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tric or magnetic) dipole particle is described up to r!-terms, where r is the
distance from the particle.
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1. Introduction

In the famous paper [1] Dirac proposed a theory of interaction between
electromagnetic radiation and a point-like particle, where the latter is not
treated as a test particle. The theory displays instability (better known as
existence of “runaway solutions”). There were many attempts to improve this
theory (see [2]), consisting e.g. in adding a dipole structure (both electric
and magnetic) to the particle.

Recently, a new approach to the interaction problem was proposed (see
[3] or [4]). It is not based on any ad hoc equations of motion imposed on
a particle, but on the conservation principle of the total four-momentum of
the composed “particle + field” system. The latter quantity is defined by
a certain renormalization procedure which approximates the corresponding
four-momentum carried by an extended particle. Equations of motion are
then obtained from the above conservation laws in a way, which realizes the
Einstein programme of deriving equations of motion from field equations.

* This work was supported in part by the Polish KBN Grant Nr.2 PO3A 047 15.
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In this approach the source of Dirac’s instability is easily understood:
the approximation of energy-momentum tensor used in this theory was too
rough because it did not take into account any deformation energy of the
particle, due to the external field. As a result, the total energy was not
bounded from below. To cure this disease a “new generation” theory is
being developed by the present authors and will be soon published.

For all these goals a detailed analysis of the Maxwell field in a vicinity
of an arbitrarily moving dipole particle is necessary. In the simplest Dirac
case, only the monopole particle was considered and only the terms up to
r% in the field expansion around the particle were taken into account.

For our purposes expansion up to r' terms for a dipole particle is nec-
essary. It was never done in the literature. Even if the idea is simple and
consists in an appropriate Taylor expansion of the well known formulae (of
the Liénard—Wiechert type), an enormous complexity of the problem makes
such an exercise almost infeasible, unless a special algorithm is found which
simplifies sufficiently the calculations.

In the present paper we propose such an algorithm, based on the use of
the co-moving coordinate system for the particle trajectory (the so called
Fermi frame — cf. [4] or [5]). This allows us to remove all the unnecessary
parameters, related to the special arrangements of measuring instruments,
and to express the results in terms of intrinsic characteristics of the tra-
jectory and of the time-dependent dipole moment of the particle. For the
actual Taylor expansion the packages of symbolic calculus of the program
MAPLE V were used. We stress that the straightforward use of the same
packages (i.e. without any simplification and standardization proposed in
the present paper) does not lead to any manageable result within a finite
time.

Whenever a complicated formula is obtained with use of a computer
algebra, it is important to have an independent criterion to check its validity.
In our case, the entire singular part of the field (more than 70% of the
obtained terms) may be calculated by an independent approach, which does
not use any power series expansion (see [6]). The method is purely algebraic
and consists in solving step by step Maxwell equations in particle’s rest
frame. The consistence of the two procedures is an important test for the
correctness of results presented here.

2. The field of a moving dipole in laboratory frame

Suppose, therefore, that an electric dipole is moving along an arbitrary
spacetime trajectory (we show in the sequel that the duality transformation
between electric and magnetic fields enables us to obtain easily the corre-
sponding result for a magnetic dipole particle). Our starting point is the
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standard Liénard-Wiechert formula for the (retarded or advanced) field of a
monopole particle equipped with charge e and moving along the trajectory

q"(t) = (t,q(t)):

. e (1—vv)(N+¢eV) ena(N+eV)—(1+env)A
Drnon (7, = 5 - , (1
on(%:) r2 (1 +env)? T (1+env)? e
Bmon(Z,t) = —e N X Dmon, (2)

where ¢ equals —1 for the retarded and 1 for the advanced solution. Cap-
ital letters denote three-dimensional (space-like) vectors, any pair of lower
case letters denotes their scalar product (i.e. nv = N;V?), r = |# — ¢(7)|,
N = (# — ¢(7))/r, where ¥ is the observer’s position, ¢(7) denotes retarded
or advanced position of the particle, V' stands for the particle’s velocity,
A for acceleration, both taken at retarded or advanced time 7 = 7(t, ).
This field satisfies the Maxwell equations with the “delta-like” current:

TN &) =es(@—q(t),  TNE) =eVFR)IF - q1t), (3

where d

(1, VA0) = (1 540) = Sa() = V*().

