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THE ELEMENTARY METHOD IN PAIRING ENERGYIII. NEUTRON�PROTON VERSUS LIKE-NUCLEONCORRELATIONS�S. SzpikowskiInstitute of Physis, M. Curie-Skªodowska UniversityRadziszewskiego 10, 20-031 Lublin, Polandand ECT Villa Tambosi, Strada delle Tabarelle 28638050 Vilazzano (Trento) Italy(Reeived June 9, 2000)The neutron�proton pairing orrelations have been analysed in om-parison with like-nuleon orrelations by means of the elementary methodbased on the group theory treatment. Analytial formulae allow to omparethe ontribution of the neutron�proton interation only, whih is in severalases the main ingredient of the total pairing interation. The obtainedformulae have also been applied to the binding energy (the ongrueneenergy).PACS numbers: 21.60.Cs 1. IntrodutionPairing interations as a model short-range residual interation havea very long history. Raah [1℄ gave an exat formula for the eletron pair-ing energy in the degenerated (one level) ase in the L�S oupling sheme.Raah was also the �rst who introdued the quantum seniority number asthe number of non-paired partiles. The so-alled seniority sheme in L�Soupling was generalized by Flowers [2℄ as well as Edmonds and Flowers [3℄for a nulear j�j oupling with the similar notion of the seniority quantumnumber. The problem was onsidered with the help of orthogonal, in L�S oupling, and sympleti, in j�j oupling, groups of dimensions 2l + 1or 2j + 1 depending on the spae of a onsidered energy level. That was,however, the limitation of a pratial use of the group theory, beause everyshell was onneted with a di�erent dimension group, whih did not allow fortreatment of more than one energy level. Sine 1958 the situation has been� Parts I and II are given in [23,24℄. (1823)



1824 S. Szpikowskiimproved by the BCS theory of an approximate treatment of the pairinginteration in the solid state physis [4℄. The BCS theory was soon appliedto nulear physis by Mottelson [5℄ and Belaev [6℄. The BCS theory, at thattime, was applied only for treatment of like-partiles. Further progress wasmade, when the so-alled quasi-spin method was introdued. Wada, Takanoand Fokuda [7℄ were the �rst who oserved simple and losed ommutationrelations of the seond order reation and annihilation operators whih werereognised as harateristi relations of the Lie algebra for the spin SU(2)group and ontributed to the name of the quasi-spin method. The symme-try quasi-spin groups were found to be omplementary to the known unitarygroups of Raah and Flowers. The most important feature of the quasi-spinsymmetry was provided by the same dimension symmetry groups for anyl- and j-levels whih allowed for an exat group theory treatment of manylevel problem. In suh a way the quasi-spin method was used as a probe ofthe BCS approximation.Kerman [8℄ and Kerman, Lawson and Ma Farlane [9℄ applied the quasi-spin method for any set of like-nuleon energy levels. Almost at the sametime (1961) Helmers [10℄ pointed out that the bilinear produts of protonand neutron reation and annihilation operators generate transformations ofthe orthogonal group SO(5) (or Sp(4)) for the j�j oupling sheme. Laterseveral authors from di�erent nulear enters almost simultaneously but in-dependently developed the quasi-spin method for both: j�j oupling withthe symmetry SO(5), and L�S oupling, with the symmetry SO(8) [11�18℄.Sine 1964 there have appeared hundreds of papers devoted to the quasi-spinmethod not only in the nuleon pairing orrelations but also in quarks andinterating bosons.Although the quasi-spin method allowed for aurate treatment of nn,pp and np pairing orrelations on the same footing, the neutron�protonpart had been for a long time negleted beause of a great di�erene in theenergy between the proton and neutron single partile shells of heavy nulei.Reently, the np orrelations have again attrated attention for light as wellas heavy nulei with N � Z, where neutrons and protons are plaed onthe same single-partile energy level. The attention has been paid to theformer papers from the sixties, where the aurate solution of the pairinginteration was obtained with the help of the orthogonal groups SO(5) andSO(8). For example, in the paper by Engel et al. [19℄ the formulae for thenp part of the pairing Hamiltonian have been given for the speial ases ofT = T0 and T = T0+1 and then the exat results have been ompared withthe Fok�Bogoliubov approximate treatment. The interplay between like-partiles and neutron�proton isovetor orrelations in the nulei near N = Zhas also been disussed. However, one needs to develop the isospin brokenformula for T > T0 + 1 to draw general onlusions. In another paper by



