "; di�erent values of " orrespond tononequivalent Lie�Poisson strutures.



The Two-Dimensional Quantum Galilei Groups 1629It is worth to note that this relatively rih family of nonequivalent Lie�Poisson strutures ontains only one oboundary. It is in a sharp ontrastwith semisimple ase [2℄ as well as the ase of four-dimensional PoinareGroup [3℄.The Lie�Poisson strutures desribed provide the starting point for ob-taining two-dimensional quantum Galilei groups. These groups will be hereonstruted by applying the naive quantization proedure onsisting in re-plaing the Poisson brakets by ommutators (and supplying the resultingommutation rules with imaginary unit and appropriate dimensionful on-stants). It is obvious from the Table that no ordering problems an appear.As it was mentioned, the above lassi�ation of Lie�Poisson strutures isomplete up to the automorphisms. However, this an not be a priori takenfor granted in the quantum ase due to the nonommutativity of generators.This phenomenon is well known in quantum mehanis: not every anonialtransformation an be lifted to the unitary one.We do not attempt here to lassify all nonequivalent quantum strutures;rather we �nd the quantum ounterparts of �anonial� Poisson struturesdesribed in the Table.3. Two-dimensional quantum Galilei GroupsWe apply the standard quantization proedure to the Poisson struturesgiven in Ref. [1℄. The result an be summarised as follows. There are twofamilies of quantum groups, one depending on two and the other dependingon three dimensionful parameters. The relevant ommutation rules read,respetively: [a; v℄ = �i2�v2 ;[a; � ℄ = i�a+ i�v ; (A)[v; � ℄ = i�v ;and [a; v℄ = i�� � i� v ;[a; � ℄ = i� � + i�v ; (B)[v; � ℄ = 0 :The algebra (A) orresponds to the ase 1 of our Table while the algebra(B) to all remaining strutures. (Some of them an be obtained by takingan appropriate parameters to in�nity.)



1630 E. KowalzykThe dimensions of onstans �; �; �; �; �; are as follows:[�℄ = s2m2 ; [�℄ = 1s ; [�℄ = 1s2 ; [�℄ = 1s2 ; [�℄ = 1m : (3.1)The ommutation rules (A) and (B) are supplied with the standard o-produt, antipode, ounit and *- strutures,�(a) = a
 I + I 
 a+ v 
 � ;S(a) = �a+ v�"(a) = 0a� = a ; (3.2)�(v) = v 
 I + I 
 v ;S(v) = �v ;"(v) = 0 ;v� = v ; (3.3)�(�) = � 
 I + I 
 � ;S(�) = �� ;"(�) = 0 ;�� = � : (3.4)We have heked that all relations providing our ommutation rules withthe struture of *-Hopf algebra are ful�lled. Therefore, we obtain two Hopfalgebra strutures ((A) and (B)).4. Duality and quantum Lie algebrasHaving found the quantum Galilei groups one an ask what is the stru-ture of their dual Hopf algebras, i.e. the quantum Lie algebras.In the present setion we �nd them by straightforward appliation ofduality rules. It is well known that the dual Hopf algebra an be de�ned bythe following duality ruleshXY;�i = hX 
 Y;��i ; (4.1)hX;�	i = h�X;�
 	i ; (4.2)also the *-struture an be de�ned by the formulae [4℄hX�; �i = hX;S�1(��)i (4.3)



The Two-Dimensional Quantum Galilei Groups 1631provided the following identity holdsS�1(�) = [S(��)℄�: (4.4)It is easy to hek that the equation (4.4) is in our ase ful�lled.In order to �nd expliit form of quantum Lie algebras we used the fol-lowing sheme [4℄. First, we de�ne the Lie algebra generators by adoptingthe lassial duality relationshX;�i = �i ddt�(eitX) jt=0 ; (4.5)i :e: hH; �kalvmi = iÆ1kÆ0mÆ0l ; (4.6)hP; �kalvmi = iÆ0kÆ0mÆ1l ; (4.7)hK; �kalvmi = iÆ0kÆ1mÆ0l : (4.8)These rules an be ompatly summarised by introduing the funtions(A) f(�; �; �) = e�ae�ve�� ; (4.9)(B) f(�; �; �) = e�ae�� e�v : (4.10)The hoie of f(�; �; �) in both ases was ditated by simpliity of al-ulations. It is now obvious that any element X of quantum Lie algebra isuniquely determined by the numerial funtion fx(�; �; �) de�ned asfx(�; �; �) � hX; f(�; �; �)i: (4.11)By applying the duality rules (4.1)�(4.4) and by multiple use of Hausdor�formula and some other triks (f. Appendix) we arrive at the followingquantum Lie algebra strutures.� Case (A) �(H) = H 
 I + I 
H ;S(H) = �H ;"(H) = 0 ; (4.12)�(K) = K 
 I + e(�1=�)H 
K � 1�He(�1=�)H 
 P ;S(K) = �Ke(�1=�)H � 1�HP e(�1=�)H ;"(K) = 0 ; (4.13)