The retarded (advanced) time 7 is an implicit function of the parameters
(z#) = (t,Z), defined by the equation:

—(a" — (1)) (" — ¢"(1))gu = (t = 7)* = [|E = G(D)|P =0.  (4)

To obtain the retarded (or advanced) solution for a dipole particle, we are
going to represent it as a derivative of the above monopole field with respect
to an auxiliary parameter [. Assume, therefore, that we have a 1-parameter
family of trajectories ¢(¢,1). The derivative of (1) and (2) with respect to
the parameter [ gives us the retarded and advanced solution, corresponding
to the dipole-like current. Indeed, with the following notation for the (time
dependent) dipole moment:

W(t) :=e %(t 0),

we obtain the corresponding dipole-like current, equal to the derivative of
monopole-like current (3) with respect to the parameter I:

T = W~ i), ®)
gt = ()o@ -qo) -viwase-an.  ©

The above current obviously fulfills continuity equation d,J" = 0.
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The corresponding (retarded or advanced) field is obtained as a derivative
of (1) and (2) with respect to the parameter [. For this purpose we must be
able to calculate derivatives of the quantities appearing in these formulae.
In the Appendix we derive all the necessary ingredients. In particular, we
prove the following:

or nw ON 1

or
9T _ M g _ N 97y .
“al Tremv’ ‘ol 7‘<W+( teVyee Bl) 0

The final formula for the Liénard—Wiechert field of a moving dipole W reads:

a B v 1—vv  na W
Ddip: —3+—2+— (N+6V)— 73"1‘—2 T .3
r o r2 r r?2 ) (1+enwv)

+<£+%)A+<(1—vv)+@) e Wy N enw Ay

r2 r2

r ) @ren)® | r{d+env)?
Bap = —e <dd—];] « Dimon + N Ddip) , )
where
o = M <—wv +(1- w)e‘z—D , (10)
g = ﬁ (1 -+ £mo) @uwyv + wa) 3¢ ((av) (n) + (wo) (na)
+3e(1 — o) <nw1+2nae%>), (11)
y = m(u + e nw) nay — ¢ (nay) (nw)
—3ena <nw1 + nae%)) , (12)
¢ = ﬁ((2—3vv—5m})nw+26wv) : (13)
W = m <2nw1 +3nae%) . (14)

To simplify notation we have introduced an additional index related to
the rank of the time derivative applied to quantities like dipole moment
and acceleration, i.e. Vi = %V, Ay = %A, Wy = %W, Wy = %W
and nwy = N;W3 = (N|W2). All these quantities have to be taken at the
advanced (for ¢ = 1) or the retarded (for e = —1) time.
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3. Expansion in the powers of r

3.1. Calculation of the advanced (retarded) time

To obtain useful information about the behaviour of the field in a neigh-
bourhood of the particle we will expand the above results in powers of r = | Z|
on a fixed hyperplane {t = #p}. For the sake of simplicity put ¢ty = 0 and
q(0) = 0. Now, put V = V, and use the Taylor series for the particle’s
position and its dipole moment:

at) = 3 Lk 1 o). (15)

As will be seen in the sequel, the fifth order expansion is sufficient to obtain
the behaviour of the field up to terms proportional to r. Equation (4) for
the advanced (retarded) time 7(Z) := 7(0, Z) now reads:

