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ASYMPTOTIC EXPANSION OF THE MAXWELLFIELD IN A NEIGHBOURHOOD OF A MULTIPOLEPARTICLE�Jerzy KijowskiCenter for Theoreti
al Physi
s, Polish A
ademy of S
ien
esLotników 32/46, 02�668 Warsaw, Polande�mail: kijowski�
ft.edu.pland Mar
in Ko±
iele
kiDepartment of Mathemati
al Methods in Physi
s, Warsaw UniversityHo»a 74, 00�682 Warsaw, Polande�mail: kos
iej�fuw.edu.pl(Re
eived May 5, 2000)Ele
tromagneti
 �eld in a neighbourhood of an arbitrarily moving (ele
-tri
 or magneti
) dipole parti
le is des
ribed up to r1-terms, where r is thedistan
e from the parti
le.PACS numbers: 03.50.De 1. Introdu
tionIn the famous paper [1℄ Dira
 proposed a theory of intera
tion betweenele
tromagneti
 radiation and a point-like parti
le, where the latter is nottreated as a test parti
le. The theory displays instability (better known asexisten
e of �runaway solutions�). There were many attempts to improve thistheory (see [2℄), 
onsisting e.g. in adding a dipole stru
ture (both ele
tri
and magneti
) to the parti
le.Re
ently, a new approa
h to the intera
tion problem was proposed (see[3℄ or [4℄). It is not based on any ad ho
 equations of motion imposed ona parti
le, but on the 
onservation prin
iple of the total four-momentum ofthe 
omposed �parti
le + �eld� system. The latter quantity is de�ned bya 
ertain renormalization pro
edure whi
h approximates the 
orrespondingfour-momentum 
arried by an extended parti
le. Equations of motion arethen obtained from the above 
onservation laws in a way, whi
h realizes theEinstein programme of deriving equations of motion from �eld equations.� This work was supported in part by the Polish KBN Grant Nr.2 P03A 047 15.(1691)



1692 J. Kijowski, M. Ko±
iele
kiIn this approa
h the sour
e of Dira
's instability is easily understood:the approximation of energy-momentum tensor used in this theory was toorough be
ause it did not take into a

ount any deformation energy of theparti
le, due to the external �eld. As a result, the total energy was notbounded from below. To 
ure this disease a �new generation� theory isbeing developed by the present authors and will be soon published.For all these goals a detailed analysis of the Maxwell �eld in a vi
inityof an arbitrarily moving dipole parti
le is ne
essary. In the simplest Dira

ase, only the monopole parti
le was 
onsidered and only the terms up tor0 in the �eld expansion around the parti
le were taken into a

ount.For our purposes expansion up to r1 terms for a dipole parti
le is ne
-essary. It was never done in the literature. Even if the idea is simple and
onsists in an appropriate Taylor expansion of the well known formulae (ofthe Liénard�Wie
hert type), an enormous 
omplexity of the problem makessu
h an exer
ise almost infeasible, unless a spe
ial algorithm is found whi
hsimpli�es su�
iently the 
al
ulations.In the present paper we propose su
h an algorithm, based on the use ofthe 
o-moving 
oordinate system for the parti
le traje
tory (the so 
alledFermi frame � 
f. [4℄ or [5℄). This allows us to remove all the unne
essaryparameters, related to the spe
ial arrangements of measuring instruments,and to express the results in terms of intrinsi
 
hara
teristi
s of the tra-je
tory and of the time-dependent dipole moment of the parti
le. For thea
tual Taylor expansion the pa
kages of symboli
 
