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It is a nontrivial problem to formulate a Poincaré invariant quantum
theory, that describes the binding of two particles in a confining potential.
Four attempts at such theories are discussed and subsequently used to
calculate the spectrum of two particles, which are bound in an harmonic
oscillator potential or in a linear potential. These theories are described by
the following equations

The so called “Relativistic Schrédinger equation”.

The Klein—Gordon equation.

The Dirac equation.

RQM (Relativistic Quantum Mechanics), the author’s private theory,
which is of the “quasiparticle” type.

L e

For each of these theories the Regge trajectories are calculated, both for
the linear and for the harmonic potential. Since in RQM the interaction
potential is the carrier, not only of energy, but also of momentum and hence
of angular momentum, the Regge slopes differ from their usual values.
Along the way it is shown how confining potentials can be handled in a
theory which is formulated in the momentum representation, in spite of
the fact that their Fourier transforms do not exist. For other quasiparticle
theories the spectrum of the relativistic harmonic oscillator has not been
calculated.

PACS numbers: 03.65.Pm, 11.30.Cp

1. Introduction

In nonrelativistic quantum mechanics it is possible to separate the mo-
tion of the centre of mass from the relative motion. For two particles one
is then left with the Schrodinger equation for a single particle, in which the
mass is replaced by the reduced mass.

(1655)
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For relativistic theories this separation presents a problem. The Rel-
ativistic Schrodinger equation, the Klein—Gordon equation and the Dirac
equation are single particle equations from the start. Although they have a
certain relativity flavour, they cannot be derived from a Poincaré invariant
two-body equation. Some quasipotential theories do better in this respect.
A particular one, using Dirac’s point form [1]|, was constructed by the au-
thor [2]. In the following it will be referred to as RQM for Relativistic
Quantum Mechanics.

The main purpose of the present paper is to demonstrate that this RQM
is well suited for calculating the spectrum of two bound particles. In partic-
ular the linear potential, but also the harmonic oscillator, will be treated in
detail.

In [3] it was pointed out that the slopes of the linear Regge trajectories,
as calculated by any of the three (static) theories, deviate from the values
expected from QCD. The authors ascribe this discrepancy to the nonlocal
character of the effective interaction, which they then try to explain by
assigning an extra rotational degree of freedom to the gluon string between
the constituent quarks.

In RQM, to be presented in Section 5, the potential, being defined in the
momentum representation, is also nonlocal. As a result we will find Regge
slopes which in some cases differ from the ones obtained with the static
theories. Moreover, it will be shown that the deviations occur because of a
modification of the centrifugal term in the potential. This suggests a relation
with the effect found in [3].

In order to make this paper self contained, we first discuss the static
theories in Sections 2, 3 and 4. The results are not new, but the methods to
derive them may be of some interest. They are essential for understanding
the calculations of Section 5.

In the remaining part of this first section we show how to derive nonsin-
gular equations in the momentum representation. We also briefly recall the
Bohr-Sommerfeld quantisation rule, which will be used extensively.

1.1. Harmonic potential

Since RQM is formulated in the momentum representation, it will be
necessary first to show how we handle the singularities connected with the
nonexistence of the Fourier transform of the potential. The method to be
used will be demonstrated by applying it to the nonrelativistic Schrodinger
equation

o
o A4 0| ) = B9, 1)
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To begin with we will consider the harmonic oscillator potential

Ql}(—o) — XliT) lem(e, SD) (3)
Eq. (1) becomes
2 —_—
_zﬁ—m [le(r) _ l(l:; 1)X1(7')] +W(r)xi(r) = Ex(r). (4)

Introducing dimensionless variables

2F
y=r % and €= (5)
this can be written as
GE g XTYx=—ex (6)

The well known spectrum is

en = 4n +21 -1 or Enl:(2n+l—%)ﬁw
with [=0,1,... and =n=1,2.... (7)

So far this is the standard treatment of the harmonic oscillator in the
coordinate representation.

In momentum space it can most easily be described by replacing —r?/h?
in Eq. (2) by the Laplace operator in momentum space A, and considering
—h2A in (1) as multiplication by p?. In this way one finds for the wave
function

> 1 iR S
) = s [T b ®)
the following equation (from now on units are such that i =1)
K2 . 1 9 - K2 . . K2
In terms of spherical waves
- H(k
o0 = Wy 0.0 (10)
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this reads ) ( )
d“°H, I+ 9
- H H =—-¢ H 11
dy? 2 1~y H) € Hp, (11)
with the new dimensionless variables

_ ko _ & (12)
y_\/mw n e e

Eq. (11) is the same as Eq. (6) and the spectrum is again given by Eq. (7).

1.2. General confining potential

For a more general potential the Schrodinger equation in momentum
space takes the form of an integral equation

(K2 — K2) $(F) + 2m/W(/§' _ Ry ()i =0, (13)
with . o
WD) = / e~ T (r) d. (14)

Since the Fourier transform of the harmonic potential (2) does not exist, we
first replace it by

—_— 7,2
Wg(r) = mw?R? [1 — e_m] , (15)

and only at the end of the calculation the limit R — oo will be taken. The
Fourier transform (14) of this potential is equal to

Wr(@) = W (@) + W@, (16)
with

W(@) = mw?R%5(q) and W(Q) = —
Substitution into Eq. (13) gives
k2 9159 S mw’RP — LR R 7 g7 K2 o
[% + o R] () — W/e SR dF = 2 g(F). (18)

For large values of R the main contribution to the integral comes from values

of k' close to k. It can therefore be evaluated by expanding the wave function
as

o N 2
B = 6()+ (K~ (=) i

+.... (19)
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The remaining integrations can easily be performed, leading to

k? Y U I R | - 1 K2
— — — —A — || =— .
[2m +mw’R ] d(k)—mw”R I ¢(k)+2R5 p(k)+0O 77 2mgzﬁ(k:)
(20)
The terms of O(R?) cancel, so that the final equation is again the same as

Eq. (9).
For the harmonic oscillator we therefore have succeeded to write the
eigenvalue problem (13) in the form of a nonsingular differential equation.

