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The neutron—proton pairing correlations have been analysed in com-
parison with like-nucleon correlations by means of the elementary method
based on the group theory treatment. Analytical formulae allow to compare
the contribution of the neutron—proton interaction only, which is in several
cases the main ingredient of the total pairing interaction. The obtained
formulae have also been applied to the binding energy (the congruence

energy).

PACS numbers: 21.60.Cs

1. Introduction

Pairing interactions as a model short-range residual interaction have
a very long history. Racah [1] gave an exact formula for the electron pair-
ing energy in the degenerated (one level) case in the L-S coupling scheme.
Racah was also the first who introduced the quantum seniority number as
the number of non-paired particles. The so-called seniority scheme in L—S
coupling was generalized by Flowers [2]| as well as Edmonds and Flowers [3]
for a nuclear j—j coupling with the similar notion of the seniority quantum
number. The problem was considered with the help of orthogonal, in L-
S coupling, and symplectic, in j—j coupling, groups of dimensions 2/ + 1
or 25 + 1 depending on the space of a considered energy level. That was,
however, the limitation of a practical use of the group theory, because every
shell was connected with a different dimension group, which did not allow for
treatment of more than one energy level. Since 1958 the situation has been

* Parts I and II are given in [23,24].

(1823)
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improved by the BCS theory of an approximate treatment of the pairing
interaction in the solid state physics [4]. The BCS theory was soon applied
to nuclear physics by Mottelson [5] and Belaev [6]. The BCS theory, at that
time, was applied only for treatment of like-particles. Further progress was
made, when the so-called quasi-spin method was introduced. Wada, Takano
and Fokuda [7] were the first who oserved simple and closed commutation
relations of the second order creation and annihilation operators which were
recognised as characteristic relations of the Lie algebra for the spin SU(2)
group and contributed to the name of the quasi-spin method. The symme-
try quasi-spin groups were found to be complementary to the known unitary
groups of Racah and Flowers. The most important feature of the quasi-spin
symmetry was provided by the same dimension symmetry groups for any
I- and j-levels which allowed for an exact group theory treatment of many
level problem. In such a way the quasi-spin method was used as a probe of
the BCS approximation.

Kerman [8] and Kerman, Lawson and Mac Farlane [9] applied the quasi-
spin method for any set of like-nucleon energy levels. Almost at the same
time (1961) Helmers [10] pointed out that the bilinear products of proton
and neutron creation and annihilation operators generate transformations of
the orthogonal group SO(5) (or Sp(4)) for the j—j coupling scheme. Later
several authors from different nuclear centers almost simultaneously but in-
dependently developed the quasi-spin method for both: j—j coupling with
the symmetry SO(5), and L—S coupling, with the symmetry SO(8) [11-18].
Since 1964 there have appeared hundreds of papers devoted to the quasi-spin
method not only in the nucleon pairing correlations but also in quarks and
interacting bosons.

Although the quasi-spin method allowed for accurate treatment of nn,
pp and np pairing correlations on the same footing, the neutron—proton
part had been for a long time neglected because of a great difference in the
energy between the proton and neutron single particle shells of heavy nuclei.
Recently, the np correlations have again attracted attention for light as well
as heavy nuclei with N = Z, where neutrons and protons are placed on
the same single-particle energy level. The attention has been paid to the
former papers from the sixties, where the accurate solution of the pairing
interaction was obtained with the help of the orthogonal groups SO(5) and
SO(8). For example, in the paper by Engel et al. [19] the formulae for the
np part of the pairing Hamiltonian have been given for the special cases of
T =Ty and T' = Ty + 1 and then the exact results have been compared with
the Fock—Bogoliubov approximate treatment. The interplay between like-
particles and neutron—proton isovector correlations in the nuclei near N = 7
has also been discussed. However, one needs to develop the isospin broken
formula for T' > Ty + 1 to draw general conclusions. In another paper by



