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ASYMPTOTIC EXPANSION OF THE MAXWELLFIELD IN A NEIGHBOURHOOD OF A MULTIPOLEPARTICLE�Jerzy KijowskiCenter for Theoretial Physis, Polish Aademy of SienesLotników 32/46, 02�668 Warsaw, Polande�mail: kijowski�ft.edu.pland Marin Ko±ielekiDepartment of Mathematial Methods in Physis, Warsaw UniversityHo»a 74, 00�682 Warsaw, Polande�mail: kosiej�fuw.edu.pl(Reeived May 5, 2000)Eletromagneti �eld in a neighbourhood of an arbitrarily moving (ele-tri or magneti) dipole partile is desribed up to r1-terms, where r is thedistane from the partile.PACS numbers: 03.50.De 1. IntrodutionIn the famous paper [1℄ Dira proposed a theory of interation betweeneletromagneti radiation and a point-like partile, where the latter is nottreated as a test partile. The theory displays instability (better known asexistene of �runaway solutions�). There were many attempts to improve thistheory (see [2℄), onsisting e.g. in adding a dipole struture (both eletriand magneti) to the partile.Reently, a new approah to the interation problem was proposed (see[3℄ or [4℄). It is not based on any ad ho equations of motion imposed ona partile, but on the onservation priniple of the total four-momentum ofthe omposed �partile + �eld� system. The latter quantity is de�ned bya ertain renormalization proedure whih approximates the orrespondingfour-momentum arried by an extended partile. Equations of motion arethen obtained from the above onservation laws in a way, whih realizes theEinstein programme of deriving equations of motion from �eld equations.� This work was supported in part by the Polish KBN Grant Nr.2 P03A 047 15.(1691)



1692 J. Kijowski, M. Ko±ielekiIn this approah the soure of Dira's instability is easily understood:the approximation of energy-momentum tensor used in this theory was toorough beause it did not take into aount any deformation energy of thepartile, due to the external �eld. As a result, the total energy was notbounded from below. To ure this disease a �new generation� theory isbeing developed by the present authors and will be soon published.For all these goals a detailed analysis of the Maxwell �eld in a viinityof an arbitrarily moving dipole partile is neessary. In the simplest Diraase, only the monopole partile was onsidered and only the terms up tor0 in the �eld expansion around the partile were taken into aount.For our purposes expansion up to r1 terms for a dipole partile is ne-essary. It was never done in the literature. Even if the idea is simple andonsists in an appropriate Taylor expansion of the well known formulae (ofthe Liénard�Wiehert type), an enormous omplexity of the problem makessuh an exerise almost infeasible, unless a speial algorithm is found whihsimpli�es su�iently the alulations.In the present paper we propose suh an algorithm, based on the use ofthe o-moving oordinate system for the partile trajetory (the so alledFermi frame � f. [4℄ or [5℄). This allows us to remove all the unneessaryparameters, related to the speial arrangements of measuring instruments,and to express the results in terms of intrinsi harateristis of the tra-jetory and of the time-dependent dipole moment of the partile. For theatual Taylor expansion the pakages of symboli alulus of the programMAPLE V were used. We stress that the straightforward use of the samepakages (i.e. without any simpli�ation and standardization proposed inthe present paper) does not lead to any manageable result within a �nitetime.Whenever a ompliated formula is obtained with use of a omputeralgebra, it is important to have an independent riterion to hek its validity.In our ase, the entire singular part of the �eld (more than 70% of theobtained terms) may be alulated by an independent approah, whih doesnot use any power series expansion (see [6℄). The method is purely algebraiand onsists in solving step by step Maxwell equations in partile's restframe. The onsistene of the two proedures is an important test for theorretness of results presented here.2. The �eld of a moving dipole in laboratory frameSuppose, therefore, that an eletri dipole is moving along an arbitraryspaetime trajetory (we show in the sequel that the duality transformationbetween eletri and magneti �elds enables us to obtain easily the orre-sponding result for a magneti dipole partile). Our starting point is the