72— q(r)? = r? +2(q(7)|Z) = 0. (16)
Using the following Ansatz for 7:
7(&) = r(fo+ fir + far® + far® + fur!) + O(%) (17)

where f; depend on the direction M = #/r of the vector Z only (i.e. are
functions of angles on the sphere $2), and inserting it into (16), together with
expansion (15) for (1), the coefficients f; may be finally calculated, but the
formulae obtained this way are extremely complicated. Using them in the
further expansion of the field produces formulae, which can hardly be useful
for our purposes because of their complexity. This problem may be avoided
if we decide from the very beginning to describe the field on the particle’s
rest hyperplane, i.e. we put V5(0) = 0. This simplifies considerably our
results as the power series expansion becomes feasible and reduces to

fO = &, (18)
1
fi = —5emup, (19)
2
1 1
fo = ~5 muy + g&? (3 (mvl)2+vlvl) , (20)
fs = —aemug + = owws + = (mu) (mvs)
3 = 245m1)3 12 V102 3 muvl) \(Tmvy
5
——emuy (1111)1 + (mv1)2) , (21)

16
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1 1

fa = 120 -3 ((Ulvl) (mwa) + 2 (v1v2) (Mw1))

7 2
+E — U2U2 —|— 1)11)3 + — 16 (v1v1)

g ( () ) + gomaa)? + £ (o100 (e
_% o (mv1)? + %g(mmf. (22)

3.2. The Fermi frame

The reference system in which the particle moving with an acceleration
a' would remain at rest, can be constructed in many ways. Here we choose
the Fermi frame construction (see [5,4]). This means that the time vector eg
of the tetrad (e,) defining the system is always equal to the particle’s four
velocity u = (u*). At each point ¢(t) of the particle trajectory the space-like
hypersurfaces X; orthogonal to the trajectory are spanned by the remaining
three elements of the tetrad: (eg), where k = 1,2,3. The above triad defines
uniquely the Cartesian (orthonormal) coordinate system (z*) on %;. The
Fermi condition imposed on the system means that the covariant derivative
Veo€r has no space-like component, 7.e. is proportional to eg. It is easy to
show that this condition implies the following relations:

Ve.€r =arey, Ve,€0=a, (23)

where by a := a*e;, (and aj, = gpa') we denote the acceleration (curvature)

of the trajectory. It is a vector orthogonal to the trajectory. As the time
parameter we take the proper time s along the trajectory.

We are going to describe both the particle’s motion and its dipole mo-
ment with respect to the above, degenerate coordinate system. It is degen-
erate, because different surfaces X} may intersect, but this does not lead
to any difficulty. Technically, we may treat our spacetime as an abstract
manifold X x R!, equipped with time dependent metric (see [5]):

1 Nt
N,N¥ — N2 | N, -NT NZ
Juv = < * N, | l ) ’ g‘“’ - k k7l 3 (24)
3 | 9kl N ‘ gkl — NEN
N2 N2

where gy, is the flat (euclidean) metric on X. The lapse function N and the
shift vector N™ encode information about the particular (3+1) — decompo-
sition of spacetime. The Fermi-Walker transport (23) of the tetrad means
that the shift vector vanishes identically: N™ = 0. It is easy to check that
the lapse function equals N = 1 + a;2"
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The components of the flat, Minkowski connection, can be obtained as
Christoffel symbols of the above metric (¢f. [3]):
—_— = = (14 a;x")a"; 25
1+azx2 ? 0k 1+azx2 I 00 ( 7 ) I ( )
and the remaining components vanish. In particular, if we calculate covari-
ant derivatives of vectors attached at the particle’s position z* = 0, the only
non-vanishing connection components are:

I =ar ; Igo=a". (26)

0 _
FOO_

We are going to express the electromagnetic field surrounding the par-
ticle in terms of the two three-dimensional vectors: the acceleration A and
the dipole moment P, together with their time derivatives, calculated with
respect to the particle’s proper time s in the above frame. Only these deriva-
tives will be denoted by “dots” in the sequel.