The Elementary Method in Pairing Energy : : : 1825Engel et al. [20℄ the symmetry SO(8) was employed to onsider not only theisovetor but also the isosalar part of the broken proton�neutron pairingorrelations. The paper by Civitarese et al. [21℄ makes an attempt to provethat the isospin symmetri pairing Hamiltonian treated in the Bogolyubovtransformation fails to desribe the physial nulear states. Instead, onehas to onsider the broken pairing Hamiltonian and hene, one again thealgebrai formulae for nn, pp and np parts of pairing interations are neededto draw a proper onlusion. However, those formulae have been obtainedonly for speial ases, whih either prevent from generalized onlusions oreven lead to improper generalized onlusions. The neutron�proton pairinginteration by means of the same model Hamiltonian as in the presentedpaper has been reently onsidered for some deformed nulei [28℄.It is justi�ed to make an attempt to obtain general algebrai forms forthe three parts of the broken in SUT (2) pairing Hamiltonian. The formulaean onstitute the basis for the disussion of the interplay between like-partiles and np pairing interations. For this purpose we have employed theelementary method in pairing interations [22, 23℄, whih will be generalizedto obtain the T0 dependene of energy formulae.The next setion will present a short review of the elementary pairingmethod and then we will extend it to treat separately nn, pp and np pairingorrelations, whih allows to introdue the non-equal strength fators forthese interations. The setion will also present general onlusions aboutthe ompetition of these pairing parts. The last setion inludes examplesof algebrai pairing formulae.2. The elementary methodAt the beginning of this setion we will follow the presentation of themethod and notation given in [23℄. Let us assume a on�guration of nuleonson the j-level with T = T0, for the neutrons � the higher part, and theprotons � the lower part of �gure 1.
Fig. 1. Shemati on�guration of neutrons (upper line) and protons (lower line)in the state j�t;nT = T0i.



1826 S. SzpikowskiThe numbers ni denote the numbers of the same four-state strutureswith di�erent m > 0. The physial quantum numbers are given by ni:Xi ni = 12(2j + 1) � 
 ;4n1 + 3n2 + 2n3 + n4 + 2n5 = n ;12n2 + n3 + 12n4 = T ;12n2 + 12n4 = t ;n2 + n4 + 2n5 = � (1)or n1 + 12n2 = n4 � �4 � T2 + t2 ;n3 = T � t ;n4 = 2t� n2 ;n5 = �2 � t ;n6 = 
 � T � �2 � n1 ; (2)where n is the nuleon number, � � the seniority number, t � the reduedisotopi spin (the isotopi spin of unpaired nuleons). The struture n5involves np pairs with the same m � hene it is a symmetri on�gurationin a m-spae and in an isotopi spae it must be an antisymmetri one witha zero isospin ontribution. The symmetri in SUT (2) pairing Hamiltonian,Hpair, is onstruted in terms of the pair reation and annihilation operatorsfor nn, pp and np pairsHpair�G � H 0pair = Sn+Sn� + Sp+Sp� + 12Snp+ Snp� ; (3)where G is the strength of the pairing interation.The elementary method is based on the following rule: the H 0pair annihi-lates a pair of nuleons oupled to J = 0 and T = 1 and reates suh a paireither in the same plae or in the other two-partile empty spae. The num-ber of annihilation�reation ations is the pair energy in (�G) units. Thissimple rule an be omplemented with two additional remarks:(i) the number 12 in front of the np part of (3) is a square of the Clebsh�Gordan oe�ient of oupling a neutron�proton pair to a total two-partile T = 1. That fator 12 must be put in front of the neutron�proton annihilation�reation ations.