1632 E. Kowalzyk�(P ) = P 
 I + e(�1=�)H 
 P ;S(P ) = �P e(�1=�)H ;"(P ) = 0 ; (4.14)[H;P ℄ = 0 ;[K;P ℄ = �i2�P 2 ;[K;H℄ = iP : (4.15)� Case (B)�(H) = I 
H +H 
 e�P=�osh� Pp���� �p��K 
 e�P=� sinh� Pp��� ;S(H) = �HeP=� osh� Pp���� �p��KeP=� sinh� Pp��� ;"(H) = 0 ; (4.16)�(K) = I 
K +K 
 e�P=�osh� Pp���� �p��H 
 e�P=� sinh� Pp��� ;S(K) = �KeP=� osh� Pp���� �p��HeP=� sinh� Pp��� ;"(K) = 0 ; (4.17)�(P ) = I 
 P + P 
 I ;S(P ) = �P ;"(P ) = 0 ; (4.18)[H;P ℄ = 0 ;[K;P ℄ = 0 ;[K;H℄ = i��2 �e�2P=� � 1� (4.19)and, in both ases, H;P , and K are Hermitian. Some examples of atualalulations are given in Appendix.



The Two-Dimensional Quantum Galilei Groups 16335. The Lyakhovsky�Mudrov formalismIn order to �nd the quantum Lie algebras dual to our groups we an alsouse the formalism developed by Lyakhovsky and Mudrov [5,6℄. It is basedon following theorem (Lyakhovsky�Mudrov):Let fI;H1; : : : ;Hn;X1; : : : ;Xmg be a basis of an assoiative algebra Eover C verifying the onditions[Hi;Hj ℄ = 0; i; j = 1; : : : ; n: (5.1)Let �i; �j(i; j = 1; : : : ; n) be a set of m� n omplex matries suh that[�i; �j ℄ = [�i; �j ℄ = [�i; �j ℄ = 0; i; j = 1; : : : ; n: (5.2)Let ~X be a vetor with omponents Xl(l = 1; : : : ;m).The o-produt�(I) = I 
 I ; �(Hi) = I 
Hi +Hi 
 I ;�( ~X) = exp nXi=1 �iHi! _
 ~X + � exp( nXi=1 �iHi) _
 ~X! (5.3)and the ounit"(I) = I ; "(Hi) = 0 ; i = 1; : : : ; n ;"(Xl) = 0 ; l = 1; : : : ;m ; (5.4)endow (E;�; ") with a oalgebra struture.With the help of this theorem we an �nd oalgebra struture. To thisend we reall that the o-ommutator Æ orresponds to the leading part ofthe o-antisymmetri part of the o-produtsÆ( ~X) = �(1)( ~X)� � Æ�(1)( ~X); (5.5)where �(1)( ~X) =  nXi=1 �iHi! _
 ~X + �  nXi=1 �iHi! _
 ~X! (5.6)is the �rst order term in all the parameters of (5.6).Therefore matries �i and �i an be determined from the known formof Æ(X):Now, if one is able to �nd a ommutation rules ompatible with the o-produt one obtains a quantum algebra. By applying this formalism to our



1634 E. Kowalzykase (whih, atually, has been done in Ref. [6℄) we arrive at the same formof o-produt as given by duality rules, Eqs. (4.12)�(4.14); (4.16)�(4.18).Therefore, we have an alternative way to onstrut our quantum Galileialgebras.The author aknowledges Prof. P. Ma±lanka and Prof. P. Kosi«ski fora areful reading of the manusript and many helpful suggestions. Speialthanks are also due to Prof. S. Giller, Dr. C. Gonera and Mrs A. Opanowizfor valuable disussion. AppendixWe present some sample alulations onerning the dual strutures. Letus onsider the (B) ase,[a; v℄ = i�� � i� v ;[a; � ℄ = i� � + i�v ;[v; � ℄ = 0 ; (A.1)"2�2 = ��:Let us alulateff 0 = e�ae�� e�ve�0ae�0� e�0v= e�a+�0ae�(e��0a�e�0a)e�(e��0ave�0a)e�0� e�0v; (A.2)here prime means the seond fator of tensor produt and the tensor produtsymbol 
 has been omitted. Denotingx(�0) = e��0a�e�0a ; x(0) = � ; (A.3)y(�0) = e��0ave�0a ; y(0) = v ; (A.4)we obtain the following di�erential equations_x(�0) = e��0a[�; a℄e�0a = i�x(�0)� i�y(�0) ; (A.5)_y(�0) = e��0a[v; a℄e�0a = i� y(�0)� i�x(�0) (A.6)or, in matrix form � x(�0)y(�0) !=  i� �i��i� i� ! x(�0)y(�0) ! : (A.7)