3.2.1. Transformation of velocities

In Fermi frame the velocity always vanishes. The entire information
about particle’s trajectory is encoded in the (time dependent) acceleration
a' = a'(s), which is a vector orthogonal to the trajectory. As a first step of
our standardization procedure, we are going to express all the laboratory-
frame derivatives V; (calculated with respect to the laboratory time t) in
terms of the above quantity and its Fermi-frame covariant derivatives (cal-
culated with respect to the proper time s). We denote the latter derivative
by Vo. In the next step we express the covariant derivatives in terms of
ordinary derivatives (“dots”).

To obtain this expression for V; we introduce the constant laboratory
vector field % = K" =(1,0,0,0) and note that

dq“ ds dq“ ds

LVF) =vk= uk 27
LV At dt ds  dt (27)
and J d )
s s
~1=V'EK, = ZurK, - 2
Vil =g b= 3 =~k (28)
where we used (—, +, +, +) signature for the spacetime metric. This gives us
1
Vi = - " 29
T (29)
Hence, we have for higher derivatives:
Vi = g VoV (30
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The above recurrence can be used to calculate V; up to required accuracy —
for our purposes only terms up to V' are necessary. We have: Vout = aH.
To simplify further our notation we denote Voa* =: af and Voaf =: aé‘ 1

This way we obtain:

1
VH = _u)‘KAu#’ (31)
1
Ko W A B
14 u"K)\VOV KT (o + P EAVH) (32)
V= L (srwr - L (a“ ra K V”) (33)
2 (WK))? M AR, T TR ’
1 1
B A u A W
‘/3 = W (60/ K)\‘/Q — M(ZLO’IK)\VI
1 A 2
PR & + KV =3 (a Ky ) , (34)
b 10 a)K* u vy 1 AR Yk Y 2
= g i) ey (PR - 18 () v
PR (a3 + A K\VE + 100K o’ K, V{‘)) . (35)

Now, we calculate explicitly covariant derivatives in the Fermi frame:
Vo a! = al' + Il a}, using (26) for the connection coefficients (dot denotes
the ordinary proper-time derivative in the Fermi frame). This way we obtain:

at = (0, ) (36)
df = (a;a’,a), (37)
ah = (3aza i* 4 aza’ k), (38)
ak = (a +5a;a" a® 4 a;at a), (39)
Vi = (1,0,0,0), (40)
vk = o, (41)
Vb = b, (42)
VF = " —3a,da (43)
vk = &~ 10gdta —9aiai a (44)

and Vi0 = 0 as expected.
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3.2.2. Transformation of dipole momenta

The four-current density (5), (6) carried by the moving dipole may be
rewritten in the following, four dimensional notation

Jh == (wwsc) + (woxwr) b, (45)

h 1
where O — T (46)

V1-VEY,
e = V1= VEVL6(Z — q(t)) . (47)

The distribution d. is the Dirac delta assigned in a fully intrinsic (geometric)
way to the trajectory ¢ := {(t,z*)|z¥ = ¢*(t)}. Hence, it does not depend
upon any choice of a reference system. On the contrary, the description
of the dipole moment in terms of the 3-dimensional, laboratory quantity
(WH) = (0, W*) is reference-dependent. To avoid this dependence we are
going to replace it by a four-vector P = (p*) orthogonal to the trajectory in
such a way that the current (45) does not change. This is possible, because
of the following identity:

and

N (u“ fu)‘5<> — ™ (O ful) 6 = fury (uAéc) =0, (48)

where f is any time-dependent scalar. This proves, that the quantity W# in
formula (45) may be replaced by p# := W# + fu* and the electric current
J# will not change. To define the vector P uniquely in terms of the current,
we impose the orthogonality condition ptu, = 0.

