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THE LINEAR POTENTIAL AND HARMONICOSCILLATOR IN RELATIVISTICQUANTUM MECHANICSTh.W. RuijgrokInstitute for Theoretial Physis, RijksuniversiteitPrinetonplein 5, P.O. Box 80.006, 3508 TA Utreht, The Netherlands(Reeived April 27, 2000)It is a nontrivial problem to formulate a Poinaré invariant quantumtheory, that desribes the binding of two partiles in a on�ning potential.Four attempts at suh theories are disussed and subsequently used toalulate the spetrum of two partiles, whih are bound in an harmoniosillator potential or in a linear potential. These theories are desribed bythe following equations1. The so alled �Relativisti Shrödinger equation�.2. The Klein�Gordon equation.3. The Dira equation.4. RQM (Relativisti Quantum Mehanis), the author's private theory,whih is of the �quasipartile� type.For eah of these theories the Regge trajetories are alulated, both forthe linear and for the harmoni potential. Sine in RQM the interationpotential is the arrier, not only of energy, but also of momentum and heneof angular momentum, the Regge slopes di�er from their usual values.Along the way it is shown how on�ning potentials an be handled in atheory whih is formulated in the momentum representation, in spite ofthe fat that their Fourier transforms do not exist. For other quasipartiletheories the spetrum of the relativisti harmoni osillator has not beenalulated.PACS numbers: 03.65.Pm, 11.30.Cp1. IntrodutionIn nonrelativisti quantum mehanis it is possible to separate the mo-tion of the entre of mass from the relative motion. For two partiles oneis then left with the Shrödinger equation for a single partile, in whih themass is replaed by the redued mass.(1655)



1656 Th.W. RuijgrokFor relativisti theories this separation presents a problem. The Rel-ativisti Shrödinger equation, the Klein�Gordon equation and the Diraequation are single partile equations from the start. Although they have aertain relativity �avour, they annot be derived from a Poinaré invarianttwo-body equation. Some quasipotential theories do better in this respet.A partiular one, using Dira's point form [1℄, was onstruted by the au-thor [2℄. In the following it will be referred to as RQM for RelativistiQuantum Mehanis.The main purpose of the present paper is to demonstrate that this RQMis well suited for alulating the spetrum of two bound partiles. In parti-ular the linear potential, but also the harmoni osillator, will be treated indetail.In [3℄ it was pointed out that the slopes of the linear Regge trajetories,as alulated by any of the three (stati) theories, deviate from the valuesexpeted from QCD. The authors asribe this disrepany to the nonloalharater of the e�etive interation, whih they then try to explain byassigning an extra rotational degree of freedom to the gluon string betweenthe onstituent quarks.In RQM, to be presented in Setion 5, the potential, being de�ned in themomentum representation, is also nonloal. As a result we will �nd Reggeslopes whih in some ases di�er from the ones obtained with the statitheories. Moreover, it will be shown that the deviations our beause of amodi�ation of the entrifugal term in the potential. This suggests a relationwith the e�et found in [3℄.In order to make this paper self ontained, we �rst disuss the statitheories in Setions 2, 3 and 4. The results are not new, but the methods toderive them may be of some interest. They are essential for understandingthe alulations of Setion 5.In the remaining part of this �rst setion we show how to derive nonsin-gular equations in the momentum representation. We also brie�y reall theBohr�Sommerfeld quantisation rule, whih will be used extensively.1.1. Harmoni potentialSine RQM is formulated in the momentum representation, it will beneessary �rst to show how we handle the singularities onneted with thenonexistene of the Fourier transform of the potential. The method to beused will be demonstrated by applying it to the nonrelativisti Shrödingerequation �� ~22m �+fW (r)�  (~r) = E  (~r) : (1)



The Linear Potential and Harmoni Osillator in : : : 1657To begin with we will onsider the harmoni osillator potentialfW (r) = 12m!2r2 : (2)In terms of spherial waves (~r) = �l(r)r Ylm(�; ') (3)Eq. (1) beomes� ~22m ��00l (r)� l(l + 1)r2 �l(r)�+fW (r)�l(r) = E �l(r) : (4)Introduing dimensionless variablesy = rrm!~ and " = 2E~! ; (5)this an be written asd2 �ldy2 � l(l + 1)y2 �l � y2 �l = �" �l : (6)The well known spetrum is"nl = 4n+ 2l � 1 or Enl = (2n+ l � 12) ~!with l = 0; 1; : : : and n = 1; 2; : : : : (7)So far this is the standard treatment of the harmoni osillator in theoordinate representation.In momentum spae it an most easily be desribed by replaing �r2=~2in Eq. (2) by the Laplae operator in momentum spae �p and onsidering�~2� in (1) as multipliation by p2. In this way one �nds for the wavefuntion �(~k) = 1(2�)3=2 Z e�i~k�~r  (~r) d~r (8)the following equation (from now on units are suh that ~ = 1)k22m�(~k)� 12m!2��(~k) = �22m�(~k); with E = �22m : (9)In terms of spherial waves�(~k) = Hl(k)k Ylm(�; ') (10)



1658 Th.W. Ruijgrokthis reads d2Hldy2 � l(l + 1)y2 Hl � y2Hl = �" Hl ; (11)with the new dimensionless variablesy = kpm! and " = �2m! : (12)Eq. (11) is the same as Eq. (6) and the spetrum is again given by Eq. (7).1.2. General on�ning potentialFor a more general potential the Shrödinger equation in momentumspae takes the form of an integral equation(k2 � �2)�(~k) + 2mZ W (~k0 � ~k)�(~k0) d~k0 = 0 ; (13)with W (~q) = 1(2�)3 Z e�i~q�~rfW (r) d~r : (14)Sine the Fourier transform of the harmoni potential (2) does not exist, we�rst replae it by gWR(r) = m!2R2 �1� e� r22R2 � ; (15)and only at the end of the alulation the limit R !1 will be taken. TheFourier transform (14) of this potential is equal toWR(~q) =W (1)R (~q) +W (2)R (~q) ; (16)with W (1)R (~q) = m!2R2 Æ(~q) and W (2)R (~q) = �m!2R5(2�)3=2 e� 12 q2R2 : (17)Substitution into Eq. (13) gives� k22m +m!2R2� �(~k)� m!2R5(2�)3=2 Z e� 12 j~k0�~kj2R2�(~k0) d~k0 = �22m�(~k) : (18)For large values of R the main ontribution to the integral omes from valuesof ~k0 lose to ~k: It an therefore be evaluated by expanding the wave funtionas�(~k0) = �(~k)+Xi (k0i�ki) ���ki + 12Xi;j (k0�{�ki)(k0j�kj) �2��ki�kj + : : : : (19)