Asymptoti Expansion of the Maxwell Field . . . 1693standard Liénard�Wiehert formula for the (retarded or advaned) �eld of amonopole partile equipped with harge e and moving along the trajetoryq�(t) = (t; ~q(t)):Dmon(~x; t) = er2 (1� vv)(N + "V )(1 + " nv)3 + er na(N + "V )� (1 + " nv)A(1 + " nv)3 ; (1)Bmon(~x; t) = �"N �Dmon ; (2)where " equals �1 for the retarded and 1 for the advaned solution. Cap-ital letters denote three-dimensional (spae-like) vetors, any pair of lowerase letters denotes their salar produt (i.e. nv = NiV i), r = j~x � ~q(�)j,N = (~x� ~q(�))=r, where ~x is the observer's position, ~q(�) denotes retardedor advaned position of the partile, V stands for the partile's veloity,A for aeleration, both taken at retarded or advaned time � = �(t; ~x).This �eld satis�es the Maxwell equations with the �delta-like� urrent:J 0(~x; t) = eÆ(~x � ~q(t)) ; J k(~x; t) = eV k(t)Æ(~x � ~q(t)) ; (3)where (1; V k(t)) = �1; ddt~q(t)� = ddtq�(t) = V �(t) :The retarded (advaned) time � is an impliit funtion of the parameters(x�) = (t; ~x), de�ned by the equation:�(x� � q�(�))(x� � q�(�))g�� = (t� �)2 � jj~x� ~q(�)jj2 = 0 : (4)To obtain the retarded (or advaned) solution for a dipole partile, we aregoing to represent it as a derivative of the above monopole �eld with respetto an auxiliary parameter l. Assume, therefore, that we have a 1-parameterfamily of trajetories ~q(t; l). The derivative of (1) and (2) with respet tothe parameter l gives us the retarded and advaned solution, orrespondingto the dipole-like urrent. Indeed, with the following notation for the (timedependent) dipole moment:W (t) := e �~q�l (t; 0) ;we obtain the orresponding dipole-like urrent, equal to the derivative ofmonopole-like urrent (3) with respet to the parameter l:J 0 = �W k�kÆ(~x� ~q(t)) ; (5)J k = � ddtW k� Æ(~x� ~q(t))� V kW i�iÆ(~x� ~q(t)) : (6)The above urrent obviously ful�lls ontinuity equation ��J � = 0.



1694 J. Kijowski, M. Ko±ielekiThe orresponding (retarded or advaned) �eld is obtained as a derivativeof (1) and (2) with respet to the parameter l. For this purpose we must beable to alulate derivatives of the quantities appearing in these formulae.In the Appendix we derive all the neessary ingredients. In partiular, weprove the following:e ���l = �" nw1 + " nv ; e �N�l = �1r �W + (N + " V ) e " ���l � : (7)The �nal formula for the Liénard�Wiehert �eld of a moving dipoleW reads:Ddip = � �r3 + �r2 + r� (N + "V )��1� vvr3 + nar2 � W(1 + " nv)3+�  r2 + !r �A+�(1� vv)r2 + nar � "W1(1 + " nv)3 + " nwA1r(1 + " nv)3� W2r(1 + " nv)2 ; (8)Bdip = �" �dNdl �Dmon +N �Ddip� ; (9)where:� = �3" (1 � vv)(1 + " nv)4 ��wv + (1� vv) e���l � ; (10)� = �1(1 + " nv)4�(1 + " nv)(2w1v + wa)� 3" ((av) (nw) + (wv) (na))+ 3" (1 � vv)�nw1 + 2na e���l �� ; (11) = 1(1 + " nv)4�(1 + " nv)nw2 � " (na1) (nw)� 3" na�nw1 + na e���l �� ; (12) = �1(1 + " nv)3 ((2� 3 vv � " nv)nw + 2"wv) ; (13)! = "(1 + " nv)3 �2nw1 + 3na e���l � : (14)To simplify notation we have introdued an additional index related tothe rank of the time derivative applied to quantities like dipole momentand aeleration, i.e. V1 := ��tV , A1 := ��tA, W1 := ��tW , W2 := �2�t2Wand nw2 := NiW i2 = (N jW2). All these quantities have to be taken at theadvaned (for " = 1) or the retarded (for " = �1) time.