1.3. Linear potential

For other confining potentials Eq. (13) will in general not take the form
of a differential equation, so that it must still be shown how to remove the
singularity. -

For that purpose we take a linear potential W (r) = or as an example.
This potential is considered as the limit of

—~ o

Walr) = 2(1 =) for 0. (21)

Its Fourier transform can again be calculated explicitly and is equal to

o o 1
W) = Z6(q) — = 22
H(q_) L (q_) 2 (qg +N2)2 ( )
The integral equation (13) then takes the form
9 9  2mo - 2mo | -
(K = 5"+ ——) ¢(k) = —5-Ju(k), (23)
Iz 2

in which JH(E) = Jﬁeg(E) + JZin(E) is the sum of a regular and a singular
integral, defined by

J;eg(E) _ ¢( I) - ¢(E) dl‘g’/ (24)

and

T = o) [ [ A ~ T4, (25)




1660 TH.W. RUIIGROK

This latter integral, which approaches infinity when p — 0, is canceled
against the term Qm—” ¢(k) in the left-hand side of Eq. (23). In order to show
the existence of the limit of Jreg(k) when g — 0, the contribution of all K
for which the length of the vector § = k' — k is less than p is considered
separately. In this region the function ¢(k') — ¢(k) can be approximated by

a power series in the components of ¢. After integrating over all directions
of ¢ one is left with

1

n
2w Ag(k / dq—27rAq5 u/ T+ 29 Z, (26)
0

0

which tends to zero when p — 0.
Finally Eq. (23) takes the form

-,

(2 — k2) p(F) = 2" / bk (k) d'. (27)
i

Because of the spherical K integration around E, indicated by [ * | this inte-
gral equation is nonsingular, which we set out to prove.

For a linear and harmonic potential we have now written the Schrodinger
equation as a nonsingular integral equation in momentum space. For arbi-
trary confining potentials, however, this reduction must still be handled on
an individual basis.

For the numerical calculation of the spectrum of the Schrédinger equa-
tion for a linear potential, an expansion in partial waves is more convenient.
With the same subtraction method as used above, I find for the eigenvalue
equation of a spherical wave amplitude

2 _ .2 2mo 2mo k2¢l() r_
(12 =2+ 252 i) + O/[Ql( k) + | K=o,

(28)
in which @;(z) is a Legendre function of the second kind with argument
= 2(K'/k + k/K'). The integral is not singular in the point ¥’ = k. By
using a symmetric integration, indicated by P, the numerical integration is
speeded up, however. The same equation (28) has been found by a number
of authors, among them Maung et al. [4] and Hersbach [5].
Eq. (28) is not very useful for calculating the spectrum for large angular
momenta, but will be important for the connection with the relativistic
theory.
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In order to establish the asymptotic behaviour of the spectrum for the
present nonrelativistic case it is better to start from the coordinate repre-
sentation and use the Bohr—Sommerfeld quantisation rule. This method will
also be useful when considering other theories.

1.4. The Bohr-Sommerfeld method

By taking W(r) = or in Eq. (4), the eigenvalue equation for the spherical
amplitudes becomes

d*x I(1+1)
= 29
an < 7]2 X1 X1 s ( )

in which we have introduced the following abbreviations

1/3
_ omo) P amd Bem( )" 30
n=(2mo)"’r an =m|\5 - (30)

For [ = 0 the exact solution of Eq. (29) is given by the Airy function Ai(rn—no)
and the possible values of 7y are the zeros of Ai(—ng). The ground state has

no =2.338... . (31)

However, for arbitrary values of [ it is not possible to give a closed form for
the eigenvalues 7,,;.

In the Bohr—Sommerfeld approximation the values of 7; should be found
by solving the equation

7\/771—77—[(1;;1) dy = <n+%)7r. (32)
J

The classical turning points are denoted by n_and 7. With

I(r+1
n=mz and A= (LB) and Nt = MTy (33)
m
this becomes .
y (n+3)
/ 1—$—$2d$— 3/227r (34)



1662 TH.W. RUIIGROK

The left-hand side is an elliptic integral, which for each value of A can
be calculated numerically. However, in order to get an analytic expression
in ), it is more convenient to replace it by an approximation, which in the
limit [ — oo, becomes exact.

Define z. and A, as the values of  and A for which the function z? — 23
is tangent to the line A = cst. These values are easily found to be

T =% and Ae = 5. (35)
We now expand around this point
T=x.+y and A=A —p, (36)

and assume that in the whole integration region |y| < 1. For large [ this
assumption will turn out to be correct. The integral in Eq. (34) now becomes
elementary. The remaining algebra is trivial and eventually leads to the
following expression for n;

3 2 n
n = %12/3 [1 + Neil + - ] for large | and fixed n . (37)

From Eq. (30) we see that the ensuing Regge trajectories are not straight

lines. 2/
9 [ o2 4 n
2 _ 2 (9 4/3 & n
E;, 4<2m) l [1+\/§l+"']' (38)

Moreover, for each I the distance between any two neighbouring levels has
the same value, which increases with [ like [1/3.

2. The Relativistic Schrédinger equation

Formally the Relativistic Schrédinger equation is defined by the two-
particle Hamiltonian

H= \[5 +md —mi /0 +md—mo+ W(F — 7). (39)

Since for this equation the separation of the centre of mass motion is im-
possible, one only considers the case of vanishing total momentum, i.e. , pi
= — py = p. It is not known, however, how to construct the boost operator
for this two-particle system. Thus one cannot transform to arbitrary mo-
mentum and the Relativistic Schrédinger equation cannot be considered to
be a proper Lorentz invariant theory.

Ignoring this fact, one can only hope that in some sense it will be a good
approximation of a correct theory. In particular one can study the case in
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which the mass of one of the particles approaches infinity. Then Eq. (39)
simplifies and the Relativistic Schrédinger equation takes the form

(VP m? = m e+ W) () = B, (40)

where m is the mass of the other particle and 7 is the relative distance.

2.1. Harmonic potential

For the harmonic oscillator W(r) = Imw?r? it can again be written in

the momentum representation by writing 72 as —A. In this way Eq. (40)
becomes

[\/ k2 +m? —m — E] x(k) = Imw?® Ax(k). (41)

For spherical waves

Hy(k)

x(k) = = = Yin(6, ¢) (42)

the eigenvalue equation is

2
(Vi m? = m — B ) = %mwQ [d dHéQ(k) - l(l; Y| . 3

A simple numerical calculation using the Numerov method gives the
mass spectrum M,; = m + E,. For n = 1,2,3 and for ¢ = fiw/mc? = 1,
I have plotted the square of this mass versus /. These three lowest Regge
trajectories (figure 1) show a slight upward curvature.