The Linear Potential and Harmoni Osillator in : : : 1659The remaining integrations an easily be performed, leading to� k22m+m!2R2��(~k)�m!2R5 � 1R3�(~k)+ 12R5��(~k)+O� 1R7�� = �22m�(~k) :(20)The terms of O(R2) anel, so that the �nal equation is again the same asEq. (9).For the harmoni osillator we therefore have sueeded to write theeigenvalue problem (13) in the form of a nonsingular di�erential equation.1.3. Linear potentialFor other on�ning potentials Eq. (13) will in general not take the formof a di�erential equation, so that it must still be shown how to remove thesingularity.For that purpose we take a linear potential fW (r) = �r as an example.This potential is onsidered as the limit offW�(r) = ��(1� e�� r) for �! 0 : (21)Its Fourier transform an again be alulated expliitly and is equal toW�(~q) = ��Æ(~q)� ��2 1(q2 + �2)2 : (22)The integral equation (13) then takes the form(k2 � �2 + 2m�� )�(~k) = 2m��2 J�(~k) ; (23)in whih J�(~k) = J reg� (~k) + J sin� (~k) is the sum of a regular and a singularintegral, de�ned by J reg� (~k) = Z �(~k0)� �(~k)����~k0 � ~k���2 + �2�2 d~k0 (24)and J sin� (~k) = �(~k)Z d~k0����~k0 � ~k���2 + �2�2 = �2� �(~k) : (25)



1660 Th.W. RuijgrokThis latter integral, whih approahes in�nity when � ! 0; is aneledagainst the term 2m�� �(~k) in the left-hand side of Eq. (23). In order to showthe existene of the limit of J reg� (~k) when � ! 0; the ontribution of all ~k0for whih the length of the vetor ~q = ~k0 � ~k is less than � is onsideredseparately. In this region the funtion �(~k0)� �(~k) an be approximated bya power series in the omponents of ~q: After integrating over all diretionsof ~q one is left with2���(~k) �Z0 q4(q2 + �2)2 dq = 2���(~k)� 1Z0 x4(1 + x2)2 dx ; (26)whih tends to zero when �! 0:Finally Eq. (23) takes the form(k2 � �2)�(~k) = 2m��2 �Z �(~k0)� �(~k)���~k0 � ~k���4 d~k0 : (27)Beause of the spherial ~k0 integration around ~k; indiated by R �, this inte-gral equation is nonsingular, whih we set out to prove.For a linear and harmoni potential we have now written the Shrödingerequation as a nonsingular integral equation in momentum spae. For arbi-trary on�ning potentials, however, this redution must still be handled onan individual basis.For the numerial alulation of the spetrum of the Shrödinger equa-tion for a linear potential, an expansion in partial waves is more onvenient.With the same subtration method as used above, I �nd for the eigenvalueequation of a spherial wave amplitude�k2 � �2 + 2m��k � �l(k) + 2m��k2 1Z0 �Q0l(z)�l(k0) + k2�l(k)(k0 � k)2 �P dk0 = 0 ;(28)in whih Ql(z) is a Legendre funtion of the seond kind with argumentz = 12 (k0=k + k=k0): The integral is not singular in the point k0 = k: Byusing a symmetri integration, indiated by P; the numerial integration isspeeded up, however. The same equation (28) has been found by a numberof authors, among them Maung et al. [4℄ and Hersbah [5℄.Eq. (28) is not very useful for alulating the spetrum for large angularmomenta, but will be important for the onnetion with the relativistitheory.



The Linear Potential and Harmoni Osillator in : : : 1661In order to establish the asymptoti behaviour of the spetrum for thepresent nonrelativisti ase it is better to start from the oordinate repre-sentation and use the Bohr�Sommerfeld quantisation rule. This method willalso be useful when onsidering other theories.1.4. The Bohr�Sommerfeld methodBy takingfW (r) = �r in Eq. (4), the eigenvalue equation for the spherialamplitudes beomes�d2�ld�2 +�� + l(l + 1)�2 ��l = �l �l ; (29)in whih we have introdued the following abbreviations� = (2m�)1=3r and E =m� �22m4�1=3 �l : (30)For l = 0 the exat solution of Eq. (29) is given by the Airy funtion Ai(���0)and the possible values of �0 are the zeros of Ai(��0): The ground state has�0 = 2:338 : : : : (31)However, for arbitrary values of l it is not possible to give a losed form forthe eigenvalues �nl:In the Bohr�Sommerfeld approximation the values of �l should be foundby solving the equation�+Z�� s�l � � � l(l + 1)�2 d� = �n+ 12�� : (32)The lassial turning points are denoted by ��and �+: With� = �lx and � = l(l + 1)�3l and �� = �lx� (33)this beomes x+Zx� r1� x� �x2 dx = (n+ 12)�3=2l � : (34)



1662 Th.W. RuijgrokThe left-hand side is an ellipti integral, whih for eah value of � anbe alulated numerially. However, in order to get an analyti expressionin �; it is more onvenient to replae it by an approximation, whih in thelimit l!1, beomes exat.De�ne x and � as the values of x and � for whih the funtion x2� x3is tangent to the line � = st: These values are easily found to bex = 23 and � = 427 : (35)We now expand around this pointx = x + y and � = � � � ; (36)and assume that in the whole integration region jyj � 1: For large l thisassumption will turn out to be orret. The integral in Eq. (34) now beomeselementary. The remaining algebra is trivial and eventually leads to thefollowing expression for �l�l = 322=3 l2=3 �1 + 2p3 nl + � � �� for large l and �xed n : (37)From Eq. (30) we see that the ensuing Regge trajetories are not straightlines. E2nl = 94 � �22m�2=3 l4=3 �1 + 4p3 nl + : : :� : (38)Moreover, for eah l the distane between any two neighbouring levels hasthe same value, whih inreases with l like l1=3:2. The Relativisti Shrödinger equationFormally the Relativisti Shrödinger equation is de�ned by the two-partile HamiltonianH =q~p21 +m21 �m1 +q~p22 +m22 �m2 +fW (j~r1 � ~r2j) : (39)Sine for this equation the separation of the entre of mass motion is im-possible, one only onsiders the ase of vanishing total momentum, i.e. , ~p1= � ~p2 = ~p: It is not known, however, how to onstrut the boost operatorfor this two-partile system. Thus one annot transform to arbitrary mo-mentum and the Relativisti Shrödinger equation annot be onsidered tobe a proper Lorentz invariant theory.Ignoring this fat, one an only hope that in some sense it will be a goodapproximation of a orret theory. In partiular one an study the ase in



The Linear Potential and Harmoni Osillator in : : : 1663whih the mass of one of the partiles approahes in�nity. Then Eq. (39)simpli�es and the Relativisti Shrödinger equation takes the formhp~p2 +m2 �m+fW (r)i  (~r) = E  (~r) ; (40)where m is the mass of the other partile and ~r is the relative distane.2.1. Harmoni potentialFor the harmoni osillator fW (r) = 12m!2r2 it an again be written inthe momentum representation by writing r2 as ��: In this way Eq. (40)beomes hpk2 +m2 �m�Ei �(~k) = 12m!2��(~k) : (41)For spherial waves �(~k) = Hl(k)k Ylm(�; ') (42)the eigenvalue equation ishpk2 +m2 �m�Ei Hl(k) = 12m!2 �d2Hl(k)dk2 � l(l + 1)k2 Hl(k)� : (43)A simple numerial alulation using the Numerov method gives themass spetrum Mnl = m + Enl: For n = 1; 2; 3 and for g � ~!=m2 = 1,I have plotted the square of this mass versus l: These three lowest Reggetrajetories (�gure 1) show a slight upward urvature.
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Fig. 1. Regge trajetories for Relativisti Shrödinger equation with harmoni po-tential.



