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THE LINEAR POTENTIAL AND HARMONICOSCILLATOR IN RELATIVISTICQUANTUM MECHANICSTh.W. RuijgrokInstitute for Theoreti
al Physi
s, RijksuniversiteitPrin
etonplein 5, P.O. Box 80.006, 3508 TA Utre
ht, The Netherlands(Re
eived April 27, 2000)It is a nontrivial problem to formulate a Poin
aré invariant quantumtheory, that des
ribes the binding of two parti
les in a 
on�ning potential.Four attempts at su
h theories are dis
ussed and subsequently used to
al
ulate the spe
trum of two parti
les, whi
h are bound in an harmoni
os
illator potential or in a linear potential. These theories are des
ribed bythe following equations1. The so 
alled �Relativisti
 S
hrödinger equation�.2. The Klein�Gordon equation.3. The Dira
 equation.4. RQM (Relativisti
 Quantum Me
hani
s), the author's private theory,whi
h is of the �quasiparti
le� type.For ea
h of these theories the Regge traje
tories are 
al
ulated, both forthe linear and for the harmoni
 potential. Sin
e in RQM the intera
tionpotential is the 
arrier, not only of energy, but also of momentum and hen
eof angular momentum, the Regge slopes di�er from their usual values.Along the way it is shown how 
on�ning potentials 
an be handled in atheory whi
h is formulated in the momentum representation, in spite ofthe fa
t that their Fourier transforms do not exist. For other quasiparti
letheories the spe
trum of the relativisti
 harmoni
 os
illator has not been
al
ulated.PACS numbers: 03.65.Pm, 11.30.Cp1. Introdu
tionIn nonrelativisti
 quantum me
hani
s it is possible to separate the mo-tion of the 
entre of mass from the relative motion. For two parti
les oneis then left with the S
hrödinger equation for a single parti
le, in whi
h themass is repla
ed by the redu
ed mass.(1655)



1656 Th.W. RuijgrokFor relativisti
 theories this separation presents a problem. The Rel-ativisti
 S
hrödinger equation, the Klein�Gordon equation and the Dira
equation are single parti
le equations from the start. Although they have a
ertain relativity �avour, they 
annot be derived from a Poin
aré invarianttwo-body equation. Some quasipotential theories do better in this respe
t.A parti
ular one, using Dira
's point form [1℄, was 
onstru
ted by the au-thor [2℄. In the following it will be referred to as RQM for Relativisti
Quantum Me
hani
s.The main purpose of the present paper is to demonstrate that this RQMis well suited for 
al
ulating the spe
trum of two bound parti
les. In parti
-ular the linear potential, but also the harmoni
 os
illator, will be treated indetail.In [3℄ it was pointed out that the slopes of the linear Regge traje
tories,as 
al
ulated by any of the three (stati
) theories, deviate from the valuesexpe
ted from QCD. The authors as
ribe this dis
repan
y to the nonlo
al
hara
ter of the e�e
tive intera
tion, whi
h they then try to explain byassigning an extra rotational degree of freedom to the gluon string betweenthe 
onstituent quarks.In RQM, to be presented in Se
tion 5, the potential, being de�ned in themomentum representation, is also nonlo
al. As a result we will �nd Reggeslopes whi
h in some 
ases di�er from the ones obtained with the stati
theories. Moreover, it will be shown that the deviations o

ur be
ause of amodi�
ation of the 
entrifugal term in the potential. This suggests a relationwith the e�e
t found in [3℄.In order to make this paper self 
ontained, we �rst dis
uss the stati
theories in Se
tions 2, 3 and 4. The results are not new, but the methods toderive them may be of some interest. They are essential for understandingthe 
al
ulations of Se
tion 5.In the remaining part of this �rst se
tion we show how to derive nonsin-gular equations in the momentum representation. We also brie�y re
all theBohr�Sommerfeld quantisation rule, whi
h will be used extensively.1.1. Harmoni
 potentialSin
e RQM is formulated in the momentum representation, it will bene
essary �rst to show how we handle the singularities 
onne
ted with thenonexisten
e of the Fourier transform of the potential. The method to beused will be demonstrated by applying it to the nonrelativisti
 S
hrödingerequation �� ~22m �+fW (r)�  (~r) = E  (~r) : (1)



The Linear Potential and Harmoni
 Os
illator in : : : 1657To begin with we will 
onsider the harmoni
 os
illator potentialfW (r) = 12m!2r2 : (2)In terms of spheri
al waves (~r) = �l(r)r Ylm(�; ') (3)Eq. (1) be
omes� ~22m ��00l (r)� l(l + 1)r2 �l(r)�+fW (r)�l(r) = E �l(r) : (4)Introdu
ing dimensionless variablesy = rrm!~ and " = 2E~! ; (5)this 
an be written asd2 �ldy2 � l(l + 1)y2 �l � y2 �l = �" �l : (6)The well known spe
trum is"nl = 4n+ 2l � 1 or Enl = (2n+ l � 12) ~!with l = 0; 1; : : : and n = 1; 2; : : : : (7)So far this is the standard treatment of the harmoni
 os
illator in the
oordinate representation.In momentum spa
e it 
an most easily be des
ribed by repla
ing �r2=~2in Eq. (2) by the Lapla
e operator in momentum spa
e �p and 
onsidering�~2� in (1) as multipli
ation by p2. In this way one �nds for the wavefun
tion �(~k) = 1(2�)3=2 Z e�i~k�~r  (~r) d~r (8)the following equation (from now on units are su
h that ~ = 1)k22m�(~k)� 12m!2��(~k) = �22m�(~k); with E = �22m : (9)In terms of spheri
al waves�(~k) = Hl(k)k Ylm(�; ') (10)



1658 Th.W. Ruijgrokthis reads d2Hldy2 � l(l + 1)y2 Hl � y2Hl = �" Hl ; (11)with the new dimensionless variablesy = kpm! and " = �2m! : (12)Eq. (11) is the same as Eq. (6) and the spe
trum is again given by Eq. (7).1.2. General 
on�ning potentialFor a more general potential the S
hrödinger equation in momentumspa
e takes the form of an integral equation(k2 � �2)�(~k) + 2mZ W (~k0 � ~k)�(~k0) d~k0 = 0 ; (13)with W (~q) = 1(2�)3 Z e�i~q�~rfW (r) d~r : (14)Sin
e the Fourier transform of the harmoni
 potential (2) does not exist, we�rst repla
e it by gWR(r) = m!2R2 �1� e� r22R2 � ; (15)and only at the end of the 
al
ulation the limit R !1 will be taken. TheFourier transform (14) of this potential is equal toWR(~q) =W (1)R (~q) +W (2)R (~q) ; (16)with W (1)R (~q) = m!2R2 Æ(~q) and W (2)R (~q) = �m!2R5(2�)3=2 e� 12 q2R2 : (17)Substitution into Eq. (13) gives� k22m +m!2R2� �(~k)� m!2R5(2�)3=2 Z e� 12 j~k0�~kj2R2�(~k0) d~k0 = �22m�(~k) : (18)For large values of R the main 
ontribution to the integral 
omes from valuesof ~k0 
lose to ~k: It 
an therefore be evaluated by expanding the wave fun
tionas�(~k0) = �(~k)+Xi (k0i�ki) ���ki + 12Xi;j (k0�{�ki)(k0j�kj) �2��ki�kj + : : : : (19)



