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THE ELEMENTARY METHOD IN PAIRING ENERGYIII. NEUTRON�PROTON VERSUS LIKE-NUCLEONCORRELATIONS�S. SzpikowskiInstitute of Physi
s, M. Curie-Skªodowska UniversityRadziszewskiego 10, 20-031 Lublin, Polandand ECT Villa Tambosi, Strada delle Tabarelle 28638050 Vilazzano (Trento) Italy(Re
eived June 9, 2000)The neutron�proton pairing 
orrelations have been analysed in 
om-parison with like-nu
leon 
orrelations by means of the elementary methodbased on the group theory treatment. Analyti
al formulae allow to 
omparethe 
ontribution of the neutron�proton intera
tion only, whi
h is in several
ases the main ingredient of the total pairing intera
tion. The obtainedformulae have also been applied to the binding energy (the 
ongruen
eenergy).PACS numbers: 21.60.Cs 1. Introdu
tionPairing intera
tions as a model short-range residual intera
tion havea very long history. Ra
ah [1℄ gave an exa
t formula for the ele
tron pair-ing energy in the degenerated (one level) 
ase in the L�S 
oupling s
heme.Ra
ah was also the �rst who introdu
ed the quantum seniority number asthe number of non-paired parti
les. The so-
alled seniority s
heme in L�S
oupling was generalized by Flowers [2℄ as well as Edmonds and Flowers [3℄for a nu
lear j�j 
oupling with the similar notion of the seniority quantumnumber. The problem was 
onsidered with the help of orthogonal, in L�S 
oupling, and symple
ti
, in j�j 
oupling, groups of dimensions 2l + 1or 2j + 1 depending on the spa
e of a 
onsidered energy level. That was,however, the limitation of a pra
ti
al use of the group theory, be
ause everyshell was 
onne
ted with a di�erent dimension group, whi
h did not allow fortreatment of more than one energy level. Sin
e 1958 the situation has been� Parts I and II are given in [23,24℄. (1823)



1824 S. Szpikowskiimproved by the BCS theory of an approximate treatment of the pairingintera
tion in the solid state physi
s [4℄. The BCS theory was soon appliedto nu
lear physi
s by Mottelson [5℄ and Belaev [6℄. The BCS theory, at thattime, was applied only for treatment of like-parti
les. Further progress wasmade, when the so-
alled quasi-spin method was introdu
ed. Wada, Takanoand Fokuda [7℄ were the �rst who oserved simple and 
losed 
ommutationrelations of the se
ond order 
reation and annihilation operators whi
h werere
ognised as 
hara
teristi
 relations of the Lie algebra for the spin SU(2)group and 
ontributed to the name of the quasi-spin method. The symme-try quasi-spin groups were found to be 
omplementary to the known unitarygroups of Ra
ah and Flowers. The most important feature of the quasi-spinsymmetry was provided by the same dimension symmetry groups for anyl- and j-levels whi
h allowed for an exa
t group theory treatment of manylevel problem. In su
h a way the quasi-spin method was used as a probe ofthe BCS approximation.Kerman [8℄ and Kerman, Lawson and Ma
 Farlane [9℄ applied the quasi-spin method for any set of like-nu
leon energy levels. Almost at the sametime (1961) Helmers [10℄ pointed out that the bilinear produ
ts of protonand neutron 
reation and annihilation operators generate transformations ofthe orthogonal group SO(5) (or Sp(4)) for the j�j 
oupling s
heme. Laterseveral authors from di�erent nu
lear 
enters almost simultaneously but in-dependently developed the quasi-spin method for both: j�j 
oupling withthe symmetry SO(5), and L�S 
oupling, with the symmetry SO(8) [11�18℄.Sin
e 1964 there have appeared hundreds of papers devoted to the quasi-spinmethod not only in the nu
leon pairing 
orrelations but also in quarks andintera
ting bosons.Although the quasi-spin method allowed for a