1664 Th.W. RuijgrokFor �xed n and l!1, the asymptoti behaviour of this mass spetruman be obtained by using the Bohr�Sommerfeld quantisation rule. The resultisM2nl ' 94(~!)4=3(m2)2=3l4=3 �1 + 4p3 nl +O(l�2)� for large l and �xed n :(44)This on�rms the upward bending and the slow separation of the Reggetrajetories as seen in �gure 1.In the high energy limit k � m Eq. (43) has the same form as thenonrelativisti Shrödinger equation in the oordinate representation for alinear potential fW (r) = �r: This explains why the Regge trajetories for thetwo ases have the same l and n dependene, as is seen by omparing theequations (38) and (44). 2.2. Linear potentialThe Relativisti Shrödinger equation with a linear potential an againbe put in the form of Eq. (27), but with k2=2m in the �rst term replaedwith "(k) = pk2 +m2 and �2=2m with "n: So["(k)� "n℄ �(~k) = ��2 �Z �(~k0)� �(~k)���~k0 � ~k���4 d~k0 : (45)However, in order to �nd the asymptoti behaviour of M2nl, the simplestmethod is again to apply the Bohr�Sommerfeld method to Eq. (40), butnow with fW (r) = �r: This amounts to alulating the integral for the ationvariable assoiated with the radial variableJr = 1� r+Zr� r("n � �r)2 �m2 � l2r2 dr (46)between the lassial turning points r� and r+: The energy spetrum "nl isgiven by requiring that Jr = n+ �4 : (47)In this ase we have added the ustomary term �4 ; in order to allow a om-parison with numerial alulations for small values of l and n. This Maslovindex � should be hosen so as to guarantee the orret behaviour of thephase of the wave funtion in the turning points. For the linear potential� = �1: See Ref. [6℄.



The Linear Potential and Harmoni Osillator in : : : 1665For high energies the integral (46) an be written asJr = "2n�� x+Zx� r(1� x)2 � �2x2 dx ; (48)with r = "n� x and � = �l"2n and x� = 12(1�p1� 4�) : (49)A numerial alulation shows that the integral in Eq. (48), plotted in Fig. 2an, to a very good approximation, be represented by a linear funtion of �:Therefore Jr ' 2"2n�� �14 � �� : (50)With this expression one eventually derives from Eq. (47) that"2nl ' 4�l + 2��n� �2� : (51)This formula is in very good agreement with Eq. (2.8) of [7℄, whih wasderived by interpolation of the exat values for l = 0 � 3 and n = 1 � 5.It shows that, for a linear potential, linear equidistant Regge trajetoriesan be obtained from the Relativisti Shrödinger equation, whih was notpossible with the nonrelativisti theory.
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Fig. 2. The integral in Eq. (48) as a funtion of �At this point I want to make a remark about the oe�ient 2�� in frontof n in equation (51). For high energies, i.e., for large values of l, thisoe�ient is inorret.



1666 Th.W. RuijgrokThis an be seen by writing the integral in Eq. (48) in the formI(�) = �Z�� q(12 � �2 � y2)(�2 � y2)12 + y2 dy ; (52)where y = x� 12 and �2 = 14 � � : (53)Using Eq. (50), it follows from the fat that Jr is �nite (Eq. (47)), that � isvery lose to 14 , and that therefore �� 1. In this limit the integral beomesI(�) ' p2 �Z�� p�2 � y2p2�14 � �� : (54)This means that instead of Eq. (51), one obtains for the orret asymptotibehaviour of the Regge trajetories"2nl ' 4�l + 4p2� �n� 14� : (55)An exat alulation of low lying states may therefore be misleading, whenused as an indiation of the n�dependene of the energies of states withhigh angular momentum.3. The Klein�Gordon equationA relativisti spinless partile, oupled to another partile with in�nitemass, is usually desribed by the Klein�Gordon equation���+m2 + U2(r)� (~r) = (E �fW (r))2 (~r) ; (56)in whih U(r) and fW (r) are the potentials for respetively the salar- andvetor-oupling. The physial relevane of this equation is in doubt, however,beause even when both U(r) and fW (r) are on�ning potentials, Eq. (56)may not have stable solutions.The �rst di�ulties with the Klein�Gordon equation are enounteredwhen, as in the nonrelativisti Shrödinger equation, one tries to prove theorthogonality of the eigenfuntions and the reality of the eigenvalues. Start-ing from Eq. (56) one easily proves that for two eigenfuntions  n(~r) and m(~r) and their orresponding eigenvalues the following relation is valid(E2m �E�2n )Z  �n(~r) m(~r) d~r = 2(Em �E�n)Z  �n(~r)fW (r) m(~r) d~r : (57)



The Linear Potential and Harmoni Osillator in : : : 1667Taking m = n this shows that the eigenvalues are not neessarily real.Moreover, eigenfuntions belonging to di�erent eigenvalues are not alwaysorthogonal.The problems with the possible instability of bound states are illustratedby taking a linear potential both for the salar and for the vetor ouplingsU(r) = �1r and fW (r) = �2r : (58)For spherial waves the Klein�Gordon equation then beomesd2�l(y)dy2 = � l(l + 1)y2 + 1 + g21y2 � ("� g2y)2� �l(y) ; (59)with y =mr; g1 = �1m2 ; g2 = �2m2 and E = m" : (60)In the limit y !1 Eq. (59) beomesd2�l(y)dy2 = (g21 � g22) y2 �l(y) for large y : (61)From this equation we see immediately that bound states an exist only wheng22 < g21 : When the vetor oupling is stronger than the salar oupling thesolution beomes osillatory and there will be no stable bound states.For a number of other theories this is e�et is disussed in [8℄. For thepure vetor potential, i.e., when U(r) � 0; the onnetion with the Kleinparadox was explained by Fulling [9℄, who found omplex eigenvalues for apartile in a square well potential.We therefore restrit ourselves to vanishing vetor potentials, in whihase problems of this kind do not our.3.1. Linear potentialFor a linear potential U(r) = �r Eq. (56) redues to the nonrelativistiShrödinger equation with an harmoni interation� p22m + �22mr2� (~r) = E2 �m22m  (~r) : (62)From the known eigenvalues one then obtainsE2nl = m2 + 2� �l + 2n� 12� ; (63)whih again desribes linear equidistant Regge trajetories.