The Elementary Method in Pairing Energy : : : 1827(ii) If an annihilation�reation ation hanges the struture of the fourstate bloks in �gure 1, then an additional struture fator w1 mustbe put in front of nn or pp ations and the fator w2 � in front of npations.Appliation of these rules to the initial state in �gure 1 gives:En = n1(1 + w1n6) + n2(1 + w1n6) + n3(1 + n6) ; (4)Ep = n1(1 + n3 + w1n4 + w1n6) ; (5)Enp = 2 � 12n1(1 + w2n4 + 2w2n6) + 12n2(1 + n4 + 2w2n6) (6)and Epair = En +Ep +Enp = �n1 + 12n2� [3 + n4 + 2(w1 + w2)n6℄+ n3(1 + n1 + n6) + n1n4(w1 + w2 � 1) : (7)If we put w1 + w2 = 1 (8)and introdue (2) to (7), we getEpair = 14(n� �)�2
 + 3� n2 � �2�� 12T (T + 1) + 12 t(t+ 1) ; (9)whih is an exat formula for the symmetri SUT (2) pairing energy of thesystem with neutrons and protons [11℄.The Epair does not depend on the T0 beause of the SUT (2) symmetryand hene, in our starting state onstrution, �gure 1, we ould take any T0,in our ase T0 = T . However, the separate parts of Epair, namely En, Epand Enp are not the simultaneous eigenvalues of the respetive parts of theHpair (3) beause they have broken the SUT (2) symmetry. To interpret thesevalues (4)�(6) we should introdue the basis for irreduible representationsof the group SO(5) and then alulate the mean values of hS+S�i for threeparts of (3). The IR basis vetors readj(�1�2)nTT0�i ;where �1 = 12(
 � �) ; �2 = t (10)label the IR of SO(5) and the four other quantum numbers identify the stateswithin a given IR, � is the fourth non-physial quantum number without



1828 S. Szpikowskiany known physial operator attahed to this number. However, the mostpratial IR's in the physial appliation of the SO(5) do not need thisfourth quantum number. There are three lasses of suh representations,namely (�; 0), ��; 12� and (�; �). Next the representation (�; 0) will betaken with seniority � = 0 and hene �1 = 12
 and �2 = 0. The vetorbasis now reads j
;nTT0i. The matrix elements of the pair reation andpair annihilation operators were alulated in several old pairing papers.We take the formulae from [24℄ and then, the alulated three mean valueshS+S�i in the basis j
;nTT0i are ompared with three elementary pairingformulae (4)�(6) whih givesw1 = 2T + 22T + 3 ; w2 = 12T + 3 1: (11)At the same time we have heked a very surprising onlusion (8) from ourelementary method. We need to remember that the formulae (11) are underthe assumptions T = T0 and � = t = 0. For this ase we get n2 = n4 =n5 = 0. Hene, the elementary, very handy, pairing formulae in the basisj
;nT = T0i readEn � hSn+Sn�i = n1(1 + w1n6) + n3(1 + n6) ; (12)Ep � hSp+Sp�i = n1(1 + n3 +w1n6) ; (13)Enp � 12hSnp+ Snp� i = n1(1 + 2w2n6) ; (14)where n1 = n4 � T2 ; n3 = T ; n6 = 
 � n4 � T2 (15)and !1, !2 are given by (11)Let us now onsider the ase with T0 6= T for the irreduible representa-tion (�; 0) with � = 0 and basis vetors j
;nTT0i. Now, for T0 6= T thereare, in our elementary onstrutions, two fundamentally di�erent strutures,�gure 2 of the state j
;nTT0i: with
 = n1 + n2 + n3 + n4 ; 
 = n01 + n02 + n03 + n04 ;n = 4n1 + 2n2 + 2n3 ; n = 40n1 + 20n2 + 20n3 ;T = n2 + n3 ; T = n02 + n03 ;T0 = n2 > 0 ; T0 = n02 � n03 > 0 : (16)1 In two examples (20; 22) of the paper [23℄ there is a numerial error in w1 and w2.Aording to the present results (15) the struture fators w1 and w2 should be, inboth examples, 23 and 13 beause in both ases T = 0.



