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The Heavy Ion (HI) interaction potential between spherical and de-
formed nuclei is improved by calculating its exchange part using finite range
nucleon—nucleon (NN) force. We considered U?*® as a target nucleus and
seven projectile nuclei to show the dependence of the HI potential on both
the energy and orientation of the deformed target nucleus. The effect of
finite range NN force has been found to produce significant changes in the
HI potential. The variation of the barrier height Vg, its thickness and its
position Rp due to the use of finite range NN force are significant. Such
variation enhance the fusion cross-section at energy values just below the
Coulomb barrier by a factor increasing with the mass number of projectile
nucleus.

PACS numbers: 21.30.Fe

1. Introduction

The static and dynamic deformations give rise to significant changes in
the Coulomb and nuclear energies. The nuclear structure aspects of inelastic
scattering are contained in the so-called form factors of the transition po-
tentials coupling various nuclear levels. The form factor depends sensitively
on the static and dynamic deformation [1]. Moreover, the deformation of
the target and projectile affects both fusion reaction [2] and deep inelastic
scattering [3]. The sub barrier fusion enhancement observed in heavy ion
reactions is explained by allowing the relative motion degree of freedom to
couple with internal degrees of freedom, as static deformation [4]. Since
the main part in calculating the cross-section for heavy ion reaction is the
nucleus-nucleus interaction potential (U), many authors have studied and
derived the orientation and deformation dependence of the potential be-
tween deformed—deformed [5,6] and deformed spherical nuclei [7]. Some of

(1783)



1784 M. IsmaiL, Ku.A. RAMADAN

these studies have been made in the framework of the energy density for-
malism [6] and others within the well known double folding model [5,8]. In
the double folding model, the real optical potential is the sum of direct and
exchange parts. In the simplest version of this model, the exchange part
is calculated approximately by assuming zero-range nucleon-nucleon (NN)
force [8]. The exchange part of the real HI interaction potential is obtained
by applying the Pauli principle on the interacting nucleons. Improvement
of the calculation of this part is made by considering finite range NN force
instead of the zero-range pseudo-potential. In this case the problem of calcu-
lating the real optical potential becomes self-consistent problem and the HI
potential becomes energy dependent [9]. More than ten years ago [10], the
exchange HI interaction potential for spherical nuclei has been calculated
using finite range NN force. It was found that the more accurate treatment
of the exchange part affects both the internal and surface regions of the HI
interaction potential, and moreover it produces energy dependence.

In the present work we aim to improve HI interaction potential for
spherical-deformed nuclear pair by calculating its exchange part using fi-
nite range NN force. We shall consider the U?*® nucleus as a target and the
seven nuclei C'2, 016 Ar#0 Ca®0 Ni% 7Zr% and Pb?® as projectiles. We
study both the energy and orientation dependence to the HI potential for
the above mentioned pairs.

In Section 2 we describe the method used to calculate the real potential
for deformed-spherical nuclear pair. Section 3 is left for presenting and
discussing the obtained results. We give a summary in Section 4.

2. The interaction potential between deformed
and spherical nuclei

In the double folding model, the interaction potential between a deformed
target nucleus and a spherical projectile with separation distance R between
their centers is given by

U(Ra /8) = UD(Ra /8) + UeX(Ra /B)a (1)
where 3 is the orientation angle of the deformed nucleus with respect to
R. Up and Ug are the direct and exchange parts of the real potential,
respectively. They are given by [9, 10]

Un(B, §) = [ drsdrap(m)pa(ra)Vin(s), )
ik - s

Ux(R, B) = /dmdrwl(’“l, r1+ 8)pa(r2, T2 — 8)Vex(8) exp
(3)
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with 8 = R+ r9 — r; and Vp(s) and Vix(8) are the direct and exchange
parts of the nucleon—nucleon force, respectively, p; and po denote the mass
distribution in the target and projectile nuclei. The non-diagonal density
pj(r,r') is given in terms of the single particle wave functions ¢; as:

pi(r, ) =" di(r)dilr') . (4)
The local wave number |k| is given by:

k2 = (%) (B - U(R.6) - U.(R.5) )

with p = MyMy/(My + M), U, is the Coulomb potential for the two inter-
acting ions and FEc . the energy in the center of mass system. The energy
in laboratory system Fr, is given by Fr, = ((My + Ms)/Ma)Ec.\m., My and
M> denote the masses of the projectile and target, respectively.