urate treatment of nn,pp and np pairing 
orrelations on the same footing, the neutron�protonpart had been for a long time negle
ted be
ause of a great di�eren
e in theenergy between the proton and neutron single parti
le shells of heavy nu
lei.Re
ently, the np 
orrelations have again attra
ted attention for light as wellas heavy nu
lei with N � Z, where neutrons and protons are pla
ed onthe same single-parti
le energy level. The attention has been paid to theformer papers from the sixties, where the a

urate solution of the pairingintera
tion was obtained with the help of the orthogonal groups SO(5) andSO(8). For example, in the paper by Engel et al. [19℄ the formulae for thenp part of the pairing Hamiltonian have been given for the spe
ial 
ases ofT = T0 and T = T0+1 and then the exa
t results have been 
ompared withthe Fo
k�Bogoliubov approximate treatment. The interplay between like-parti
les and neutron�proton isove
tor 
orrelations in the nu
lei near N = Zhas also been dis
ussed. However, one needs to develop the isospin brokenformula for T > T0 + 1 to draw general 
on
lusions. In another paper by



The Elementary Method in Pairing Energy : : : 1825Engel et al. [20℄ the symmetry SO(8) was employed to 
onsider not only theisove
tor but also the isos
alar part of the broken proton�neutron pairing
orrelations. The paper by Civitarese et al. [21℄ makes an attempt to provethat the isospin symmetri
 pairing Hamiltonian treated in the Bogolyubovtransformation fails to des
ribe the physi
al nu
lear states. Instead, onehas to 
onsider the broken pairing Hamiltonian and hen
e, on
e again thealgebrai
 formulae for nn, pp and np parts of pairing intera
tions are neededto draw a proper 
on
lusion. However, those formulae have been obtainedonly for spe
ial 
ases, whi
h either prevent from generalized 
on
lusions oreven lead to improper generalized 
on
lusions. The neutron�proton pairingintera
tion by means of the same model Hamiltonian as in the presentedpaper has been re
ently 
onsidered for some deformed nu
lei [28℄.It is justi�ed to make an attempt to obtain general algebrai
 forms forthe three parts of the broken in SUT (2) pairing Hamiltonian. The formulae
an 
onstitute the basis for the dis
ussion of the interplay between like-parti
les and np pairing intera
tions. For this purpose we have employed theelementary method in pairing intera
tions [22, 23℄, whi
h will be generalizedto obtain the T0 dependen
e of energy formulae.The next se
tion will present a short review of the elementary pairingmethod and then we will extend it to treat separately nn, pp and np pairing
orrelations, whi
h allows to introdu
e the non-equal strength fa
tors forthese intera
tions. The se
tion will also present general 
on
lusions aboutthe 
ompetition of these pairing parts. The last se
tion in
ludes examplesof algebrai
 pairing formulae.2. The elementary methodAt the beginning of this se
tion we will follow the presentation of themethod and notation given in [23℄. Let us assume a 
on�guration of nu
leonson the j-level with T = T0, for the neutrons � the higher part, and theprotons � the lower part of �gure 1.
Fig. 1. S
hemati
 
on�guration of neutrons (upper line) and protons (lower line)in the state j�t;nT = T0i.



1826 S. SzpikowskiThe numbers ni denote the numbers of the same four-state stru
tureswith di�erent m > 0. The physi
al quantum numbers are given by ni:Xi ni = 12(2j + 1) � 
 ;4n1 + 3n2 + 2n3 + n4 + 2n5 = n ;12n2 + n3 + 12n4 = T ;12n2 + 12n4 = t ;n2 + n4 + 2n5 = � (1)or n1 + 12n2 = n4 � �4 � T2 + t2 ;n3 = T � t ;n4 = 2t� n2 ;n5 = �2 � t ;n6 = 
 � T � �2 � n1 ; (2)where n is the nu
leon number, � � the seniority number, t � the redu
edisotopi
 spin (the isotopi
 spin of unpaired nu
leons). The stru
ture n5involves np pairs with the same m � hen
e it is a symmetri
 