The Elementary Method in Pairing Energy : : : 1829
Fig. 2. Two di�erent fundamental shemati on�gurations for the state j
 nTT0iwith � = t = 0.Comparing the same 
, n, T and T0 for both onstrutions we getn01 = n1 ; n02 = n2 + n32 ; n03 = n32 ; n04 = n4 : (17)Let us write down, using the elementary method, the energies (mean values)of the three parts of Hpair, En, Ep and Enp. We getI (En)I = n1 + n2(1 + n4) + w1n1n4 ;(Ep)I = n1(1 + n2) + w1n1n4 ;(Enp)I = n1(1 + n3) + n3(1 + n4) + 2w2n1n2 (18)II (En)II = n01(1 + n03) + n02(1 + n04) + w1n01n04 ;= n1 �1 + n32 �+ �n2 + n32 � (1 + n4) +w1n1n4 (19)and similarly(Ep)II = n1 �1 + n2 + n32 �+ n32 (1 + n4) + w1n1n4 ;(Enp)II = n1 + 2w2n1n4 :Due to the elementary method proedure, these two strutures, I and II, areinluded in the mean value alulation as a linear ombination(En)exat = hSn+Sn�i = u1(En)I + u2(En)II (20)and similarly for hSp+Sp�i; 12hSnp+ Snp� i, where u1 and u2 are the new strutureparameters. The numbers of four-state bloks, n1 and n4, are the same forboth strutures and hene, to �x u1 and u2 we an put n1 = n4 = 0I IIEn = n2 En = n2 + n32Ep = 0 Ep = n32Enp = n3 Enp = 0 (21)



1830 S. SzpikowskiHene, by (20) and (21), we gethSn+Sn�i � (En)exat = u1n2 + u2 �n2 + n32 � ;hSp+Sp�i � (Ep)exat = u2n32 ;12 hSnp+ Snp� i � (Enp)exat = u1n3 : (22)From (22) we getu1 = 12 hSnp+ Snp� in3 ; u2 = 2hSp+Sp�in3 : (23)Calulating from [24℄ exat values hSnp+ Snp� i and hSp+Sp�i for the IR (�; 0)we getu1 = 2n2 + n32n2 + 2n3 � 1 = T + T02T � 1 ; u2 = n3 � 12n2 + 2n3 � 1 = T � T0 � 12T � 1(24)with the relation u1 + u2 = 1 : (25)From the relations (20), (18), (19), (24) and (25) we getw1 = hSn+Sn�i � n1 � n2(1 + n4)� u2n32 (1 + n1 + n4)n1n4 : (26)Calulating, one again, the exat value hSn+Sn�i from [24℄ and for the statej
 nTT0i we obtain w1 = 2T 2 + 2T + 2T 20 � 2(2T � 1)(2T + 3)and w2 = 1� w1 = 2T 2 + 2T � 2T 20 � 1(2T � 1)(2T + 3) : (27)The same, of ourse, values for w1 and w2 we ould obtain taking hSp+Sp�ior hSnp+ Snp� i instead of the hSn+Sn�i.In the speial ase of T = T0 we obtain the formulae (11) from (27).Now, instead of formulae (12)�(14) for the speial ase T = T0, we getfor any T0 the general and very handy forms for the mean values:En � hSn+Sn�i = n1 +w1n1n4 + n2(1 + n4) + u2n32 (1 + n1 + n4) ;Ep � hSp+Sp�i = n1(1 + n2) +w1n1n4 + u2 � n32 (1 + n1 + n4) ;Enp � 12 hSnp+ Snp� i = n1 + 2w2n1n4 + u1n3(1 + n1 + n4) ; (28)



The Elementary Method in Pairing Energy : : : 1831where, from (16)n1 = n4 � T2 ; n2 = T0 ; n3 = T � T0 ; n4 = 
 � n4 � T2 (29)andu1 = T + T02T � 1 ; u2 = 1� u1 = T � T0 � 12T � 1 ;w1 = 2T 2 + 2T + 2T 20 � 2(2T � 1)(2T + 3) ; w2 = 1� w1 = 2T 2 + 2T � 2T 20 � 1(2T � 1)(2T + 3) : (30)We an hek the above formulae taking into aount the sumhSn+Sn�i+ hSp+Sp�i+ 12 hSnp+ Snp� i= n1(3 + n2 + n3 + 2n4) + (n2 + n3)(1 + n4)= n4 �2
 + 3� n2�� T2 (T + 1) = Epair (31)whih is the exat pairing formula (9) for � = t = 0.Now we are in position to onsider analytially the neutron�proton pair-ing interation and its ompetition with nn and pp orrelations.3. AppliationsProblem No. 1Let us onsider the T0 dependene of the pairing formulae (28)�(30).After the proper rearrangement we get the followingEp = aT 20 + b T0 +  ;En = aT 20 � b T0 +  ;Enp = �2aT 20 � 2+Epair ; (32)where a = 4n1n4 + (1 + n1 + n4)(2T + 3)2(2T � 1)(2T + 3) ;b = n1 � n4 � 12 ; = n1 + (1 + n1 + n4) T (T � 1)2(2T � 1) + 2n1n4 T 2 + T � 1(2T � 1)(2T + 3) (33)and Epair is the pairing energy (31).