The best way to express W in terms of P consists in using formulae:
WH = pt — fu# and WFK, = 0. This way we obtain:

W = <5é\t a UAK)\

'K A) . (49)
In the Fermi frame we have (u*) = (1,0,0,0,) and P becomes a three
dimensional quantity: p# = (0, p*). Hence, the electric current density (45)
reduces to:

J? = —p*ogoc, Jh =p"e. (50)
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We are going to use the three dimensional vector P = (p¥) as the
reference-invariant representation of the particle’s dipole moment. The quan-
tity W and its derivatives with respect to the laboratory time ¢, which appear
in the power series expansion of the field, will be expressed in terms of P
and its derivatives with respect to the proper time s. For this purpose we
use formula (49) and its derivatives. Similarly as for velocities V; we have:

WilfH = —(1/(u"K,))VoW}", where W3 = W?. Putting also py = p* and
pf‘H =Vop} =pl' + T, ét)\pf‘, we obtain the following recurrence:
WM — 5#_ 1 U'U‘K)\ p)\ (51)
0 A ’U,)‘K)\ 0>
1
[ ]
Wi = _u”K,, VoWg (52)
1 1 a"K
= — “——KV(N)‘) v l‘_W# 53
U)‘K)\ <p1 UAK)\ AVO U Po + U)‘K)\ (pO 0) ) ( )
1 20" K 'K
He_ - [ M Vo i 15w o I
W2 - (’U:VKV)2 <3 aVKy Wl +p2 + ’LL)‘K)\ pl ’U,)‘K)\ (po - WO)
1
- K Voo (U“ pé)) : (54)
ut K,
1
[ iz T
= Ry (WK” W~ ik, (4ay Ky Wi +p3)
1
B (UMKM)Q (3 a’llj Vpif + agKy (pg — WéL) — K)\VOOO (u“pé)
+3(a"K,)? W{ +3a” ,,pé‘)). (55)

In order to simplify technical obstacles while computing W}' we can make
use of the fact that for initial time ¢ = 0 we have: a”K, =0, (ph — W§') =0,
and (p{ — W{") = 0. Then:

1 1
14 14
1
+ m (6 a'nypg + 4agK,,p’f — K)\VOOOO (’U/%Dé))) . (57)
14
The corresponding recurrence for p; reads:
ph = (0,p"), (58)

o = (arp®,p"), (59)
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Py = (ap® +2axp", 5" + aip’ a*), (60)
Pk = (3 ak;b'k + dkpk + 3('zkpk + aiaiakpk,;fik + aipi ay, (61)
+(2a;p', +3 a;p') a”), (62)
ph = 3 +ap' i + Baip’ +4aip’) (63)
+(3dp' + 6 aip’ + 8aip® + aatarpt) ak . (64)
Comparing these two recurrences we finally obtain:
Wy =", (65)
wi = p*, (66)
ng = jik — ajp’ ak, (67)
ng“ = pk —a;a'p® — 2a;p' a* — (dipi +3 aipi) a*, (68)
WE = 5 1560 — 10a;a'" + aip® i + (3 aip + 4aipl) Gk (69)
+(3dip' + 6 a;p' + 8aip’ + 11 aza’ apl) a* | (70)

and WZ-O = 0 as expected.

4. The results

The results of this paper consist in calculating the power series expan-
sion of (8) and (9) (together with definitions (10)—(14)) with respect to the
distance r. For this purpose the trajectory ¢(t¢) is taken in the form (15)
with V5 = 0. The retarded (advanced) time is given explicitly by formulae
(17)-(22). As a second step we translate the results into the standardized
form, i. e. we replace all the quantities V'’s, W’s and their derivatives with
respect to the laboratory time by the quantities a*, p* and their proper-time
derivatives. For this purpose we use formulae (40)—(44) and (65)—(70).