on�gurationin a m-spa
e and in an isotopi
 spa
e it must be an antisymmetri
 one witha zero isospin 
ontribution. The symmetri
 in SUT (2) pairing Hamiltonian,Hpair, is 
onstru
ted in terms of the pair 
reation and annihilation operatorsfor nn, pp and np pairsHpair�G � H 0pair = Sn+Sn� + Sp+Sp� + 12Snp+ Snp� ; (3)where G is the strength of the pairing intera
tion.The elementary method is based on the following rule: the H 0pair annihi-lates a pair of nu
leons 
oupled to J = 0 and T = 1 and 
reates su
h a paireither in the same pla
e or in the other two-parti
le empty spa
e. The num-ber of annihilation�
reation a
tions is the pair energy in (�G) units. Thissimple rule 
an be 
omplemented with two additional remarks:(i) the number 12 in front of the np part of (3) is a square of the Clebs
h�Gordan 
oe�
ient of 
oupling a neutron�proton pair to a total two-parti
le T = 1. That fa
tor 12 must be put in front of the neutron�proton annihilation�
reation a
tions.



The Elementary Method in Pairing Energy : : : 1827(ii) If an annihilation�
reation a
tion 
hanges the stru
ture of the fourstate blo
ks in �gure 1, then an additional stru
ture fa
tor w1 mustbe put in front of nn or pp a
tions and the fa
tor w2 � in front of npa
tions.Appli
ation of these rules to the initial state in �gure 1 gives:En = n1(1 + w1n6) + n2(1 + w1n6) + n3(1 + n6) ; (4)Ep = n1(1 + n3 + w1n4 + w1n6) ; (5)Enp = 2 � 12n1(1 + w2n4 + 2w2n6) + 12n2(1 + n4 + 2w2n6) (6)and Epair = En +Ep +Enp = �n1 + 12n2� [3 + n4 + 2(w1 + w2)n6℄+ n3(1 + n1 + n6) + n1n4(w1 + w2 � 1) : (7)If we put w1 + w2 = 1 (8)and introdu
e (2) to (7), we getEpair = 14(n� �)�2
 + 3� n2 � �2�� 12T (T + 1) + 12 t(t+ 1) ; (9)whi
h is an exa
t formula for the symmetri
 SUT (2) pairing energy of thesystem with neutrons and protons [11℄.The Epair does not depend on the T0 be
ause of the SUT (2) symmetryand hen
e, in our starting state 
onstru
tion, �gure 1, we 
ould take any T0,in our 
ase T0 = T . However, the separate parts of Epair, namely En, Epand Enp are not the simultaneous eigenvalues of the respe
tive parts of theHpair (3) be
ause they have broken the SUT (2) symmetry. To interpret thesevalues (4)�(6) we should introdu
e the basis for irredu
ible representationsof the group SO(5) and then 
al
ulate the mean values of hS+S�i for threeparts of (3). The IR basis ve
tors readj(�1�2)nTT0�i ;where �1 = 12(
 � �) ; �2 = t (10)label the IR of SO(5) and the four other quantum numbers identify the stateswithin a given IR, � is the fourth non-physi
al quantum number without