1832 S. Szpikowski

Fig. 3. Mean values of hS+S�i for pp, nn and np pairing parts of Hpair in the statej
nTT0i versus T0; T = 21.Figure 3 shows an example of the T0 dependene for the state j
nTT0iwith n = 50 
 = 28; T = 21 and then n1 = 2; n4 = 5. From (33) we geta = 1:084; b = �2;  = 47:539 and Epair = 194.For T0 < 0 we simply hange Ep! En.Two interesting onlusions an be drown from �gure 3:(i) The En(Ep) reahes the minimum value and that minimum is forthe same jT0j. One would rather expet onstantly inreasing valuesEn(Ep).(ii) The Enp takes on more or less the same value as the sum En +Ep forT0 around zero, in our ase �3 � T0 � 3. It means that in this regionof the T0 the neutron�proton pairing is of the greatest importane.T = 21 has been hosen quite arbitrarily. For other T values the �T0(around T0 = 0), for whih the ontribution of n� p pairing is larger thanthe sum of n� n and p� p, an be only hanged.Problem No. 2Let us onsider the following problem [19℄: let us assume adding to theinitial state of a nuleus j
nT = 0i with the mean energies (E1)nn, (E1)ppand (E1)np a pair of neutrons keeping the same � = 0. What is the hangein the mean energies E2�E1E1 � �EE1 ? The answer, following the formulae(28)�(30), is rather unexpeted, namely:



The Elementary Method in Pairing Energy : : : 1833for protons: ��EE1 �pp = +0:20for np: ��EE1 �np = �0:40for any 
 and any n! Nobody would expet that adding two neutrons willinrease the proton orrelations (�proton pairs�) by 20%. The derease ofthe neutron�proton orrelation is obvious but the onstant value of 40% forsuh derease is also unexpeted. The more ompliated, but also rathernon-expeted answer is for the neutron orrelations. We get��EE1 �nn = 4n
 � n2 � 54n+ 120
20n
 � 5n2 + 30n : (34)Now the answer depends on the mutual interplay of n and 
:1Æ If we �x 
(2; 3; : : :) then the funtion (34) lowers beginning with17
�2910
+5 (for nmin = 4) and ending with 5�2
5�5
 (for nmax = 4
 � 4).2Æ If we �x n(4; 8; 12; : : :) then the funtion (34) rises from the initialvalue 12�2n5n for 
min = n4 +1 to its asymptoti value n+305n for 
 !1.Let us illustrate the results by two examples: for 
 = 10 in the �rst (Fig. 4),and for n = 20 in the seond example (Fig. 5).In the �rst example, for 
 = 10 with a low initial value of nuleons, theadded two neutrons inrease the En by 134% while for the highest numberof nuleons, En even dereases by 33%. In the seond example, for n = 20,for a low value of 
 the En dereases by 28% while for the asymptoti ase
 ! 1 it inreases by 50%. Boundary limits of the (�E=E1)n for any nand 
 are from 170% to �40%. This statement is in ontradition to theonlusion of Engel et al. [19℄.Problem No. 3Let us onsider even isotopes of a given element with � = 0 starting witha nuleus of N = Z, T = 0 and with n0 nuleons above the magi shell.The other isotopes have n = n0 + 2T partiles, where T = 1; 2; 3; : : : andobviously T0 = T .



1834 S. Szpikowski

Fig. 4. Change in the neutron orrelations measured by �EE after a pair of neutronsis added, versus n; 
 = 10 is �xed.