The expansion was performed with help of the MAPLE V r.5 system
for symbolic computation. The algorithm outlined here exists as a program
LW’99 and may be downloaded from the internet site of the Department of
Mathematical Methods in Physics, University of Warsaw:
http://info.fuw.edu.pl /~ kmmf/marcin/startlw.html

Below we give results for both the monopole and the dipole field. We
use the following notation. By M we mean vector M := Z/|Z|, uppercase
letters denote three dimensional vectors, any pair of lowercase letters stands
for the scalar product of two vectors i.e. pa ma = p;a’ m;at, dots over letters

indicate proper time derivatives in the Fermi frame (i.e. a,d, P, P, P, P), ¢
equals +1 for the advanced and —1 for the retarded solution.
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The corresponding results for the magnetic dipole may be easily obtained
by the duality transformation: D — B and B — —D. More precisely,
this transformation may be used in vacuum case only (i.e. outside of the
particle). The globally defined dual fields are given by the following formula:

BF .= DF 4 PF§O) (71)
Dk .= —Bk . (72)

It is easy to check that the new fields fulfill Maxwell equations with the
electromagnetic current corresponding to the magnetic dipole: J° = 0,
jk — €klmPlam5(3).

We draw attention of the reader to the fact, that the only terms in the
expansion, which are regular (C°°-derivable) are those containing . They
depend upon a specific (advanced or retarded) solution. The remaining,
singular terms are universal and depend only upon the sources (encoded
by a, p and their time derivatives). These singular terms may be calculated
using a different, purely algebraic procedure (see [6]). The agreement of these
terms with the results of [6] is an important validity test for the expansion
given below.

4.1. The field of a monopole

M
hL=en (73)
1lmaM+ A
D = —-—-ee-——" 4
] 62 r ’ (7)
3 3 3 2
D = _Z e 2 M — A——cA
L e[( 8aa+8ma) +4ma 35 ], (75)
9 1 5 3 15
D — g L .9 3 M 2 I 2 A
: e [(16aama+8ma 16ma) +<16aa 16ma>
. 2 :
_§A+—<—aaM+maA+2maA>e r, (76)
8 3
IMxA
B = e-
-1 62 T ’ (77)

B =e [—gmdeA—ZmaMxA—ZAXA—i—geMXA , (78)
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16 16

1 .
B =c¢ [gmamdeA—I— <—iaa+—5ma )MXA

—i—éMxA—i—gmanA—i—%(—mdeA—2maM><A

—2maM><A—%A><A>6 . (79)

4.2. The field of an electric dipole

—P+3mpM

e (80)

(—%mamp—i—%pa)M—i—%maP— %mpA

; (81)

r2

1 3 1
< Z pama + — magmp—gaamp—gmp)M

1 .
+<§mamp——pa>A+ <—§ma2+§aa>P——P = (82)

4 8 8 2

;_\

3 1 1
< pa aa + —maaamp— Zpa—i— 2mamp— Ema3mp

—

43 Loit3 +1 M
— = a —ma a — — a, maim mam
g P+ ggmaTpa = gpit g Pt 3 p

(Bt W3 2 A+mpA
16ma mp 8pama 4mp 16aamp mp
3 ].

—i—gmpA—i- <%ma —gmd—f—ﬁaama)P—i-%map

2 . B
+§ (aaP—l—aaP—P)e, (83)

1 1 9 S S
(8 mp+ 4 mapa + < 3 ma pa + ﬂmpaa — Emamamp

1 5 15
+16mapa+4mapa—Emapa—i-ﬁmpaa—@aa?mp
+7 45 9 5 9 .

8mpaa 6l ma” mp aa 4mamamp 2 ma” mp
+7 15 9 n 1 )
16mpaa 16ma mp 24mapa 32ma pa
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105 9 (Lo 1o
—ma mp — — paaama — Da — pa
128 P 35P 1674 4P

—Emam"+§"a—§mdm'—ﬁma2 a—i—Emaaam
8 pPrgpPeTy P 3pMa PAT 55 P

—imdm —iaaa+§ma3m A+ —§mam'
16 P3P 32 P 2 P

—§mam +1'a+l a A+ i a—Emam A
6 P opaT o P 167" 16 p

+ im('z?%—imam&i%—idd— Eacﬂ%—iad
24 16 24 128 16

4 . 1 .
—ﬁma4 + —5aama2>P+ %ad <—£ma2 + %aa) P

3 (( 1., 9 1 .3
——P+ — —pa+ — mpaama -+ - mamp+ — aapa

8 2 16 2 16

15 s B, ] i L3 )
— mpma — — pa —mpma — — pa — pa ma
16 P g P gmp P47 16?