1828 S. Szpikowskiany known physi
al operator atta
hed to this number. However, the mostpra
ti
al IR's in the physi
al appli
ation of the SO(5) do not need thisfourth quantum number. There are three 
lasses of su
h representations,namely (�; 0), ��; 12� and (�; �). Next the representation (�; 0) will betaken with seniority � = 0 and hen
e �1 = 12
 and �2 = 0. The ve
torbasis now reads j
;nTT0i. The matrix elements of the pair 
reation andpair annihilation operators were 
al
ulated in several old pairing papers.We take the formulae from [24℄ and then, the 
al
ulated three mean valueshS+S�i in the basis j
;nTT0i are 
ompared with three elementary pairingformulae (4)�(6) whi
h givesw1 = 2T + 22T + 3 ; w2 = 12T + 3 1: (11)At the same time we have 
he
ked a very surprising 
on
lusion (8) from ourelementary method. We need to remember that the formulae (11) are underthe assumptions T = T0 and � = t = 0. For this 
ase we get n2 = n4 =n5 = 0. Hen
e, the elementary, very handy, pairing formulae in the basisj
;nT = T0i readEn � hSn+Sn�i = n1(1 + w1n6) + n3(1 + n6) ; (12)Ep � hSp+Sp�i = n1(1 + n3 +w1n6) ; (13)Enp � 12hSnp+ Snp� i = n1(1 + 2w2n6) ; (14)where n1 = n4 � T2 ; n3 = T ; n6 = 
 � n4 � T2 (15)and !1, !2 are given by (11)Let us now 
onsider the 
ase with T0 6= T for the irredu
ible representa-tion (�; 0) with � = 0 and basis ve
tors j
;nTT0i. Now, for T0 6= T thereare, in our elementary 
onstru
tions, two fundamentally di�erent stru
tures,�gure 2 of the state j
;nTT0i: with
 = n1 + n2 + n3 + n4 ; 
 = n01 + n02 + n03 + n04 ;n = 4n1 + 2n2 + 2n3 ; n = 40n1 + 20n2 + 20n3 ;T = n2 + n3 ; T = n02 + n03 ;T0 = n2 > 0 ; T0 = n02 � n03 > 0 : (16)1 In two examples (20; 22) of the paper [23℄ there is a numeri
al error in w1 and w2.A

ording to the present results (15) the stru
ture fa
tors w1 and w2 should be, inboth examples, 23 and 13 be
ause in both 
ases T = 0.
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Fig. 2. Two di�erent fundamental s
hemati
 
on�gurations for the state j
 nTT0iwith � = t = 0.Comparing the same 
, n, T and T0 for both 
onstru
tions we getn01 = n1 ; n02 = n2 + n32 ; n03 = n32 ; n04 = n4 : (17)Let us write down, using the elementary method, the energies (mean values)of the three parts of Hpair, En, Ep and Enp. We getI (En)I = n1 + n2(1 + n4) + w1n1n4 ;(Ep)I = n1(1 + n2) + w1n1n4 ;(Enp)I = n1(1 + n3) + n3(1 + n4) + 2w2n1n2 (18)II (En)II = n01(1 + n03) + n02(1 + n04) + w1n01n04 ;= n1 �1 + n32 �+ �n2 + n32 � (1 + n4) +w1n1n4 (19)and similarly(Ep)II = n1 �1 + n2 + n32 �+ n32 (1 + n4) + w1n1n4 ;(Enp)II = n1 + 2w2n1n4 :Due to the elementary method pro
edure, these two stru
tures, I and II, arein
luded in the mean value 
al
ulation as a linear 
ombination(En)exa
t = hSn+Sn�i = u1(En)I + u2(En)II (20)and similarly for hSp+Sp�i; 12hSnp+ Snp� i, where u1 and u2 are the new stru
tureparameters. The numbers of four-state blo
ks, n1 and n4, are the same forboth stru
tures and hen
e, to �x u1 and u2 we 
an put n1 = n4 = 0I IIEn = n2 En = n2 + n32Ep = 0 Ep = n32Enp = n3 Enp = 0 (21)
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e, by (20) and (21), we gethSn+Sn�i � (En)exa
t = u1n2 + u2 �n2 + n32 � ;hSp+Sp�i � (Ep)exa
t = u2n32 ;12 hSnp+ Snp� i � (Enp)exa
t = u1n3 : (22)From (22) we getu1 = 12 hSnp+ Snp� in3 ; u2 = 2hSp+Sp�in3 : (23)Cal
ulating from [24℄ exa
t values hSnp+ Snp� i and hSp+Sp�i for the IR (�; 0)we getu1 = 2n2 + n32n2 + 2n3 � 1 = T + T02T � 1 ; u2 = n3 � 12n2 + 2n3 � 1 = T � T0 � 12T � 1(24)with the relation u1 + u2 = 1 : (25)From the relations (20), (18), (19), (24) and (25) we getw1 = hSn+Sn�i � n1 � n2(1 + n4)� u2n32 (1 + n1 + n4)n1n4 : (26)Cal
ulating, on
e again, the exa
t value hSn+Sn�i from [24℄ and for the statej
 nTT0i we obtain w1 = 2T 2 + 2T + 2T 20 � 2(2T � 1)(2T + 3)and w2 = 1� w1 = 2T 2 + 2T � 2T 20 � 1(2T � 1)(2T + 3) : (27)The same, of 
ourse, values for w1 and w2 we 
ould obtain taking hSp+Sp�ior hSnp+ Snp� i instead of the hSn+Sn�i.In the spe
ial 
ase of T = T0 we obtain the formulae (11) from (27).Now, instead of formulae (12)�(14) for the spe
ial 
ase T = T0, we getfor any T0 the general and very handy forms for the mean values:En � hSn+Sn�i = n1 +w1n1n4 + n2(1 + n4) + u2n32 (1 + n1 + n4) ;Ep � hSp+Sp�i = n1(1 + n2) +w1n1n4 + u2 � n32 (1 + n1 + n4) ;Enp � 12 hSnp+ Snp� i = n1 + 2w2n1n4 + u1n3(1 + n1 + n4) ; (28)