Rel . Schr. g=1.0

Fig. 1. Regge trajectories for Relativistic Schrédinger equation with harmonic po-
tential.
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For fixed n and | — oo, the asymptotic behaviour of this mass spectrum
can be obtained by using the Bohr-Sommerfeld quantisation rule. The result
is

4
(hw)*/® (mc?)?314% |1+ %% + O %)| for large I and fixed n.
(44)

This confirms the upward bending and the slow separation of the Regge
trajectories as seen in figure 1.

In the high energy limit & > m Eq. (43) has the same form as the
nonrelativistic Schrodinger equation in the coordinate representation for a
linear potential W (r) = or. This explains why the Regge trajectories for the
two cases have the same [ and n dependence, as is seen by comparing the
equations (38) and (44).

2~
My, ~

= o

2.2. Linear potential

The Relativistic Schrédinger equation with a linear potential can again
be put in the form of Eq. (27), but with k?/2m in the first term replaced
with (k) = V2 + m?2 and k?/2m with &,. So

) e o) = 7 [ SR (43

However, in order to find the asymptotic behaviour of Mﬁl, the simplest
method is again to apply the Bohr—Sommerfeld method to Eq. (40), but

now with W (r) = or. This amounts to calculating the integral for the action
variable associated with the radial variable

T
1 2
Jp = — (en —or)? —m?2 — — dr (46)
7 r

between the classical turning points r_ and r. The energy spectrum e, is
given by requiring that

L:n+%. (47)
In this case we have added the customary term %, in order to allow a com-
parison with numerical calculations for small values of [ and n. This Maslov
index « should be chosen so as to guarantee the correct behaviour of the
phase of the wave function in the turning points. For the linear potential
a = —1. See Ref. [6].
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For high energies the integral (46) can be written as

2 o 2
J,=n \/(1—30)2—)\—2(130, (48)
Yi¥ea X

n l 1
r="¢ and A=2 and T4 = 5(1 +V1—4)). (49)
o

with

A numerical calculation shows that the integral in Eq. (48), plotted in Fig. 2
can, to a very good approximation, be represented by a linear function of A.

Therefore
2e2 (1
e —2 - — ).
J, - < 1 ) (50)

With this expression one eventually derives from Eq. (47) that
9 ™
e ~ 4ol 4+ 2mon — 50" (51)

This formula is in very good agreement with Eq. (2.8) of [7], which was
derived by interpolation of the exact values for l = 0 -3 and n =1 — 5.
It shows that, for a linear potential, linear equidistant Regge trajectories
can be obtained from the Relativistic Schrédinger equation, which was not
possible with the nonrelativistic theory.

0.5

0.05 0.1 0.15 0.2 0.25

Fig.2. The integral in Eq. (48) as a function of A

At this point I want to make a remark about the coefficient 27o in front
of n in equation (51). For high energies, i.e., for large values of [, this
coefficient is incorrect.
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This can be seen by writing the integral in Eq. (48) in the form

/\/ y?) (1 _y)dy, (52)

y2

where
1

y=1z—3 and pt=1—x (53)
Using Eq. (50), it follows from the fact that J, is finite (Eq. (47)), that X is
very close to %, and that therefore y < 1. In this limit the integral becomes

:ﬁjﬂﬁ(i—A). (54)

This means that instead of Eq. (51), one obtains for the correct asymptotic
behaviour of the Regge trajectories

€2, ~4dol +4vV20 (n - 1) . (55)

An exact calculation of low lying states may therefore be misleading, when
used as an indication of the n—dependence of the energies of states with
high angular momentum.

3. The Klein—Gordon equation

A relativistic spinless particle, coupled to another particle with infinite
mass, is usually described by the Klein—-Gordon equation

[—A+m?+ U2(r)] (7) = (B — W(r)*)(7), (56)

in which U(r) and W (r) are the potentials for respectively the scalar- and
vector-coupling. The physical relevance of this equation is in doubt, however,
because even when both U(r) and W (r) are confining potentials, Eq. (56)
may not have stable solutions.

The first difficulties with the Klein—-Gordon equation are encountered
when, as in the nonrelativistic Schrédinger equation, one tries to prove the
orthogonality of the eigenfunctions and the reality of the eigenvalues. Start-
ing from Eq. (56) one easily proves that for two eigenfunctions 1, (7) and
m (7) and their corresponding eigenvalues the following relation is valid

_E?) / () b (7) dF = 2(Ey — F) / () T (1) (7) . (57)
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Taking m = n this shows that the eigenvalues are not necessarily real.
Moreover, eigenfunctions belonging to different eigenvalues are not always
orthogonal.

The problems with the possible instability of bound states are illustrated
by taking a linear potential both for the scalar and for the vector couplings

U(r) =oir and W(r) =oor. (58)
For spherical waves the Klein—-Gordon equation then becomes

xi(y I(l+1
d;ﬁ ) U /2 D14 g2 - (e - 90| 1), (59)

with - o
y=mr, g1=-—, g2=—5 and E=me. (60)
m m

In the limit y — oo Eq. (59) becomes

xi(y)
dy?

= (¢} — ¢3)y*> xuly) for large y. (61)

From this equation we see immediately that bound states can exist only when
g% < g%. When the vector coupling is stronger than the scalar coupling the
solution becomes oscillatory and there will be no stable bound states.

For a number of other theories this is effect is discussed in [8]. For the
pure vector potential, i.e., when U(r) = 0, the connection with the Klein
paradox was explained by Fulling [9], who found complex eigenvalues for a
particle in a square well potential.

We therefore restrict ourselves to vanishing vector potentials, in which
case problems of this kind do not occur.

