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1. Introduction

The development of the Quantum Inverse Scattering Method (QISM) [1]
intended for investigations of integrable models of the quantum field theory
and statistical physics gives rise to some interesting algebraic constructions.
These investigations allow to select a special class of Hopf algebras now
known as quantum groups and quantum algebras [2,3]. The nice R-matrix
formulation of the quantum group theory [4], based on the fundamental re-
lation of QISM (the FRT relation) has given an additional impulse to these
investigations. The extension of the activity on quantum groups to the
field of supersymmetry was started with the paper of Manin [5], where the
standard multiparametric quantum deformation of the supergroup GL(m/n)
was introduced. The study of the superalgebra in duality with the standard
multiparametric deformation of GL(m/n) was given in [6]. Quantum super-
algebras appeared naturally when the quantum inverse scattering method
was generalized to the super-systems [7]. Related R-matrix were considered
in [8,9] and simple examples were presented in [10]. The works [11,12,15]
are devoted to the g-bosonization of the g-superalgebras.The properties of
the quantum superalgebras Ug(A(m,n)), Ug(B(m,n)),Ug(C(n + 1)) and
Ug(D(m,n)) when their deformation parameter () goes to a root of unity, are
investigated in [13,14]. Quantum supergroups, were investigated in [15-17].
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1640 M. MANSOUR

As is well known, quantum groups can be seen as noncommutative gen-
eralizations of topological spaces which have a group structure. Such a
structure induces an Abelian Hopf algebra structure [18] on the algebra of
smooth functions on the group. Quantum groups are defined then as a non
Abelian Hopf algebras [19]. A way to generate them consists of deforming
the Abelian Hopf algebra of functions into a non Abelian one (*-product),
using the so called deformation quantization or star-quantization [20-24].

A star-quantization method is used also to give an h-deformed algebra
(quantum Lie algebra) in [25], to realize both g-deformed Virasoro and su4(2)
algebras in [26], to deform the corresponding Yangian of a simple Lie algebra
in [27] and to generate quantum algebras in [28]. The notion of a super star-
product on a symplectic flat supermanifold is investigated in [29] and a
deformation-quantization of Fedesov type of super Poisson bracket is given
in [30].

The purpose of the present paper is to show that the quantum super-
groups can be generated by deforming the graded (Abelian) Hopf algebra
of super functions structure into a non graded-Abelian one (super star-
product). This quantization technique gives a deformed product once a
Poisson superbracket on the superalgebra of super smooth functions is given.
In order to ensure that the deformed superalgebra is a Hopf superalgebra,
namely a quantum supergroup, the starting supergroup G has to be endowed
with a super Lie-Poisson structure. Finally, using the duality procedure, this
quantization leads to the structure of the quantum superalgebra on the su-
per quantized enveloping algebra of the Lie superalgebra corresponding to
the above Lie supergroup G .

This paper is organized as follows; the second section is devoted to a re-
view of basic definitions of Lie bisuperalgebras and Lie-Poisson supergroups.
In the third section we show the main result that states that a super star
product on a Lie-Poisson supergroup leads to the structure of a quantum
superalgebra on the quantized enveloping algebra of the Lie superalgebra
corresponding to the above supergroup, we give a vector representation of
the super quantum Yang—Baxter equation and we show that equivalent super
star products generate isomorphic quantum superalgebras.

2. Basic definitions

Let us first recall some properties of the vector superspaces and Lie
superalgebras on the complex number field.

If g is a vector super space then g = gg @ g1, where we refer to gg and
g1 as the even and odd subspaces of g, respectively. We define the operator
index

Il g —{0,1}
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for the homogeneous elements of g by
|z |=0, if z & go,

lz|=1, if z ¢ ¢

and call (—1)/*| the parity of & . The dual g* inherits a natural super
gradation ¢* = g3 @ g7, with g} is isomorphic to the dual of g, (a = 0,1) .
On the tensor product g ® g, there exists a natural super gradation induced
from that of g, where the parity of z®y is related to those of the homogenous
elements z,y € g through