al
ulus of the programMAPLE V were used. We stress that the straightforward use of the samepa
kages (i.e. without any simpli�
ation and standardization proposed inthe present paper) does not lead to any manageable result within a �nitetime.Whenever a 
ompli
ated formula is obtained with use of a 
omputeralgebra, it is important to have an independent 
riterion to 
he
k its validity.In our 
ase, the entire singular part of the �eld (more than 70% of theobtained terms) may be 
al
ulated by an independent approa
h, whi
h doesnot use any power series expansion (see [6℄). The method is purely algebrai
and 
onsists in solving step by step Maxwell equations in parti
le's restframe. The 
onsisten
e of the two pro
edures is an important test for the
orre
tness of results presented here.2. The �eld of a moving dipole in laboratory frameSuppose, therefore, that an ele
tri
 dipole is moving along an arbitraryspa
etime traje
tory (we show in the sequel that the duality transformationbetween ele
tri
 and magneti
 �elds enables us to obtain easily the 
orre-sponding result for a magneti
 dipole parti
le). Our starting point is the
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 Expansion of the Maxwell Field . . . 1693standard Liénard�Wie
hert formula for the (retarded or advan
ed) �eld of amonopole parti
le equipped with 
harge e and moving along the traje
toryq�(t) = (t; ~q(t)):Dmon(~x; t) = er2 (1� vv)(N + "V )(1 + " nv)3 + er na(N + "V )� (1 + " nv)A(1 + " nv)3 ; (1)Bmon(~x; t) = �"N �Dmon ; (2)where " equals �1 for the retarded and 1 for the advan
ed solution. Cap-ital letters denote three-dimensional (spa
e-like) ve
tors, any pair of lower
ase letters denotes their s
alar produ
t (i.e. nv = NiV i), r = j~x � ~q(�)j,N = (~x� ~q(�))=r, where ~x is the observer's position, ~q(�) denotes retardedor advan
ed position of the parti
le, V stands for the parti
le's velo
ity,A for a

eleration, both taken at retarded or advan
ed time � = �(t; ~x).This �eld satis�es the Maxwell equations with the �delta-like� 
urrent:J 0(~x; t) = eÆ(~x � ~q(t)) ; J k(~x; t) = eV k(t)Æ(~x � ~q(t)) ; (3)where (1; V k(t)) = �1; ddt~q(t)� = ddtq�(t) = V �(t) :The retarded (advan
ed) time � is an impli
it fun
tion of the parameters(x�) = (t; ~x), de�ned by the equation:�(x� � q�(�))(x� � q�(�))g�� = (t� �)2 � jj~x� ~q(�)jj2 = 0 : (4)To obtain the retarded (or advan
ed) solution for a dipole parti
le, we aregoing to represent it as a derivative of the above monopole �eld with respe
tto an auxiliary parameter l. Assume, therefore, that we have a 1-parameterfamily of traje
tories ~q(t; l). The derivative of (1) and (2) with respe
t tothe parameter l gives us the retarded and advan
ed solution, 
orrespondingto the dipole-like 
urrent. Indeed, with the following notation for the (timedependent) dipole moment:W (t) := e �~q�l (t; 0) ;we obtain the 
orresponding dipole-like 
urrent, equal to the derivative ofmonopole-like 
urrent (3) with respe
t to the parameter l:J 0 = �W k�kÆ(~x� ~q(t)) ; (5)J k = � ddtW k� Æ(~x� ~q(t))� V kW i�iÆ(~x� ~q(t)) : (6)The above 
urrent obviously ful�lls 
ontinuity equation ��J � = 0.



1694 J. Kijowski, M. Ko±
iele
kiThe 
orresponding (retarded or advan
ed) �eld is obtained as a derivativeof (1) and (2) with respe
t to the parameter l. For this purpose we must beable to 
al
ulate derivatives of the quantities appearing in these formulae.In the Appendix we derive all the ne
essary ingredients. In parti
ular, weprove the following:e ���l = �" nw1 + " nv ; e �N�l = �1r �W + (N + " V ) e " ���l � : (7)The �nal formula for the Liénard�Wie
hert �eld of a moving dipoleW reads:Ddip = � �r3 + �r2 + 
r� (N + "V )��1� vvr3 + nar2 � W(1 + " nv)3+�  r2 + !r �A+�(1� vv)r2 + nar � "W1(1 + " nv)3 + " nwA1r(1 + " nv)3� W2r(1 + " nv)2 ; (8)Bdip = �" �dNdl �Dmon +N �Ddip� ; (9)where:� = �3" (1 � vv)(1 + " nv)4 ��wv + (1� vv) e���l � ; (10)� = �1(1 + " nv)4�(1 + " nv)(2w1v + wa)� 3" ((av) (nw) + (wv) (na))+ 3" (1 � vv)�nw1 + 2na e���l �� ; (11)
 = 1(1 + " nv)4�(1 + " nv)nw2 � " (na1) (nw)� 3" na�nw1 + na e���l �� ; (12) = �1(1 + " nv)3 ((2� 3 vv � " nv)nw + 2"wv) ; (13)! = "(1 + " nv)3 �2nw1 + 3na e���l � : (14)To simplify notation we have introdu
ed an additional index related tothe rank of the time derivative applied to quantities like dipole momentand a