3.1. Linear potential

For a linear potential U(r) = or Eq. (56) reduces to the nonrelativistic
Schrodinger equation with an harmonic interaction

2 2 2 2

o E*—m

| v = 50w, (62

2m

om | 2m

From the known eigenvalues one then obtains
EY=m®+20(I+2n-1), (63)

which again describes linear equidistant Regge trajectories.
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3.2. Harmonic potential

For the harmonic interaction U(r) = 3mw?r? the Klein-Gordon equation

takes the form of the Schrédinger equation

2
2 v v = £, (64
for an anharmonic oscillator with
E? —m?
4 4
V(r)=gmw'r® and &= 5 (65)

Applying again the Bohr—Sommerfeld quantisation rule for states with high
angular momentum, the action integral

= %7\/2771(5 V) —m?- L (66)

can be calculated and is found to be equal to

334 m [ 8 5, 32 ]
=———— |—(—¢€)"+ (e —¢€0)], 67
with 3 ] c
— Whya/3 —
60_27/3(m) and e=_. (68)
The spectrum is then determined by putting J, = n. This finally gives
2n
2 4/3¢, 2Y2/374/3 an —2
My ~ 513 (hw)* 2 (me)? 1M |1+ \/;l +0O(7) (69)

for the squared masses of an harmonic oscillator as described by the Klein—
Gordon equation. Apart from the numerical constants, this is the same as
Eq. (44), obtained when using the Relativistic Schrédinger equation. For
the latter the Regge trajectories are steeper and more widely separated.

4. The Dirac equation

For the Dirac equation the orthogonality of eigenfunctions and the reality
of the eigenvalues can be proved in the standard way, so that the objections
against the Klein—-Gordon equation about this point do not exist.

However, since the work of Plesset [10], it is known that bound states
of the Dirac equation with a confining potential and pure vector coupling,
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cannot exist.We therefore consider only scalar couplings and take the linear
and harmonic potentials as examples

U(r)=or or U(r)= smw’r?. (70)

4.1. Reduction of the Dirac equation

In a standard way the two-component wave equation for spherical waves
can be derived

%y) _ _Sp(y) +(W(y) +6)G(y),
_dfl@) = L)+ Wy - Py (71)
Yy Yy

Here the following abbreviations have been introduced

W(y) = 1+gy or Wzl—}—%g?y?, y = mr
E
g = —02 or g=—, e=— (72)
m m m

and
k=j+5 if l=j+5 and k=—(j+3) if I=5—5. (73)
Defining P(y) and Q(y) by
F(y) =y *P(y) and G(y) =" Qy), (74)

Eq. (71) becomes

‘ﬂ;—g‘/) = (W+2)y™Qy),
%y) = (W-e)y * P(y). (75)

The function Q(y) can be eliminated and this then leads to

2
T = - p) +2m() Y (70
in which o . d_W N E -
(y)_Q(W+€) dy y’ (77)
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The first derivative in Eq. (76) can be eliminated by writing P(y) =.S(y)R(y),
in which S(y) is a solution of

s

o T(y)S(y)- (78)
This then leads to a nonrelativistic Schrédinger equation
PR v Re) =R (02 0), (79
with the potential
Vi) = W) + T2 - T (50

In the Bohr—Sommerfeld approximation the spectrum can be calculated
from

Yt
/\/62—V(y)dy: (n+%) T, (81)
y—

in which  and y, are the classical turning points, satisfying €2 = V (y.).

4.2. Linear potential

For high energies € > m the linear potential in Eq. (72) may be replaced
with W (y) = gy. The function T'(y) then becomes

g k
T(y) = ———+= 82
W) 20e+gy) y (82)
and from Eq. (80) we get for the potential
1 3 £ k(k+1)
1 :“+7[2<k+—>+ k—]+7. 83
(y) =97y crar 1)tk 5 (83)

If 4 and z are defined by

2 =gp and =./~z, (84)

Eq. (81) can be written as
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This is the equation from which p(n, k) must be solved.
For |k| > 1 we can neglect all terms between the square brackets, except
the term which is O(k?). In this case Eq. (85) becomes

[Vt - (a2 1) 50

The integral can be evaluated in closed form (see Gradshteyn and Ryzhik
2.267) and gives

AR L IV (R

2<2 . T = n+2 T, (87)

p(n, k) ~4n + 2+ 2|kl for k| > 1. (88)

so that

This finally results in
M?*~m?e? =mPgu=op=202n+1+k|)=20 (2n+j+3), (89)

in agreement with [3] and with the numerical study made by Critchfield [11].

Eq. (89) should be compared with Eq. (63), which gives linear Regge
trajectories for a mass- and spinless particle, described by the Klein—-Gordon
equation with a linear scalar coupling.

4.8. Harmonic potential

In spite of the fact that in the case of pure scalar coupling the eigenvalues
can be shown to be real, Ram and Halasa [12] found low eigenvalues with a
complex component for the Dirac equation with an harmonic potential and
scalar coupling. A new calculation of the spectrum showed that they missed
the first three states and that all energies are indeed real.

For high energies € > m the harmonic potential in Eq. (72) may be
replaced with W (y) = %g2y2.

The function T'(y) then becomes

2
9y k
T() = —27 4+~ 90
(y) % ngQ y ( )

and from Eq. (80) we get for the potential

1 3g"y? g?(2k —1)  k(k+1)
Viy) = -¢*y* .
) R (2e + g%y%)?  2e+ g2y? y?

(91)
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Defining 4 and the new variable = by

1 1
2\ 3 4 3\ 6
g I
€= <5) i and Yy = <g—4> x, (92)

the Bohr-Sommerfeld equation (81) takes the form

T
312 2k -1 k(k+1) 1
/\/M( zt) [(1+$2)2+1+$2+ 3 ]dm <n—|—2)7r

For high energies, i.e., for |k| > 1, this equation becomes

[t Eaem (a4 1) o o0

Using the fact that |k| is large, the integral can be calculated and p(n, k)
can be solved. Eventually the following expression is obtained for the square
of the masses:

3 2(n+1)
M? = mm2/3w4/3 k| /3 [1 +2\/; |k|2 +] : (95)

This equation shows that, as for the Klein-Gordon equation and for the
Relativistic Schrodinger equation, also for the Dirac equation the Regge
trajectories are slowly separating, and not straight, but bending upwards.

5. RQM
5.1. Recapitulation

Since all details of RQM were given in [2], a brief resumé should suffice
here.

The problem is to construct a nontrivial representation of the generators
P, and J,, of the Poincaré group, which means that they should include
the interparticle interaction and satisfy the commutation relations

[P;upu] =0, [PmJu}\] :i(g;wP)\_gu)\PI/)a
[J;w, J)\a] = i(gu)\Jau - g;wJ)\u + gu)\J;w - gquu)\) . (96)

Moreover, in the case of two particles, these P, and .J,,,, should be operators
acting in the Hilbert space spanned by a complete set of free 2-particle states.
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For a review of the attempts made to solve this problem, I want to refer
to the paper by Keister and Polyzou [13].