Asymptoti Expansion of the Maxwell Field . . . 16953. Expansion in the powers of r3.1. Calulation of the advaned (retarded) timeTo obtain useful information about the behaviour of the �eld in a neigh-bourhood of the partile we will expand the above results in powers of r = j~xjon a �xed hyperplane ft = t0g. For the sake of simpliity put t0 = 0 and~q(0) = ~0. Now, put V = V0 and use the Taylor series for the partile'sposition and its dipole moment:~q(t) = 5Xk=1 Vk�1k! tk +O(t5) : (15)As will be seen in the sequel, the �fth order expansion is su�ient to obtainthe behaviour of the �eld up to terms proportional to r. Equation (4) forthe advaned (retarded) time �(~x) := �(0; ~x) now reads:�2 � ~q(�)2 � r2 + 2(~q(�)j~x) = 0 : (16)Using the following Ansatz for � :�(~x) = r(f0 + f1r + f2r2 + f3r3 + f4r4) +O(r5) ; (17)where fi depend on the diretion M = ~x=r of the vetor ~x only (i.e. arefuntions of angles on the sphere S2), and inserting it into (16), together withexpansion (15) for ~q(�), the oe�ients fi may be �nally alulated, but theformulae obtained this way are extremely ompliated. Using them in thefurther expansion of the �eld produes formulae, whih an hardly be usefulfor our purposes beause of their omplexity. This problem may be avoidedif we deide from the very beginning to desribe the �eld on the partile'srest hyperplane, i.e. we put V0(0) = 0. This simpli�es onsiderably ourresults as the power series expansion beomes feasible and redues tof0 = " ; (18)f1 = �12 "mv1 ; (19)f2 = �16 mv2 + 18" �3 (mv1)2 + v1v1� ; (20)f3 = � 124 "mv3 + 112 v1v2 + 13 (mv1) (mv2)� 516"mv1 �v1v1 + (mv1)2� ; (21)



1696 J. Kijowski, M. Ko±ielekif4 = � 1120 mv4 � 18 ((v1v1) (mv2) + 2 (v1v2) (mv1))+" 18 �19v2v2 + 16 v1v3 + 716(v1v1)2�+58 " �16 (mv1) (mv3) + 19(mv2)2 + 78 (v1v1) (mv1)2��12 mv2 (mv1)2 + 35128 " (mv1)4: (22)3.2. The Fermi frameThe referene system in whih the partile moving with an aelerationai would remain at rest, an be onstruted in many ways. Here we hoosethe Fermi frame onstrution (see [5,4℄). This means that the time vetor e0of the tetrad (e�) de�ning the system is always equal to the partile's fourveloity u = (u�). At eah point q(t) of the partile trajetory the spae-likehypersurfaes �t orthogonal to the trajetory are spanned by the remainingthree elements of the tetrad: (ek), where k = 1; 2; 3: The above triad de�nesuniquely the Cartesian (orthonormal) oordinate system (xk) on �t. TheFermi ondition imposed on the system means that the ovariant derivativere0ek has no spae-like omponent, i.e. is proportional to e0. It is easy toshow that this ondition implies the following relations:re0ek = ake0 ; re0e0 = a ; (23)where by a := akek (and ak = gklal) we denote the aeleration (urvature)of the trajetory. It is a vetor orthogonal to the trajetory. As the timeparameter we take the proper time s along the trajetory.We are going to desribe both the partile's motion and its dipole mo-ment with respet to the above, degenerate oordinate system. It is degen-erate, beause di�erent surfaes �t may interset, but this does not leadto any di�ulty. Tehnially, we may treat our spaetime as an abstratmanifold � �R1, equipped with time dependent metri (see [5℄):g�� = � NkNk �N2 NlNk gkl � ; g�� = 0� � 1N2 N lN2NkN2 gkl � NkN lN2 1A ; (24)where gkl is the �at (eulidean) metri on �. The lapse funtion N and theshift vetor Nm enode information about the partiular (3+1) � deompo-sition of spaetime. The Fermi�Walker transport (23) of the tetrad meansthat the shift vetor vanishes identially: Nm � 0. It is easy to hek thatthe lapse funtion equals N = 1 + aixi.