eleration, i.e. V1 := ��tV , A1 := ��tA, W1 := ��tW , W2 := �2�t2Wand nw2 := NiW i2 = (N jW2). All these quantities have to be taken at theadvan
ed (for " = 1) or the retarded (for " = �1) time.
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 Expansion of the Maxwell Field . . . 16953. Expansion in the powers of r3.1. Cal
ulation of the advan
ed (retarded) timeTo obtain useful information about the behaviour of the �eld in a neigh-bourhood of the parti
le we will expand the above results in powers of r = j~xjon a �xed hyperplane ft = t0g. For the sake of simpli
ity put t0 = 0 and~q(0) = ~0. Now, put V = V0 and use the Taylor series for the parti
le'sposition and its dipole moment:~q(t) = 5Xk=1 Vk�1k! tk +O(t5) : (15)As will be seen in the sequel, the �fth order expansion is su�
ient to obtainthe behaviour of the �eld up to terms proportional to r. Equation (4) forthe advan
ed (retarded) time �(~x) := �(0; ~x) now reads:�2 � ~q(�)2 � r2 + 2(~q(�)j~x) = 0 : (16)Using the following Ansatz for � :�(~x) = r(f0 + f1r + f2r2 + f3r3 + f4r4) +O(r5) ; (17)where fi depend on the dire
tion M = ~x=r of the ve
tor ~x only (i.e. arefun
tions of angles on the sphere S2), and inserting it into (16), together withexpansion (15) for ~q(�), the 
oe�
ients fi may be �nally 
al
ulated, but theformulae obtained this way are extremely 
ompli
ated. Using them in thefurther expansion of the �eld produ
es formulae, whi
h 
an hardly be usefulfor our purposes be
ause of their 
omplexity. This problem may be avoidedif we de
ide from the very beginning to des
ribe the �eld on the parti
le'srest hyperplane, i.e. we put V0(0) = 0. This simpli�es 
onsiderably ourresults as the power series expansion be
omes feasible and redu
es tof0 = " ; (18)f1 = �12 "mv1 ; (19)f2 = �16 mv2 + 18" �3 (mv1)2 + v1v1� ; (20)f3 = � 124 "mv3 + 112 v1v2 + 13 (mv1) (mv2)� 516"mv1 �v1v1 + (mv1)2� ; (21)
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iele
kif4 = � 1120 mv4 � 18 ((v1v1) (mv2) + 2 (v1v2) (mv1))+" 18 �19v2v2 + 16 v1v3 + 716(v1v1)2�+58 " �16 (mv1) (mv3) + 19(mv2)2 + 78 (v1v1) (mv1)2��12 mv2 (mv1)2 + 35128 " (mv1)4: (22)3.2. The Fermi frameThe referen
e system in whi
h the parti
le moving with an a