The Elementary Method in Pairing Energy ... 1825

Engel et al. [20] the symmetry SO(8) was employed to consider not only the
isovector but also the isoscalar part of the broken proton—neutron pairing
correlations. The paper by Civitarese et al. [21] makes an attempt to prove
that the isospin symmetric pairing Hamiltonian treated in the Bogolyubov
transformation fails to describe the physical nuclear states. Instead, one
has to consider the broken pairing Hamiltonian and hence, once again the
algebraic formulae for nn, pp and np parts of pairing interactions are needed
to draw a proper conclusion. However, those formulae have been obtained
only for special cases, which either prevent from generalized conclusions or
even lead to improper generalized conclusions. The neutron—proton pairing
interaction by means of the same model Hamiltonian as in the presented
paper has been recently considered for some deformed nuclei [28].

It is justified to make an attempt to obtain general algebraic forms for
the three parts of the broken in SU7(2) pairing Hamiltonian. The formulae
can constitute the basis for the discussion of the interplay between like-
particles and np pairing interactions. For this purpose we have employed the
elementary method in pairing interactions [22, 23], which will be generalized
to obtain the Ty dependence of energy formulae.

The next section will present a short review of the elementary pairing
method and then we will extend it to treat separately nn, pp and np pairing
correlations, which allows to introduce the non-equal strength factors for
these interactions. The section will also present general conclusions about
the competition of these pairing parts. The last section includes examples
of algebraic pairing formulae.

2. The elementary method

At the beginning of this section we will follow the presentation of the
method and notation given in [23]. Let us assume a configuration of nucleons
on the j-level with T' = Ty, for the neutrons — the higher part, and the
protons — the lower part of figure 1.

n, n, Ny n, Ng Ng
m=Y s Y% Y

Fig.1. Schematic configuration of neutrons (upper line) and protons (lower line)
in the state |vt;nT = Tp).
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The numbers n; denote the numbers of the same four-state structures
with different m > 0. The physical quantum numbers are given by n;:

1,..
Zni:§(2]+1)507

4ng + 3no + 2n3 + ng + 2n5 = n,
1 1
—ng+ng+-ng =T,

2 2
§n2+§n4:t,
no +n4 +2n5 =v (1)
or

n n v T+
MM Ty T T 9 Ty
n3—T—t,
n4—2t—n2,

v
n5:§—t,

v

n6:Q—T—§—n1, (2)

where n is the nucleon number, v — the seniority number, ¢ — the reduced
isotopic spin (the isotopic spin of unpaired nucleons). The structure nj
involves np pairs with the same m — hence it is a symmetric configuration
in a m-space and in an isotopic space it must be an antisymmetric one with
a zero isospin contribution. The symmetric in SU7(2) pairing Hamiltonian,
Hzir, is constructed in terms of the pair creation and annihilation operators
for nn, pp and np pairs

Hpair _ H .

_G ~ pair
where G is the strength of the pairing interaction.

The elementary method is based on the following rule: the f;air annihi-
lates a pair of nucleons coupled to J = 0 and T = 1 and creates such a pair
either in the same place or in the other two-particle empty space. The num-
ber of annihilation-creation actions is the pair energy in (—G) units. This
simple rule can be complemented with two additional remarks:

1
= 815"+ SL% + SIS, (3)

(i) the number % in front of the np part of (3) is a square of the Clebsch—
Gordan coefficient of coupling a neutron—proton pair to a total two-
particle T = 1. That factor % must be put in front of the neutron—
proton annihilation—creation actions.
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(i) If an annihilation—creation action changes the structure of the four
state blocks in figure 1, then an additional structure factor w; must
be put in front of nn or pp actions and the factor ws — in front of np
actions.

Application of these rules to the initial state in figure 1 gives:

Ep, =n1(1+wing) + na(l + wing) + n3(1 + ng) , (4)
Ep = nl(l + n3 +wing + wlnﬁ) s (5)

1 1
E,p=2- §n1(1 + wonyg + 2wang) + §n2(1 + ng + 2waong) (6)
and

1
Epoir = By +Ep+ Eyypy = <n1 + §n2) [3 4+ ng + 2(wy + wa)ng)

+ n3(1 +n1+ ’Ils) + n1n4(w1 + wo — 1) . (7)

If we put
w +wo =1 (8)

and introduce (2) to (7), we get

Bpair = i(n—y) (2()+3— g - g) - %T(T+1) + %t(t+1), 9)
which is an exact formula for the symmetric SUp(2) pairing energy of the
system with neutrons and protons [11].