(—1)l2®yl = (—1)lelHyl,
It is also useful to define the twisting map
T:g®9g—9gQ®g

by
T(zey) = (-1)""(y o) (1)

for all homogenous z,y € g ; this definition is extended by linearity to all

9®g.
A Lie superalgebra structure on g is provided by a linear mapping

L]:9®9—g

satisfying the requirement of super Jacobi identity and super antisymmetry.
In order to express them it is useful to introduce a basis {X;} in g and
structure constants defined by

[Xi, X;] = CE Xy,
Then the structure constants have to satisfy
Cl; =0 whenever |X; |+ |X;[#| Xi | (mod 2)

ij = (—1)|i||j‘0ﬁ- (super antisymmetry)
(—1)|i||l|CZC,?}—F(—1)|i||j‘C]I-“lC,?}+(—1)‘j||l|Cl]§C,?}:0 (super Jacobi identity).
A Lie bisuperalgebra structure on g is given by a linear mapping

p:9—9®g
$(X;) = "X ® Xy,
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where ¢ has to satisfy several requirements. First of all it makes the dual
linear space g* a Lie superalgebra i.e.:

=0,
whenever | X; | + | X |#| X | (mod 2) and
(_1)\kllm|fikjfjl,m + (_1)|lllk\fz?jf]7nk + (_1)\M\\l\fimjf]kl —-0.
¢ must be a superalgebra 1-cocycle
X Y] = adx $(V) — (~1)XVlady ¢(X) .

A cobondary Lie superalgebra is a pair (g,7), where g is a Lie superalgebra
and 7 € ((go ® go) ® (91 ® g1)) such that for every X; € g we have

¢(Xi):[r,1®Xi+Xi®1],

where the even element r satisfies the generalized classical Yang—Baxter
equation
[r,r]1@X;®1+X;0101+101® X;]=0 (2)

and the super Schouten bracket is defined as follows

[r,7] = [ri2, riz] + [r12, 23] + [r13,723] -

The coboundary superbialgebra with the r-matrix satisfying the modified
classical Yang—Baxter equation describes infinitesimally Poisson—Lie super-
goups which will be defined later. We now make the following definitions:

Definition 1 A super quantized universal enveloping algebra is a topological
Hopf superalgebra B with a bijective antipode over the ring of formal series
C[[h]], complete with respect to the h-adic topology and such that h% is the
universal enveloping algebra U(g) of some Lie superalgebra g .

Let W = Wy + Wi be a differentielle supermanifold and Fun(W) =
Fung(W) @ Fun; (W) be the algebra of supersmooth functions on W;
f € Fung(W)[Fun; (W)] is said to be homogenous of even [odd| parity.

Definition 2 A super Poisson bracket {,} on Fun(W)) is a bilinear oper-
ation assigning to every pair of functions f,g € Fun(W) a new function
{fsg} € Fun(W), such that for homogenous functions satisfies the following
conditions:

(i) — Graded preserving
deg({/. g} = deg(f) + deg(g), (3)
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(ii) — Super skew-symmetry

{f.9} = — (-1t g, 1}, (4)

(i4i) — Graded Leibniz rule

{f,gh} = {f,gth + (—1)deNdee@glf b} (5)

(iv) — Super Jocobi identity

(—1)desDaesMr (g by} + (~1)0@ID g {h, f}}
+ (—1)tesMAw@ i {f,g}} =0. (6)

Since the conditions [3-6] are just the axioms of superalgebras, the space
Fun(W) endowed with the super Poisson bracket becomes a Poisson super-
algebra and W a Poisson supermanifold.