The Linear Potential and Harmoni
 Os
illator in : : : 1659The remaining integrations 
an easily be performed, leading to� k22m+m!2R2��(~k)�m!2R5 � 1R3�(~k)+ 12R5��(~k)+O� 1R7�� = �22m�(~k) :(20)The terms of O(R2) 
an
el, so that the �nal equation is again the same asEq. (9).For the harmoni
 os
illator we therefore have su

eeded to write theeigenvalue problem (13) in the form of a nonsingular di�erential equation.1.3. Linear potentialFor other 
on�ning potentials Eq. (13) will in general not take the formof a di�erential equation, so that it must still be shown how to remove thesingularity.For that purpose we take a linear potential fW (r) = �r as an example.This potential is 
onsidered as the limit offW�(r) = ��(1� e�� r) for �! 0 : (21)Its Fourier transform 
an again be 
al
ulated expli
itly and is equal toW�(~q) = ��Æ(~q)� ��2 1(q2 + �2)2 : (22)The integral equation (13) then takes the form(k2 � �2 + 2m�� )�(~k) = 2m��2 J�(~k) ; (23)in whi
h J�(~k) = J reg� (~k) + J sin� (~k) is the sum of a regular and a singularintegral, de�ned by J reg� (~k) = Z �(~k0)� �(~k)����~k0 � ~k���2 + �2�2 d~k0 (24)and J sin� (~k) = �(~k)Z d~k0����~k0 � ~k���2 + �2�2 = �2� �(~k) : (25)



1660 Th.W. RuijgrokThis latter integral, whi
h approa
hes in�nity when � ! 0; is 
an
eledagainst the term 2m�� �(~k) in the left-hand side of Eq. (23). In order to showthe existen
e of the limit of J reg� (~k) when � ! 0; the 
ontribution of all ~k0for whi
h the length of the ve
tor ~q = ~k0 � ~k is less than � is 
onsideredseparately. In this region the fun
tion �(~k0)� �(~k) 
an be approximated bya power series in the 
omponents of ~q: After integrating over all dire
tionsof ~q one is left with2���(~k) �Z0 q4(q2 + �2)2 dq = 2���(~k)� 1Z0 x4(1 + x2)2 dx ; (26)whi
h tends to zero when �! 0:Finally Eq. (23) takes the form(k2 � �2)�(~k) = 2m��2 �Z �(~k0)� �(~k)���~k0 � ~k���4 d~k0 : (27)Be
ause of the spheri
al ~k0 integration around ~k; indi
ated by R �, this inte-gral equation is nonsingular, whi
h we set out to prove.For a linear and harmoni
 potential we have now written the S
hrödingerequation as a nonsingular integral equation in momentum spa
e. For arbi-trary 
on�ning potentials, however, this redu
tion must still be handled onan individual basis.For the numeri
al 
al
ulation of the spe
trum of the S
hrödinger equa-tion for a linear potential, an expansion in partial waves is more 
onvenient.With the same subtra
tion method as used above, I �nd for the eigenvalueequation of a spheri
al wave amplitude�k2 � �2 + 2m��k � �l(k) + 2m��k2 1Z0 �Q0l(z)�l(k0) + k2�l(k)(k0 � k)2 �P dk0 = 0 ;(28)in whi
h Ql(z) is a Legendre fun
tion of the se
ond kind with argumentz = 12 (k0=k + k=k0): The integral is not singular in the point k0 = k: Byusing a symmetri
 integration, indi
ated by P; the numeri
al integration isspeeded up, however. The same equation (28) has been found by a numberof authors, among them Maung et al. [4℄ and Hersba
h [5℄.Eq. (28) is not very useful for 
al
ulating the spe
trum for large angularmomenta, but will be important for the 
onne
tion with the relativisti
theory.



The Linear Potential and Harmoni
 Os
illator in : : : 1661In order to establish the asymptoti
 behaviour of the spe
trum for thepresent nonrelativisti
 
ase it is better to start from the 
oordinate repre-sentation and use the Bohr�Sommerfeld quantisation rule. This method willalso be useful when 
onsidering other theories.1.4. The Bohr�Sommerfeld methodBy takingfW (r) = �r in Eq. (4), the eigenvalue equation for the spheri
alamplitudes be
omes�d2�ld�2 +�� + l(l + 1)�2 ��l = �l �l ; (29)in whi
h we have introdu
ed the following abbreviations� = (2m�)1=3r and E =m� �22m4�1=3 �l : (30)For l = 0 the exa
t solution of Eq. (29) is given by the Airy fun
tion Ai(���0)and the possible values of �0 are the zeros of Ai(��0): The ground state has�0 = 2:338 : : : : (31)However, for arbitrary values of l it is not possible to give a 
losed form forthe eigenvalues �nl:In the Bohr�Sommerfeld approximation the values of �l should be foundby solving the equation�+Z�� s�l � � � l(l + 1)�2 d� = �n+ 12�� : (32)The 
lassi
al turning points are denoted by ��and �+: With� = �lx and � = l(l + 1)�3l and �� = �lx� (33)this be
omes x+Zx� r1� x� �x2 dx = (n+ 12)�3=2l � : (34)



1662 Th.W. RuijgrokThe left-hand side is an ellipti
 integral, whi
h for ea
h value of � 
anbe 
al
ulated numeri
ally. However, in order to get an analyti
 expressionin �; it is more 
onvenient to repla
e it by an approximation, whi
h in thelimit l!1, be
omes exa
t.De�ne x
 and �
 as the values of x and � for whi
h the fun
tion x2� x3is tangent to the line � = 
st: These values are easily found to bex
 = 23 and �
 = 427 : (35)We now expand around this pointx = x
 + y and � = �
 � � ; (36)and assume that in the whole integration region jyj � 1: For large l thisassumption will turn out to be 
orre
t. The integral in Eq. (34) now be
omeselementary. The remaining algebra is trivial and eventually leads to thefollowing expression for �l�l = 322=3 l2=3 �1 + 2p3 nl + � � �� for large l and �xed n : (37)From Eq. (30) we see that the ensuing Regge traje
tories are not straightlines. E2nl = 94 � �22m�2=3 l4=3 �1 + 4p3 nl + : : :� : (38)Moreover, for ea
h l the distan
e between any two neighbouring levels hasthe same value, whi
h in
reases with l like l1=3:2. The Relativisti
 S
hrödinger equationFormally the Relativisti
 S
hrödinger equation is de�ned by the two-parti
le HamiltonianH =q~p21 +m21 �m1 +q~p22 +m22 �m2 +fW (j~r1 � ~r2j) : (39)Sin
e for this equation the separation of the 
entre of mass motion is im-possible, one only 
onsiders the 
ase of vanishing total momentum, i.e. , ~p1= � ~p2 = ~p: It is not known, however, how to 
onstru
t the boost operatorfor this two-parti
le system. Thus one 
annot transform to arbitrary mo-mentum and the Relativisti
 S
hrödinger equation 
annot be 
onsidered tobe a proper Lorentz invariant theory.Ignoring this fa
t, one 
an only hope that in some sense it will be a goodapproximation of a 
orre
t theory. In parti
ular one 
an study the 
ase in
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 Os
illator in : : : 1663whi
h the mass of one of the parti
les approa
hes in�nity. Then Eq. (39)simpli�es and the Relativisti
 S
hrödinger equation takes the formhp~p2 +m2 �m+fW (r)i  (~r) = E  (~r) ; (40)where m is the mass of the other parti
le and ~r is the relative distan
e.2.1. Harmoni
 potentialFor the harmoni
 os
illator fW (r) = 12m!2r2 it 
an again be written inthe momentum representation by writing r2 as ��: In this way Eq. (40)be
omes hpk2 +m2 �m�Ei �(~k) = 12m!2��(~k) : (41)For spheri
al waves �(~k) = Hl(k)k Ylm(�; ') (42)the eigenvalue equation ishpk2 +m2 �m�Ei Hl(k) = 12m!2 �d2Hl(k)dk2 � l(l + 1)k2 Hl(k)� : (43)A simple numeri
al 
al
ulation using the Numerov method gives themass spe
trum Mnl = m + Enl: For n = 1; 2; 3 and for g � ~!=m
2 = 1,I have plotted the square of this mass versus l: These three lowest Reggetraje
tories (�gure 1) show a slight upward 
urvature.
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Fig. 1. Regge traje
tories for Relativisti
 S
hrödinger equation with harmoni
 po-tential.