The Ep,ir does not depend on the Ty because of the SU7(2) symmetry
and hence, in our starting state construction, figure 1, we could take any Tp,
in our case Ty = T. However, the separate parts of Epai, namely E,, E,
and E,, are not the simultaneous eigenvalues of the respective parts of the
Hiyair (3) because they have broken the SUp(2) symmetry. To interpret these
values (4)—(6) we should introduce the basis for irreducible representations
of the group SO(5) and then calculate the mean values of (S;S_) for three
parts of (3). The IR basis vectors read

|(cro)nTTo3)

where )
alzg(()—u), ag =t (10)

label the IR of SO(5) and the four other quantum numbers identify the states
within a given IR, 8 is the fourth non-physical quantum number without
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any known physical operator attached to this number. However, the most
practical TR’s in the physical application of the SO(5) do not need this
fourth quantum number. There are three classes of such representations,
namely («,0), (a,%) and (a,a). Next the representation (a,0) will be
taken with seniority v = 0 and hence a3 = %(2 and oy = 0. The vector
basis now reads |£2;nTTp). The matrix elements of the pair creation and
pair annihilation operators were calculated in several old pairing papers.
We take the formulae from [24] and then, the calculated three mean values
(S+S_) in the basis |£2;nTT,) are compared with three elementary pairing
formulae (4)—(6) which gives

2T + 2 1
:7’ 'LUQZ
2T +3 2T +3

(11)

w1

At the same time we have checked a very surprising conclusion (8) from our
elementary method. We need to remember that the formulae (11) are under
the assumptions 7' = Ty and v = ¢ = 0. For this case we get no = ny =
ns = 0. Hence, the elementary, very handy, pairing formulae in the basis
|2;nT = Tp) read

En = <S_7_SE> = n1(1 + wlnﬁ) + n3(1 + nﬁ) s (12)
By = (S18%) = ni(1 + n3 +wing) (13)
1
Enp = E(S?Sfp) = n1(1 + 2wang) , (14)
where
n T n T
’le—Z—g, ’ng—T, TLG—.Q—Z—§ (15)

and wy, wy are given by (11)

Let us now consider the case with Ty # T for the irreducible representa-
tion (a,0) with » = 0 and basis vectors |£2;nTTy). Now, for Ty # T there
are, in our elementary constructions, two fundamentally different structures,
figure 2 of the state |£2; nTTy): with

2 =mny;+ny+n3+nyg, Q2 =nl +nb+nf+nl,

n = 4nqy + 2n9 + 2n3, n=4n; +2'ny + 2'n3, (16)
T =ng+ns, T =nb +nk,

To=n9 >0, Tozn’2—77é>0.

! Tn two examples (20; 22) of the paper [23] there is a numerical error in w; and wo.
According to the present results (15) the structure factors wi and w» should be, in

both examples, 2 and 3 because in both cases T = 0.
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i
'1'

) Al 2
n, n, Ny n, n, nz’ 03 nA

Fig.2. Two different fundamental schematic configurations for the state |2 nTTp)
with v =1t = 0.