1668 Th.W. Ruijgrok3.2. Harmoni potentialFor the harmoni interation U(r) = 12m!2r2 the Klein�Gordon equationtakes the form of the Shrödinger equation� p22m + V (r)� (~r) = E  (~r) ; (64)for an anharmoni osillator withV (r) = 18m!4r4 and E = E2 �m22m : (65)Applying again the Bohr�Sommerfeld quantisation rule for states with highangular momentum, the ation integralJr = 1� r+Zr� r2m(E � V (r))�m2 � l2r2 dr (66)an be alulated and is found to be equal toJr = 33=4211=4 m!"1=40 � 83"0 ("� "0)2 + 323 ("� "0)� ; (67)with "0 = 327=3 (!lm )4=3 and " = Em : (68)The spetrum is then determined by putting Jr = n: This �nally givesM2nl ' 324=3 (~!)4=3(m2)2=3l4=3 "1 +r23 nl +O(l�2)# (69)for the squared masses of an harmoni osillator as desribed by the Klein�Gordon equation. Apart from the numerial onstants, this is the same asEq. (44), obtained when using the Relativisti Shrödinger equation. Forthe latter the Regge trajetories are steeper and more widely separated.4. The Dira equationFor the Dira equation the orthogonality of eigenfuntions and the realityof the eigenvalues an be proved in the standard way, so that the objetionsagainst the Klein�Gordon equation about this point do not exist.However, sine the work of Plesset [10℄, it is known that bound statesof the Dira equation with a on�ning potential and pure vetor oupling,



The Linear Potential and Harmoni Osillator in : : : 1669annot exist.We therefore onsider only salar ouplings and take the linearand harmoni potentials as examplesU(r) = �r or U(r) = 12m!2r2 : (70)4.1. Redution of the Dira equationIn a standard way the two-omponent wave equation for spherial wavesan be derived dF (y)dy = �ky F (y) + (W (y) + ")G(y) ;dG(y)dy = ky G(y) + (W (y)� ")F (y) : (71)Here the following abbreviations have been introduedW (y) = 1 + gy or W = 1 + 12g2y2 ; y = mrg = �m2 or g = !m ; " = Em (72)and k = j + 12 if l = j + 12 and k = �(j + 12) if l = j � 12 : (73)De�ning P (y) and Q(y) byF (y) = y�kP (y) and G(y) = ykQ(y); (74)Eq. (71) beomes dP (y)dy = (W + ") y2kQ(y) ;dQ(y)dy = (W � ") y�2k P (y) : (75)The funtion Q(y) an be eliminated and this then leads tod2P (y)dy2 = (W 2 � "2)P (y) + 2T (y)dP (y)dy ; (76)in whih T (y) = 12(W + ") dWdy + ky : (77)



1670 Th.W. RuijgrokThe �rst derivative in Eq. (76) an be eliminated by writing P (y)=S(y)R(y),in whih S(y) is a solution ofdSdy = T (y)S(y) : (78)This then leads to a nonrelativisti Shrödinger equation�d2R(y)dy2 + V (y)R(y) = "2R(y) (y � 0) ; (79)with the potential V (y) =W 2(y) + T 2(y)� dT (y)dy : (80)In the Bohr�Sommerfeld approximation the spetrum an be alulatedfrom y+Zy� p"2 � V (y) dy = �n+ 12� � ; (81)in whih y� and y+ are the lassial turning points, satisfying "2 = V (y�):4.2. Linear potentialFor high energies "� m the linear potential in Eq. (72) may be replaedwith W (y) = gy: The funtion T (y) then beomesT (y) = g2(" + gy) + ky (82)and from Eq. (80) we get for the potentialV (y) = g2y2 + 1("+ gy)2 �g2 �k + 34�+ gk "y�+ k(k + 1)y2 : (83)If � and x are de�ned by"2 = g � and y =r�g x ; (84)Eq. (81) an be written asx+Zx� vuut�2(1� x2)� "k + 34 + kx(1 + x)2 + k(k + 1)x2 # dx = �n+ 12� � : (85)



The Linear Potential and Harmoni Osillator in : : : 1671This is the equation from whih �(n; k) must be solved.For jkj � 1 we an neglet all terms between the square brakets, exeptthe term whih is O(k2): In this ase Eq. (85) beomesx+Zx� r�2(1� x2)� k2x2 dx = �n+ 12� � : (86)The integral an be evaluated in losed form (see Gradshteyn and Ryzhik2.267) and gives �2 �12 � jkj� � � = �n+ 12� � ; (87)so that �(n; k) ' 4n+ 2 + 2 jkj for jkj � 1 : (88)This �nally results inM2 ' m2"2 = m2g� = �� = 2� (2n+ 1 + jkj) = 2� �2n+ j + 32� ; (89)in agreement with [3℄ and with the numerial study made by Crith�eld [11℄.Eq. (89) should be ompared with Eq. (63), whih gives linear Reggetrajetories for a mass- and spinless partile, desribed by the Klein�Gordonequation with a linear salar oupling.4.3. Harmoni potentialIn spite of the fat that in the ase of pure salar oupling the eigenvaluesan be shown to be real, Ram and Halasa [12℄ found low eigenvalues with aomplex omponent for the Dira equation with an harmoni potential andsalar oupling. A new alulation of the spetrum showed that they missedthe �rst three states and that all energies are indeed real.For high energies " � m the harmoni potential in Eq. (72) may bereplaed with W (y) = 12g2y2:The funtion T (y) then beomesT (y) = g2y2"+ g2y2 + ky (90)and from Eq. (80) we get for the potentialV (y) = 14g4y4 + 3g4y2(2"+ g2y2)2 + g2(2k � 1)2"+ g2y2 + k(k + 1)y2 : (91)



1672 Th.W. RuijgrokDe�ning � and the new variable x by" = �g22 � 13 � and y = �4�3g4 � 16 x ; (92)the Bohr�Sommerfeld equation (81) takes the formx+Zx� s�3(1� x4)� � 3x2(1 + x2)2 + 2k � 11 + x2 + k(k + 1)x2 � dx = �n+ 12� � :(93)For high energies, i.e., for jkj � 1; this equation beomesx+Zx� r�3(1� x4)� k2x2 dx = �n+ 12� � : (94)Using the fat that jkj is large, the integral an be alulated and �(n; k)an be solved. Eventually the following expression is obtained for the squareof the masses:M2 = 324=3m2=3!4=3 jkj4=3 "1 + 2r23 (n+ 12 )jkj + � � �# : (95)This equation shows that, as for the Klein�Gordon equation and for theRelativisti Shrödinger equation, also for the Dira equation the Reggetrajetories are slowly separating, and not straight, but bending upwards.5. RQM5.1. ReapitulationSine all details of RQM were given in [2℄, a brief resumé should su�ehere.The problem is to onstrut a nontrivial representation of the generatorsP� and J�� of the Poinaré group, whih means that they should inludethe interpartile interation and satisfy the ommutation relations[P�; P� ℄ = 0 ; [P�; J��℄ = i(g��P� � g��P�) ;[J�� ; J�� ℄ = i(g��J�� � g��J�� + g��J�� � g��J��) : (96)Moreover, in the ase of two partiles, these P� and J�� should be operatorsating in the Hilbert spae spanned by a omplete set of free 2-partile states.