The method of calculating Up and U, is outlined in Ref. [5]. In the simple
version of the double folding model, the exchange part is usually simplified
by expressing Vex(s) in terms of d-function. For M3Y-Reid version of the
NN force, Vex(s) is approximated by |[8]:

E
Vex(s) = —276 <1 - 0.005A—L) 5(s), (6)
1
where (Er, /A1) is the incident energy in laboratory system per projectile
nucleon. Aj is the mass number of the projectile.
Recently [9-11], many authors calculated the exchange part of the HI
potential for spherical nuclei using finite range NN exchange force. In this

approach the non-diagonal matrices are approximated by the density matrix
expansion (DME) method [12] as:

pi(r, 7 +8) = pj (r+ 38) Ji(kear(s) (7 + 55)5) (7)
with N
51(3;) _ SSlnﬁﬁ x;}COS.TJ
G = (25 ) [5n - (5) i) =12 (ra

The best approximation for 7; is the extended Thomas—Fermi approximation
given by

() = SK3plr) + 5 Vp(r) +

1 [Vp(r)?
3 :

36 p(r) (70)
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The DME method is a good approximation for heavy nuclei and for M3Y
nucleon-nucleon force [13].
For spherical nuclei the density distribution is assumed to be

£0
SR . — 8
p(r) T exp =00 (8)

The density distribution of the deformed nucleus is usually taken as

Po
p(r,0) = —————F—. (9)
1+ exp —rff(e)

The half density radius of this Fermi distribution is given by
R(G) = RO[l + 52Y20(07 0) + 54Y210(Ha O] ’ (10)

where 09 and d4 are the quadrupole and hexadecapole deformation param-
eters, respectively, and the angle 6 is measured from the symmetry axis of
the deformed nucleus. The values of the parameters ry and a for spherical
nucleus is taken from Ref. [8]. The values of the parameters Ry, a, d2 and
d4 for the deformed nucleus are taken from Ref. [14], pg is determined from
the relation

p(r)dr = mass number of the nucleus.

Referring to Fig. 1 Ue (R, B) is given by

UeslB.) = [ dsexp 32Vex(s) [ dymn(w)
%1 (e (4))) P2y — BRI (ke (ly — RI)s)) . (1)
Defining
G(R..5) = [ pr(y:cos(0)) s (g (0 056)3)
% p2() 1 (ker(2) (z)5)y” sin OdOdpdy , (12)

where z = |y — R|. In terms of G(R, 3, s) equation (11) becomes

Uex(R, ) = / ds exp Vi (5)G(R. B, 5). (13)

For the interaction between two spherical nuclei, the quantity G(R, 3, s) is
replaced by

G(R,s) = 2 / o ()1 (ke 1) ()5) 2 ()71 (ke (@) 5)ydy sin 09, (14)
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and Uex(R) becomes
iks
Unc(R) = / ds exp Vi (5)G(R, 5). (15)

The value of G(R, s) in equation (14) is obtained at each value of s and R by
calculating two-dimensional integral. For the interaction between deformed-
spherical pair G(R, 3, s) depends on the orientation angle § of the deformed
nucleus. It can be calculated by performing the three-dimensional integral
of equation (12) at each value of s and R. In the two types of interacting
nuclei, G is independent on both the energy and the total potential U (R, 3).
Performing the angular integration of s in equation (13), one gets,

U, ) =t [[dsitio (33) VG, (10

The nucleon—nucleon potential used in the present calculations is the well
known M3Y-Reid NN force [15], whose direct and exchange parts are

exp(4s) exp(—2.5s)
= — 2 _2134———= 1

Vi(s) = 79997 3P 20) )
—4 -2

Vex(s) = 4631,4M _ 1787'1M
S 2.5s
—0.7072

_ 7 g4 &XP(=0.70725) (17b)

0.7072s

It should be noted that the calculation of U(R, ) using finite range exchange
NN force is a self consistent problem due to the appearance of U(R, ) in
equation (5). This problem is solved by iteration method [16].