elerationai would remain at rest, 
an be 
onstru
ted in many ways. Here we 
hoosethe Fermi frame 
onstru
tion (see [5,4℄). This means that the time ve
tor e0of the tetrad (e�) de�ning the system is always equal to the parti
le's fourvelo
ity u = (u�). At ea
h point q(t) of the parti
le traje
tory the spa
e-likehypersurfa
es �t orthogonal to the traje
tory are spanned by the remainingthree elements of the tetrad: (ek), where k = 1; 2; 3: The above triad de�nesuniquely the Cartesian (orthonormal) 
oordinate system (xk) on �t. TheFermi 
ondition imposed on the system means that the 
ovariant derivativere0ek has no spa
e-like 
omponent, i.e. is proportional to e0. It is easy toshow that this 
ondition implies the following relations:re0ek = ake0 ; re0e0 = a ; (23)where by a := akek (and ak = gklal) we denote the a

eleration (
urvature)of the traje
tory. It is a ve
tor orthogonal to the traje
tory. As the timeparameter we take the proper time s along the traje
tory.We are going to des
ribe both the parti
le's motion and its dipole mo-ment with respe
t to the above, degenerate 
oordinate system. It is degen-erate, be
ause di�erent surfa
es �t may interse
t, but this does not leadto any di�
ulty. Te
hni
ally, we may treat our spa
etime as an abstra
tmanifold � �R1, equipped with time dependent metri
 (see [5℄):g�� = � NkNk �N2 NlNk gkl � ; g�� = 0� � 1N2 N lN2NkN2 gkl � NkN lN2 1A ; (24)where gkl is the �at (eu
lidean) metri
 on �. The lapse fun
tion N and theshift ve
tor Nm en
ode information about the parti
ular (3+1) � de
ompo-sition of spa
etime. The Fermi�Walker transport (23) of the tetrad meansthat the shift ve
tor vanishes identi
ally: Nm � 0. It is easy to 
he
k thatthe lapse fun
tion equals N = 1 + aixi.
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omponents of the �at, Minkowski 
onne
tion, 
an be obtained asChristo�el symbols of the above metri
 (
f. [3℄):� 000 = _ajxj1 + aixi ; � 00k = ak1 + aixi ; � k00 = (1 + aixi)ak ; (25)and the remaining 
omponents vanish. In parti
ular, if we 
al
ulate 
ovari-ant derivatives of ve
tors atta
hed at the parti
le's position xi = 0, the onlynon-vanishing 
onne
tion 
omponents are:� 00k = ak ; � k00 = ak : (26)We are going to express the ele
tromagneti
 �eld surrounding the par-ti
le in terms of the two three-dimensional ve
tors: the a

eleration ~A andthe dipole moment ~P , together with their time derivatives, 
al
ulated withrespe
t to the parti
le's proper time s in the above frame. Only these deriva-tives will be denoted by �dots� in the sequel.3.2.1. Transformation of velo
itiesIn Fermi frame the velo
ity always vanishes. The entire informationabout parti
le's traje
tory is en
oded in the (time dependent) a

elerationai = ai(s), whi
h is a ve
tor orthogonal to the traje
tory. As a �rst step ofour standardization pro
edure, we are going to express all the laboratory-frame derivatives Vi (
al
ulated with respe
t to the laboratory time t) interms of the above quantity and its Fermi-frame 
ovariant derivatives (
al-
ulated with respe
t to the proper time s). We denote the latter derivativeby r0. In the next step we express the 
ovariant derivatives in terms ofordinary derivatives (�dots�).To obtain this expression for Vi we introdu
e the 
onstant laboratoryve
tor �eld ��t = K� = (1; 0; 0; 0) and note that(1; V k) = V � = dq�dt = dsdt dq�ds = dsdt u�; (27)and �1 = V �K� = dsdt u�K� ) dsdt = � 1u�K� ; (28)where we used (�;+;+;+) signature for the spa
etime metri
. This gives usV � = � 1u�K�u� : (29)Hen
e, we have for higher derivatives:V �i+1 = � 1u�K�r0V �i : (30)
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iele
kiThe above re
urren
e 
an be used to 
al
ulate Vi up to required a

