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SINGLE PARTICLE POTENTIAL OF A
Y HYPERON IN NUCLEAR MATTER
II. REARRANGEMENT EFFECTS
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The rearrangement contribution to the real part of the single parti-
cle potential of a X hyperon in nuclear matter, Uy, is investigated. The
isospin and spin dependent parts of Uy are considered. Results obtained
for four models of the Nijmegen baryon-baryon interaction are presented
and discussed.

PACS numbers: 21.80.+a

1. Introduction

The knowledge of the single particle (s.p.) potential Uy, of the X hy-
peron in nuclear matter is essential in the description of the structure of
2} hypernuclear states. This knowledge should include the isospin and spin
dependence of Us,. Let us mention that the existence of the only observed
2} hypernuclear bound state 42He is strictly connected with a strong isospin
dependent (Lane) part of Uy, [1,2].

A calculation of Uy, and its isospin and spin dependence was presented in
[3] and [4] (hereafter referred as I). The calculation in [3] and I was performed
in the simplest way, and did not include the so called rearrangement effects.
Because of the importance of Uy in the theory of X' hypernuclear states, we
feel that these rearrangement effects should be included in the calculation
of Uy. This is done in the present paper.

Let us consider a X hyperon moving in nuclear matter composed of
Z+(Z) protons with spin up (down), and N4+(N|) neutrons with spin up
(down). As discussed in I, the s.p. potential of a ¥+ hyperon with spin
up/down and momentum ky has the form (in the linear approximation in
the a parameters):

(1853)



1854 J. DABROWSKI

UZ(T/\La EJrakE) = Uo(k2)+%OKTUT(kZ):t%OKUUO'(kE)i%a(TTUO'T(kZ)’ (1)

where the proton or isospin excess parameter a,; = (Z; + Z, — Ny — N|) /A,
the spin excess parameter o, = (Z3+ Ny —Z — N|)/A, and the spin-isospin
excess parameter az; = (Zy + N — Z, — N4+)/A. For the assumed charge
independence of the baryon—baryon interaction, the expression for

UZ(T/‘L’ Ziakz)

differs from (1) only by the sign at the 7 and o7 terms, whose coefficients
become —a,; and Fa,,. The expression for

UZ(T/‘L’ EO,kZ)
1

differs from (1) by the absence of the 7 and o7 terms-.
In our derivation of the expression for Uy, we assume that the effective
YN interaction K and NN interaction K in nuclear matter are obtained by
applying the Brueckner theory.
We define the s.p. potential Us(kyx) of a X hyperon (whose spin and
charge is not indicated here) together with its kinetic energy ex(ky) =
h?k2% /2 My as the removal energy:

ex(kx) +Us(ks) = E(A,1x) — E(A), (2)

where F(A,1yx) is the energy of the system of nuclear matter plus the X
hyperon, and E(A) is the energy of pure nuclear matter.

The s.p. potential Uy, consists of two parts, the model potential Vx and
the rearrangement potential Vyp,

Us, = Vs + Vxpg. (3)

The s.p. model potential Vy, represented by diagram (a) in Fig. 1, is
introduced in the Brueckner theory for the sole purpose of calculating the
total energy of the system, and is not equal to the potential part of the
removal energy, Us,. For illustration, let us consider the case of a X' particle
with kx = 0, in which Uy is equal to the X separation energy. To separate
the particle from nuclear matter, we first have to perform the work equal to
—Vsx. However, the system of nuclear matter left without the X' particle has
the possibility to rearrange itself to an energetically more favorable state,
and while doing it releases the rearrangement energy Vxpr. Hence, the X
separation energy —Uyx = —(Vy + Vyg). The leading contribution to Vyg
is represented by the diagram (b) in Fig. 1.

! Similarly as in T we consider the case of pure central XN effective interaction for which
the possible dependence of U, and U,- on the direction of kx does not appear.
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Fig.1. Diagrams representing Vy (a) and Veg (b). Single lines are nucleons, the
double line denotes X'.

Our definition of Uy is obviously the proper one for calculating the X/
binding (i.e., separation) energy in nuclear matter. Also in calculating X
scattering, ¢.e., states with positive s.p. energies, one should apply our
definition of Us,. Namely, the scattering process is determined by the change
of the wave length of the particle in the scattering medium, which in turn is
determined by the change in energy of the incoming particle when it enters
the scatterer, i.e., by the removal energy.