In my opinion, however, all of these attempts, that insisted on the con-
struction of the dynamical generators with a local interaction, lead to insu-
perable problems. To quote Wigner [14]:

Finally, we had to recognise, every attempt to provide a pre-
cise definition of a position coordinate stands in direct contradic-
tion with special relativity.

Another problem previous authors had to face, arose from the fact that
they chose either the instant form or the light front form, as defined by
Dirac [1]. In both cases the interaction between particles changed at least
one of the J,, operators. This leads to very complicated equations, which
can only be handled in an approximate way.

In RQM both problems are circumvented. The Hilbert space is spanned
by the products of states of a single particle with a given momentum. The
interaction, which is then given in momentum space, will turn out not to be
strictly local. It was shown , however, that this nonlocality is not measurable
[2,15].

The second problem was avoided by using Dirac’s point form [1]. In
this case the Lorentz generators .J,, are unaffected by the interaction, and
only Py and P acquire extra terms. This means that the mediating potential
between the particles carries not only energy, as in the nonrelativistic theory,
but also momentum.

In order to construct the operators P,, we first consider the total four-

velocity

u = #(1,17)’ (97)

VAR Lk
where for two particles the total 3-velocity is given by

L D1+ po ) S S
U= 00 with p) =/[pil* +m} and p)=/Ipf> +m3. (98)
1

2

The main assumptions of RQM now are

1. The operators P, have nonvanishing matrix elements only between
states with the same 4-velocity.

2. The kinetic part of P, and the interaction part of P, each transform
like a 4-vector under Lorentz transformations.
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From this follows that P, must be of the form
(a|P"|B) = [Kop + Wap L) (0, 75)]u”  with T, =75 =7,  (99)
in which K,z is given by the momentum of the free particles and
L) (@, 35) = (1 5]%)? 83(ia — 5) (100)

is the Lorentz invariant propagator, which ensures the conservation of the
total 4-velocity. In [2] a detailed description is given of how to construct the
potential W3, starting from the desired nonrelativistic limit.

The generators P, and J,, constructed in this way can then easily be
shown to satisfy the commutation relations (96).

5.2. The equation and the potential

On several occasions [2,15] it was shown that the RQM-equation from
which the bound states and their masses should be calculated, is

(\/Pg - Mn) Yn + /Wag L (t,, )¢5 =0 for o, =4. (101)
B

Since for two particles the integration element is given by

*

2
4
/ _ W/dpldmﬂa(pg —m2)0(p0) ... (102)

B 17772 j=1

it is clear that in the intermediate states 8 the particle masses do not go
off mass shell, but keep their free particle values, as in the nonrelativistic
theory. This implies that the energy and also the momentum of the states
are allowed to differ from their values in the state a.

As an example we consider the potential as derived from a one boson
exchange, as shown in figure 3.

This potential is given by

2amimes
Vap = 20— 1) (103)

in which % is the usual Mandelstam variable

t=q -q with ¢ =p|—p1 and qo=ps—p). (104)
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p1’, m q1 p1, m

p2", m dz p2, N

Fig.3. One-boson exchange diagram for Yukawa interaction. The mass of the
exchanged particle is p.

Alternatively this result can be obtained from the nonrelativistic Yukawa
potential V(r) = —ae™ " /r, by first calculating its Fourier transform
- o

VIF - ) = - ——= ,
22 (R — K2 + i)

(105)

and then replacing the square of the momentum transfer |k’ — k|2 with its
relativistic form —¢.

This will also be the rule which we will adopt for the general extension of
a nonrelativistic potential to the relativistic case. The extra factor 4mims
derives from differences in normalisation.

In field theory ¢; = g2, because p) +pl, = p1+p2 in each elementary inter-
action, i.e., both energy and momentum are conserved. In RQM, however,
this is replaced by the conservation of total velocity

PPy P+ P

- , (106)
Y +pY Pl +p

which can also be written in terms of the four-vectors
Ph + P _P1tpo (107)

Vs Vs

with s’ = (p| + p})? and s = (p; + p2)?. The energy-momentum transfer
in the upper and lower vertex are in general not equal, ¢; # ¢o, and also
s’ # s. Therefore the potential must also be defined for the case where the
energy-momentum of the initial and final states are different (although they
have the same velocity).

This is done by adopting the same expression (103), still with ¢ given by
Eq. (104), but where it is now understood that ¢; and ¢ may be different.
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This off-shell-ness replaces the assumptions made in other quasi-potential
theories, in which one or both particles are allowed to go off mass-shell.
This can lead to difficulties, because the wave function for such a particle
will no longer satisfy the free particle wave equation.

In the following sections this new prescription for calculating the poten-
tial will be applied to the linear and harmonic potentials.

5.3. Harmonic potential

The simplest form of the eigenvalue problem (101) is obtained when
writing it in the centre of momentum system. Taking into account the
proper factors, which are given in Eq. (1.45) of |2], and a new normalisation
of the wave function (Eq. (1.58) of [2]), the equation turns into

[\/k2 +m2 + \/k2 +m2 - Mn] xn(K)

/ Vi kl) (K'Y dk' =0 (108)
7 Xn = V.
\/ 24+ m 24 m%)

The functions y, (k) are orthonormal in the sense that

Xn’ (k) 7
Ak = G - 109
/\/k2+m1 ) (k2 + m3) o (109)

This equation will now be used for the harmonic oscillator potential

W(r) = tmw?r?, where we take for m the reduced mass of m; and ms.
By first introducing a cut-off, as in Eq. (15), we can calculate the Fourier
transform Egs. (16) and (17). When we then apply the rule described in
the previous section, we obtain for the potential in Eq. (108) the following
expression

- mw?R®

V(k, k) = dmimy |:mw2R25s(El —k)— e e3lR | (110)
In this formula &,(k" — k) is obtained from
S(K' — k) = 8(x1) 0(z2) 6(z3) with Z=Fk —k, (111)

2

o o2 -
by replacing ‘k’ — k‘ = 2?2 = 2?2 + 23 + 23 with —%, which in the centre of

momentum system is equal to

_’2—1— {\/k'2+m%— \/k2+m%} {\/k’Q—Fm%— \/k2+m%} .