The Linear Potential and Harmoni Osillator in : : : 1673For a review of the attempts made to solve this problem, I want to referto the paper by Keister and Polyzou [13℄.In my opinion, however, all of these attempts, that insisted on the on-strution of the dynamial generators with a loal interation, lead to insu-perable problems. To quote Wigner [14℄:Finally, we had to reognise, every attempt to provide a pre-ise de�nition of a position oordinate stands in diret ontradi-tion with speial relativity.Another problem previous authors had to fae, arose from the fat thatthey hose either the instant form or the light front form, as de�ned byDira [1℄. In both ases the interation between partiles hanged at leastone of the J�� operators. This leads to very ompliated equations, whihan only be handled in an approximate way.In RQM both problems are irumvented. The Hilbert spae is spannedby the produts of states of a single partile with a given momentum. Theinteration, whih is then given in momentum spae, will turn out not to bestritly loal. It was shown , however, that this nonloality is not measurable[2, 15℄.The seond problem was avoided by using Dira's point form [1℄. Inthis ase the Lorentz generators J�� are una�eted by the interation, andonly P0 and ~P aquire extra terms. This means that the mediating potentialbetween the partiles arries not only energy, as in the nonrelativisti theory,but also momentum.In order to onstrut the operators P�; we �rst onsider the total four-veloity u = 1q1� j~vj2 (1; ~v) ; (97)where for two partiles the total 3-veloity is given by~v = ~p1 + ~p2p01 + p02 with p01 =qj ~p1j2 +m21 and p02 =qj~p2j2 +m22 : (98)The main assumptions of RQM now are1. The operators P� have nonvanishing matrix elements only betweenstates with the same 4-veloity.2. The kineti part of P� and the interation part of P� eah transformlike a 4-vetor under Lorentz transformations.



1674 Th.W. RuijgrokFrom this follows that P� must be of the formh�jP �j�i = [K�� +W�� L(3)(~v�; ~v�)℄u� with ~v� = ~v� = ~v ; (99)in whih K�� is given by the momentum of the free partiles andL(3)(~v�; ~v�) = (1� j~vj2)2 Æ3(~v� � ~v�) (100)is the Lorentz invariant propagator, whih ensures the onservation of thetotal 4-veloity. In [2℄ a detailed desription is given of how to onstrut thepotential W��, starting from the desired nonrelativisti limit.The generators P� and J�� onstruted in this way an then easily beshown to satisfy the ommutation relations (96).5.2. The equation and the potentialOn several oasions [2, 15℄ it was shown that the RQM-equation fromwhih the bound states and their masses should be alulated, is�pP 2� �Mn�  n� + �Z� fW�� L(3)(~v� ; ~v�) n� = 0 for ~v� = ~v : (101)Sine for two partiles the integration element is given by�Z� � � � = 4m21m22 Z dp1dp2 2Yj=1 Æ(p2j �m2j) �(p0j) : : : ; (102)it is lear that in the intermediate states � the partile masses do not goo� mass shell, but keep their free partile values, as in the nonrelativistitheory. This implies that the energy and also the momentum of the states �are allowed to di�er from their values in the state �.As an example we onsider the potential as derived from a one bosonexhange, as shown in �gure 3.This potential is given byV�� = 2�m1m2�2(t� �2) ; (103)in whih t is the usual Mandelstam variablet = q1 � q2 with q1 = p01 � p1 and q2 = p2 � p02 : (104)
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< <Fig. 3. One-boson exhange diagram for Yukawa interation. The mass of theexhanged partile is �:Alternatively this result an be obtained from the nonrelativisti Yukawapotential V (r) = ��e�� r=r; by �rst alulating its Fourier transformV (j~k0 � ~kj) = � �2�2(j~k0 � ~kj2 + �2) ; (105)and then replaing the square of the momentum transfer j~k0 � ~kj2 with itsrelativisti form �t.This will also be the rule whih we will adopt for the general extension ofa nonrelativisti potential to the relativisti ase. The extra fator 4m1m2derives from di�erenes in normalisation.In �eld theory q1 = q2; beause p01+p02 = p1+p2 in eah elementary inter-ation, i.e., both energy and momentum are onserved. In RQM, however,this is replaed by the onservation of total veloity~p01 + ~p02p001 + p002 = ~p1 + ~p2p01 + p02 ; (106)whih an also be written in terms of the four-vetorsp01 + p02ps0 = p1 + p2ps ; (107)with s0 = (p01 + p02)2 and s = (p1 + p2)2: The energy-momentum transferin the upper and lower vertex are in general not equal, q1 6= q2; and alsos0 6= s: Therefore the potential must also be de�ned for the ase where theenergy-momentum of the initial and �nal states are di�erent (although theyhave the same veloity).This is done by adopting the same expression (103), still with t given byEq. (104), but where it is now understood that q1 and q2 may be di�erent.



1676 Th.W. RuijgrokThis o�-shell-ness replaes the assumptions made in other quasi-potentialtheories, in whih one or both partiles are allowed to go o� mass-shell.This an lead to di�ulties, beause the wave funtion for suh a partilewill no longer satisfy the free partile wave equation.In the following setions this new presription for alulating the poten-tial will be applied to the linear and harmoni potentials.5.3. Harmoni potentialThe simplest form of the eigenvalue problem (101) is obtained whenwriting it in the entre of momentum system. Taking into aount theproper fators, whih are given in Eq. (1.45) of [2℄, and a new normalisationof the wave funtion (Eq. (1.58) of [2℄), the equation turns into�qk2 +m21 +qk2 +m22 �Mn��n(~k)+14 Z V (~k;~k0)p(k02 +m21)(k02 +m22)�n(~k0) d~k0 = 0 : (108)The funtions �n(~k) are orthonormal in the sense that14 Z ��n0(~k)�n(~k)p(k2 +m21)(k2 +m22) d~k = Æn0n : (109)This equation will now be used for the harmoni osillator potentialfW (r) = 12m!2r2; where we take for m the redued mass of m1 and m2:By �rst introduing a ut-o�, as in Eq. (15), we an alulate the Fouriertransform Eqs. (16) and (17). When we then apply the rule desribed inthe previous setion, we obtain for the potential in Eq. (108) the followingexpressionV (~k;~k0) = 4m1m2 �m!2R2Æs(~k0 � ~k)� m!2R5(2�)3=2 e 12 tR2� : (110)In this formula Æs(~k0 � ~k) is obtained fromÆ(~k0 � ~k) = Æ(x1) Æ(x2) Æ(x3) with ~x = ~k0 � ~k ; (111)by replaing ���~k0 � ~k���2 = x2 = x21 + x22 + x23 with �t; whih in the entre ofmomentum system is equal to�t = ���~k0 � ~k���2 +�qk02 +m21 �qk2 +m21��qk02 +m22 �qk2 +m22� :(112)