1664 Th.W. RuijgrokFor �xed n and l!1, the asymptoti
 behaviour of this mass spe
trum
an be obtained by using the Bohr�Sommerfeld quantisation rule. The resultisM2nl ' 94(~!)4=3(m
2)2=3l4=3 �1 + 4p3 nl +O(l�2)� for large l and �xed n :(44)This 
on�rms the upward bending and the slow separation of the Reggetraje
tories as seen in �gure 1.In the high energy limit k � m Eq. (43) has the same form as thenonrelativisti
 S
hrödinger equation in the 
oordinate representation for alinear potential fW (r) = �r: This explains why the Regge traje
tories for thetwo 
ases have the same l and n dependen
e, as is seen by 
omparing theequations (38) and (44). 2.2. Linear potentialThe Relativisti
 S
hrödinger equation with a linear potential 
an againbe put in the form of Eq. (27), but with k2=2m in the �rst term repla
edwith "(k) = pk2 +m2 and �2=2m with "n: So["(k)� "n℄ �(~k) = ��2 �Z �(~k0)� �(~k)���~k0 � ~k���4 d~k0 : (45)However, in order to �nd the asymptoti
 behaviour of M2nl, the simplestmethod is again to apply the Bohr�Sommerfeld method to Eq. (40), butnow with fW (r) = �r: This amounts to 
al
ulating the integral for the a
tionvariable asso
iated with the radial variableJr = 1� r+Zr� r("n � �r)2 �m2 � l2r2 dr (46)between the 
lassi
al turning points r� and r+: The energy spe
trum "nl isgiven by requiring that Jr = n+ �4 : (47)In this 
ase we have added the 
ustomary term �4 ; in order to allow a 
om-parison with numeri
al 
al
ulations for small values of l and n. This Maslovindex � should be 
hosen so as to guarantee the 
orre
t behaviour of thephase of the wave fun
tion in the turning points. For the linear potential� = �1: See Ref. [6℄.
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illator in : : : 1665For high energies the integral (46) 
an be written asJr = "2n�� x+Zx� r(1� x)2 � �2x2 dx ; (48)with r = "n� x and � = �l"2n and x� = 12(1�p1� 4�) : (49)A numeri
al 
al
ulation shows that the integral in Eq. (48), plotted in Fig. 2
an, to a very good approximation, be represented by a linear fun
tion of �:Therefore Jr ' 2"2n�� �14 � �� : (50)With this expression one eventually derives from Eq. (47) that"2nl ' 4�l + 2��n� �2� : (51)This formula is in very good agreement with Eq. (2.8) of [7℄, whi
h wasderived by interpolation of the exa
t values for l = 0 � 3 and n = 1 � 5.It shows that, for a linear potential, linear equidistant Regge traje
tories
an be obtained from the Relativisti
 S
hrödinger equation, whi
h was notpossible with the nonrelativisti
 theory.
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Fig. 2. The integral in Eq. (48) as a fun
tion of �At this point I want to make a remark about the 
oe�
ient 2�� in frontof n in equation (51). For high energies, i.e., for large values of l, this
oe�
ient is in
orre
t.



1666 Th.W. RuijgrokThis 
an be seen by writing the integral in Eq. (48) in the formI(�) = �Z�� q(12 � �2 � y2)(�2 � y2)12 + y2 dy ; (52)where y = x� 12 and �2 = 14 � � : (53)Using Eq. (50), it follows from the fa
t that Jr is �nite (Eq. (47)), that � isvery 
lose to 14 , and that therefore �� 1. In this limit the integral be
omesI(�) ' p2 �Z�� p�2 � y2p2�14 � �� : (54)This means that instead of Eq. (51), one obtains for the 
orre
t asymptoti
behaviour of the Regge traje
tories"2nl ' 4�l + 4p2� �n� 14� : (55)An exa
t 
al
ulation of low lying states may therefore be misleading, whenused as an indi
ation of the n�dependen
e of the energies of states withhigh angular momentum.3. The Klein�Gordon equationA relativisti
 spinless parti
le, 
oupled to another parti
le with in�nitemass, is usually des
ribed by the Klein�Gordon equation���+m2 + U2(r)� (~r) = (E �fW (r))2 (~r) ; (56)in whi
h U(r) and fW (r) are the potentials for respe
tively the s
alar- andve
tor-
oupling. The physi
al relevan
e of this equation is in doubt, however,be
ause even when both U(r) and fW (r) are 
on�ning potentials, Eq. (56)may not have stable solutions.The �rst di�
ulties with the Klein�Gordon equation are en
ounteredwhen, as in the nonrelativisti
 S
hrödinger equation, one tries to prove theorthogonality of the eigenfun
tions and the reality of the eigenvalues. Start-ing from Eq. (56) one easily proves that for two eigenfun
tions  n(~r) and m(~r) and their 
orresponding eigenvalues the following relation is valid(E2m �E�2n )Z  �n(~r) m(~r) d~r = 2(Em �E�n)Z  �n(~r)fW (r) m(~r) d~r : (57)



The Linear Potential and Harmoni
 Os
illator in : : : 1667Taking m = n this shows that the eigenvalues are not ne
essarily real.Moreover, eigenfun
tions belonging to di�erent eigenvalues are not alwaysorthogonal.The problems with the possible instability of bound states are illustratedby taking a linear potential both for the s
alar and for the ve
tor 
ouplingsU(r) = �1r and fW (r) = �2r : (58)For spheri
al waves the Klein�Gordon equation then be
omesd2�l(y)dy2 = � l(l + 1)y2 + 1 + g21y2 � ("� g2y)2� �l(y) ; (59)with y =mr; g1 = �1m2 ; g2 = �2m2 and E = m" : (60)In the limit y !1 Eq. (59) be
omesd2�l(y)dy2 = (g21 � g22) y2 �l(y) for large y : (61)From this equation we see immediately that bound states 
an exist only wheng22 < g21 : When the ve
tor 
oupling is stronger than the s
alar 
oupling thesolution be
omes os
illatory and there will be no stable bound states.For a number of other theories this is e�e
t is dis
ussed in [8℄. For thepure ve
tor potential, i.e., when U(r) � 0; the 
onne
tion with the Kleinparadox was explained by Fulling [9℄, who found 
omplex eigenvalues for aparti
le in a square well potential.We therefore restri
t ourselves to vanishing ve
tor potentials, in whi
h
ase problems of this kind do not o

ur.3.1. Linear potentialFor a linear potential U(r) = �r Eq. (56) redu
es to the nonrelativisti
S
hrödinger equation with an harmoni
 intera
tion� p22m + �22mr2� (~r) = E2 �m22m  (~r) : (62)From the known eigenvalues one then obtainsE2nl = m2 + 2� �l + 2n� 12� ; (63)whi
h again des
ribes linear equidistant Regge traje
tories.