Asymptoti Expansion of the Maxwell Field . . . 1697The omponents of the �at, Minkowski onnetion, an be obtained asChristo�el symbols of the above metri (f. [3℄):� 000 = _ajxj1 + aixi ; � 00k = ak1 + aixi ; � k00 = (1 + aixi)ak ; (25)and the remaining omponents vanish. In partiular, if we alulate ovari-ant derivatives of vetors attahed at the partile's position xi = 0, the onlynon-vanishing onnetion omponents are:� 00k = ak ; � k00 = ak : (26)We are going to express the eletromagneti �eld surrounding the par-tile in terms of the two three-dimensional vetors: the aeleration ~A andthe dipole moment ~P , together with their time derivatives, alulated withrespet to the partile's proper time s in the above frame. Only these deriva-tives will be denoted by �dots� in the sequel.3.2.1. Transformation of veloitiesIn Fermi frame the veloity always vanishes. The entire informationabout partile's trajetory is enoded in the (time dependent) aelerationai = ai(s), whih is a vetor orthogonal to the trajetory. As a �rst step ofour standardization proedure, we are going to express all the laboratory-frame derivatives Vi (alulated with respet to the laboratory time t) interms of the above quantity and its Fermi-frame ovariant derivatives (al-ulated with respet to the proper time s). We denote the latter derivativeby r0. In the next step we express the ovariant derivatives in terms ofordinary derivatives (�dots�).To obtain this expression for Vi we introdue the onstant laboratoryvetor �eld ��t = K� = (1; 0; 0; 0) and note that(1; V k) = V � = dq�dt = dsdt dq�ds = dsdt u�; (27)and �1 = V �K� = dsdt u�K� ) dsdt = � 1u�K� ; (28)where we used (�;+;+;+) signature for the spaetime metri. This gives usV � = � 1u�K�u� : (29)Hene, we have for higher derivatives:V �i+1 = � 1u�K�r0V �i : (30)



1698 J. Kijowski, M. Ko±ielekiThe above reurrene an be used to alulate Vi up to required auray �for our purposes only terms up to V �4 are neessary. We have: r0u� = a�.To simplify further our notation we denote r0a� =: a�1 and r0a�i =: a�i+1.This way we obtain:V � = � 1u�K�u�; (31)V �1 = � 1u�K�r0V � = 1(u�K�)2 �a� + a�K�V �� ; (32)V �2 = 1(u�K�)2 �3 a�K�V �1 � 1u�K� �a�1 + a�1K�V ��� ; (33)V �3 = 1(u�K�)2  6 a�K�V �2 � 1u�K� 4 a�1K�V �1� 1u�K� �a�2 + a�2K�V � � 3�a�K��2 V �1 �!! ; (34)V �4 = 10 a�K�(u�K�)2 �V �3 � V �2u�K��+ 1(u�K�)4 5 a�2K�V �1 � 15 �a�K��2 V �2� 1u�K� �a�3 + a�3K�V � + 10 a�1K� a�K� V �1 �! : (35)Now, we alulate expliitly ovariant derivatives in the Fermi frame:r0 a�i = _a�i + � �0�a�i , using (26) for the onnetion oe�ients (dot denotesthe ordinary proper-time derivative in the Fermi frame). This way we obtain:a� = (0; ak); (36)a�1 = (aiai; _ak); (37)a�2 = (3 ai _ai; �ak + aiai ak); (38)ak3 = (_�ak + 5 ai _ai ak + aiai _ak); (39)V � = (1; 0; 0; 0); (40)V k1 = ak; (41)V k2 = _ak; (42)V k3 = �ak � 3 aiai ak; (43)V k4 = _�ak � 10 ai _ai ak � 9 aiai _ak ; (44)and V 0i = 0 as expeted.