Comparing the same 2, n, T' and Ty for both constructions we get
n n
ny =mn, n2—n2+73 néz%, ny=mnyg. (17)
Let us write down, using the elementary method, the energies (mean values)
of the three parts of Hyyir, By, Ep and E,,. We get

I
(En)t = n1+no(1 4 n4) +wining,
(Ep)t = ni(l+ng) +wining,
(Epp)t = ni1(1 4+ n3) +n3(1 + n4) + 2waninsg (18)
11
(En)u = (14 n3) +n5(1 +nj) +winjny
=m (1 + %) + <n2 + %) (1 4+ ng) + wining (19)

and similarly
n
(Ep)n = m (1 + no + 73’) +

(Enp)H = N1 + 2w2n1n4 .

n3

> (1 + n4) +wining,

Due to the elementary method procedure, these two structures, I and II, are
included in the mean value calculation as a linear combination

(En)exact = (STS") = u1(Ep)1 + ua(Ey)nn (20)

and similarly for (% S”); £(S77S"), where u; and us are the new structure
parameters. The numbers of four-state blocks, ny and n4, are the same for
both structures and hence, to fix u1 and us we can put ny =n4 =0

I 11
E, =no E, :ng—i-% ( )
21
E,=0 E,,:"23
Enp:ng E =0
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Hence, by (20) and (21), we get

n
(S78%) = (En)esact = tnz +us (np + 52 |

2

(S7.87) = (Bplexact = 2’5

1 n n

§<S+ps_p> = (Enp)exact =uins. (22)

From (22) we get
L/gnp gnp 2(S% SP
UIZM’ UQZM‘ (23)
ng n3

Calculating from [24] exact values (S77S™) and (S7 S”) for the IR (e, 0)
we get

. 2n2+'n3 _T+T0 . n3—1 _T—To—l
N et ons -1 2T —1° O et 2na — 1 2T —1
(24)
with the relation
U1+U2:1. (25)

From the relations (20), (18), (19), (24) and (25) we get

n
wy = (S75™) —nq —no(1+na) — us 22 (1 + ny + ny) . (26)
nin4

Calculating, once again, the exact value (S S™) from [24] and for the state
|£2nTTy) we obtain
272 + 2T + 27§ — 2
YT TR S )T + 3)

and
272 + 2T — 2T¢ — 1

(2T — 1)(2T + 3)
The same, of course, values for w; and wa we could obtain taking (S%S”)
or (S17S"P) instead of the (S7.5™).

In the special case of T' = T we obtain the formulae (11) from (27).

Now, instead of formulae (12)—(14) for the special case T = Ty, we get
for any Ty the general and very handy forms for the mean values:

w2:1—w1: (27)

n
E, = (S75") =ni +wining + na(1 4+ ny) +U273(1 + i+ na),
n
E, = (S1S%) = ni(1 + ng) + wining + us - 73(1 +n1+na),
1
Enp = 5(S178™) = n1 + 2wamina + wins(1 +n1 +na) (28)
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where, from (16)

T T
nlzg—g, TLQZT(), ’n,ng—To, n4:(2—%—§(29)
and

_T+T0 -1 _T—T()—l
a1 B
272 + 2T + 2T — 2 . 2T% + 2T — 273 — 1 (30)
wr = wWo = —w =
T er-n@er+3) LT Ter - 1)(2T +3)
We can check the above formulae taking into account the sum
1
(SST) +(SESP) + 5(5?521”)
= ’fL1(3 + ng +nz + 2n4) + (TLQ + ’ng)(l + n4)
n n T
:Z(m+3—§) — 5 (T +1) = Bpai (31)

which is the exact pairing formula (9) for v =¢ = 0.
Now we are in position to consider analytically the neutron—proton pair-
ing interaction and its competition with nn and pp correlations.

3. Applications
Problem No. 1

Let us consider the Ty dependence of the pairing formulae (28)-(30).
After the proper rearrangement we get the following

E,=aTy+bTy+c,
E,=aT? —bTh+c,
Enp = —2aT¢ — 2¢ + Epair (32)

where

_ dning + (1 +ny +nq)(2T + 3)
N 2(2T — 1)(2T + 3) ’
- ny —ng — 1

h— L -
2 b

T(T—1)+2 T?2+T -1
2T — 1) " M™MET —1)(2T + 3)

c=n1+ (1+n1+n4) (33)

and Fp,ir is the pairing energy (31).
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Fig. 3. Mean values of (STS™) for pp, nn and np pairing parts of Hp,i, in the state
|2nTTy) versus To; T = 21.