1668 Th.W. Ruijgrok3.2. Harmoni
 potentialFor the harmoni
 intera
tion U(r) = 12m!2r2 the Klein�Gordon equationtakes the form of the S
hrödinger equation� p22m + V (r)� (~r) = E  (~r) ; (64)for an anharmoni
 os
illator withV (r) = 18m!4r4 and E = E2 �m22m : (65)Applying again the Bohr�Sommerfeld quantisation rule for states with highangular momentum, the a
tion integralJr = 1� r+Zr� r2m(E � V (r))�m2 � l2r2 dr (66)
an be 
al
ulated and is found to be equal toJr = 33=4211=4 m!"1=40 � 83"0 ("� "0)2 + 323 ("� "0)� ; (67)with "0 = 327=3 (!lm )4=3 and " = Em : (68)The spe
trum is then determined by putting Jr = n: This �nally givesM2nl ' 324=3 (~!)4=3(m
2)2=3l4=3 "1 +r23 nl +O(l�2)# (69)for the squared masses of an harmoni
 os
illator as des
ribed by the Klein�Gordon equation. Apart from the numeri
al 
onstants, this is the same asEq. (44), obtained when using the Relativisti
 S
hrödinger equation. Forthe latter the Regge traje
tories are steeper and more widely separated.4. The Dira
 equationFor the Dira
 equation the orthogonality of eigenfun
tions and the realityof the eigenvalues 
an be proved in the standard way, so that the obje
tionsagainst the Klein�Gordon equation about this point do not exist.However, sin
e the work of Plesset [10℄, it is known that bound statesof the Dira
 equation with a 
on�ning potential and pure ve
tor 
oupling,
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annot exist.We therefore 
onsider only s
alar 
ouplings and take the linearand harmoni
 potentials as examplesU(r) = �r or U(r) = 12m!2r2 : (70)4.1. Redu
tion of the Dira
 equationIn a standard way the two-
omponent wave equation for spheri
al waves
an be derived dF (y)dy = �ky F (y) + (W (y) + ")G(y) ;dG(y)dy = ky G(y) + (W (y)� ")F (y) : (71)Here the following abbreviations have been introdu
edW (y) = 1 + gy or W = 1 + 12g2y2 ; y = mrg = �m2 or g = !m ; " = Em (72)and k = j + 12 if l = j + 12 and k = �(j + 12) if l = j � 12 : (73)De�ning P (y) and Q(y) byF (y) = y�kP (y) and G(y) = ykQ(y); (74)Eq. (71) be
omes dP (y)dy = (W + ") y2kQ(y) ;dQ(y)dy = (W � ") y�2k P (y) : (75)The fun
tion Q(y) 
an be eliminated and this then leads tod2P (y)dy2 = (W 2 � "2)P (y) + 2T (y)dP (y)dy ; (76)in whi
h T (y) = 12(W + ") dWdy + ky : (77)



1670 Th.W. RuijgrokThe �rst derivative in Eq. (76) 
an be eliminated by writing P (y)=S(y)R(y),in whi
h S(y) is a solution ofdSdy = T (y)S(y) : (78)This then leads to a nonrelativisti
 S
hrödinger equation�d2R(y)dy2 + V (y)R(y) = "2R(y) (y � 0) ; (79)with the potential V (y) =W 2(y) + T 2(y)� dT (y)dy : (80)In the Bohr�Sommerfeld approximation the spe
trum 
an be 
al
ulatedfrom y+Zy� p"2 � V (y) dy = �n+ 12� � ; (81)in whi
h y� and y+ are the 
lassi
al turning points, satisfying "2 = V (y�):4.2. Linear potentialFor high energies "� m the linear potential in Eq. (72) may be repla
edwith W (y) = gy: The fun
tion T (y) then be
omesT (y) = g2(" + gy) + ky (82)and from Eq. (80) we get for the potentialV (y) = g2y2 + 1("+ gy)2 �g2 �k + 34�+ gk "y�+ k(k + 1)y2 : (83)If � and x are de�ned by"2 = g � and y =r�g x ; (84)Eq. (81) 
an be written asx+Zx� vuut�2(1� x2)� "k + 34 + kx(1 + x)2 + k(k + 1)x2 # dx = �n+ 12� � : (85)
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h �(n; k) must be solved.For jkj � 1 we 
an negle
t all terms between the square bra
kets, ex
eptthe term whi
h is O(k2): In this 
ase Eq. (85) be
omesx+Zx� r�2(1� x2)� k2x2 dx = �n+ 12� � : (86)The integral 
an be evaluated in 
losed form (see Gradshteyn and Ryzhik2.267) and gives �2 �12 � jkj� � � = �n+ 12� � ; (87)so that �(n; k) ' 4n+ 2 + 2 jkj for jkj � 1 : (88)This �nally results inM2 ' m2"2 = m2g� = �� = 2� (2n+ 1 + jkj) = 2� �2n+ j + 32� ; (89)in agreement with [3℄ and with the numeri
al study made by Crit
h�eld [11℄.Eq. (89) should be 
ompared with Eq. (63), whi
h gives linear Reggetraje
tories for a mass- and spinless parti
le, des
ribed by the Klein�Gordonequation with a linear s
alar 
oupling.4.3. Harmoni
 potentialIn spite of the fa
t that in the 
ase of pure s
alar 
oupling the eigenvalues
an be shown to be real, Ram and Halasa [12℄ found low eigenvalues with a
omplex 
omponent for the Dira
 equation with an harmoni
 potential ands
alar 
oupling. A new 
al
ulation of the spe
trum showed that they missedthe �rst three states and that all energies are indeed real.For high energies " � m the harmoni
 potential in Eq. (72) may berepla
ed with W (y) = 12g2y2:The fun
tion T (y) then be
omesT (y) = g2y2"+ g2y2 + ky (90)and from Eq. (80) we get for the potentialV (y) = 14g4y4 + 3g4y2(2"+ g2y2)2 + g2(2k � 1)2"+ g2y2 + k(k + 1)y2 : (91)