Definition 3 A Poisson Lie supergroup is a Lie supergroup G provided with
a Poisson superbracket {,} such that the comultiplication

A : Fun(G) — Fun(G) ® Fun(G)
18 a morphism of Poisson superbrackets:
A{g, 9} ={A(9), A()},
where the Poisson superbracket on Fun(G) ® Fun(G) is defined as

{¢1 ®@ 91, 2 @ P2} = (—1) IV ({B1, o} @ h19ha + p1h2 ® {4h1,4b2}) . (7)

and the following rule for the multiplication of graded tensor products should
be used:

(11 ® 1h2) (1 ® o) = (—1)98(V2deg(p1) (1 phis ® ophis) .
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3. Super star products and quantum superalgebras

3.1. Triangular Hopf superalgebra structure

Let G = Gy ® G1 be a Lie supergroup, ¢ its Lie superalgebra. The
enveloping algebra of the Lie superalgebra ¢ is defined [31] to be the ten-
sor algebra T(g) = @5 ,¢%%, modulo the ideal I in T'(g) generated by all
elements in T'(g) of the form

oy - ()WY @z —[z,y] (8)

for z,y € g. As in the classical case the Poincare-Birkoff—-Witt theorem is
valid for U(g), indeed for g = go & g1 and if {(e;), i = 1,2,...n} is a basis
of go and {(v;), i =1,2,...m} is a basis of ¢g; then a basis of U(g) is given

by
k k
el . et Vi Uy 9)

where kq,...k, € Nand 1 <y <...,i; <m.
Let 1 be the identity of the enveloping superalgebra. Then the morphism
of degree zero g into U(g) ® U(g) given by

r—r®1+1Q®x (10)
extends to a morphism of degree zero
Ao:U(g) — Ulg)®@Ulyg). (11)

We note that for a bisuperalgebra A = Aq@® A1, the coproduct preserves the
parity; namely, one has

A:A — AQA
A:A0—>A0®A0+A1®A1
A:Al —)A0®A1+A1®A0.

The antipode of the enveloping superalgebra is defined as an homogenous
bijective map of degree zero

So:U(g) — Ulg) (12)
such that for any x € ¢ we have
So(z) = —=x (13)
and for u,v € U(g) we have

So(uv) = (=)' Sp(v) So (u) - (14)
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Now let r € ((go ® go) ® (91 ® g1)) be a solution of the super classical
Yang-Baxter equation.
[r,7] =0. (15)

Then the Lie bisuperalgebra structure on g is given by the superalgebra
1-cocycle

b:9 — g®g,
z — (ady; @ 1+ 1® ady)r, (16)

where ad; stands for the adjoint representation and the super Poisson—Lie
structure on Lie supergroup G is given by [32]

{9} = (-1l (XT(9) XT(9) — X}($) X (%)), (17)

1,J

where X! = (R,).X; and X} = (L,).X; are the right and left vectors fields
on the supergroup G, (X;) is a basis of g with (Ry). and (L), the derivative
maping corresponding to the right and left translation respectively .

If we denote by R(G)(L(G)) the set of all right(left)-invariant vector
fields on G, then using elementary properties of derivative mapings [33] one
may show that each of L(G) and R(G) is a vector superspace with a bracket
operation that satisfies the super Jacobi identity. Since every element of
L(G) or R(G) is completely determined by its value at the identity element
of G it follows that L(G) and R(G) are isomorphic to the Lie superalgebra
(the tangent space to G at the identity (e)).

Such morphisms can be extended to graded algebra morphisms

U(g) — D'(@), (18)
A — A, (19)
U(g) — D'(G), (20)
A — AT, (21)

where D'(G) and D'(G) are respectively the superalgebra of left-invariant
differential operators and the superalgebra of right-invariant differential op-
erators, such that the action of U(g) on F(G) will be given by

(X,Y'(¢)) = (XY.9), (22)
(X, Y"(¢)) = (=)MSo(v) X, ). (23)

We now make the following definitions
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Definition 4 A super star product on the Poisson Lie supergroup is a bi-
linear map
F(G) x F(G) — F(G)][[h]],

($sp) — xip=>_ W Ci(, ) (24)
J

such that

(i) when the above map is extended to F(G)[[h]], it is formally associative

(px1p) xx = (¢ *x) (25)

(i) Co(¢, ) = p.4p = (—1)I¥l¥lyp.¢

(iv) the two-cochains Ck (¢, ) are bidifferential operators , homogeneous of
degree zero on F(Q) .