Figure 3 shows an example of the Ty dependence for the state |2nTT)
with n = 50 2 = 28; T = 21 and then ny = 2; ngy = 5. From (33) we get
a=1.084; b = —2; ¢ =47.539 and Ep,;r — 194.

For Ty < 0 we simply change E'p<jE'n.

Two interesting conclusions can be drown from figure 3:

(i) The E,(E,) reaches the minimum value and that minimum is for

the same |Tp|. One would rather expect constantly increasing values
E,(Ep).

(i1) The E,, takes on more or less the same value as the sum E, + E, for
Ty around zero, in our case —3 < Ty < 3. It means that in this region
of the T the neutron—proton pairing is of the greatest importance.

T = 21 has been chosen quite arbitrarily. For other T values the ATy
(around Ty = 0), for which the contribution of n — p pairing is larger than
the sum of n —n and p — p, can be only changed.

Problem No. 2

Let us consider the following problem [19]: let us assume adding to the
initial state of a nucleus |2nT = 0) with the mean energies (E1)nn, (£1)pp
and (F1)pp a pair of neutrons keeping the same v = 0. What is the change
in the mean energies EZE;IEI = %—?? The answer, following the formulae

(28)-(30), is rather unexpected, namely:
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for protons:

for np:

for any {2 and any n! Nobody would expect that adding two neutrons will
increase the proton correlations ("proton pairs”) by 20%. The decrease of
the neutron-proton correlation is obvious but the constant value of 40% for
such decrease is also unexpected. The more complicated, but also rather
non-expected answer is for the neutron correlations. We get

AFE dn) — n? — 54 12002
< ) _4n n 54n + 120 (34)

B 20n.02 — 5n2 + 30n
Now the answer depends on the mutual interplay of n and (2:

1° If we fix £2(2,3,...) then the function (34) lowers beginning with

1170%;259 (for mmin = 4) and ending with g:gg (for mmax = 482 — 4).

2° If we fix n(4,8,12,...) then the function (34) rises from the initial

value % for Qmin = § +1 to its asymptotic value ”;’50 for 2 — oo.

5

Let us illustrate the results by two examples: for £2 = 10 in the first (Fig. 4),
and for n = 20 in the second example (Fig. 5).

In the first example, for {2 = 10 with a low initial value of nucleons, the
added two neutrons increase the F, by 134% while for the highest number
of nucleons, E,, even decreases by 33%. In the second example, for n = 20,
for a low value of {2 the E, decreases by 28% while for the asymptotic case
2 — oo it increases by 50%. Boundary limits of the (AE/FEy), for any n
and (2 are from 170% to —40%. This statement is in contradiction to the
conclusion of Engel et al. [19].

Problem No. 3

Let us consider even isotopes of a given element with v = 0 starting with
a nucleus of N = 7, T = 0 and with ng nucleons above the magic shell.
The other isotopes have n = ng + 27" particles, where T = 1,2,3,... and
obviously Ty =T.
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1 1 1 n

| 1 ] L
8 12 16 20 24 2832 36
-0.2f
-0.4

&~

Fig.4. Change in the neutron correlations measured by ATE after a pair of neutrons
is added, versus n; 2 = 10 is fixed.

Fig. 5.

[ S T N I [ N |

1 f I ‘Q.
6/8 10 12 14 16 18 20

-0.1

-0.4

The same as in figure 4 but versus {2, n=20 is fixed
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Taking into account our formulae (11)-(15) for Ty = T', we get for iso-
topes under consideration:

Uun 2T+2 Uun
E,=—+4+— "k T(l Q———T),
" 4+2T+3 + + 4
no 2T + 2 N0
E, =— ke 2T
P4 2T +3 +4 ’
o 2
E,=—+—— -k 35
P 4+2T+3 ’ (35)

where k= 20 (2 — 0 —T),

We take, as an example, the 2*Cr isotopes with A = 48-56. Assuming
that the valence nucleons are on the degenerated (pf) shell we put in the
formulae (35) ng = 8 and 2 = 10. Figure 6 represents the characteristic de-
pendence of the neutron, proton and neutron—proton correlations measured
by the mean values E,, E, and E,,,.