1672 Th.W. RuijgrokDe�ning � and the new variable x by" = �g22 � 13 � and y = �4�3g4 � 16 x ; (92)the Bohr�Sommerfeld equation (81) takes the formx+Zx� s�3(1� x4)� � 3x2(1 + x2)2 + 2k � 11 + x2 + k(k + 1)x2 � dx = �n+ 12� � :(93)For high energies, i.e., for jkj � 1; this equation be
omesx+Zx� r�3(1� x4)� k2x2 dx = �n+ 12� � : (94)Using the fa
t that jkj is large, the integral 
an be 
al
ulated and �(n; k)
an be solved. Eventually the following expression is obtained for the squareof the masses:M2 = 324=3m2=3!4=3 jkj4=3 "1 + 2r23 (n+ 12 )jkj + � � �# : (95)This equation shows that, as for the Klein�Gordon equation and for theRelativisti
 S
hrödinger equation, also for the Dira
 equation the Reggetraje
tories are slowly separating, and not straight, but bending upwards.5. RQM5.1. Re
apitulationSin
e all details of RQM were given in [2℄, a brief resumé should su�
ehere.The problem is to 
onstru
t a nontrivial representation of the generatorsP� and J�� of the Poin
aré group, whi
h means that they should in
ludethe interparti
le intera
tion and satisfy the 
ommutation relations[P�; P� ℄ = 0 ; [P�; J��℄ = i(g��P� � g��P�) ;[J�� ; J�� ℄ = i(g��J�� � g��J�� + g��J�� � g��J��) : (96)Moreover, in the 
ase of two parti
les, these P� and J�� should be operatorsa
ting in the Hilbert spa
e spanned by a 
omplete set of free 2-parti
le states.
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on-stru
tion of the dynami
al generators with a lo
al intera
tion, lead to insu-perable problems. To quote Wigner [14℄:Finally, we had to re
ognise, every attempt to provide a pre-
ise de�nition of a position 
oordinate stands in dire
t 
ontradi
-tion with spe
ial relativity.Another problem previous authors had to fa
e, arose from the fa
t thatthey 
hose either the instant form or the light front form, as de�ned byDira
 [1℄. In both 
ases the intera
tion between parti
les 
hanged at leastone of the J�� operators. This leads to very 
ompli
ated equations, whi
h
an only be handled in an approximate way.In RQM both problems are 
ir
umvented. The Hilbert spa
e is spannedby the produ
ts of states of a single parti
le with a given momentum. Theintera
tion, whi
h is then given in momentum spa
e, will turn out not to bestri
tly lo
al. It was shown , however, that this nonlo
ality is not measurable[2, 15℄.The se
ond problem was avoided by using Dira
's point form [1℄. Inthis 
ase the Lorentz generators J�� are una�e
ted by the intera
tion, andonly P0 and ~P a
quire extra terms. This means that the mediating potentialbetween the parti
les 
arries not only energy, as in the nonrelativisti
 theory,but also momentum.In order to 
onstru
t the operators P�; we �rst 
onsider the total four-velo
ity u = 1q1� j~vj2 (1; ~v) ; (97)where for two parti
les the total 3-velo
ity is given by~v = ~p1 + ~p2p01 + p02 with p01 =qj ~p1j2 +m21 and p02 =qj~p2j2 +m22 : (98)The main assumptions of RQM now are1. The operators P� have nonvanishing matrix elements only betweenstates with the same 4-velo
ity.2. The kineti
 part of P� and the intera
tion part of P� ea
h transformlike a 4-ve
tor under Lorentz transformations.



1674 Th.W. RuijgrokFrom this follows that P� must be of the formh�jP �j�i = [K�� +W�� L(3)(~v�; ~v�)℄u� with ~v� = ~v� = ~v ; (99)in whi
h K�� is given by the momentum of the free parti
les andL(3)(~v�; ~v�) = (1� j~vj2)2 Æ3(~v� � ~v�) (100)is the Lorentz invariant propagator, whi
h ensures the 
onservation of thetotal 4-velo
ity. In [2℄ a detailed des
ription is given of how to 
onstru
t thepotential W��, starting from the desired nonrelativisti
 limit.The generators P� and J�� 
onstru
ted in this way 
an then easily beshown to satisfy the 
ommutation relations (96).5.2. The equation and the potentialOn several o

asions [2, 15℄ it was shown that the RQM-equation fromwhi
h the bound states and their masses should be 
al
ulated, is�pP 2� �Mn�  n� + �Z� fW�� L(3)(~v� ; ~v�) n� = 0 for ~v� = ~v : (101)Sin
e for two parti
les the integration element is given by�Z� � � � = 4m21m22 Z dp1dp2 2Yj=1 Æ(p2j �m2j) �(p0j) : : : ; (102)it is 
lear that in the intermediate states � the parti
le masses do not goo� mass shell, but keep their free parti
le values, as in the nonrelativisti
theory. This implies that the energy and also the momentum of the states �are allowed to di�er from their values in the state �.As an example we 
onsider the potential as derived from a one bosonex
hange, as shown in �gure 3.This potential is given byV�� = 2�m1m2�2(t� �2) ; (103)in whi
h t is the usual Mandelstam variablet = q1 � q2 with q1 = p01 � p1 and q2 = p2 � p02 : (104)
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< <

< <Fig. 3. One-boson ex
hange diagram for Yukawa intera
tion. The mass of theex
hanged parti
le is �:Alternatively this result 
an be obtained from the nonrelativisti
 Yukawapotential V (r) = ��e�� r=r; by �rst 
al
ulating its Fourier transformV (j~k0 � ~kj) = � �2�2(j~k0 � ~kj2 + �2) ; (105)and then repla
ing the square of the momentum transfer j~k0 � ~kj2 with itsrelativisti
 form �t.This will also be the rule whi
h we will adopt for the general extension ofa nonrelativisti
 potential to the relativisti
 
ase. The extra fa
tor 4m1m2derives from di�eren
es in normalisation.In �eld theory q1 = q2; be
ause p01+p02 = p1+p2 in ea
h elementary inter-a
tion, i.e., both energy and momentum are 
onserved. In RQM, however,this is repla
ed by the 
onservation of total velo
ity~p01 + ~p02p001 + p002 = ~p1 + ~p2p01 + p02 ; (106)whi
h 
an also be written in terms of the four-ve
torsp01 + p02ps0 = p1 + p2ps ; (107)with s0 = (p01 + p02)2 and s = (p1 + p2)2: The energy-momentum transferin the upper and lower vertex are in general not equal, q1 6= q2; and alsos0 6= s: Therefore the potential must also be de�ned for the 
ase where theenergy-momentum of the initial and �nal states are di�erent (although theyhave the same velo
ity).This is done by adopting the same expression (103), still with t given byEq. (104), but where it is now understood that q1 and q2 may be di�erent.



1676 Th.W. RuijgrokThis o�-shell-ness repla
es the assumptions made in other quasi-potentialtheories, in whi
h one or both parti
les are allowed to go o� mass-shell.This 
an lead to di�
ulties, be
ause the wave fun
tion for su
h a parti
lewill no longer satisfy the free parti
le wave equation.In the following se
tions this new pres
ription for 
al
ulating the poten-tial will be applied to the linear and harmoni
 potentials.5.3. Harmoni
 potentialThe simplest form of the eigenvalue problem (101) is obtained whenwriting it in the 
entre of momentum system. Taking into a