The Elementary Method in Pairing Energy : : : 1831where, from (16)n1 = n4 � T2 ; n2 = T0 ; n3 = T � T0 ; n4 = 
 � n4 � T2 (29)andu1 = T + T02T � 1 ; u2 = 1� u1 = T � T0 � 12T � 1 ;w1 = 2T 2 + 2T + 2T 20 � 2(2T � 1)(2T + 3) ; w2 = 1� w1 = 2T 2 + 2T � 2T 20 � 1(2T � 1)(2T + 3) : (30)We 
an 
he
k the above formulae taking into a

ount the sumhSn+Sn�i+ hSp+Sp�i+ 12 hSnp+ Snp� i= n1(3 + n2 + n3 + 2n4) + (n2 + n3)(1 + n4)= n4 �2
 + 3� n2�� T2 (T + 1) = Epair (31)whi
h is the exa
t pairing formula (9) for � = t = 0.Now we are in position to 
onsider analyti
ally the neutron�proton pair-ing intera
tion and its 
ompetition with nn and pp 
orrelations.3. Appli
ationsProblem No. 1Let us 
onsider the T0 dependen
e of the pairing formulae (28)�(30).After the proper rearrangement we get the followingEp = aT 20 + b T0 + 
 ;En = aT 20 � b T0 + 
 ;Enp = �2aT 20 � 2
+Epair ; (32)where a = 4n1n4 + (1 + n1 + n4)(2T + 3)2(2T � 1)(2T + 3) ;b = n1 � n4 � 12 ;
 = n1 + (1 + n1 + n4) T (T � 1)2(2T � 1) + 2n1n4 T 2 + T � 1(2T � 1)(2T + 3) (33)and Epair is the pairing energy (31).
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Fig. 3. Mean values of hS+S�i for pp, nn and np pairing parts of Hpair in the statej
nTT0i versus T0; T = 21.Figure 3 shows an example of the T0 dependen
e for the state j
nTT0iwith n = 50 
 = 28; T = 21 and then n1 = 2; n4 = 5. From (33) we geta = 1:084; b = �2; 
 = 47:539 and Epair = 194.For T0 < 0 we simply 
hange Ep! En.Two interesting 
on
lusions 
an be drown from �gure 3:(i) The En(Ep) rea
hes the minimum value and that minimum is forthe same jT0j. One would rather expe
t 
onstantly in
reasing valuesEn(Ep).(ii) The Enp takes on more or less the same value as the sum En +Ep forT0 around zero, in our 
ase �3 � T0 � 3. It means that in this regionof the T0 the neutron�proton pairing is of the greatest importan
e.T = 21 has been 
hosen quite arbitrarily. For other T values the �T0(around T0 = 0), for whi
h the 
ontribution of n� p pairing is larger thanthe sum of n� n and p� p, 
an be only 
hanged.Problem No. 2Let us 
onsider the following problem [19℄: let us assume adding to theinitial state of a nu
leus j
nT = 0i with the mean energies (E1)nn, (E1)ppand (E1)np a pair of neutrons keeping the same � = 0. What is the 
hangein the mean energies E2�E1E1 � �EE1 ? The answer, following the formulae(28)�(30), is rather unexpe
ted, namely:



The Elementary Method in Pairing Energy : : : 1833for protons: ��EE1 �pp = +0:20for np: ��EE1 �np = �0:40for any 
 and any n! Nobody would expe
t that adding two neutrons willin
rease the proton 
orrelations (�proton pairs�) by 20%. The de
rease ofthe neutron�proton 
orrelation is obvious but the 
onstant value of 40% forsu
h de
rease is also unexpe
ted. The more 
ompli
ated, but also rathernon-expe
ted answer is for the neutron 
orrelations. We get��EE1 �nn = 4n
 � n2 � 54n+ 120
20n
 � 5n2 + 30n : (34)Now the answer depends on the mutual interplay of n and 
:1Æ If we �x 
(2; 3; : : :) then the fun
tion (34) lowers beginning with17
�2910
+5 (for nmin = 4) and ending with 5�2
5�5
 (for nmax = 4
 � 4).2Æ If we �x n(4; 8; 12; : : :) then the fun
tion (34) rises from the initialvalue 12�2n5n for 
min = n4 +1 to its asymptoti
 value n+305n for 
 !1.Let us illustrate the results by two examples: for 
 = 10 in the �rst (Fig. 4),and for n = 20 in the se
ond example (Fig. 5).In the �rst example, for 
 = 10 with a low initial value of nu
leons, theadded two neutrons in
rease the En by 134% while for the highest numberof nu
leons, En even de
reases by 33%. In the se
ond example, for n = 20,for a low value of 
 the En de
reases by 28% while for the asymptoti
 
ase
 ! 1 it in
reases by 50%. Boundary limits of the (�E=E1)n for any nand 
 are from 170% to �40%. This statement is in 
ontradi
tion to the
on
lusion of Engel et al. [19℄.Problem No. 3Let us 
onsider even isotopes of a given element with � = 0 starting witha nu
leus of N = Z, T = 0 and with n0 nu
leons above the magi
 shell.The other isotopes have n = n0 + 2T parti
les, where T = 1; 2; 3; : : : andobviously T0 = T .
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Fig. 4. Change in the neutron 
orrelations measured by �EE after a pair of neutronsis added, versus n; 
 = 10 is �xed.

Fig. 5. The same as in �gure 4 but versus 
, n=20 is �xed



The Elementary Method in Pairing Energy : : : 1835Taking into a

ount our formulae (11)�(15) for T0 = T , we get for iso-topes under 
onsideration:En = n04 + 2T + 22T + 3 � k + T �1 +
 � n04 � T� ;Ep = n04 + 2T + 22T + 3 � k + n04 � T ;Enp = n04 + 22T + 3 � k ; (35)where k = n04 �
 � n04 � T �.We take, as an example, the 24Cr isotopes with A = 48�56. Assumingthat the valen
e nu
leons are on the degenerated (pf) shell we put in theformulae (35) n0 = 8 and 
 = 10. Figure 6 represents the 
hara
teristi
 de-penden
e of the neutron, proton and neutron�proton 
orrelations measuredby the mean values En, Ep and Enp.For example, for the isotope 24Cr56 for T = T0 = 4 the pair 
ontributionin Epair is 58.5%; 34.5% and 7% for nn; pp and np 
orrelations, respe
tively.We should not 
onfuse this 
on
lusion with that in Fig. 3. Here we 
om-pare the np pair 
ontribution for a given nu
leus with T = T0 while in Fig. 3we take for 
omparison the nu
lei with the same T but with di�erent T0.