The Linear Potential and Harmoni Osillator in : : : 1677For ~k0 lose to ~k we expand this expression in powers of ~x, whih gives�t = x2 + a(~k � ~x)2 +O(x3) with a(k) = 1p(k2 +m21) (k2 +m22) : (113)Choosing the oordinate system in suh a way that the positive x3-axispoints in the diretion of ~k, Eq. (113) an also be written as�t = x21 + x22 + �2x23 +O(x3); with �(k) =p1 + ak2 : (114)The funtion �(k) varies between � = 1 for k = 0 and � = p2 for k !1:The replaement ���~k0 � ~k���2 ! �t therefore amounts to x1 ! x1; x2 ! x2and x3 ! �x3: Consequently it follows from Eq. (111) thatÆs(~k0 � ~k) = 1�(k)Æ(~k0 � ~k) : (115)If we now substitute the potential from Eq. (110) into Eq. (108), weobtain �qk2 +m21 +qk2 +m22 �Mn��n(~k)+ m1m2m!2R2�(k)p(k2 +m21) (k2 +m22)�n(~k)= m1m2m!2R5(2�)3=2 Z e 12 tR2p(k02 +m21) (k02 +m22)�n(~k0) d~k0 : (116)For R ! 1 the main ontribution to the integral omes from ~k0�valueslose to ~k: Therefore t an be approximated by Eq. (114) and also for �n(~k0)it su�es to use the �rst three terms in the Taylor expansion�n(~k0) = �n(~k) +Xi xi��n(~k)�ki + 12Xi;j xixj �2�n(~k)�ki�kj + : : : : (117)On substitution into Eq. (116) we are left with the following integralsA(k) = Z e� 12R2(x21+x22+�2x23) d~x (118)and Bij(k) = Z xixje� 12R2(x21+x22+�2x23) d~x : (119)



1678 Th.W. RuijgrokThese integrals are equal toA(k) = (2�)3=2�R3 ; B11(k) = B22(k) = (2�)3=2�R5 ; B33(k) = (2�)3=2�3R5(120)and Bij(k) = 0 for i 6= j:The term proportional to A(k) anels against the R2-term in the left-hand side of Eq. (116), while the R�5 dependene of the B-terms is anelledby the fator R5 in front of the integral.The �nal equation for the relativisti harmoni osillator now reads�qk2 +m21 +qk2 +m22 �Mn��n(~k)= 12m!2 m1m2�(k)p(k2 +m21) (k2 +m22)�(�2�n(~k)�k21 + �2�n(~k)�k22 + 1�2(k) �2�n(~k)�k23 ) : (121)This equation seems not to be rotational invariant. This is not the ase,however, beause the �rst two terms between the urly brakets derive fromthe variation of �n(~k) in the diretions transverse to ~k; while the last termrefers to the longitudinal diretion. These are rotational invariant onepts.On omparison with Eq. (41) we see that for low energies our theoryredues to the Relativisti Shrödinger equation. For high energies, how-ever, i.e., for highly exited states, the two theories are ompletely di�erent.Beause of the extra fator on the right hand side of Eq. (121) the oupling12m!2 is redued by a fator whih tends to zero for high energies.For numerial alulations it is easier to work with partial waves. Bywriting �n(~k) = �nl(k)k Ylm(�; ') (122)one then obtains for the harmoni osillator in RQM�qk2 +m21 +qk2 +m22 �Mnl��nl(k)= 12m!2 m1m2�(k)p(k2 +m21) (k2 +m22) � 1�2(k) d2�nl(k)dk2 � l(l + 1)k2 �nl(k)� :(123)This equation resembles the Relativisti Shrödinger equation (43). Theredution of Eq. (108) to the form of a di�erential equation, so far only



The Linear Potential and Harmoni Osillator in : : : 1679sueeds for the harmoni osillator. For other potentials suh a redutionwill in general be impossible or amount to an approximation.In the following subsetions we will disuss Eq. (123) for the stati aseand for the ase of two equal masses.5.3.1. The stati ase m2 !1If the total mass M = m1 + m2 beomes arbitrarily large, while theredued mass m = m1m2M is kept �xed, Eq. (123) takes on a muh simplerform. With "(k) and "nl de�ned by"(k) =pk2 +m2 and Mnl =M �m+ "nl ; (124)Eq. (123) beomes["(k) � "nl℄ �l(k) = 12m!2 m"(k) �d2�l(k)dk2 � l(l + 1)k2 �l(k)� : (125)Although it di�ers from the Relativisti Shrödinger equation (43) only inthe fator m="(k), this has a large e�et on the slope of the Regge trajeto-ries.In order to show this e�et we �rst introdue dimensionless variables y;yl and g by k = my "nl = mq1 + y2l ; g = !m : (126)We furthermore assume that l is large enough, so that y � 1 and yl � 1:Eq. (125) then beomes�d2�l(y)dy2 = [E(y) � V (y)℄ �l(y) ; (127)where E(y) = ty ; �t � 2ylg2 � and V (y) = 2y2g2 + l2y2 : (128)This looks like the nonrelativisti Shrödinger equation, exept that theeigenvalue is replaed by a linear funtion in y:Still, for l � 1; the spetrum an be alulated by again applying theBohr�Sommerfeld quantisation rule, as desribed in Setion 1.4. We use thefat that the lassial turning points are very lose to the point y = y;where the funtion E(y) = ty is tangent to the funtion V (y): This happenswhen t = t = 83g2 y with y = �32�1=4pgl : (129)



1680 Th.W. RuijgrokBy expanding V (y) in a power series around y; an expression for the lassialturning points is found and the integral iny+Zy� pE(y) � V (y) dy = n� (130)an be alulated expliitly as a funtion of t: Solving Eq. (130) for t givest = 83g2 y + 4ngy + : : : for l� n : (131)The spetrum therefore is"2nlm2 = y2l = 14g4t2 = 169 r32g l + 163 g n+ : : : : (132)These are linear equidistant Regge trajetories for the stati ase of theharmoni osillator. In Eq. (55) suh trajetories were also found with theRelativisti Shrödinger equation, but then for a linear potential.Also for small values of l and n this linear dependene on l and n isobtained from a numerial solution of Eq. (125). This is shown in �gure 4.
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Fig. 4. Regge trajetories for RQM with harmoni potential. The stati ase.5.3.2. The ase of equal masses m1 = m2For the ase of two equal masses m1 = m2 = 2m; and in the limit l� 1;Eq. (123) an again be written in the form�d2�l(y)dy2 = [E(y) � V (y)℄ �l(y) : (133)