ount theproper fa
tors, whi
h are given in Eq. (1.45) of [2℄, and a new normalisationof the wave fun
tion (Eq. (1.58) of [2℄), the equation turns into�qk2 +m21 +qk2 +m22 �Mn��n(~k)+14 Z V (~k;~k0)p(k02 +m21)(k02 +m22)�n(~k0) d~k0 = 0 : (108)The fun
tions �n(~k) are orthonormal in the sense that14 Z ��n0(~k)�n(~k)p(k2 +m21)(k2 +m22) d~k = Æn0n : (109)This equation will now be used for the harmoni
 os
illator potentialfW (r) = 12m!2r2; where we take for m the redu
ed mass of m1 and m2:By �rst introdu
ing a 
ut-o�, as in Eq. (15), we 
an 
al
ulate the Fouriertransform Eqs. (16) and (17). When we then apply the rule des
ribed inthe previous se
tion, we obtain for the potential in Eq. (108) the followingexpressionV (~k;~k0) = 4m1m2 �m!2R2Æs(~k0 � ~k)� m!2R5(2�)3=2 e 12 tR2� : (110)In this formula Æs(~k0 � ~k) is obtained fromÆ(~k0 � ~k) = Æ(x1) Æ(x2) Æ(x3) with ~x = ~k0 � ~k ; (111)by repla
ing ���~k0 � ~k���2 = x2 = x21 + x22 + x23 with �t; whi
h in the 
entre ofmomentum system is equal to�t = ���~k0 � ~k���2 +�qk02 +m21 �qk2 +m21��qk02 +m22 �qk2 +m22� :(112)
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lose to ~k we expand this expression in powers of ~x, whi
h gives�t = x2 + a(~k � ~x)2 +O(x3) with a(k) = 1p(k2 +m21) (k2 +m22) : (113)Choosing the 
oordinate system in su
h a way that the positive x3-axispoints in the dire
tion of ~k, Eq. (113) 
an also be written as�t = x21 + x22 + �2x23 +O(x3); with �(k) =p1 + ak2 : (114)The fun
tion �(k) varies between � = 1 for k = 0 and � = p2 for k !1:The repla
ement ���~k0 � ~k���2 ! �t therefore amounts to x1 ! x1; x2 ! x2and x3 ! �x3: Consequently it follows from Eq. (111) thatÆs(~k0 � ~k) = 1�(k)Æ(~k0 � ~k) : (115)If we now substitute the potential from Eq. (110) into Eq. (108), weobtain �qk2 +m21 +qk2 +m22 �Mn��n(~k)+ m1m2m!2R2�(k)p(k2 +m21) (k2 +m22)�n(~k)= m1m2m!2R5(2�)3=2 Z e 12 tR2p(k02 +m21) (k02 +m22)�n(~k0) d~k0 : (116)For R ! 1 the main 
ontribution to the integral 
omes from ~k0�values
lose to ~k: Therefore t 
an be approximated by Eq. (114) and also for �n(~k0)it su�
es to use the �rst three terms in the Taylor expansion�n(~k0) = �n(~k) +Xi xi��n(~k)�ki + 12Xi;j xixj �2�n(~k)�ki�kj + : : : : (117)On substitution into Eq. (116) we are left with the following integralsA(k) = Z e� 12R2(x21+x22+�2x23) d~x (118)and Bij(k) = Z xixje� 12R2(x21+x22+�2x23) d~x : (119)



1678 Th.W. RuijgrokThese integrals are equal toA(k) = (2�)3=2�R3 ; B11(k) = B22(k) = (2�)3=2�R5 ; B33(k) = (2�)3=2�3R5(120)and Bij(k) = 0 for i 6= j:The term proportional to A(k) 
an
els against the R2-term in the left-hand side of Eq. (116), while the R�5 dependen
e of the B-terms is 
an
elledby the fa
tor R5 in front of the integral.The �nal equation for the relativisti
 harmoni
 os
illator now reads�qk2 +m21 +qk2 +m22 �Mn��n(~k)= 12m!2 m1m2�(k)p(k2 +m21) (k2 +m22)�(�2�n(~k)�k21 + �2�n(~k)�k22 + 1�2(k) �2�n(~k)�k23 ) : (121)This equation seems not to be rotational invariant. This is not the 
ase,however, be
ause the �rst two terms between the 
urly bra
kets derive fromthe variation of �n(~k) in the dire
tions transverse to ~k; while the last termrefers to the longitudinal dire
tion. These are rotational invariant 
on
epts.On 
omparison with Eq. (41) we see that for low energies our theoryredu
es to the Relativisti
 S
hrödinger equation. For high energies, how-ever, i.e., for highly ex
ited states, the two theories are 
ompletely di�erent.Be
ause of the extra fa
tor on the right hand side of Eq. (121) the 
oupling12m!2 is redu
ed by a fa
tor whi
h tends to zero for high energies.For numeri
al 
al
ulations it is easier to work with partial waves. Bywriting �n(~k) = �nl(k)k Ylm(�; ') (122)one then obtains for the harmoni
 os
illator in RQM�qk2 +m21 +qk2 +m22 �Mnl��nl(k)= 12m!2 m1m2�(k)p(k2 +m21) (k2 +m22) � 1�2(k) d2�nl(k)dk2 � l(l + 1)k2 �nl(k)� :(123)This equation resembles the Relativisti
 S
hrödinger equation (43). Theredu
tion of Eq. (108) to the form of a di�erential equation, so far only
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eeds for the harmoni
 os
illator. For other potentials su
h a redu
tionwill in general be impossible or amount to an approximation.In the following subse
tions we will dis
uss Eq. (123) for the stati
 
aseand for the 
ase of two equal masses.5.3.1. The stati
 
ase m2 !1If the total mass M = m1 + m2 be
omes arbitrarily large, while theredu
ed mass m = m1m2M is kept �xed, Eq. (123) takes on a mu
h simplerform. With "(k) and "nl de�ned by"(k) =pk2 +m2 and Mnl =M �m+ "nl ; (124)Eq. (123) be
omes["(k) � "nl℄ �l(k) = 12m!2 m"(k) �d2�l(k)dk2 � l(l + 1)k2 �l(k)� : (125)Although it di�ers from the Relativisti
 S
hrödinger equation (43) only inthe fa
tor m="(k), this has a large e�e
t on the slope of the Regge traje
to-ries.In order to show this e�e
t we �rst introdu
e dimensionless variables y;yl and g by k = my "nl = mq1 + y2l ; g = !m : (126)We furthermore assume that l is large enough, so that y � 1 and yl � 1:Eq. (125) then be
omes�d2�l(y)dy2 = [E(y) � V (y)℄ �l(y) ; (127)where E(y) = ty ; �t � 2ylg2 � and V (y) = 2y2g2 + l2y2 : (128)This looks like the nonrelativisti
 S
hrödinger equation, ex
ept that theeigenvalue is repla
ed by a linear fun
tion in y:Still, for l � 1; the spe
trum 
an be 
al
ulated by again applying theBohr�Sommerfeld quantisation rule, as des
ribed in Se
tion 1.4. We use thefa
t that the 
lassi
al turning points are very 
lose to the point y = y
;where the fun
tion E(y) = ty is tangent to the fun
tion V (y): This happenswhen t = t
 = 83g2 y
 with y
 = �32�1=4pgl : (129)



1680 Th.W. RuijgrokBy expanding V (y) in a power series around y
; an expression for the 
lassi
alturning points is found and the integral iny+Zy� pE(y) � V (y) dy = n� (130)
an be 
al
ulated expli
itly as a fun
tion of t: Solving Eq. (130) for t givest = 83g2 y
 + 4ngy
 + : : : for l� n : (131)The spe
trum therefore is"2nlm2 = y2l = 14g4t2 = 169 r32g l + 163 g n+ : : : : (132)These are linear equidistant Regge traje
tories for the stati
 
ase of theharmoni
 os
illator. In Eq. (55) su
h traje
tories were also found with theRelativisti
 S
hrödinger equation, but then for a linear potential.Also for small values of l and n this linear dependen
e on l and n isobtained from a numeri
al solution of Eq. (125). This is shown in �gure 4.
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Fig. 4. Regge traje
tories for RQM with harmoni
 potential. The stati
 