Asymptoti Expansion of the Maxwell Field . . . 16993.2.2. Transformation of dipole momentaThe four-urrent density (5), (6) arried by the moving dipole may berewritten in the following, four dimensional notationJ � = ��� �u�W �Æ��+ �u���W �� Æ� ; (45)where u� = 1p1� V kVkV � ; (46)and Æ� =p1� V kVk Æ(~x� ~q(t)) : (47)The distribution Æ� is the Dira delta assigned in a fully intrinsi (geometri)way to the trajetory � := f(t; xk)jxk = qk(t)g. Hene, it does not dependupon any hoie of a referene system. On the ontrary, the desriptionof the dipole moment in terms of the 3-dimensional, laboratory quantity(W �) = (0;W k) is referene-dependent. To avoid this dependene we aregoing to replae it by a four-vetor P = (p�) orthogonal to the trajetory insuh a way that the urrent (45) does not hange. This is possible, beauseof the following identity:�� �u� fu�Æ��� u� (�� fu�) Æ� = fu��� �u�Æ�� � 0 ; (48)where f is any time-dependent salar. This proves, that the quantity W � informula (45) may be replaed by p� := W � + fu� and the eletri urrentJ � will not hange. To de�ne the vetor P uniquely in terms of the urrent,we impose the orthogonality ondition p�u� = 0.The best way to express W in terms of P onsists in using formulae:W � = p� � fu� and W �K� = 0. This way we obtain:W � = �Æ�� � 1u�K� u�K�� p� : (49)In the Fermi frame we have (u�) = (1; 0; 0; 0; ) and P beomes a threedimensional quantity: p� = (0; pk). Hene, the eletri urrent density (45)redues to: J 0 = �pk�kÆ� ; J k = _pkÆ� : (50)



1700 J. Kijowski, M. Ko±ielekiWe are going to use the three dimensional vetor ~P = (pk) as thereferene-invariant representation of the partile's dipole moment. The quan-tityW and its derivatives with respet to the laboratory time t, whih appearin the power series expansion of the �eld, will be expressed in terms of ~Pand its derivatives with respet to the proper time s. For this purpose weuse formula (49) and its derivatives. Similarly as for veloities Vi we have:W �i+1 = �(1=(u�K�))r0W �i , where W �0 = W �. Putting also p�0 = p� andp�i+1 = r0p�i = _p�i + � �0�p�i , we obtain the following reurrene:W �0 = �Æ�� � 1u�K� u�K�� p�0 ; (51)W �1 = � 1u�K�r0W �0 (52)= � 1u�K� �p�1 � 1u�K�K�r0 �u�p�0�+ a�K�u�K� (p�0 �W �0 )� ; (53)W �2 = 1(u�K�)2 �3 a�K�W �1 + p�2 + 2a�K�u�K� p�1 + a�1K�u�K� (p�0 �W �0 )� 1u�K�K�r00 �u�p�0�� ; (54)W �3 = 1(u�K�)2 6 a�K�W �2 � 1u�K� (4 a�1K� W �1 + p�3 )� 1(u�K�)2 �3 a�1K� p�1 + a�2K� (p�0 �W �0 )�K�r000 �u�p�0�+ 3 (a�K�)2W �1 + 3 a�K� p�2�!: (55)In order to simplify tehnial obstales while omputing W �4 we an makeuse of the fat that for initial time t = 0 we have: a�K� = 0, (p�0 �W �0 ) = 0,and (p�1 �W �1 ) = 0. Then:W �4 = 1(u�K�)3 ��10 a�1K� W �2 + 1u�K� (5 a�2K�W �1 + p�4 ) (56)+ 1(u�K�)2 �6 a�1K� p�2 + 4 a�2K� p�1 �K�r0000 �u�p�0��� : (57)The orresponding reurrene for pi reads:p�0 = (0; pk) ; (58)p�1 = (akpk; _pk) ; (59)