ura
y �for our purposes only terms up to V �4 are ne
essary. We have: r0u� = a�.To simplify further our notation we denote r0a� =: a�1 and r0a�i =: a�i+1.This way we obtain:V � = � 1u�K�u�; (31)V �1 = � 1u�K�r0V � = 1(u�K�)2 �a� + a�K�V �� ; (32)V �2 = 1(u�K�)2 �3 a�K�V �1 � 1u�K� �a�1 + a�1K�V ��� ; (33)V �3 = 1(u�K�)2  6 a�K�V �2 � 1u�K� 4 a�1K�V �1� 1u�K� �a�2 + a�2K�V � � 3�a�K��2 V �1 �!! ; (34)V �4 = 10 a�K�(u�K�)2 �V �3 � V �2u�K��+ 1(u�K�)4 5 a�2K�V �1 � 15 �a�K��2 V �2� 1u�K� �a�3 + a�3K�V � + 10 a�1K� a�K� V �1 �! : (35)Now, we 
al
ulate expli
itly 
ovariant derivatives in the Fermi frame:r0 a�i = _a�i + � �0�a�i , using (26) for the 
onne
tion 
oe�
ients (dot denotesthe ordinary proper-time derivative in the Fermi frame). This way we obtain:a� = (0; ak); (36)a�1 = (aiai; _ak); (37)a�2 = (3 ai _ai; �ak + aiai ak); (38)ak3 = (_�ak + 5 ai _ai ak + aiai _ak); (39)V � = (1; 0; 0; 0); (40)V k1 = ak; (41)V k2 = _ak; (42)V k3 = �ak � 3 aiai ak; (43)V k4 = _�ak � 10 ai _ai ak � 9 aiai _ak ; (44)and V 0i = 0 as expe
ted.



Asymptoti
 Expansion of the Maxwell Field . . . 16993.2.2. Transformation of dipole momentaThe four-
urrent density (5), (6) 
arried by the moving dipole may berewritten in the following, four dimensional notationJ � = ��� �u�W �Æ��+ �u���W �� Æ� ; (45)where u� = 1p1� V kVkV � ; (46)and Æ� =p1� V kVk Æ(~x� ~q(t)) : (47)The distribution Æ� is the Dira
 delta assigned in a fully intrinsi
 (geometri
)way to the traje
tory � := f(t; xk)jxk = qk(t)g. Hen
e, it does not dependupon any 
hoi
e of a referen
e system. On the 
ontrary, the des
riptionof the dipole moment in terms of the 3-dimensional, laboratory quantity(W �) = (0;W k) is referen
e-dependent. To avoid this dependen
e we aregoing to repla
e it by a four-ve
tor P = (p�) orthogonal to the traje
tory insu
h a way that the 
urrent (45) does not 
hange. This is possible, be
auseof the following identity:�� �u� fu�Æ��� u� (�� fu�) Æ� = fu��� �u�Æ�� � 0 ; (48)where f is any time-dependent s
alar. This proves, that the quantity W � informula (45) may be repla
ed by p� := W � + fu� and the ele
tri
 
urrentJ � will not 
hange. To de�ne the ve
tor P uniquely in terms of the 
urrent,we impose the orthogonality 
ondition p�u� = 0.The best way to express W in terms of P 
onsists in using formulae:W � = p� � fu� and W �K� = 0. This way we obtain:W � = �Æ�� � 1u�K� u�K�� p� : (49)In the Fermi frame we have (u�) = (1; 0; 0; 0; ) and P be
omes a threedimensional quantity: p� = (0; pk). Hen
e, the ele
tri
 