ase.5.3.2. The 
ase of equal masses m1 = m2For the 
ase of two equal masses m1 = m2 = 2m; and in the limit l� 1;Eq. (123) 
an again be written in the form�d2�l(y)dy2 = [E(y) � V (y)℄ �l(y) : (133)
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e with Eq. (127) lies in the de�nitions of E(y) and V (y),whi
h now areE(y) = ty2 ; �t � p2ylg2 � and V (y) = 2p2y3g2 + l2y2 with Mnl = myl :(134)Again we 
an determine the values of t = t
 and y = y
 so that the fun
tionE(y) = t
y2 is tangent to V (y) in the point y = y
: This is the 
ase whent = t
 = 5p2g2 y
 and y
 = 23=10(gl)2=5 : (135)In the same way as in the stati
 
ase the Bohr�Sommerfeld integral 
anagain be 
al
ulated as a fun
tion of t: Putting the integral equal to n� givesan equation for t, whi
h 
an be solved to givet = 5p2g2 y
 + 2ny2
 + � � � for l� n : (136)The spe
trum therefore isM2nlm2 = y2l = 12g4t2 = 5227=5 (gl)4=5 + 5:21=5g8=5 nl2=5 + : : : : (137)These Regge traje
tories are rising slower than linearly and the distan
ebetween them tends to zero with l!1:The same behaviour is obtained from a numeri
al solution of Eq. (123)for m1 = m2; as 
an be seen in �gure 5.
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 potential. The 
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1682 Th.W. Ruijgrok5.4. Linear potentialIn this se
tion we will use the basi
 equation (108) of RQM for the
al
ulation of Regge traje
tories of two parti
les, bound by a linear potential.The 
onvergen
e properties of the integral in Eq. (108) are di�erent for thestati
 
ase and the 
ase of equal masses. For this reason these two 
asesrequire a separate treatment.5.4.1. The stati
 
ase m2 !1For the 
onstru
tion of the relativisti
 linear potential V (~k;~k0) from itsnonrelativisti
 form (22), we apply the general pres
ription of Se
. 5.2. UsingEq. (115)we �ndV (~k;~k0) = 4m1m2 � � 1��(k)Æ(~k0 � ~k)� 1�2(�t+ �2)2 � ; (138)in whi
h t and �(k) are de�ned in Eqs. (112)�(114) and where in the endthe limit �! 0 should be taken.For m2 ! 1 it is seen that t approa
hes the nonrelativisti
 limit t !� ���~k0 � ~k���2 and �(k) ! 1: We introdu
e the total mass M and the redu
edmass m and writeMn =M �m+ "n and qk2 +m21 +qk2 +m22 =M + "(k)�mwith "(k) =pk2 +m2 : (139)After substituting the potential (138) into Eq. (108) and taking the limitM ! 1, we obtain the RQM equation for the stati
 
ase. As for thenonrelativisti
 theory of Se
tion 1.3 the integral equation is singular again.In order to make it regular, however, we apply the same method as usedthere. In this way Eq. (108) be
omes["(k)� "n℄ �(~k) = m��2 "(k) �Z �(~k0)� �(~k)���~k0 � ~k���4 d~k0 ; (140)where we put �n(~k) = "(k)�(~k): (141)An exa
t solution of this eigenvalue problem is impossible and also theBohr�Sommerfeld method 
annot be used, be
ause Eq. (140) has no equiv-alent S
hrödinger form. Also the expansion method, whi
h was used for theharmoni
 os
illator in Se
tion 5.3, 
annot be applied, be
ause the 
oe�
ientsof the derivatives are now expressed by divergent integrals.
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h 
onsists of 
omparing Eq. (140)with Eqs. (27) and (45). These were solved previously and gave the spe
-trum of the linear potential in the 
ase of the nonrelativisti
 and Relativisti
S
hrödinger equation.For Eq. (27) we de�ne~k = �~u ; ~k0 = �~u0 ; �NR = m��3 : (142)The nonrelativisti
 S
hrödinger equation then turns into(u� 1)�(~u) = 2�NR�2(u+ 1) �Z �(~u0)� �(~u)j~u0 � ~uj4 d~u0 : (143)In Eqs. (45) and (140) we approximate "(k) by k and de�ne ~u by ~k = "n~u:Eq. (45) for the Relativisti
 S
hrödinger equation then be
omes(u� 1)�(~u) = �RS�2 �Z �(~u0)� �(~u)j~u0 � ~uj4 d~u0 with �RS = �"2n : (144)Eq. (140) takes the form(u� 1)�(~u) = �RQM�2u �Z �(~u0)� �(~u)j~u0 � ~uj4 d~u0 with �RQM = m�"3n : (145)Noti
e the 
lose similarity between the last three equations.In Se
tion 1.4 it was shown, see Eq. (36), that for high energies thedistan
e between the 
lassi
al turning points, when measured in units de-termined by the eigenvalue, was mu
h less than unity. The same happenedin Se
tion 2.2, Eq. (49) and below Eq. (53). Therefore, also the potentialenergy varies very little between these turning points. For this reason we ex-pe
t that for high energies the relevant values of ~k and ~k0 lie in a very narrowspheri
al shell with radius equal to the eigenvalue � or "n: This means thatthe relevant region of the variable u is a very small interval around u = 1:In the three equations (143), (144) and (145) we are therefore allowed torepla
e u by u = 1 in the fa
tors in front of the integrals. By doing so theequations be
ome identi
al and the spe
tral values of �NR; �RS and �RQMbe
ome equal.The values of � were 
al
ulated in Se
tion 1.4. From Eqs. (30) withE = �2=2m and (37) we derive�2nl = 3m2 � �m2�2=3 l2=3 �1 + 2p3 nl � : (146)



1684 Th.W. RuijgrokBy putting from Eqs. (142) and (144)�"2nl = m��3nl ; (147)we get "2nl = p27 �l + 9�n : (148)Comparing this result with Eq. (55), we see that the linear equidistant Reggetraje
tories are reprodu
ed, but that there are small di�eren
es in the slopeand the distan
e.With this method we 
an now also 
al
ulate the spe
trum of Eq. (145).By 
omparing with the spe
trum of the nonrelativisti
 theory we see thatwe have to put m�"3nl = m��3nl : (149)This gives for the spe
trum with RQM"2nl = �2nl = 3m2 � �m2�2=3 l2=3 �1 + 2p3 nl � : (150)This spe
trum 
an also be 
al
ulated by 
omparing with "RS from Eq. (55)by putting m�"3nl = �"2RS : (151)This gives "2nl = 24=3m2( �m2 )2=3l2=3 "1 + 2p23 nl # : (152)Eqs. (150) and (152) show the same dependen
e of "2nl on l; n and �=m2.The 
oe�
ients di�er from ea
h other by not more than 25%.This result di�ers from the linear Regge traje
tories as obtained from theRelativisti
 S
hrödinger equation, the Klein�Gordon equation and the Dira
equation. Experimental information about the 
orre
t behaviour 
ould notbe found.For mesons 
onsisting of two light quarks the square of the masses dolie on linear Regge traje
tories. In the next se
tion we will show that thisphenomenon is reprodu
ed in RQM.5.4.2. The 
ase of equal masses m1 =m2In the previous se
tion and also in Se
tion 5.3, where the harmoni
 os
il-lator was 
onsidered, it was shown that the only 
ontribution to the integralin Eq. (108) was given by ~k0-values 
lose to ~k: For this reason the wave