For example, for the isotope 24Crsg for T = Ty = 4 the pair contribution
in Fpair is 58.5%; 34.5% and 7% for nn; pp and np correlations, respectively.

We should not confuse this conclusion with that in Fig. 3. Here we com-
pare the np pair contribution for a given nucleus with T' = Ty while in Fig. 3
we take for comparison the nuclei with the same T but with different Tj.

30
En
20 E,
10+
Enp
0 ! i 1 J T
0 1 2 3

Fig.6. Neutron, proton, and neutron—proton correlations measured by the mean
values E,, E, and E,, for Cr isotopes with T' = Tj.
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Problem No. 4 — the congruence energy

The so-called “Wigner term” or “congruence energy” in the nuclear mass
formula [25, 26| depends on I = (N — Z)/A and is represented by the semi-
empirical formula

C(I) = —=Cy exp(=W|I]/Cy), (36)

where Cyp = 10 MeV and W = 42 MeV. The microscopic basis for this term
comes, as it was suggested [27|, from the neutron—proton pairing except of
the constant term of a different origin.

We will compare next, just like in the paper [21], the shape of our E,,
formula with the congruence energy for the isovector pairing only (36). For
this purpose we will consider isotopes of a given element with T = |Tj|.
Hence, we adopt the formulae (11), (14), (15) which gives

Enp == —an(A)’n,l(l +2w2n6)
n—2T n—-2T 2 40 —n—2T
- _G’”’(A){ 1 T 1 ar+3’ 4 } » (37)

where n is, as before, the number of valence nucleons and Gp,(A) is the
strength of the neutron—proton pairing interaction, which we assume to be
A dependent in the form [21]

16
=1.25———. 38
Ghnp 5A + 56 (38)

- 5 1 ] 1 i 1 To

Fig.7. Comparison of the congruence energy and the mean value F,, for Ge
isotopes with T' = |Tg].

We have taken, for comparison, the isotopes of Ge with A from 58 to 70.
In figure 7 we compare two formulae (36) and (37) shifting the congruence
energy by 5.81 MeV. It means, that in our comparison the stress is put on the
(N — Z)/A dependence of both formulae but not on their absolute values.
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It is interesting to note that the conclusion from figure 7, besides the sim-
ilar dependence of both curves is different from that of the paper [21], where
the np pairing contribution decreases faster than the congruence energy. We
have to explain that the np pairing contribution has been differently calcu-
lated. In the paper [21] it is the eigenvalue of the np pairing part in the state
of broken T-symmetry while our formula presents the mean value (S%?S™")
in the state of a given T' = Tj.

4. Conclusions

The main part of this presentation is the extended elementary method
in the pairing interaction to involve the Ty dependence for the non diago-
nal terms S;.S_ and to calculate the mean values of those terms (S7S™);
(SE.SP); (SYPS™P) in the state of the considered irreducible representation
of the orthogonal group SO(5). The algebraic, very handy formulae can be
and have been, used for analytical solution of different physical problems.
Among those problems we have discussed:

(i) the Ty dependence,

(ii) the change in the pairing contributions following the increase in the
number of neutrons by a neutron pair of T' =1,

(#ii) the change in the pairing contributions in a set of even isotopes,
(iv) the possible microscopical origin of the congruence energy.

We have clarified and generalized several answers to the recently discussed
problems stated above.

Although the presented results are based on a simple model, their nu-
merical part are exact. Hence, for the nuclei with the shell model structure
similar to the considered nuclei in the paper, the pairing contribution is, at
least, of the same qualitative value even in the presence of a more realistic
two-body interaction.

The last version of the paper has been prepared during the stay in the
Max Planck Institute fiir Kernphysik in Heidelberg. The author is very
grateful to professors David Brink and Renzo Leonardi from ECT in Trento
and to professor Hans Weidenmiiller from Max Planck Institute in Heidel-
berg for the invitations, and also to ECT and Max Planck Institute for
financial support.
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