urrent density (45)redu
es to: J 0 = �pk�kÆ� ; J k = _pkÆ� : (50)
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iele
kiWe are going to use the three dimensional ve
tor ~P = (pk) as thereferen
e-invariant representation of the parti
le's dipole moment. The quan-tityW and its derivatives with respe
t to the laboratory time t, whi
h appearin the power series expansion of the �eld, will be expressed in terms of ~Pand its derivatives with respe
t to the proper time s. For this purpose weuse formula (49) and its derivatives. Similarly as for velo
ities Vi we have:W �i+1 = �(1=(u�K�))r0W �i , where W �0 = W �. Putting also p�0 = p� andp�i+1 = r0p�i = _p�i + � �0�p�i , we obtain the following re
urren
e:W �0 = �Æ�� � 1u�K� u�K�� p�0 ; (51)W �1 = � 1u�K�r0W �0 (52)= � 1u�K� �p�1 � 1u�K�K�r0 �u�p�0�+ a�K�u�K� (p�0 �W �0 )� ; (53)W �2 = 1(u�K�)2 �3 a�K�W �1 + p�2 + 2a�K�u�K� p�1 + a�1K�u�K� (p�0 �W �0 )� 1u�K�K�r00 �u�p�0�� ; (54)W �3 = 1(u�K�)2 6 a�K�W �2 � 1u�K� (4 a�1K� W �1 + p�3 )� 1(u�K�)2 �3 a�1K� p�1 + a�2K� (p�0 �W �0 )�K�r000 �u�p�0�+ 3 (a�K�)2W �1 + 3 a�K� p�2�!: (55)In order to simplify te
hni
al obsta
les while 
omputing W �4 we 
an makeuse of the fa
t that for initial time t = 0 we have: a�K� = 0, (p�0 �W �0 ) = 0,and (p�1 �W �1 ) = 0. Then:W �4 = 1(u�K�)3 ��10 a�1K� W �2 + 1u�K� (5 a�2K�W �1 + p�4 ) (56)+ 1(u�K�)2 �6 a�1K� p�2 + 4 a�2K� p�1 �K�r0000 �u�p�0��� : (57)The 
orresponding re
urren
e for pi reads:p�0 = (0; pk) ; (58)p�1 = (akpk; _pk) ; (59)
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 Expansion of the Maxwell Field . . . 1701p�2 = (_akpk + 2 ak _pk; �pk + aipi ak) ; (60)p�3 = (3 ak �pk + �akpk + 3 _ak _pk + aiaiakpk; _�pk + aipi _ak (61)+(2 _aipi;+3 ai _pi) ak) ; (62)pk4 = ��pk + aipi �ak + (3 _aipi + 4 ai _pi) _ak (63)+(3 �aipi + 6 ai�pi + 8 _ai _pi + aiaialpl) ak : (64)Comparing these two re
urren
es we �nally obtain:W k0 = pk ; (65)W k1 = _pk ; (66)W k2 = �pk � aipi ak; (67)W k3 = _�pk � aiai _pk � 2 aipi _ak � ( _aipi + 3 ai _pi) ak ; (68)W k4 = ��pk � 15 ai _ai _pk � 10 aiai�pk + aipi �ak + (3 _aipi + 4 ai _pi) _ak (69)+(3 �aipi + 6 ai�pi + 8 _ai _pi + 11 aiai alpl) ak ; (70)and W 0i = 0 as expe
ted. 4. The resultsThe results of this paper 
onsist in 
al
ulating the power series expan-sion of (8) and (9) (together with de�nitions (10)�(14)) with respe
t to thedistan
e r. For this purpose the traje
tory q(t) is taken in the form (15)with V0 = 0. The retarded (advan
ed) time is given expli
itly by formulae(17)�(22). As a se
ond step we translate the results into the standardizedform, i. e. we repla
e all the quantities V 's, W 's and their derivatives withrespe
t to the laboratory time by the quantities ak, pk and their proper-timederivatives. For this purpose we use formulae (40)�(44) and (65)�(70).The expansion was performed with help of the MAPLE V r.5 systemfor symboli
 
omputation. The algorithm outlined here exists as a programLW'99 and may be downloaded from the internet site of the Department ofMathemati
al Methods in Physi
s, University of Warsaw:http://info.fuw.edu.pl /� kmmf/mar
in/startlw.htmlBelow we give results for both the monopole and the dipole �eld. Weuse the following notation. By M we mean ve
tor M := ~x=j~xj, upper
aseletters denote three dimensional ve
tors, any pair of lower
ase letters standsfor the s
alar produ
t of two ve
tors i.e. pama = piaimiai, dots over lettersindi
ate proper time derivatives in the Fermi frame (i.e. _a; �a; _P ; �P ; _�P ; ��P ), "equals +1 for the advan
ed and �1 for the retarded solution.
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iele
kiThe 
orresponding results for the magneti
 dipole may be easily obtainedby the duality transformation: D ! B and B ! �D. More pre
isely,this transformation may be used in va
uum 
ase only (i.e. outside of theparti
le). The globally de�ned dual �elds are given by the following formula:Bknew := Dkold + P kÆ(3) ; (71)Dknew := �Bkold : (72)It is easy to 
he
k that the new �elds ful�ll Maxwell equations with theele
tromagneti
 