The problem is to get a super star-product on G such that the compatibility
relation

Ag x9) = (A(4) x A(¥)) (26)

is satisfied. The super star-product on the right side is canonically defined
on F(G)® F(G) by

($@9)+ (¢ @) = (~D)PI (gx ¢) @ (9 +¢). (27)

Remark: If all C} are a left (right)-invariant even bidifferential operators
then the corresponding super star product is called left (right)-invariant.

Definition 5 Two super star-products x1 and *o defined on the supergroup
G are said to be formally equivalent if there exists a series

o
T=id+» hT;, (28)
=1

where the T; are even differential operators, such that

T(¢p*19) =T(¢) x2 T(¢). (29)
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Thanks to the morphisms(16),(18), we see that if C; is a left-invariant even
two cochain then there is an homogeneous element of degree zero F; €
U(g) ® U(g) such that:

Ci(¢.9) = Fi(p @ ). (30)

Similarly for the right invariant even two cochain there exists an homoge-
neous element of degree zero H; € U(g) ® U(g) such that:

Ol ) = Hi($ @ ). (31)

If we introduce the two homogeneous elements of degree zero of U(g) ®
Ulg)[[R]]

F=1+) Fh',
i>1

H=1+> H;i/
i1

then we obtain the following result

Proposition 1 The associativity of the left-invariant super star-product im-
plies
(A ®id)F(F®1)=(1® Ay)F.(1® F) (32)

and the associativity of the right-invariant super star-product leads to the
following equality
(S5 (H) ®1).(A ®id) S (H) = (1 ® S5°(H)).(1 ® Ap)Sg(H) . (33)

Proof: writing the right-invariant super star product in the following form

(¢ ) =m(H (¢ ©¢)),

where H =1+ %7’ + %:QHZhZ
Z_
we have for any homogeneous element X in the enveloping superalgebra,

X, 9" (¢ %" x))

X, m(id @ m)((id ® Ag)H" . Hys(d @ 1 ® x)))

(1d ® Ag) Ag(X), (id ® Ag) H".Hi3(¢ ® Y ® X))

(1@ (S5%)H (id ® A)((S5?)H)(id ® Ag) Ao(X), (¢ @9 @ X)) -
(34)

N~~~
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Similarly, we have

(X, (¢ " ) +" x)
= (((5§) ® 1) H (A @ id)((S5*) H) (Ao @ id) Ap(X), (¢ ® ¥ @ X))
(35)

so, from (34) (35) we deduce easily the result (33).
An analogous proof establishes the left-invariant case.

Proposition 2 Assume that F is a left-invariant super star product on the
supergroup G, then SSQ?(F) 1§ a right-invariant super star product on the
supergroup G.

Proof: by applying the operator (So®Sy®Sp) to the equation (29) and using
the fact that (Sp ® Sp) o AgY = Ag o Sp, we find obviously the equation(30).

The super star product on the Poisson-Lie supergroup will be given by
the following expression

¢+ 1p = p((S*)HF)F (g @), (36)

where p is the usual mutiplication on the superalgebra of smooth functions
on the supergroup. In fact, the product defined in this way is associative

(@) xx = ((ST%) " (F)"F'(u ((ST*) " (F~)".Fl(¢ @ ¥)) ® X))
= p(p@id)((Ao ®1) ((Sg) " (F 7)) (Ao @ F. ((S7*) HEF 1) ©1).
(Flo1)(¢®9 @ X))
= p(p®id)((Ao ®id) (S HF 1)) . ((S$*) HF ) ®1) (A ®id)F.
(Flo1)(¢®y @ X))
= p(p®id)((id® o) (S (FT)).(1® (S§2) 7 )FT) . (ide A)F'
(1o F)(¢®y¢eyx)
= w(id® p)((id @ Ag) (SEH) 1 (F-1Y).(1® (S82) )YF 1) (id® Ag)F'
(1 F)(¢®9@X)
= wid® p)((id ® Ao) ((SE)~1 (F~1Y) (id ® Ag)F'.(1 & (S£2) ™" (F1Y").
(1o F)(¢®yex)
= u((SF*) T EHF (@ p (S5 EFT)F (Y @ x)))
= ¢x(¥*X).
For the compatibility relation, the proof is a graded version of the proof
given in [23].