3. Numerical results and discussion

In the present work we considered the deformed nucleus U?3® as a target
and C'2, 016, Ar*0 Ca®®, Ni®*, Zr% and Pb?°® as projectiles. We calculated
the real part of the interaction potential for the first four nuclear pairs at
three values of laboratory energy per projectile nucleon Er/A; = 5.2, 11.6
and 20.7 MeV. In terms of the relative momentum per projectile nucleon,
k, = \/2mEL/h? Ay, these energies correspond to the values k, = 0.5, 0.75
and 1.00 fm !, respectively. For each nuclear pair considered in the present
work we calculated the two quantities U (R, ) and UL (R, /) using the
zero-range NN force (Eq. (6)) and the finite-range force (Eq. (17b)), respec-
tively. In the present work we have calculated both the direct part Up and
the Coulomb potential Uc using the procedure of Ref. [5]. The results are
shown on figures 1-7 and Tables I-V.
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Fig.1. Systematic representation of the two interacting deformed spherical nuclei.
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Symmetry axis (Z-axis)

Nuleus(1)

The x-axis is in the R—Z plane.

The height of the barrier Vg and its position Rgp for U2s_C12 potential calculated at
k, = 0.5, 0.75 and 1 fm~"

The center of mass energies within k, range (0.56-0.67

U238 _ 12

Nucleus(2)

TABLE I

using zero-range and finite-range exchange NN force. Three
different relative orientations 8 =0°, 45°, 90° are considered. The table shows also the
increase percentage of the diffusion cross-section or calculated at four values of Ec.wm.
above the Coulomb barrier.

fm™1).
Finite-range Zero-range Increase in or %
k, B (Exact) App.) Ec.v. (MeV)
Rp VB Rp VB 75 85 95 105
0° 13.36 58.38 13.07 59.49 11.96 9.03 7.75 7.10
0.5 45° 11.81 6291 11.65 63.93 12.14 7.74 6.14 5.32
90° 1142 64.22 11.32 64.57 5.19 3.52 295 2.67
0° 13.34 58.52 13.07 59.52
0.75 45° 11.79 63.09 11.64 63.98
90° 11.39 64.36 11.31 64.62
0° 13.29 58.71 13.05 59.58
1 45°  11.75 63.33 11.63 64.05
90° 11.36 64.55 11.30 64.69

Tables I-IV show the Coulomb barrier parameters Ry and Vg for
—016, U238 _Ar40 and U?8—Ca’®, respectively at the three
values of Er,/A; = 5.2, 11.6 and 20.7 MeV. Each table shows the values of

U238 _ C12 U238
Y
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TABLE 11
U238 _ (16
The same as Table T but for U?**-0'® pair. The center of mass energies within k, range
(0.55-0.63 fm™").

Finite-range Zero-range Increase in or %
k., B (Exact) App.) Ec.m. (MeV)
Rp VB Rp VB 95 105 115 125
0° 13.60 7641 13.26 77.96 14.76 11.22 9.60 8.66
0.5 45° 12.25 82.19 12.03 83.40 14.51 9.50 7.68 6.71
90° 11.71 83.51 11.52 84.26 10.54 7.06 5.85 5.23
0° 13.51 76.87 13.23 78.10
0.75 45° 12.16 82.66 11.99 83.54
90° 11.61 84.02 11.47 84.46
0° 13.44 77.19 13.21 78.21
1 45° 12,10 82.99 11.98 83.65
90° 11.53 84.37 11.44 84.61

TABLE 111
U238 _ Ap40

The same as Table T but for U?**~Ar?® pair. The center of mass energies within k, range
(0.52-0.56 fm™1).