urrent 
orresponding to the magneti
 dipole: J 0 = 0,J k = "klmPl�mÆ(3).We draw attention of the reader to the fa
t, that the only terms in theexpansion, whi
h are regular (C1-derivable) are those 
ontaining ". Theydepend upon a spe
i�
 (advan
ed or retarded) solution. The remaining,singular terms are universal and depend only upon the sour
es (en
odedby a, p and their time derivatives). These singular terms may be 
al
ulatedusing a di�erent, purely algebrai
 pro
edure (see [6℄). The agreement of theseterms with the results of [6℄ is an important validity test for the expansiongiven below. 4.1. The �eld of a monopoleD�2 = e Mr2 ; (73)D�1 = �e 12maM +Ar ; (74)D0 = e ���38 aa+ 38 ma2�M + 34 maA� 23" _A� ; (75)D1 = e �� 916 aama+ 18 m�a� 516 ma3�M +� 316 aa� 1516 ma2�A�38 �A+ 23 ��a _aM +m _aA+ 2ma _A� "� r ; (76)B�1 = e 12M � _Ar ; (77)B0 = e ��12 m _aM �A� 34 maM � _A� 14 A� _A+ 13 "M � �A� ; (78)



Asymptoti
 Expansion of the Maxwell Field . . . 1703B1 = e"54 mam _aM �A+�� 316 aa+ 1516 ma2�M � _A+18M � _�A+ 58 maA� _A+ 13 ��m�aM �A� 2m _aM � _A�2maM � �A� 12A� �A�"#r : (79)4.2. The �eld of an ele
tri
 dipoleD�3 = �P + 3mpMr3 ; (80)D�2 = ��32 mamp+ 12 pa�M + 12 maP � 12 mpAr2 ; (81)D�1 = "��14 pama+ 98 ma2mp� 38 aamp� 12 m�p�M+�34 mamp� 14 pa�A+��38 ma2 + 38 aa�P � 12 �P#r�1 ; (82)D0 = � 316 pa aa+ 916 maaamp� 34 �pa+ 12 m _am _p� 1516 ma3mp�12 _p _a+ 316 ma2 pa� 18 p�a+ 34 mam�p+ 18 m�amp�M+��1516 ma2mp+ 38 pama+ 34 m�p� 316 aamp�A+m _p _A+38 mp �A+� 516 ma3 � 18 m�a� 916 aama�P + 34 ma �P+23 �a _aP + aa _P � _�P� " ; (83)D1 = " 18 m��p+ 14 m _a _pa+ 98 ma �pa+ 524 mp _a _a� 516 mam�amp+ 316 map�a+ 34 ma _p _a� 116 m�a pa+ 516 mpa�a� 15128 aa2mp+78 m _pa _a� 4564 ma2mpaa� 54 m _amam _p� 524 m _a2mp+ 716 m�p aa� 1516 ma2m�p+ 124 m _a p _a� 532 ma3 pa
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ki+105128 ma4mp� 932 pa aama!M +� 116 p�a+ 14 _p _a�158 mam�p+ 38 �pa� 54 m _am _p� 1532 ma2 pa+ 1532 maaamp� 516 m�amp� 332 pa aa+ 3532 ma3mp�A+ � 52 mam _p�56 m _amp+ 12 _pa+ 724 p _a! _A+� 316 pa� 1516 mamp� �A+ 524 m _a2 + 516 mam�a+ 524 _a _a� 15128 aa2 + 516 a�a� 35128 ma4 + 4564 aama2!P + 98 a _a _P ��1516 ma2 + 916 aa� �P�38 ��P +  � 12 _p _a+ 916 mpaama+ 12 m _am _p+ 316 aa pa+1516 mpma3 � 34 �pa+ 18 mpm�a� 18 p�a+ 316 pama2+34 mam�p!M + � 316 mpaa+ 34 m�p� 1516 mpma2+38 pama!A+��25 mpaa+ 43 m�p� _A+ 415 mp _�A+��43 a _ama� 25 aam _a� 115 m _�a�P � 43 aama _P+23 m _a �P + 43 ma _�P!"#r ; (84)
B�2 = �M � _Pr2 ; (85)B�1 = "12 maM � _P +m _pM �A+ 12 mpM � _A� 12 P � _A�12 _P �A#r�1; (86)