The Linear Potential and Harmoni
 Os
illator in : : : 1685fun
tion �n(~k0) 
ould be represented by the �rst three terms of its Taylorseries expansion (117). This eventually led to the di�erential equation (121),whi
h strongly resembles the Relativisti
 S
hrödinger equation (41).For the present 
ase of the linear potential we will now apply the sameexpansion (117). In this way we repla
e the integral equation (108) by thefollowing di�erential equation"qk2 +m21 +qk2 +m22 �Mn + m1m2���(k)p(k2 +m21)(k2 +m22)#�n(~k)= m1m2 �4�2k2 "I0(k)�n(~k) + 12 3Xi=1 Ii(k)�2�n(~k)�k2i # : (153)The 
oe�
ients are de�ned by the positive integralsI0(k) = Z d~k0k02p(k02 +m21)(k02 +m22)(z � 
os �)2 ; (154)I1(k) = I2(k) = Z k02x d~k0k02p(k02 +m21)(k02 +m22)(z � 
os �)2 ; (155)I3(k) = Z (k0z � k)2 d~k0k02p(k02 +m21)(k02 +m22)(z � 
os �)2 : (156)The 
oordinate system has been 
hosen in su
h a way that the positive z-axis points in the dire
tion of ~k: The angle between ~k and ~k0 is denoted by� and the fun
tion z = z(k; k0) is de�ned by writing�t+ �2 = 2kk0(z � 
os �) ; (157)so thatz(k; k0) = 12 �k0k + kk0�+ 12kk0 �qk02 +m21 �qk2 +m21���qk02 +m22 �qk2 +m22�+ �22kk0 : (158)In the stati
 
ase of Se
tion 5.4.1 this method 
ould not be applied,be
ause the integrals 
orresponding to I0(k) and Ii(k) would not 
onverge.
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ase they are �nite, although their 
al
ulation in 
losed form
ould only be performed for m1 = m2 = 0: After a lengthy 
al
ulation (andrepeated mistakes) I foundI0(k) = 4�2�p2 � 2�k and I1(k) = I2(k) = 4�kJt and I3(k) = 4�kJl(159)with Jt = 3�28 � �2 � 12 = 1: 630 3 and Jl = �2 + 1 = 2: 570 8 : (160)Sin
e �(k) = p2 when m1 = m2 = 0; the term 4�2=(�p2); whi
h blows upfor � ! 0; 
an
els against the 
orresponding term on the left-hand side ofEq. (153). We are then left with�qk2 +m21 +qk2 +m22 �Mn + m1m2�2�k3 ��n(~k)= m1m2 �2�k "Jt(�2�n(~k)�k2x + �2�n(~k)�k2y ) + Jl �2�n(~k)�k2z # : (161)This shows that Jt is the 
oe�
ient in front of the transverse derivative,while Jl multiplies the longitudinal derivative.Eq. (161) 
an again be written for spheri
al waves of the form of Eq. (122).If, moreover, we takem1 = m2 = 2m and negle
t the masses on the left-handside of the equation, it be
omes[2k �Mnl℄�nl(k) = 2m2��k �Jl d2�nl(k)dk2 � Jt l(l + 1)k2 �nl(k)� : (162)If we now introdu
e dimensionless variables y = k=m and yl = Mnl=(2m);this di�erential equation 
an again be written in the form (127)�d2�l(y)dy2 = [E(y)� V (y)℄ �l(y); (163)but now withE(y) = ty (t � �m2yl�Jl ) and V (y) = �m2�Jl y2 + JtJl l2y2 : (164)The 
oe�
ients di�er from those in Eq. (128), but the y- and l-dependen
eof E(y) and V (y) are the same.
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al fa
tors, the eigenvalue spe
trum will there-fore be the same as in the stati
 
ase of the harmoni
 os
illator. Repeatingthe 
al
ulation of Se
tion 5.3.1, again produ
es linear Regge traje
tories,whi
h are now given by the equationM2nlm2 = 649 r3Jt� r �m2 l + 64 Jl3� �m2 n : (165)For smaller and more realisti
 values of the angular momentum Hers-ba
h [16℄ used RQM to 
al
ulate a large number of meson masses. In addi-tion to a one-gluon ex
hange potential, he used a linear potential, 
ontaininga s
alar and a ve
tor part. He obtained very good agreement with experi-mental mass values, the square of whi
h lie on linear Regge traje
tories.6. Con
lusionsThe 
on
lusions of the RQM 
al
ulations for two-parti
le bound states,
an be summarised as follows.1. The slopes of Regge traje
tories and their mutual distan
es stronglydepend on the intera
tion-linear or harmoni
-and on possible re
oile�e
ts, i.e., equal masses or the stati
 
ase with m2 ! 1: The re-sults for M2nl=m2 are 
olle
ted in the table. We have also in
ludedthe results of the four other theories. The numeri
al values of the
onstants a and b appearing in ea
h entry 
an be taken from the 
or-responding equations. The dimensionless 
oupling 
onstants are givenby g = �=m2 for the linear potential and by g = !=m for the harmoni
os
illator. Noti
e that in RQM with a linear potential and m1 = m2the Regge traje
tories are straight equidistant lines, but that theirslope is proportional to p� and not to the usual �. Straight Reggetraje
tories also o

ur in the stati
 
ase of the harmoni
 potential,but not in the stati
 linear potential, where the other theories givelinear traje
tories. It must be added, however, that for this 
ase wehave not performed any numeri
al 
al
ulations with RQM to 
he
k thebehaviour for smaller values of the angular momentum.
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 potentialS
hr. eq. ag4=3l4=3 + bg4=3l1=3n (38) g2(l2 + 4ln + : : :) (7)Rel. S
hr. eq. agl+ bgn (55) ag4=3l4=3 + bg4=3l1=3n (44)Klein�Gordon agl+ bgn (63) ag4=3l4=3 + bg4=3l1=3n (69)Dira
 agl+ bgn (89) ag4=3l4=3 + bg4=3l1=3n (95)RQM m1 = m2 ag1=2l+ bgn (165) ag4=5l4=5 + bg8=3l�2=5n (137)RQM m2 !1 ag2=3l2=3 + bg2=3l�1=3n agl+ bgn (132)(150, 152)2. In [3℄ it was pointed out that an in
orre
t value of the slope of theRegge traje
tory is obtained when the rotational degree of freedom ofthe string is not taken into a

ount. This deviation was then 
orre
tedby adding the extra degree of freedom. Its e�e
t 
ould again be de-s
ribed by an e�e
tive Hamiltonian, in whi
h the quark potential isnonlo
al and depends on the relative angular momentum. In RQM asimilar e�e
t exists, be
ause the (nonlo
al) intera
tion potential 
ar-ries not only energy, but also momentum � see Eq. (99) � and hen
eangular momentum. This is most 
learly seen in Eqs. (161) and (162),where the tangential derivative and the radial derivative have di�er-ent 
oe�
ients. The same e�e
t is seen for the harmoni
 os
illator inEqs. (121) and (123). The suggestion is that the rotational motion ofthe potential will always be present, whether or not the intera
tion isdes
ribed by a gluon string.3. Without 
omparing Eq. (140) with the nonrelativisti
- and the Rel-ativisti
 S
hrödinger equation for the linear potential, it would havebeen very di�
ult to guess the 
orre
t asymptoti
 behaviour of its so-lution. The su

ess of the method 
an be understood from the fa
tthat for high energies, where the semi-
lassi
al quantisation rule ofBohr�Sommerfeld be
omes exa
t, the relative variation of the energybetween the 
lassi
al turning points is very small.I want to thank Professor Simonov for explaining his ideas about rotatingstrings.
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