The Linear Potential and Harmoni Osillator in : : : 1681The di�erene with Eq. (127) lies in the de�nitions of E(y) and V (y),whih now areE(y) = ty2 ; �t � p2ylg2 � and V (y) = 2p2y3g2 + l2y2 with Mnl = myl :(134)Again we an determine the values of t = t and y = y so that the funtionE(y) = ty2 is tangent to V (y) in the point y = y: This is the ase whent = t = 5p2g2 y and y = 23=10(gl)2=5 : (135)In the same way as in the stati ase the Bohr�Sommerfeld integral anagain be alulated as a funtion of t: Putting the integral equal to n� givesan equation for t, whih an be solved to givet = 5p2g2 y + 2ny2 + � � � for l� n : (136)The spetrum therefore isM2nlm2 = y2l = 12g4t2 = 5227=5 (gl)4=5 + 5:21=5g8=5 nl2=5 + : : : : (137)These Regge trajetories are rising slower than linearly and the distanebetween them tends to zero with l!1:The same behaviour is obtained from a numerial solution of Eq. (123)for m1 = m2; as an be seen in �gure 5.
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1682 Th.W. Ruijgrok5.4. Linear potentialIn this setion we will use the basi equation (108) of RQM for thealulation of Regge trajetories of two partiles, bound by a linear potential.The onvergene properties of the integral in Eq. (108) are di�erent for thestati ase and the ase of equal masses. For this reason these two asesrequire a separate treatment.5.4.1. The stati ase m2 !1For the onstrution of the relativisti linear potential V (~k;~k0) from itsnonrelativisti form (22), we apply the general presription of Se. 5.2. UsingEq. (115)we �ndV (~k;~k0) = 4m1m2 � � 1��(k)Æ(~k0 � ~k)� 1�2(�t+ �2)2 � ; (138)in whih t and �(k) are de�ned in Eqs. (112)�(114) and where in the endthe limit �! 0 should be taken.For m2 ! 1 it is seen that t approahes the nonrelativisti limit t !� ���~k0 � ~k���2 and �(k) ! 1: We introdue the total mass M and the reduedmass m and writeMn =M �m+ "n and qk2 +m21 +qk2 +m22 =M + "(k)�mwith "(k) =pk2 +m2 : (139)After substituting the potential (138) into Eq. (108) and taking the limitM ! 1, we obtain the RQM equation for the stati ase. As for thenonrelativisti theory of Setion 1.3 the integral equation is singular again.In order to make it regular, however, we apply the same method as usedthere. In this way Eq. (108) beomes["(k)� "n℄ �(~k) = m��2 "(k) �Z �(~k0)� �(~k)���~k0 � ~k���4 d~k0 ; (140)where we put �n(~k) = "(k)�(~k): (141)An exat solution of this eigenvalue problem is impossible and also theBohr�Sommerfeld method annot be used, beause Eq. (140) has no equiv-alent Shrödinger form. Also the expansion method, whih was used for theharmoni osillator in Setion 5.3, annot be applied, beause the oe�ientsof the derivatives are now expressed by divergent integrals.



The Linear Potential and Harmoni Osillator in : : : 1683We therefore apply another method, whih onsists of omparing Eq. (140)with Eqs. (27) and (45). These were solved previously and gave the spe-trum of the linear potential in the ase of the nonrelativisti and RelativistiShrödinger equation.For Eq. (27) we de�ne~k = �~u ; ~k0 = �~u0 ; �NR = m��3 : (142)The nonrelativisti Shrödinger equation then turns into(u� 1)�(~u) = 2�NR�2(u+ 1) �Z �(~u0)� �(~u)j~u0 � ~uj4 d~u0 : (143)In Eqs. (45) and (140) we approximate "(k) by k and de�ne ~u by ~k = "n~u:Eq. (45) for the Relativisti Shrödinger equation then beomes(u� 1)�(~u) = �RS�2 �Z �(~u0)� �(~u)j~u0 � ~uj4 d~u0 with �RS = �"2n : (144)Eq. (140) takes the form(u� 1)�(~u) = �RQM�2u �Z �(~u0)� �(~u)j~u0 � ~uj4 d~u0 with �RQM = m�"3n : (145)Notie the lose similarity between the last three equations.In Setion 1.4 it was shown, see Eq. (36), that for high energies thedistane between the lassial turning points, when measured in units de-termined by the eigenvalue, was muh less than unity. The same happenedin Setion 2.2, Eq. (49) and below Eq. (53). Therefore, also the potentialenergy varies very little between these turning points. For this reason we ex-pet that for high energies the relevant values of ~k and ~k0 lie in a very narrowspherial shell with radius equal to the eigenvalue � or "n: This means thatthe relevant region of the variable u is a very small interval around u = 1:In the three equations (143), (144) and (145) we are therefore allowed toreplae u by u = 1 in the fators in front of the integrals. By doing so theequations beome idential and the spetral values of �NR; �RS and �RQMbeome equal.The values of � were alulated in Setion 1.4. From Eqs. (30) withE = �2=2m and (37) we derive�2nl = 3m2 � �m2�2=3 l2=3 �1 + 2p3 nl � : (146)



1684 Th.W. RuijgrokBy putting from Eqs. (142) and (144)�"2nl = m��3nl ; (147)we get "2nl = p27 �l + 9�n : (148)Comparing this result with Eq. (55), we see that the linear equidistant Reggetrajetories are reprodued, but that there are small di�erenes in the slopeand the distane.With this method we an now also alulate the spetrum of Eq. (145).By omparing with the spetrum of the nonrelativisti theory we see thatwe have to put m�"3nl = m��3nl : (149)This gives for the spetrum with RQM"2nl = �2nl = 3m2 � �m2�2=3 l2=3 �1 + 2p3 nl � : (150)This spetrum an also be alulated by omparing with "RS from Eq. (55)by putting m�"3nl = �"2RS : (151)This gives "2nl = 24=3m2( �m2 )2=3l2=3 "1 + 2p23 nl # : (152)Eqs. (150) and (152) show the same dependene of "2nl on l; n and �=m2.The oe�ients di�er from eah other by not more than 25%.This result di�ers from the linear Regge trajetories as obtained from theRelativisti Shrödinger equation, the Klein�Gordon equation and the Diraequation. Experimental information about the orret behaviour ould notbe found.For mesons onsisting of two light quarks the square of the masses dolie on linear Regge trajetories. In the next setion we will show that thisphenomenon is reprodued in RQM.5.4.2. The ase of equal masses m1 =m2In the previous setion and also in Setion 5.3, where the harmoni osil-lator was onsidered, it was shown that the only ontribution to the integralin Eq. (108) was given by ~k0-values lose to ~k: For this reason the wave