Fig. 5. The same as in �gure 4 but versus 
, n=20 is �xed



The Elementary Method in Pairing Energy : : : 1835Taking into aount our formulae (11)�(15) for T0 = T , we get for iso-topes under onsideration:En = n04 + 2T + 22T + 3 � k + T �1 +
 � n04 � T� ;Ep = n04 + 2T + 22T + 3 � k + n04 � T ;Enp = n04 + 22T + 3 � k ; (35)where k = n04 �
 � n04 � T �.We take, as an example, the 24Cr isotopes with A = 48�56. Assumingthat the valene nuleons are on the degenerated (pf) shell we put in theformulae (35) n0 = 8 and 
 = 10. Figure 6 represents the harateristi de-pendene of the neutron, proton and neutron�proton orrelations measuredby the mean values En, Ep and Enp.For example, for the isotope 24Cr56 for T = T0 = 4 the pair ontributionin Epair is 58.5%; 34.5% and 7% for nn; pp and np orrelations, respetively.We should not onfuse this onlusion with that in Fig. 3. Here we om-pare the np pair ontribution for a given nuleus with T = T0 while in Fig. 3we take for omparison the nulei with the same T but with di�erent T0.

Fig. 6. Neutron, proton, and neutron�proton orrelations measured by the meanvalues En, Ep and Enp for Cr isotopes with T = T0.



1836 S. SzpikowskiProblem No. 4 � the ongruene energyThe so-alled �Wigner term� or �ongruene energy� in the nulear massformula [25, 26℄ depends on I = (N � Z)=A and is represented by the semi-empirial formula C(I) = �C0 exp(�W jIj=C0) ; (36)where C0 = 10 MeV and W = 42 MeV. The mirosopi basis for this termomes, as it was suggested [27℄, from the neutron�proton pairing exept ofthe onstant term of a di�erent origin.We will ompare next, just like in the paper [21℄, the shape of our Enpformula with the ongruene energy for the isovetor pairing only (36). Forthis purpose we will onsider isotopes of a given element with T = jT0j.Hene, we adopt the formulae (11), (14), (15) whih givesEnp = �Gnp(A)n1(1 + 2w2n6)= �Gnp(A)�n� 2T4 + n� 2T4 � 22T + 3 � 4
 � n� 2T4 � ; (37)where n is, as before, the number of valene nuleons and Gnp(A) is thestrength of the neutron�proton pairing interation, whih we assume to beA dependent in the form [21℄Gnp = 1:25 16A + 56 : (38)

Fig. 7. Comparison of the ongruene energy and the mean value Enp for Geisotopes with T = jT0j.We have taken, for omparison, the isotopes of Ge with A from 58 to 70.In �gure 7 we ompare two formulae (36) and (37) shifting the ongrueneenergy by 5.81 MeV. It means, that in our omparison the stress is put on the(N � Z)=A dependene of both formulae but not on their absolute values.



The Elementary Method in Pairing Energy : : : 1837It is interesting to note that the onlusion from �gure 7, besides the sim-ilar dependene of both urves is di�erent from that of the paper [21℄, wherethe np pairing ontribution dereases faster than the ongruene energy. Wehave to explain that the np pairing ontribution has been di�erently alu-lated. In the paper [21℄ it is the eigenvalue of the np pairing part in the stateof broken T -symmetry while our formula presents the mean value hSnp+ Snp� iin the state of a given T = T0.4. ConlusionsThe main part of this presentation is the extended elementary methodin the pairing interation to involve the T0 dependene for the non diago-nal terms S+S� and to alulate the mean values of those terms hSn+Sn�i;hSp+Sp�i; hSnp+ Snp� i in the state of the onsidered irreduible representationof the orthogonal group SO(5). The algebrai, very handy formulae an beand have been, used for analytial solution of di�erent physial problems.Among those problems we have disussed:(i) the T0 dependene,(ii) the hange in the pairing ontributions following the inrease in thenumber of neutrons by a neutron pair of T = 1,(iii) the hange in the pairing ontributions in a set of even isotopes,(iv) the possible mirosopial origin of the ongruene energy.We have lari�ed and generalized several answers to the reently disussedproblems stated above.Although the presented results are based on a simple model, their nu-merial part are exat. Hene, for the nulei with the shell model struturesimilar to the onsidered nulei in the paper, the pairing ontribution is, atleast, of the same qualitative value even in the presene of a more realistitwo-body interation.The last version of the paper has been prepared during the stay in theMax Plank Institute für Kernphysik in Heidelberg. The author is verygrateful to professors David Brink and Renzo Leonardi from ECT in Trentoand to professor Hans Weidenmüller from Max Plank Institute in Heidel-berg for the invitations, and also to ECT and Max Plank Institute for�nanial support.
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