Asymptoti Expansion of the Maxwell Field . . . 1701p�2 = (_akpk + 2 ak _pk; �pk + aipi ak) ; (60)p�3 = (3 ak �pk + �akpk + 3 _ak _pk + aiaiakpk; _�pk + aipi _ak (61)+(2 _aipi;+3 ai _pi) ak) ; (62)pk4 = ��pk + aipi �ak + (3 _aipi + 4 ai _pi) _ak (63)+(3 �aipi + 6 ai�pi + 8 _ai _pi + aiaialpl) ak : (64)Comparing these two reurrenes we �nally obtain:W k0 = pk ; (65)W k1 = _pk ; (66)W k2 = �pk � aipi ak; (67)W k3 = _�pk � aiai _pk � 2 aipi _ak � ( _aipi + 3 ai _pi) ak ; (68)W k4 = ��pk � 15 ai _ai _pk � 10 aiai�pk + aipi �ak + (3 _aipi + 4 ai _pi) _ak (69)+(3 �aipi + 6 ai�pi + 8 _ai _pi + 11 aiai alpl) ak ; (70)and W 0i = 0 as expeted. 4. The resultsThe results of this paper onsist in alulating the power series expan-sion of (8) and (9) (together with de�nitions (10)�(14)) with respet to thedistane r. For this purpose the trajetory q(t) is taken in the form (15)with V0 = 0. The retarded (advaned) time is given expliitly by formulae(17)�(22). As a seond step we translate the results into the standardizedform, i. e. we replae all the quantities V 's, W 's and their derivatives withrespet to the laboratory time by the quantities ak, pk and their proper-timederivatives. For this purpose we use formulae (40)�(44) and (65)�(70).The expansion was performed with help of the MAPLE V r.5 systemfor symboli omputation. The algorithm outlined here exists as a programLW'99 and may be downloaded from the internet site of the Department ofMathematial Methods in Physis, University of Warsaw:http://info.fuw.edu.pl /� kmmf/marin/startlw.htmlBelow we give results for both the monopole and the dipole �eld. Weuse the following notation. By M we mean vetor M := ~x=j~xj, upperaseletters denote three dimensional vetors, any pair of lowerase letters standsfor the salar produt of two vetors i.e. pama = piaimiai, dots over lettersindiate proper time derivatives in the Fermi frame (i.e. _a; �a; _P ; �P ; _�P ; ��P ), "equals +1 for the advaned and �1 for the retarded solution.



1702 J. Kijowski, M. Ko±ielekiThe orresponding results for the magneti dipole may be easily obtainedby the duality transformation: D ! B and B ! �D. More preisely,this transformation may be used in vauum ase only (i.e. outside of thepartile). The globally de�ned dual �elds are given by the following formula:Bknew := Dkold + P kÆ(3) ; (71)Dknew := �Bkold : (72)It is easy to hek that the new �elds ful�ll Maxwell equations with theeletromagneti urrent orresponding to the magneti dipole: J 0 = 0,J k = "klmPl�mÆ(3).We draw attention of the reader to the fat, that the only terms in theexpansion, whih are regular (C1-derivable) are those ontaining ". Theydepend upon a spei� (advaned or retarded) solution. The remaining,singular terms are universal and depend only upon the soures (enodedby a, p and their time derivatives). These singular terms may be alulatedusing a di�erent, purely algebrai proedure (see [6℄). The agreement of theseterms with the results of [6℄ is an important validity test for the expansiongiven below. 4.1. The �eld of a monopoleD�2 = e Mr2 ; (73)D�1 = �e 12maM +Ar ; (74)D0 = e ���38 aa+ 38 ma2�M + 34 maA� 23" _A� ; (75)D1 = e �� 916 aama+ 18 m�a� 516 ma3�M +� 316 aa� 1516 ma2�A�38 �A+ 23 ��a _aM +m _aA+ 2ma _A� "� r ; (76)B�1 = e 12M � _Ar ; (77)B0 = e ��12 m _aM �A� 34 maM � _A� 14 A� _A+ 13 "M � �A� ; (78)