(112)

= E’_
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For k' close to k we expand this expression in powers of Z, which gives

1
V (k2 +m?) (k2 + m3)

—t=2’+alk-2)>+ 0= with a(k)= . (113)

Choosing the coordinate system in such a way that the positive z3-axis
points in the direction of k, Eq. (113) can also be written as

T =% + 23+ (%25 4+ O(2*), with (k) =1+ ak?. (114)
The function B(k) varies between § =1 for k = 0 and g = /2 for k — oc.

o L2 _
The replacement ‘k’ — k‘ — —t therefore amounts to z1 — z1, T2 — 9

and z3 — fz3. Consequently it follows from Eq. (111) that

So(F — F) = ﬁa(ﬁ' iy (115)

If we now substitute the potential from Eq. (110) into Eq. (108), we

obtain
[\/kQ +m? + \/kQ +m3 — Mn] Xn(K)
mymemw?R? -

TR ) (B )

25 1tRZ
mimomw’R N 71

= k') dk . 116

(27)3/2 / V(K2 + 24+ m%)xn( ) (116)

For R — oo the main contribution to the integral comes from k' —values
close to k. Therefore £ can be approximated by Eq. (114) and also for y., (k')
it suffices to use the first three terms in the Taylor expansion

> - Oxn(k) 1 2 xn (K
Xn(E) = xa(B) + > @ g;ﬂ(_ ), 1 3 DTt a]z"é(k) Y.
: i
? 7‘7

On substitution into Eq. (116) we are left with the following integrals
A(k) = / o SRR 8% gz (118)

and
BZ](k) = /iEiiﬁje_%RQ(m%—Fm%—i—Bng) d.’f," (119)
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These integrals are equal to

)3/2 )3/2 r)3/2
A(k) — %, Bll(k) = BQQ(k) = %, B33(k) = (,283)R5
(120)

and sz(k) =0 for ¢ 75 _]

The term proportional to A(k) cancels against the R?-term in the left-
hand side of Eq. (116), while the R~=5 dependence of the B-terms is cancelled
by the factor R® in front of the integral.

The final equation for the relativistic harmonic oscillator now reads

[\/k2+m +\/k2 +m3 — ]XH(E)

_ _m 2 mimso
20 B(R)V(K2 +m]) (K2 +m3)
?xn(k) | 8xn(k) 1 Pxa(k)
X { o2 o Bk ok } ' (121)

This equation seems not to be rotational invariant. This is not the case,
however, because the first two terms between the curly brackets derive from
the variation of Xn(E) in the directions transverse to E, while the last term
refers to the longitudinal direction. These are rotational invariant concepts.

On comparison with Eq. (41) we see that for low energies our theory
reduces to the Relativistic Schrédinger equation. For high energies, how-
ever, i.e., for highly excited states, the two theories are completely different.
Because of the extra factor on the right hand side of Eq. (121) the coupling
%mw2 is reduced by a factor which tends to zero for high energies.

For numerical calculations it is easier to work with partial waves. By

writing
xalF) = 20y 6.4) (122)

one then obtains for the harmonic oscillator in RQM

[\/kQ +m?+ \/k2 +m3 — nl:| Pri(k)

_ —mwg mimsa 1 d2¢nl(k) - l(l+ )
20 B(k)/ (K2 +m3) (k2 + m3) {ﬂ2(k) di2 bni(k )} :

(123)

This equation resembles the Relativistic Schrodinger equation (43). The
reduction of Eq. (108) to the form of a differential equation, so far only
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succeeds for the harmonic oscillator. For other potentials such a reduction
will in general be impossible or amount to an approximation.

In the following subsections we will discuss Eq. (123) for the static case
and for the case of two equal masses.

5.3.1. The static case mas — c©

If the total mass M = mj + mgo becomes arbitrarily large, while the
reduced mass m = 472 is kept fixed, Eq. (123) takes on a much simpler
form. With e(k) and &,,; defined by

g(k) =VEk2+m?2 and My=M—-—m+ey, (124)

Eq. (123) becomes

m 2
[e(k) — ent] du(k) = %mwgg(k) {d C‘f]igk) - l(l]:; 1)¢l(k)} . (125)

Although it differs from the Relativistic Schrédinger equation (43) only in
the factor m/e(k), this has a large effect on the slope of the Regge trajecto-
ries.

In order to show this effect we first introduce dimensionless variables ¥,

yi and g by
k=my eq=m/l+y?, g=—. (126)
m

We furthermore assume that [ is large enough, so that y > 1 and y; > 1.
Eq. (125) then becomes

2
~T0) _ ()~ v ) i) (127)
Y
where 2 0 P2
E(y) =ty, <t = g_2> and V(y) = 7 + "l (128)

This looks like the nonrelativistic Schrodinger equation, except that the
eigenvalue is replaced by a linear function in y.

Still, for [ > 1, the spectrum can be calculated by again applying the
Bohr-Sommerfeld quantisation rule, as described in Section 1.4. We use the
fact that the classical turning points are very close to the point y = vy,
where the function E(y) = ty is tangent to the function V(y). This happens

when
] . 3 1/4
t= tc = @yc with Ye = <§> \ gl . (129)
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By expanding V (y) in a power series around ., an expression for the classical
turning points is found and the integral in

Y+
/ VE@) —V(g)dy = nr (130)
Y

can be calculated explicitly as a function of ¢. Solving Eq. (130) for ¢ gives

8 4in

Ye

The spectrum therefore is

3 16
Sgl4+ — 132
591+ 5gn+ (132)

Enl 9 1 4o 16
_— = = — t = —
m?2 Y=y 9

These are linear equidistant Regge trajectories for the static case of the
harmonic oscillator. In Eq. (55) such trajectories were also found with the
Relativistic Schrédinger equation, but then for a linear potential.

Also for small values of [ and m this linear dependence on [ and n is
obtained from a numerical solution of Eq. (125). This is shown in figure 4.

RQOM stat g=1.0

Fig.4. Regge trajectories for RQM with harmonic potential. The static case.

5.3.2. The case of equal masses m; = ma

For the case of two equal masses mq, = mo = 2m, and in the limit [ > 1,
Eq. (123) can again be written in the form

_dhily)
dy?

=[El) = V)] ¢uly)- (133)
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The difference with Eq. (127) lies in the definitions of E(y) and V(y),
which now are

22y 12
:#—i—— with  M,; = my;.