Asymptoti
 Expansion of the Maxwell Field . . . 1705B0 = ��32 mam _p� 12 m _amp�M �A+ � 34 mamp�14 pa!M � _A+��18 aa� 38 ma2�M � _P + 12 M � _�P+34 maP � _A+ 34 ma _P �A+ 14 mpA� _A+ 12 m _aP �A�13 �P � �A+ 2 _P � _A� "; (87)B1 = " 18 aam _p+ 54 mampm _a+ 118 pam _a� 12 m _�p+ 736 a _amp+158 ma2m _p!M �A+ 1516 ma2mp+ 4172 pama� 1144 aamp�34 m�p!M � _A� 12 m _pM � �A� 18 mpM � _�A+ 736 aam _a� 736 a _ama!M � P +� 316 aama� 18 m�a+ 516 ma3�M � _P�12 m _aM � �P � 34 maM � _�P +��1918 mam _a� 736 a _a�P �A+��1516 ma2 � 116 aa� _P �A+ 14 _�P �A+ 55144 aa�163144 ma2!P � _A� 14 �P � _A� 38 _P � �A� 18 P � _�A+��3172 mamp� 572 pa�A� _A+ 13�� (p _a+ 2 _pa)M � _A�paM � �A� a _aM � _P � aaM � �P +M � ��P +m�aP �A+2m _a P � _A+ 2maP � �A+ 2m _a _P �A+ 4ma _P � _A+2m _pA� _A+mpA� �A�"#r : (88)
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kiAppendixAll the te
hni
alities related to di�erentiation with respe
t to the pa-rameter l are somewhat similar to the standard pro
edure used to obtain
lassi
al Liénard�Wie
hert �elds from potentials. In both 
ases we have todi�erentiate obje
ts that depend on a variable in both expli
it and impli
itway (via the variable �). First we should derive formula for ���l . Let usexpand relation (4):(� l� � t)2 � jj~ql(� l�)jj2 + 2�~ql(� l�)j~x�� jj~xjj2 = 0; (89)where by � we denote advan
ed or retarded solution. The supers
ript�l� reminds us that our variables depend additionally on the parameter l.Note that: d~ql(� l�)dl = �~ql(� l�)�l + �~ql(� l�)�� ���l : (90)We 
an di�erentiate both sides of (89) with respe
t to l:�� l��l  1 + ~x� ~q�j~x� ~qj ?????�~ql(� l�)�� !! + ~x� ~q�j~x� ~qj ?????�~ql(� l�)�l ! = 0 ; (91)and make use of de�ned previously (we put t = 0):W := e �~q�l ����l=0 :Finally: e�� l��l �����l=0 = �" nw1 + " nv thus : ed~ql(� l�)dl =W + V e���l : (92)The pro
edure outlined here should be then applied to all variables presentin formula for monopole's �eld. Derivatives of velo
ity and a

eleration 
anbe obtained in the same way as ed~ql(� l�)dl and all ne
essary s
alars 
onstru
tedout of ve
tors:e ���l = �" nw1 + " nv ; (93)e ddl (nv) = �1r �wv + (vv + " nv)e���l �+ nw1 + na e���l ; (94)e ddlV =W1 +A0 e���l ; (95)
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