Actually a super star-product does not only define a deformation of the
superalgebra of the super smooth functions on the supergroup F(G) but also
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of a quotient superalgebra F.(G) defined as the set of element of F(G) in a
neighbourhood containing the identity of G modulo the equivalence relation

p~p if (X,¢—) =0 foranyX € U(g),

where (,) is the pairing between F.(G) and U(g) .
Let us recall now that two bialgebras U, A are said to be in duality if
there exists a doubly nondegenerate bilinear form

(L):UxA— C,{,): (u,a) — (u,a),u € U,a € A
such that for any u,v € U and a,b € A we have:

(u,ab) = (As(u),a®Db),
(uv,a) = (u®w,Ay(a)),
(ly,a) = eala),(u,ly) =cp(u).

All this extends to bisuperalgebras [5]. The only subtlety is that the tensor
product is also graded, and, if (using Sweedlers notation) Ay (u) = > u1 ®
ug, Aa(a) =Y a1 @ ag, then

(u,ab) = (1)1 "(uy, a)(us, b)
(wo,a) = (1) "y, a1) (v, as) .

The duality between bisuperalgebras may be used to obtain the unknown
superalgebra from a known one if the two are in duality. So, the deformation
we talk about is a deformation of the F.(G) as a bialgebra ; this allows
us to provide by the duality the deformed superalgebra F(G)[[h]], where
F’;(G) is the set of distributions on G with support at the unit element (e).
Indeed, as in the case of ordinary Lie groups, the set of distributions on G
with support at the identity element is the enveloping superalgebra of the
Lie superalgebra of the Lie supergroup, and we deduce that a super star
product provide a deformation of the enveloping superalgebra.

The super quantized enveloping algebra U(g)[[h]] is endowed with the
structure of a Hopf superalgebra, where the multiplication superalgebra is
the ordinary convolution on F;(G) and the coproduct Ag is given by [34]

(Ar(X), ¢ @) = (X, d*9) (37)
for all p,9p € F.(G), and X € U(g).
In fact using the equations (19),(20) we obtain:
(Ap(X), ¢ @) = (X, u((STH) " (F~).Fl( @ 4)))
= (A(X), (S5*) M (F ) FU (¢ @ ) = (F1.40(X).F, (¢ @ 9)),
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and this implies
Ap(X) = F71.Ay(X).F. (38)

For the antipode of the super quantized enveloping algebra, we recall
first that the antipode Sy of U(g) satisfies the following equation

m(So ®id) Ag(X) = m(id ® So) Ag(X) = £(X)1, (39)

where m is the usual multiplication on the super enveloping algebra U(g).
F and F~' can be respectively split as

F:Zak®bk, F_lzzck®dk
k k

and if setting u = m(id ® So)(F~!) as an invertible homogeneous element
of U(g)[[h]] of degree zero, then we can easily show that the antipode of the
super quantized enveloping algebra U(g)[[h]] is given by:

Sp(X) = U.SO(X).U_l , (40)

where u™! = m(Sy ® id)F .
We will give the proof for the simple case when

| ar |=| bk [=| ek |=[ di |[= 0
since for other cases the generalization is obvious. In fact

m(Sp @id)Ap(X) = m(uSou ! @ id)(F L1 A¢(X)F)

= Y uSo(ai)So(X})So(c;)u™"d;j Xb;
4,5,k

with Ag(X) =, X} ® X}/ . Owing to the fact that Sy satisfies the equa-
tion (39) and that

> Solej)u"dj =m(So ®id)(F.F~") =1
J

we obtain that

m(Sp @ id) Ap(X) =Y uSo(a;)bie(X)1 = e(X)1.

i
Similarly, we can prove that:

m(id @ Sp)Ap(X) = e(X)1.
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Now if we define the following even element, as Drinfeld does in [35] for
the non graded case

Rp = F;'.F, (41)
where Fy = T.F15.T, then we can easily show that Rp defines a quasitri-
angular structure on the super quantized enveloping algebra U(g)[[h]].