Y2
(134)
Again we can determine the values of ¢t = t, and y = y,. so that the function
E(y) = t.y? is tangent to V(y) in the point y = g.. This is the case when

\/zyl ) and V(y)

2 _
Bl =t (1=

5
t=t,= ——y, and y.=2319gl)%/>. 135
Jagve amd v (g1) (135)

In the same way as in the static case the Bohr-Sommerfeld integral can
again be calculated as a function of £. Putting the integral equal to nm gives
an equation for ¢, which can be solved to give

! 2
t:—yc+—Z+--- for I>mn. (136)

The spectrum therefore is

Miz 9 14, 5 4/5 1/5 8/5 T

These Regge trajectories are rising slower than linearly and the distance
between them tends to zero with [ — oc.

The same behaviour is obtained from a numerical solution of Eq. (123)
for mq1 = meo, as can be seen in figure 5.

RQM ml=n2 g=1.0

Fig.5. Regge trajectories for RQM with harmonic potential. The case of equal
masses.
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5.4. Linear potential

In this section we will use the basic equation (108) of RQM for the
calculation of Regge trajectories of two particles, bound by a linear potential.
The convergence properties of the integral in Eq. (108) are different for the
static case and the case of equal masses. For this reason these two cases
require a separate treatment.

5.4.1. The static case mz — o©

For the construction of the relativistic linear potential V' (k, k') from its

nonrelativistic form (22), we apply the general prescription of Sec. 5.2. Using
Eq. (115)we find

- 1

V(k,k’) = 4m1m20 (S(kl — k) - m s (138)

1
b (k)
in which ¢ and B(k) are defined in Eqgs. (112)-(114) and where in the end

the limit g — 0 should be taken.
For my — oo it is seen that ¢ approaches the nonrelativistic limit ¢ —

L2
K — k‘ and B(k) — 1. We introduce the total mass M and the reduced

mass m and write

M,=M—-m+¢e, and \/k2+m%+\/k2+m%:M+6(k)—m
with  e(k) = Vk2 +m?. (139)

After substituting the potential (138) into Eq. (108) and taking the limit
M — oo, we obtain the RQM equation for the static case. As for the
nonrelativistic theory of Section 1.3 the integral equation is singular again.
In order to make it regular, however, we apply the same method as used
there. In this way Eq. (108) becomes

£k) — e] p(F) = -7 [AE) = 0K (140)
2em) ) n g
where we put . B
Xn(k) = e(k) p(k). (141)

An exact solution of this eigenvalue problem is impossible and also the
Bohr-Sommerfeld method cannot be used, because Eq. (140) has no equiv-
alent Schrodinger form. Also the expansion method, which was used for the
harmonic oscillator in Section 5.3, cannot be applied, because the coefficients
of the derivatives are now expressed by divergent integrals.
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We therefore apply another method, which consists of comparing Eq. (140)
with Eqgs. (27) and (45). These were solved previously and gave the spec-
trum of the linear potential in the case of the nonrelativistic and Relativistic
Schréodinger equation.

For Eq. (27) we define

F=rii, FH=rl, Ixg=-—a. (142)
K
The nonrelativistic Schréodinger equation then turns into
2\NR p(ud o
-1 = . 143
(1) §(a) MH/ (143)

In Eqs. (45) and (140) we approximate e(k) by k and define @ by k = e, .
Eq. (45) for the Relativistic Schrodinger equation then becomes

(u—1) ¢(@0) _ Ars / $(a di with Aps = — . (144)
£

Eq. (140) takes the form

)
(u—1) () RQM/¢| dii’  with ARQM:%. (145)

n

Notice the close similarity between the last three equations.

In Section 1.4 it was shown, see Eq. (36), that for high energies the
distance between the classical turning points, when measured in units de-
termined by the eigenvalue, was much less than unity. The same happened
in Section 2.2, Eq. (49) and below Eq. (53). Therefore, also the potential
energy varies very little between these turning points. For this reason we ex-
pect that for high energies the relevant values of k and ' lie in a very narrow
spherical shell with radius equal to the eigenvalue x or ¢, This means that
the relevant region of the variable u is a very small interval around v = 1.
In the three equations (143), (144) and (145) we are therefore allowed to
replace u by w = 1 in the factors in front of the integrals. By doing so the
equations become identical and the spectral values of ANr, Ars and Arqum
become equal.

The values of xk were calculated in Section 1.4. From Egs. (30) with
E = x%/2m and (37) we derive

o \2/3 2 n
K2, = 3m? <W> 12/3 [1+77] . (146)
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By putting from Eqgs. (142) and (144)

g mao

en Hin
we get
€2, =V27Tol+90n. (148)

Comparing this result with Eq. (55), we see that the linear equidistant Regge
trajectories are reproduced, but that there are small differences in the slope
and the distance.

With this method we can now also calculate the spectrum of Eq. (145).
By comparing with the spectrum of the nonrelativistic theory we see that

we have to put
mo  mo

—_ = —. 149
Enl (49
This gives for the spectrum with RQM
2 2 _ o 2 0\ s 2 n
€2, = K2, = 3m (W) 12/ [1+%7 . (150)

This spectrum can also be calculated by comparing with erg from Eq. (55)
by putting

mao g
mo_ 7 151
oy
This gives
22
ek = 2P e 14 —;f%] . (152)

Eqgs. (150) and (152) show the same dependence of €2, on I, n and o/m?.
The coefficients differ from each other by not more than 25%.

This result differs from the linear Regge trajectories as obtained from the
Relativistic Schrodinger equation, the Klein—-Gordon equation and the Dirac
equation. Experimental information about the correct behaviour could not
be found.

For mesons consisting of two light quarks the square of the masses do
lie on linear Regge trajectories. In the next section we will show that this
phenomenon is reproduced in RQM.

5.4.2. The case of equal masses m; =ms

In the previous section and also in Section 5.3, where the harmonic oscil-
lator was considered, it was shown that the only contribution to the integral
in Eq. (108) was given by k'-values close to k. For this reason the wave
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function Xn(l_g" ) could be represented by the first three terms of its Taylor
series expansion (117). This eventually led to the differential equation (121),
which strongly resembles the Relativistic Schrodinger equation (41).