Asymptoti Expansion of the Maxwell Field . . . 1703B1 = e"54 mam _aM �A+�� 316 aa+ 1516 ma2�M � _A+18M � _�A+ 58 maA� _A+ 13 ��m�aM �A� 2m _aM � _A�2maM � �A� 12A� �A�"#r : (79)4.2. The �eld of an eletri dipoleD�3 = �P + 3mpMr3 ; (80)D�2 = ��32 mamp+ 12 pa�M + 12 maP � 12 mpAr2 ; (81)D�1 = "��14 pama+ 98 ma2mp� 38 aamp� 12 m�p�M+�34 mamp� 14 pa�A+��38 ma2 + 38 aa�P � 12 �P#r�1 ; (82)D0 = � 316 pa aa+ 916 maaamp� 34 �pa+ 12 m _am _p� 1516 ma3mp�12 _p _a+ 316 ma2 pa� 18 p�a+ 34 mam�p+ 18 m�amp�M+��1516 ma2mp+ 38 pama+ 34 m�p� 316 aamp�A+m _p _A+38 mp �A+� 516 ma3 � 18 m�a� 916 aama�P + 34 ma �P+23 �a _aP + aa _P � _�P� " ; (83)D1 = " 18 m��p+ 14 m _a _pa+ 98 ma �pa+ 524 mp _a _a� 516 mam�amp+ 316 map�a+ 34 ma _p _a� 116 m�a pa+ 516 mpa�a� 15128 aa2mp+78 m _pa _a� 4564 ma2mpaa� 54 m _amam _p� 524 m _a2mp+ 716 m�p aa� 1516 ma2m�p+ 124 m _a p _a� 532 ma3 pa



1704 J. Kijowski, M. Ko±ieleki+105128 ma4mp� 932 pa aama!M +� 116 p�a+ 14 _p _a�158 mam�p+ 38 �pa� 54 m _am _p� 1532 ma2 pa+ 1532 maaamp� 516 m�amp� 332 pa aa+ 3532 ma3mp�A+ � 52 mam _p�56 m _amp+ 12 _pa+ 724 p _a! _A+� 316 pa� 1516 mamp� �A+ 524 m _a2 + 516 mam�a+ 524 _a _a� 15128 aa2 + 516 a�a� 35128 ma4 + 4564 aama2!P + 98 a _a _P ��1516 ma2 + 916 aa� �P�38 ��P +  � 12 _p _a+ 916 mpaama+ 12 m _am _p+ 316 aa pa+1516 mpma3 � 34 �pa+ 18 mpm�a� 18 p�a+ 316 pama2+34 mam�p!M + � 316 mpaa+ 34 m�p� 1516 mpma2+38 pama!A+��25 mpaa+ 43 m�p� _A+ 415 mp _�A+��43 a _ama� 25 aam _a� 115 m _�a�P � 43 aama _P+23 m _a �P + 43 ma _�P!"#r ; (84)
B�2 = �M � _Pr2 ; (85)B�1 = "12 maM � _P +m _pM �A+ 12 mpM � _A� 12 P � _A�12 _P �A#r�1; (86)