In fact, applying the operator T23T'3 to the equation (32) and using the
fact that AgP =T o Ay we obtain the following relation

F (Ao ® id)RpF'? = (Rp)13.(Rr)a3
which implies that
(Ar @ id)Rp = (RF)13-(RFr)a2s - (42)
Similarly, applying T'2T23 to the same equation(29), we obtain
(id® Ap)Rp = (RF)13.(RF)12 - (43)
From the fact that ¢ x 1 =1x ¢ = ¢ for all ¢ € F(G), we deduce that
(id@e)F = (e ®id)F =1; (44)

consequently
(e®id)(Rp) = (id®¢)(Rp) =1 (45)

and from the definition(41) we deduce that
(Rp)o1.Rp = 1. (46)
Using again the expression (38) we obtain that

(AR)® = T(Ap) =T(F~').A0.T(F)
= T(F Y).F.A.FL.T(F)

then
(AF)OP = RFAF(RF)fl (47)

From (42) and (47), we see that Rp satisfies the super quantum Yang—Baxter
equation

(Rr)i2-(Rr)13.(RF)23 = (RF)23.(Rr)13-(RF)12- (48)
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3.2. Representation of the super quantum Yang-Bazter equation

Consider a graded space W (/™) consisting of n bosons and m fermions.
Let p be a representation of the Lie superalgebra g on Wn/m) then

R=(p®p)(Rr) € (W™ gw/m)
satisfies the super quantum Yang-Baxter equation
R13.R13.R23 = Ry3.R13.Ry3. (49)
If we choose {w;} as a basis of W (/™) where

|w; | = Ofor i=1,2,...,n,
|w;| = Mfor i=n+1,n+2,...,n+m

then the equation (46)can be rewritten as:

(1)l ) Al +nl-lel+17) gab_pie pren

— (_1)|m|(\k|+\f|)(_1)Ia\(|b|+\0|+\m\+|k\)R%k‘R?J{C‘R%’ (50)
where | 7 |=| w; |, and if we introduce the matrix S = PR , where P is the

super permutation operator on the tensor vector space W (/™M) g W (n/m)
with § o
Pl = (15
then S satisfies
(_1)\a|(\b\+|0\\J’IHHI)(_1)Idl(\m\+|m|+\n|+\6l+\f|)5%r557ﬂ;z.Sg}n
= (_1)\1\(|j\+|0\\MHIf\)Slajb_SrJ;f_Sg? (51)
which can be rewritten in a compact form as

(S ®id).(id ® S).(S ® id) = (id ® S).(S ® id).(id ® S). (52)

This gives rise to a representation of the symmetric group S,.

3.3. Equivalents super star products on a supergroup

Let F and F be two super star products i.e., two homogeneous el-
ements of degree zero of the Hopf superalgebra (U(g)[[h]] and let A =
U((9)llh]], Ar, Rr, Sp) and A = (U((9)[[h]], Ar, Rf, Sr) be the resulting
quantum supergroups, where

Ap = F.AGF™', Rp=Fy'F
Ap = F.Ao.pfl, Ry = 72_1.F
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then it is easily seen that A can be obtained from A by applying the twist
F =F~1F. In fact

A

AF‘ :F.AF.Ffl (53)

and A A
Ry = F51.Rp.F. (54)

If the two star product are equivalent 4.e. the corresponding elements F and
F' are related by the following expression

F=AyEY.F(EQE) (55)

for some invertible homogeneous element E of degree zero of U(g)[[h]], then
the coproduct Az can be rewritten as

Ap(X)=(ET'@ EYAR(EX.EY.(E®E). (56)
Similarly, the quasitriangular structures are related by
Rr=(E"'® E"").Rr.(EQE). (57)
And the two twisted antipodes are related by the following expression
Sz =FE'Sy(E1).8r.50(E).E. (58)

Then the inner automorphism of degree zero of the superalgebra struc-
ture E(.)E~! defines now a Hopf superalgebra isomorphism of degree zero.
Finally, from (53) we see that the induced isomorphism of degree zero maps
the quasitriangular structures into each other as well.
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