For the present case of the linear potential we will now apply the same
expansion (117). In this way we replace the integral equation (108) by the
following differential equation

k2 +m2 + /K2 +m2 — M, + Y Xn ()
Vo, uB(k) /(K2 +m) (k2 +m3) | ™"
3 -
mims o -1 9?xn (k)
= Io(k)xn(k = L (k . 1
i [T+ 5 30 g (153)
The coefficients are defined by the positive integrals
dE'
Io(k) = / . (154
ok) E2\/(k + m?) (k"2 +m3)(z — cos 6)2 (154
k2 dk'
nik =5 = [ : . (15)
E2\/(k? +m?)(k"? + m2)(z — cos 0)?
k, — k)2 dk'
(k) = / , (k; — k) . (156)
E2\/(k? +m?) (k"2 + m3)(z — cos 0)2

The coordinate system has been chosen in such a way that the positive z-
axis points in the direction of k. The angle between k and &’ is denoted by
6 and the function z = z(k, k") is defined by writing

—t 4 p? = 2kE'(z — cosh) , (157)
so that

1 (K K 1 ,
K= 5 () + g VR ke

2
x {\/k’2 +md— /2 +mg} o (158)

In the static case of Section 5.4.1 this method could not be applied,
because the integrals corresponding to Iy(k) and I;(k) would not converge.
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In the present case they are finite, although their calculation in closed form
could only be performed for m; = msy = 0. After a lengthy calculation (and
repeated mistakes) I found

Io(k) AT (k) = L(k) = 4nkJ, and I3(k) = dnkJ,
= _ — n = = am I = am
0 M\/§ A 1 2 t 3 l
(159)
with
RV I S| T
Ji= -5 -5 = L6303 and J=Z+1=25708.  (160)

Since B(k) = v/2 when my = my = 0, the term 47%/(u+/2), which blows up
for p — 0, cancels against the corresponding term on the left-hand side of
Eq. (153). We are then left with

[\/k2 +m? + \/k2 +m3 — M, + rr;l:lzga] Xn(K)
_ mimao Pxn(k)  0?xn (k) ?xn (k)
= ok | o ok )T |- (16D

This shows that .J; is the coefficient in front of the transverse derivative,
while J; multiplies the longitudinal derivative.

Eq. (161) can again be written for spherical waves of the form of Eq. (122).
If, moreover, we take m; = mgy = 2m and neglect the masses on the left-hand
side of the equation, it becomes

m20' 2
2k = Ml () = 227 { G M D g}

If we now introduce dimensionless variables y = k/m and y; = M,;/(2m),
this differential equation can again be written in the form (127)

d2
- Zgy) =[E(y) = V(y)] ¢u(y), (163)
but now with
_ _ mmPy, _mm? 1P
Biy) =ty (t==—77) and V()= "7+ 5. (164)

The coefficients differ from those in Eq. (128), but the y- and I-dependence
of E(y) and V(y) are the same.
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Apart from some numerical factors, the eigenvalue spectrum will there-
fore be the same as in the static case of the harmonic oscillator. Repeating
the calculation of Section 5.3.1, again produces linear Regge trajectories,
which are now given by the equation

Mgl 64 /3J; | o 64J, o
| LY S A Rl B 1
m? 9 m \ m? + 3 m2n (165)

For smaller and more realistic values of the angular momentum Hers-
bach [16] used RQM to calculate a large number of meson masses. In addi-
tion to a one-gluon exchange potential, he used a linear potential, containing
a scalar and a vector part. He obtained very good agreement with experi-
mental mass values, the square of which lie on linear Regge trajectories.

6. Conclusions

The conclusions of the RQM calculations for two-particle bound states,
can be summarised as follows.

1. The slopes of Regge trajectories and their mutual distances strongly
depend on the interaction-linear or harmonic-and on possible recoil
effects, i.e., equal masses or the static case with mo — oo. The re-
sults for M2 /m? are collected in the table. We have also included
the results of the four other theories. The numerical values of the
constants a and b appearing in each entry can be taken from the cor-
responding equations. The dimensionless coupling constants are given
by g = o/m? for the linear potential and by g = w/m for the harmonic
oscillator. Notice that in RQM with a linear potential and m; = mao
the Regge trajectories are straight equidistant lines, but that their
slope is proportional to /o and not to the usual . Straight Regge
trajectories also occur in the static case of the harmonic potential,
but not in the static linear potential, where the other theories give
linear trajectories. It must be added, however, that for this case we
have not performed any numerical calculations with RQM to check the
behaviour for smaller values of the angular momentum.
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M2, /m? linear potential harmonic potential
Schr. eq. ag'/1Y3 + bg?21' 30 (38) PP +4in+..)(7)
Rel. Schr. eq. agl + bgn (55) ag P13 4 bg? 21 30 (44)
Klein—Gordon agl + bgn (63) ag'P1'3 4 bg" 21 30 (69)

Dirac agl + bgn (89) ag'P1'3 4 bg" 21 30 (95)
RQM mi = mo ag'/?l + bgn (165) ag?P14® 4+ bg® 2172/ % (137)
RQM my — oo ag® 3123 £ bg¥ P13 agl + bgn (132)

(150, 152)

2. In [3] it was pointed out that an incorrect value of the slope of the
Regge trajectory is obtained when the rotational degree of freedom of
the string is not taken into account. This deviation was then corrected
by adding the extra degree of freedom. Its effect could again be de-
scribed by an effective Hamiltonian, in which the quark potential is
nonlocal and depends on the relative angular momentum. In RQM a
similar effect exists, because the (nonlocal) interaction potential car-
ries not only energy, but also momentum — see Eq. (99) — and hence
angular momentum. This is most clearly seen in Eqs. (161) and (162),
where the tangential derivative and the radial derivative have differ-
ent coefficients. The same effect is seen for the harmonic oscillator in
Egs. (121) and (123). The suggestion is that the rotational motion of
the potential will always be present, whether or not the interaction is
described by a gluon string.

3. Without comparing Eq. (140) with the nonrelativistic- and the Rel-
ativistic Schrédinger equation for the linear potential, it would have
been very difficult to guess the correct asymptotic behaviour of its so-
lution. The success of the method can be understood from the fact
that for high energies, where the semi-classical quantisation rule of
Bohr—Sommerfeld becomes exact, the relative variation of the energy
between the classical turning points is very small.

I want to thank Professor Simonov for explaining his ideas about rotating
strings.
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