The Two-Dimensional Quantum Galilei Groups 1635Thus the solution to Eq. (A.7) reads x(�0)y(�0) ! = ei�0A �v ! ; (A.8)where A =  1� �1��1� 1� ! :It is easy to hek thatei�0A = ei�0=�0BB� osh� �0p��� ��p��sinh� �0p�����p�� sinh� �0p��� osh� �0p��� 1CCA (A.9)and, onsequentlyx = ei�0=���osh� �0p���� �p��v sinh� �0p����;y = ei�0=�� ��p��� sinh� �0p���+ v osh� �0p���� : (A.10)Thereforeff 0 = exp (�+ �0)a� exp �ei�0=�� ��p��� sinh� �0p���+ � osh� �0p����+ �0� �� exp �ei�0=���osh� �0p���� �p��� sinh� �p����+ �0� v(A.11)and from this formula we obtain�(H) = I 
H +H 
 e�P� osh� Pp���� �p��K 
 e�P� sinh� Pp��� ;�(K) = I 
K +K 
 e�P� osh� Pp���� �p��H 
 e�P� sinh� Pp��� ;�(P ) = I 
 P + P 
 I: (A.12)On the other hand �(f) = e�(a+a0+v� 0)e�(�+� 0)e�(v+v0): (A.13)



1636 E. KowalzykIn order to alulate �(f) we use the following trik: we write�(f) = e�(a+a0)�e�(�+� 0)e�(v+v0) ; (A.14)where � = e��(a+a0)e�(a+a0+v� 0) ; �(0) = 1 : (A.15)Again di�erentiating both sides with respet to � we got_� = (e��ave�a)(e��a0� 0e�a0)� (A.16)and _�� = e 2i�� �vosh� �p���� �p��� sinh� �p������� 0osh( �p�� )� �p��v0 sinh� �p���� : (A.17)The terms vv0 and �� 0 do not ontribute to the produt of di�erent gener-ators, so they an be negleted in what follows. Therfore, up to irrelevantterms�(f)=e�ae�a0e�� e�� 0e�ve�v0�e�v0"�ip�� e( 2i�� )2(1����2 )�sinh( i�p�� )�osh( i�p�� )+p��� sinh( i�p�� )�� �2p���!+ �4p��(1����2 )#�e� 0v"�ip�� e( 2i�� )2(1����2 )�osh( i�p�� )�sinh( i�p�� )+p��� osh( i�p�� )�+ �2p���!� �(1�2p���2 )4p��(1����2 )#:(A.18)Hene, the duality rule (4.1) gives[H;P ℄ = 0 ;[K;P ℄ = 0 ;[K;H℄ = i�2 �1� e�2P=�� : (A.19)The antipode and ounit an be obtained either from the relevant dualityrelations or diretly from the Hopf algebra rules:(id
 ")� = id ; (A.20)m Æ (id 
 S)� = " : (A.21)



The Two-Dimensional Quantum Galilei Groups 1637In this way we have"(X) = 0 ; (A.22)S(H) = �He(P=�) osh� Pp���� �p��Ke(P=�) sinh� Pp��� ;S(K) = �Ke(P=�) osh� Pp���� �p��He(P=�) sinh� Pp��� ;S(P ) = �P ; (A.23)moreover o-produt is homomorphism of this algebra i.e.�([; ℄) = [�;�℄ :Let us now hek Eq. (4.4):S�1 ��e�� e�ae�v��� = S�1 �e��ve��ae����= e����e��(�a+�v)e���v: (A.24)hS ��e�� e�ae�v���i� = hS �e��ve��ae����i�= �e����e��(�a+�v)e���v��= e��ve�(�a+v�)e���= S�1 �e�� e�ae�v� : (A.25)By applying the formula (4.3) we gethH�; e�� e�ae�vi = hH; e����e��(�a+�v)e���vi�= (�i��)� = i�= hH; e�� e�ae�vi ; (A.26)hene H� = H :In this same way one obtains K� = K; P � = P:
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