Finite-range Zero-range Increase in or %
k‘r ﬁ (Exact) App.) EC.M. (MeV)
Ry VB Ry VB 190 200 210 220
0° 14.42 161.00 14.03 164.49 20.09 16.02 13.74 12.28
0.5 45° 13.10 17236 12.85 175.08 22.88 15.27 12.02 10.07
90° 12,51 175.68 12.21 17795 24.75 1578 12.41 10.64
0° 14.38 161.45 14.02 164.62
0.75 45° 13.06 172.82 12.85 175.21
90° 1245 176.19 12.19 178.14
0° 14.31 162.06 14.00 164.81
1 45°  13.01 173.43 12.81 175.41
90° 12.38 176.83 12.16 178.41

barrier parameters calculated, by using both finite range and zero range NN
force. Table V presents the same quantities calculated at only one value of
E1 /A for the three pairs U238 —Ni¢* U238-7;% and U238 —-Ph208. Tables
-1V show a weak energy dependence of both Ry and Vg in the considered
energy range. The effect of increasing E7,/A; is the slight decrease of Rp
and increase of Vg by very small amount. These results agree with the en-
ergy dependence of the folding model for the interaction potential between
spherical nuclei. This model produces weak energy dependence that makes
the nuclear potential more repulsive as the projectile energy is increased.
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TABLE IV
U238 _ (a0
The same as Table I but for U?**-Ca?® pair. The center of mass energies within k, range
(0.54-0.58 fm™1).

Finite-range Zero-range Increase in op %
k, B (Exact) App.) Ec.m. (MeV)
Rp VB Rp VB 210 220 230 240
0° 14.36 179.10 13.95 183.29 22.59 18.06 15.47 8.16
0.5 45° 13.02 191.71 12.72 19520 29.28 19.52 15.28 12.93
90° 12.43 195.83 12.16 198.67 30.68 18.40 13.96 11.67
0° 1424 180.36 13.91 183.68
0.75 45° 1290 193.05 12.68 195.62
90° 1231 19724 12,11 199.16
0° 14.16 181.24 13.88 183.98
1 45°  12.82 193.97 12.65 195.95
90° 12.23 198.21 12.08 199.56

TABLE V
The same as Table I but for the three heavy projectile pairs U?*®—Ni®, U238 _7Zr% and
U2%_PH2%8, Only one value of k,(k, = 0.5 fm™') is considered. The center of mass

energies withink, range (0.52-0.56 fm™").

Finite-range Zero-range Increase in or %
Pair Ié; (Exact) App.) Ec.m. (MeV)
Ry VB Ry VB 285 295 305 315

0° 14.67 246.11 14.30 251.36 21.67 17.90 15.54 13.92
UZ.Ni%  45° 13.36 263.14 13.08 267.29 28.77 19.95 15.81 13.40
90° 12.73 268.87 12.49 272.32 3214  19.68 14.85 12.28

380 390 400 410
0° 15.27 337.06 14.86 344.53 27.84 2295 19.82 17.65
UZ8.7:°° 45° 13.97 359.22 13.65 365.42 49.26  31.15 23.52 19.31
90° 13.35 367.48 13.05 372.99 86.98  38.58 26.02 20.25

690 700 710 720
0° 16.86 622.98 16.40 637.20 34.15  29.62 26.33 23.84

UZ8.Pb2°®  45° 15.63 659.16 15.26 671.45 74.41  50.07 38.35 31.46
90° 14.97 674.97 1459 687.35 497.10 108.31 62.82 45.20

As an example to show the effect of the finite range NN force on the
nuclear interaction potential for spherical-deformed nuclear pair, we consid-
ered the interacting pair U?38-Ca’®. Figure 2 shows our calculations for the
total nuclear potential Ud =Up + Ug) and U = Up + Uéf ) for orienta-
tion angles 8 = 0° and 90°. Fig. 2 indicates that the use of finite-range
NN force reduces the attraction of U?3#-Ca’® potential by about 17.5% at
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Fig.2. The real part of the U?*®-Ca“® nuclear potential for the two different relative
orientations # = 0° and 90° using finite-range NN interaction (U*") and zero-range
NN interaction (U?) against the separation distance R (fm) between the centers
of the two interacting nuclei. Calculations have been done at incident energy in
laboratory system per projectile nucleon Er,/A; = 5.2 MeV (k, = 0.5 fm™1)