Fig. 6. Neutron, proton, and neutron�proton 
orrelations measured by the meanvalues En, Ep and Enp for Cr isotopes with T = T0.



1836 S. SzpikowskiProblem No. 4 � the 
ongruen
e energyThe so-
alled �Wigner term� or �
ongruen
e energy� in the nu
lear massformula [25, 26℄ depends on I = (N � Z)=A and is represented by the semi-empiri
al formula C(I) = �C0 exp(�W jIj=C0) ; (36)where C0 = 10 MeV and W = 42 MeV. The mi
ros
opi
 basis for this term
omes, as it was suggested [27℄, from the neutron�proton pairing ex
ept ofthe 
onstant term of a di�erent origin.We will 
ompare next, just like in the paper [21℄, the shape of our Enpformula with the 
ongruen
e energy for the isove
tor pairing only (36). Forthis purpose we will 
onsider isotopes of a given element with T = jT0j.Hen
e, we adopt the formulae (11), (14), (15) whi
h givesEnp = �Gnp(A)n1(1 + 2w2n6)= �Gnp(A)�n� 2T4 + n� 2T4 � 22T + 3 � 4
 � n� 2T4 � ; (37)where n is, as before, the number of valen
e nu
leons and Gnp(A) is thestrength of the neutron�proton pairing intera
tion, whi
h we assume to beA dependent in the form [21℄Gnp = 1:25 16A + 56 : (38)

Fig. 7. Comparison of the 
ongruen
e energy and the mean value Enp for Geisotopes with T = jT0j.We have taken, for 
omparison, the isotopes of Ge with A from 58 to 70.In �gure 7 we 
ompare two formulae (36) and (37) shifting the 
ongruen
eenergy by 5.81 MeV. It means, that in our 
omparison the stress is put on the(N � Z)=A dependen
e of both formulae but not on their absolute values.



The Elementary Method in Pairing Energy : : : 1837It is interesting to note that the 
on
lusion from �gure 7, besides the sim-ilar dependen
e of both 
urves is di�erent from that of the paper [21℄, wherethe np pairing 
ontribution de
reases faster than the 
ongruen
e energy. Wehave to explain that the np pairing 
ontribution has been di�erently 
al
u-lated. In the paper [21℄ it is the eigenvalue of the np pairing part in the stateof broken T -symmetry while our formula presents the mean value hSnp+ Snp� iin the state of a given T = T0.4. Con
lusionsThe main part of this presentation is the extended elementary methodin the pairing intera
tion to involve the T0 dependen
e for the non diago-nal terms S+S� and to 
al
ulate the mean values of those terms hSn+Sn�i;hSp+Sp�i; hSnp+ Snp� i in the state of the 
onsidered irredu
ible representationof the orthogonal group SO(5). The algebrai
, very handy formulae 
an beand have been, used for analyti
al solution of di�erent physi
al problems.Among those problems we have dis
ussed:(i) the T0 dependen
e,(ii) the 
hange in the pairing 
ontributions following the in
rease in thenumber of neutrons by a neutron pair of T = 1,(iii) the 
hange in the pairing 
ontributions in a set of even isotopes,(iv) the possible mi
ros
opi
al origin of the 
ongruen
e energy.We have 
lari�ed and generalized several answers to the re
ently dis
ussedproblems stated above.Although the presented results are based on a simple model, their nu-meri
al part are exa
t. Hen
e, for the nu
lei with the shell model stru
turesimilar to the 
onsidered nu
lei in the paper, the pairing 
ontribution is, atleast, of the same qualitative value even in the presen
e of a more realisti
two-body intera
tion.The last version of the paper has been prepared during the stay in theMax Plan
k Institute für Kernphysik in Heidelberg. The author is verygrateful to professors David Brink and Renzo Leonardi from ECT in Trentoand to professor Hans Weidenmüller from Max Plan
k Institute in Heidel-berg for the invitations, and also to ECT and Max Plan
k Institute for�nan
ial support.
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