+§mam" M + —im aa—i—gm"—Em ma’®
4 p 16" 4P 16 MP

3 2 4 . 4 .
— A —= —mp | A+ — A
+8pama> +< 5mpaa+3mp) +15mp

4 2 1 . 4 ;
+ (—gadma— gaamd— Emd) P — gaamaP

+§maP+ gmaP)e r,

M x P
——,

r
1 : . 1 1 .
§maMxP+mprA+§mprA—§PxA

—EPXA

—1
2 "o

(86)
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3 1 3
(—imamp— §m('zmp> M x A+ (— 4 memp

1 . 1 3 . 1 .
—ZpCL)MXA—}- (—gaa—gmaz)MXP+§MxP

—|—%maP><A+gmanA—i—imprA—i—%mdP><A

1 .. . .
-3 <P><A+2P><A)5, (87)

1 .+5 - 1 .1 5L 7.

—aam —mampma+ — pama — —m —aam

g amp T mamp 18”7 g P T 3g 1P

15 5 . 15 9 41 1

- M x A b il -
+8ma mp> X —|—<16ma mp+72pama 144aamp

—%mﬁ)MxA—gmprA—gmprA—i— (%aama

7 3 ]- 5 hd
_ a0 M x P -~ _ Zomi 4 S\ M x P
36 aama) X + <]_6 aa ma 8ma+ 16 ma) X

1 . .3 2. 19 ) 7.
—§maM><P—ZmaM><P+<—Emama—%aa)P><A

15 45 1 . 1= 55
-—— - — PxA+-PxA —
—i—( 16ma 16aa> X +4 X +<144aa

—@mf)PxA—iPxA—ngA—%Pxﬁ

31 5 o1 .
+<—5mamp—ﬁpa)z4XA+§(—(pa+2]')a)M><A
—paMxA—aaMxP—aaMxP+MxP+miPx A
+2maP x A+2maP x A4+2maP x A+4maP x A

—|—2m]')A><A+mpA><A)5 r. (88)
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Appendix

All the technicalities related to differentiation with respect to the pa-
rameter [ are somewhat similar to the standard procedure used to obtain
classical Liénard—Wiechert fields from potentials. In both cases we have to
differentiate objects that depend on a variable in both explicit and implicit
way (via the variable 7). First we should derive formula for %. Let us

expand relation (4):

(rh — 17 = 1lGDIP? + 2 (@ehIz) - 1717 =o, (89)

where by 4+ we denote advanced or retarded solution. The superscript
“I” reminds us that our variables depend additionally on the parameter /.

Note that: . . .
dgi(th) _ 0qi(rh) | 9ai(th) ar (90)
dl ol or ol
We can differentiate both sides of (89) with respect to I:
or! 2 oa (! - oa (!
LS PR alr=) ) | T—q () \ _, (oD
ol +|Z — 4] or +|Z — 4] ol
and make use of defined previously (we put ¢ = 0):
W:=e %
9 1=
Finally:
ork nw dg(th) or
— =—e———— thus: = —. 2
“or| T CTwens Mm@ SWHVem 2

The procedure outlined here should be then applied to all variables present

in formula for monopole’s field. Derivatives of velocity and acceleration can
. . aq (7}

be obtained in the same way as e qlt(ﬂTi) and all necessary scalars constructed

out of vectors:

or nw

e E__Ei]_—{—g’n,v’ (93)
d 1 or or

e E(m;) = <wv + (vv + mw)eE) +nw +nae, (94)
d 0

e =V =W+ A e—T, (95)

dl ol
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d 1 or or
e E(nob) = <wa + (av + 5na)eﬁ> +nwy + nar e, (96)
d or
e aA—WQ‘i‘Al GE, (97)
ON 1 or
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