—g=0
» ~ ~B=45
~— B=90

0 2 4 6 8 10 12 14 16
R (fm)

Fig.3a. The factor F(R, ) for relative orientation 8 = 0°, 45° and 90°, against
R (fm) at k. = 0.5 fm~! for U?*®*-Ca’®. The arrows refer to the position of the
barriers.

separation ion distance R = 0 fm and makes the potential deeper in a re-
gion before the surface region. This is clear in Fig. 3a which compares the
factor F(R,B) = US(R,B)/UL (R, B) for U?3-Cat® at the three values of
orientation angle § = 0°, 45° and 90°. This figure shows that |Ue5x| is greater
than |UL| by about 30% at separation distance R = 0(F(0,3) = 1.3). As
the value of R increases the factor F'(R, ) decreases for the two relative
orientations = 0° and 8 = 45°. For 8 = 90° the value of F' decreases
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----- U-Pb (0)
U-Ni (0)

= - U-PD(90)

s == U-Ni(90)

6 8 10 12
R (fm)

Fig.3b. The factor F(R, 3) for relative orientation 8 = 0°, 90°, against R (fm) at
kr = 0.5 fm™! for U238-Pb2%8 and U?38-Ni®. The arrows refer to the position of

the barriers.

for R < 10 fm than it increases slowly. For fixed R value, the difference
in shapes between the factor F' is due to the difference in volume of the
overlap region between the two nuclear densities when the orientation angle
is varied. This is because ng is proportional to the volume of the overlap
region of the two nuclear density distributions. Figure 3b shows the varia-
tion of the factors F'(R,0) and F'(R,90°) with the separation distance R for
the heavier pairs U?*®-Ni%* and U?38-Pb208, The general behaviour of the
factor F' for these two pairs is the same as that for U?®-Ca?? pair.

©
8

@ @ =~ @
3 3 3 3

U (Rp) (Mev)

a
3

= = U(Exact)
—U(App.)

0 5 10
R (fm)

Fig.4a. The total U?*3-Q1'6 potential (both exact and approximate) against R (fm)

at k, = 0.5 fm~! and for orientation angle 3 = 0°.
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90

U (R,B) (Mev)
8 8 3 g

S
3

- = = U(Exact)
——U(App.)

0 5 10 15 20
R (fm)

Fig.4b. The same as Fig. 4a but for g = 90°

Figures 4 and 5 show the total real potential, Uy (nuclear + Coulomb)
for the two pairs U28-016 and U238-7Zr% respectively at E7,/A; = 5.2 MeV.
Figure 4a shows Ur calculated using zero range and finite range NN forces at
orientation angle 8 = 0° for the nuclear pair U?3¥-0'6, Figure 4b is the same
as figure 4a but for § = 90°. Figure 5 contains the same calculations for the
pair U238-7r%, These figures show that the finite range NN force affects the
fusion barrier height (Vg), its thickness and its position (Rp). The effect is
to increase the value of Rp and reduces the height of the barrier V5. This is
shown in Tables [-V for three orientation angles g = 0°, 45° and 90°, where
the values of Rg and Vg calculated using both U and UF are presented
for seven interacting pairs. For U238_Ca®0 pair and at Er/A; =2 52 MeV
the increase in the value of Rp resulting from using finite range NN force
in calculating the exchange part is 2.94%, 2.36% and 2.22% for 8 = 0°,
45° and 90°, respectively. The corresponding decrease in Vg is 2.29%, 1.8%
and 1.43% for the same values of 3. For the other interacting nuclear pairs
the percentage variation in Rg or Vg due to finite range NN force differs
from that corresponding to Ca*?~Ca®® pair. In all cases it does not exceed
3%. For the HI potential between two deformed U??® nuclei it was found
that [17] the correct treatment of Uy reduces Vg by about 2.8% and shifts
Rp outwards by a maximum value of 3.5%. The maximum shift in Rg for
deformed—deformed nuclear pair increases by 12% comparing to the same
quantity in the present work.
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Fig.5a. The same as Fig. 4a but for the pair U238-7r%0

400

- e
350 7, ™~
300 /.
250 I

200 i!