Asymptoti Expansion of the Maxwell Field . . . 1705B0 = ��32 mam _p� 12 m _amp�M �A+ � 34 mamp�14 pa!M � _A+��18 aa� 38 ma2�M � _P + 12 M � _�P+34 maP � _A+ 34 ma _P �A+ 14 mpA� _A+ 12 m _aP �A�13 �P � �A+ 2 _P � _A� "; (87)B1 = " 18 aam _p+ 54 mampm _a+ 118 pam _a� 12 m _�p+ 736 a _amp+158 ma2m _p!M �A+ 1516 ma2mp+ 4172 pama� 1144 aamp�34 m�p!M � _A� 12 m _pM � �A� 18 mpM � _�A+ 736 aam _a� 736 a _ama!M � P +� 316 aama� 18 m�a+ 516 ma3�M � _P�12 m _aM � �P � 34 maM � _�P +��1918 mam _a� 736 a _a�P �A+��1516 ma2 � 116 aa� _P �A+ 14 _�P �A+ 55144 aa�163144 ma2!P � _A� 14 �P � _A� 38 _P � �A� 18 P � _�A+��3172 mamp� 572 pa�A� _A+ 13�� (p _a+ 2 _pa)M � _A�paM � �A� a _aM � _P � aaM � �P +M � ��P +m�aP �A+2m _a P � _A+ 2maP � �A+ 2m _a _P �A+ 4ma _P � _A+2m _pA� _A+mpA� �A�"#r : (88)



1706 J. Kijowski, M. Ko±ielekiAppendixAll the tehnialities related to di�erentiation with respet to the pa-rameter l are somewhat similar to the standard proedure used to obtainlassial Liénard�Wiehert �elds from potentials. In both ases we have todi�erentiate objets that depend on a variable in both expliit and impliitway (via the variable �). First we should derive formula for ���l . Let usexpand relation (4):(� l� � t)2 � jj~ql(� l�)jj2 + 2�~ql(� l�)j~x�� jj~xjj2 = 0; (89)where by � we denote advaned or retarded solution. The supersript�l� reminds us that our variables depend additionally on the parameter l.Note that: d~ql(� l�)dl = �~ql(� l�)�l + �~ql(� l�)�� ���l : (90)We an di�erentiate both sides of (89) with respet to l:�� l��l  1 + ~x� ~q�j~x� ~qj ?????�~ql(� l�)�� !! + ~x� ~q�j~x� ~qj ?????�~ql(� l�)�l ! = 0 ; (91)and make use of de�ned previously (we put t = 0):W := e �~q�l ����l=0 :Finally: e�� l��l �����l=0 = �" nw1 + " nv thus : ed~ql(� l�)dl =W + V e���l : (92)The proedure outlined here should be then applied to all variables presentin formula for monopole's �eld. Derivatives of veloity and aeleration anbe obtained in the same way as ed~ql(� l�)dl and all neessary salars onstrutedout of vetors:e ���l = �" nw1 + " nv ; (93)e ddl (nv) = �1r �wv + (vv + " nv)e���l �+ nw1 + na e���l ; (94)e ddlV =W1 +A0 e���l ; (95)



Asymptoti Expansion of the Maxwell Field . . . 1707e ddl (na) = �1r �wa+ (av + " na)e���l �+ nw2 + na1 e���l ; (96)e ddlA =W2 +A1 e���l ; (97)e �N�l = �1r �W + (N + " V )e "���l � : (98)REFERENCES[1℄ P.A.M. Dira, Pro. R. So. A167, 148 (1938).[2℄ H.J. Bhabba, H.C. Corben, Pro. R. So. A178, 273 (1941); H. J. Bhabha,Pro. R. So. A172, 384 (1939).[3℄ J. Kijowski, Gen. Relativ. Gravitation 26, 167 (1994); J. Kijowski, Ata Phys.Pol. A85, 771 (1994).[4℄ H.P. Gittel, J. Kijowski, E. Zeidler, Commun. Math. Phys 198, 711 (1998).[5℄ C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, N.H. Freeman & Co,San Franiso, California, 1973.[6℄ J. Kijowski, M. Ko±ieleki, Algebrai Desription of the Maxwell Field Sin-gularity in a Neighbourhood of a Multipole Partile, submitted to Rep. Math.Phys.