The Linear Potential and Harmoni Osillator in : : : 1685funtion �n(~k0) ould be represented by the �rst three terms of its Taylorseries expansion (117). This eventually led to the di�erential equation (121),whih strongly resembles the Relativisti Shrödinger equation (41).For the present ase of the linear potential we will now apply the sameexpansion (117). In this way we replae the integral equation (108) by thefollowing di�erential equation"qk2 +m21 +qk2 +m22 �Mn + m1m2���(k)p(k2 +m21)(k2 +m22)#�n(~k)= m1m2 �4�2k2 "I0(k)�n(~k) + 12 3Xi=1 Ii(k)�2�n(~k)�k2i # : (153)The oe�ients are de�ned by the positive integralsI0(k) = Z d~k0k02p(k02 +m21)(k02 +m22)(z � os �)2 ; (154)I1(k) = I2(k) = Z k02x d~k0k02p(k02 +m21)(k02 +m22)(z � os �)2 ; (155)I3(k) = Z (k0z � k)2 d~k0k02p(k02 +m21)(k02 +m22)(z � os �)2 : (156)The oordinate system has been hosen in suh a way that the positive z-axis points in the diretion of ~k: The angle between ~k and ~k0 is denoted by� and the funtion z = z(k; k0) is de�ned by writing�t+ �2 = 2kk0(z � os �) ; (157)so thatz(k; k0) = 12 �k0k + kk0�+ 12kk0 �qk02 +m21 �qk2 +m21���qk02 +m22 �qk2 +m22�+ �22kk0 : (158)In the stati ase of Setion 5.4.1 this method ould not be applied,beause the integrals orresponding to I0(k) and Ii(k) would not onverge.



1686 Th.W. RuijgrokIn the present ase they are �nite, although their alulation in losed formould only be performed for m1 = m2 = 0: After a lengthy alulation (andrepeated mistakes) I foundI0(k) = 4�2�p2 � 2�k and I1(k) = I2(k) = 4�kJt and I3(k) = 4�kJl(159)with Jt = 3�28 � �2 � 12 = 1: 630 3 and Jl = �2 + 1 = 2: 570 8 : (160)Sine �(k) = p2 when m1 = m2 = 0; the term 4�2=(�p2); whih blows upfor � ! 0; anels against the orresponding term on the left-hand side ofEq. (153). We are then left with�qk2 +m21 +qk2 +m22 �Mn + m1m2�2�k3 ��n(~k)= m1m2 �2�k "Jt(�2�n(~k)�k2x + �2�n(~k)�k2y ) + Jl �2�n(~k)�k2z # : (161)This shows that Jt is the oe�ient in front of the transverse derivative,while Jl multiplies the longitudinal derivative.Eq. (161) an again be written for spherial waves of the form of Eq. (122).If, moreover, we takem1 = m2 = 2m and neglet the masses on the left-handside of the equation, it beomes[2k �Mnl℄�nl(k) = 2m2��k �Jl d2�nl(k)dk2 � Jt l(l + 1)k2 �nl(k)� : (162)If we now introdue dimensionless variables y = k=m and yl = Mnl=(2m);this di�erential equation an again be written in the form (127)�d2�l(y)dy2 = [E(y)� V (y)℄ �l(y); (163)but now withE(y) = ty (t � �m2yl�Jl ) and V (y) = �m2�Jl y2 + JtJl l2y2 : (164)The oe�ients di�er from those in Eq. (128), but the y- and l-dependeneof E(y) and V (y) are the same.



The Linear Potential and Harmoni Osillator in : : : 1687Apart from some numerial fators, the eigenvalue spetrum will there-fore be the same as in the stati ase of the harmoni osillator. Repeatingthe alulation of Setion 5.3.1, again produes linear Regge trajetories,whih are now given by the equationM2nlm2 = 649 r3Jt� r �m2 l + 64 Jl3� �m2 n : (165)For smaller and more realisti values of the angular momentum Hers-bah [16℄ used RQM to alulate a large number of meson masses. In addi-tion to a one-gluon exhange potential, he used a linear potential, ontaininga salar and a vetor part. He obtained very good agreement with experi-mental mass values, the square of whih lie on linear Regge trajetories.6. ConlusionsThe onlusions of the RQM alulations for two-partile bound states,an be summarised as follows.1. The slopes of Regge trajetories and their mutual distanes stronglydepend on the interation-linear or harmoni-and on possible reoile�ets, i.e., equal masses or the stati ase with m2 ! 1: The re-sults for M2nl=m2 are olleted in the table. We have also inludedthe results of the four other theories. The numerial values of theonstants a and b appearing in eah entry an be taken from the or-responding equations. The dimensionless oupling onstants are givenby g = �=m2 for the linear potential and by g = !=m for the harmoniosillator. Notie that in RQM with a linear potential and m1 = m2the Regge trajetories are straight equidistant lines, but that theirslope is proportional to p� and not to the usual �. Straight Reggetrajetories also our in the stati ase of the harmoni potential,but not in the stati linear potential, where the other theories givelinear trajetories. It must be added, however, that for this ase wehave not performed any numerial alulations with RQM to hek thebehaviour for smaller values of the angular momentum.



1688 Th.W. RuijgrokM2nl=m2 linear potential harmoni potentialShr. eq. ag4=3l4=3 + bg4=3l1=3n (38) g2(l2 + 4ln + : : :) (7)Rel. Shr. eq. agl+ bgn (55) ag4=3l4=3 + bg4=3l1=3n (44)Klein�Gordon agl+ bgn (63) ag4=3l4=3 + bg4=3l1=3n (69)Dira agl+ bgn (89) ag4=3l4=3 + bg4=3l1=3n (95)RQM m1 = m2 ag1=2l+ bgn (165) ag4=5l4=5 + bg8=3l�2=5n (137)RQM m2 !1 ag2=3l2=3 + bg2=3l�1=3n agl+ bgn (132)(150, 152)2. In [3℄ it was pointed out that an inorret value of the slope of theRegge trajetory is obtained when the rotational degree of freedom ofthe string is not taken into aount. This deviation was then orretedby adding the extra degree of freedom. Its e�et ould again be de-sribed by an e�etive Hamiltonian, in whih the quark potential isnonloal and depends on the relative angular momentum. In RQM asimilar e�et exists, beause the (nonloal) interation potential ar-ries not only energy, but also momentum � see Eq. (99) � and heneangular momentum. This is most learly seen in Eqs. (161) and (162),where the tangential derivative and the radial derivative have di�er-ent oe�ients. The same e�et is seen for the harmoni osillator inEqs. (121) and (123). The suggestion is that the rotational motion ofthe potential will always be present, whether or not the interation isdesribed by a gluon string.3. Without omparing Eq. (140) with the nonrelativisti- and the Rel-ativisti Shrödinger equation for the linear potential, it would havebeen very di�ult to guess the orret asymptoti behaviour of its so-lution. The suess of the method an be understood from the fatthat for high energies, where the semi-lassial quantisation rule ofBohr�Sommerfeld beomes exat, the relative variation of the energybetween the lassial turning points is very small.I want to thank Professor Simonov for explaining his ideas about rotatingstrings.
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