U (R, B) (Mev)

= = = U(Exact)
— —U(App)

5 0 15 2

-50

R (fm)

Fig.5b. The same as Fig. 4b but for the pair U238-Z7r%

Although the changes in Rp and Vg resulting from using finite range NN
force are small, they produce significant changes in the fusion cross section
for energy values just below and above the Coulomb barrier. For this energy
range the fusion cross-section can be calculated from the formula [18].

R%hu} 27T(Ec_M. — EB)
or 2Ec . " [ oexp < hw ’ (18)

1/2
d*Urp 1 /
hw = h — .
dr? ) p. b

where
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Fig.6. Variation of fusion cross-section o for U2¥-016 reaction with Eq . for
orientations f = 0° and 90°. op has been calculated using finite range (exact) and

zero range (approx.) NN force.
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Fig.7. The same as Fig. 6 but for the pair U238-7r%
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This formula had been derived by approximating the Coulomb barrier by
parabolic shape. It is valid if the difference between Ec . and the barrier
top is relatively small. For heavy projectile (like Zr®) the Coulomb barrier is
about 350 MeV and it is expected that equation (18) can be used at energies

less by 30-40 MeV than Vg.

The effect of finite range NN force on the fusion cross-section is shown
in the last column of Tables -V and in Figs 6, 7. Each table contains the
percentage increase of the fusion cross-section o resulting from using finite
range NN force instead of zero range force. Variation in op was calculated
at four values of Fc.nm. > V. The tables show that the percentage increase
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in the calculated values of o is significant for center of mass energy above
the Coulomb barrier. As the projectile nucleus gets lighter the enhancement
of op is reduced. For example at energy Ecn. & Vg + 20 MeV, where Vg
calculated with zero range force and for § = 0°, the percentage increase in
or is about 14%, 28%, 33% and 46% for the projectiles O, Cat?, Ni%* and
Zr% | respectively. This enhancement of o resulting from the finite range
of the exchange NN force is mainly due to the direct dependence of oF on
R]23 whose value increases with the projectile mass number.

To show the effect of using finite range force o for energies just below
and above the Coulomb barrier [19] we considered the interacting pairs U238
0" and U28-7Zr% as examples. Figures 6 and 7 show the variation of op
with Ecp. for the projectiles O'® and Zr®°, respectively. In each figure
we considered the two U??® orientations angles 8 = 0° and 90°. The figures
show that the finite range of the exchange NN force enhances o, at energies
just below the Coulomb barrier by a factor depends on the projectile mass
number. Moreover, at a certain value of E¢ . the finite range of the force
has large effect on o for § = 90° compared to its effect on 5 = 0°.

4. Summary

We generalized the calculation of the real interaction potential using fi-
nite range NN exchange force to include deformation of the target nucleus.
The effect of finite range of the force on the calculations of the interaction
potential for deformed—spherical nuclear pair has been studied. We consid-
ered the U?3® nucleus with both quadrupole and hexadecapole parameters
and seven projectiles with mass numbers 12 < Ay < 208. It was found
that the finite range NN force produces more repulsive HI potential at small
separation distances and makes the potential more attractive in surface and
tail regions. The fusion barrier parameters are affected by the finite range
force. The barrier height is lowered and its position is shifted outwards com-
pared with the same quantities calculated by zero range force. The energy
dependence of the barrier parameters was found to be too small in the range
of energy considered in the present work. We found that the fusion cross-
section at energies just below and above the Coulomb barrier is enhanced by
a factor increasing with the projectile mass number. Moreover this factor is
strongly dependent on the orientation of U?3® nucleus.

The effect found in the present paper is a result of the orientation depen-
dence of the factor F/(R, 3). The later depend on the overlap region between
the density distributions of the two interacting nuclei which changes by the
orientation of the target nucleus.

We wish to thank Dr A.Y. Ellithi for his help during the preparation of
the manuscript.
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