In the present paper, we calculate the rearrangement potential Vyg
which has been disregarded in I. Whereas the expression for the hyperon
rearrangement potential in isospin and spin saturated nuclear matter is well
known since the early work of Dabrowski and Kéhler [5], the rearrangement
contributions to the 7, o, and 7o components of Uy, are considered for the
first time in the present paper.

This paper is organized as follows. In Section 2, we start from the effec-
tive X’N interaction K and the effective NN interaction K in nuclear matter,
and derive the expression for the rearrangement part of Us. In Section 3,
we discuss the results for Uy, U,, U,, and U,, obtained with X calculated
in [6] for four models of the Nijmegen baryon—baryon interaction. Similarly
as in I, we restrict ourselves to the real X’ potential.

2. The rearrangement potential

Decomposition (3) applies to each of the component of Usy:
Up = Vo + Vor, (4)

Uy, = Vi + Vig, =T, 0, OT. (5)
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The derivation of the expression for V,r (which automatically leads to
the expression for Vjyg) is similar in the three cases of x = 7, © = o, and
x = or. We shall present the derivation only in the case of z = 7, and in
the remaining cases of z = o, and £ = o7, we shall only present the results.

While calculating U, we put o, = a,r = 0. Nuclear matter becomes
then a two-component system with Z protons and N neutrons with the
corresponding Fermi momenta x, and \;. Eq. (1) takes now the simpler
form:

UE(ME, E+7k2) = UO(kZ') + %OKTUT(kE) ) (6)

where puy = :l:% for X hyperon with spin up/down (1 /). Notice that
in the spin saturated nuclear matter considered here, Us; does not depend

on Wy;.
To determine Uy, we apply definition (2) of the X' s.p. energy, which we
write in the form:

Us(ps, X", kx) = Epor(Z,N,15+) — Epor(Z, N), (7)

where Epot is the potential part of E. In the more precize notation in
Eq. (7) we indicate that E depends on Z and N, and not just on A as the
simplified notation in Eq. (2) might suggest. Instead of E(Z, N), we shall
use also an equivalent notation E(k;, A;).

We split Epor (N, Z) into three parts:

EPOT(Z7 N) = Epp + Epp + Epna (8)

where the three consecutive parts are produced respectively by the effective
pp, nn, and pn interaction:

mi<kr Ma<Kr

—Z > Z (M g pmopop| K (K- A ) M i pmopiop) — exchange,
p1pz2 MM
(9)
mi<kr mo<kr

Enn = —Z Z Z (mypinmopon| K (K7 A7) |mypanmapian) — exchange,

Hip2 My

E pp

(10)
mi1<kr ma<Kr

2 2 Z (mapipmopon| K (k7M7) | pipmapian), (11)

Hip2 MM

Eyn

where p1(9) is the spin magnetic number of nucleon 1(2).
For EPOT(Z, N, 12+) we have:

EPOT(ZaNa 12+) :EPOT(ZaN)+VZ(M272+7kZ)a (12)
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where Vy is the X' s.p. model potential:

Ve(ps, T k)
mi1<kr
=> 1Y (mampksps ST (k) |mappksps 57)
M1 mi
m1<Ar
+ Y (mupnksps 2T |K (k) Imymnksps 1) | (13)

m1

and EPOT(Z, N) is the potential energy of nuclear matter in the presence
of the X* hyperon (with momentum ky and spin projection uy). The ex-
pression for E(Z, N) is the same as that for E(Z, N) , Eqs (8)-(11), except
that K must be replaced by K, the effective NN interaction in the Sys-
tem of nuclear matter plus the X hyperon (with momentum ky and spin
projection py).

Combining Eqgs (12), (7), (3), we may write Vxpr in the form:

VZ‘R(MZ'72+7]€Z) :VZP'%—FVS?%—FVA,@% (14)

Expressions for Vgév " are the same as those for Enn except that K(k;A;)
must be replaced by K(k:\;) — K(k:A7), e.g.,

mi<kr mo<kr
VER =53 D D (mampmopp|K (k)
Hip2 My m2

—K (ks Ar)|mip1pmapap) — exchange . (15)

The procedure of calculating each of the three parts of Vxpg is similar,
and we shall outline it in the case of Vg%. From now on, we assume that the
effective NN interactions K and K are determined within the Brueckner
theory of nuclear matter. We assume the simplest version of this theory,
in which pure kinetic energies ey are used in the intermediate states of
the K-matrix equation. This is the so called low order Brueckner (LOB)
theory. Thus the equation for K differs from the equation for K only by the
appearance of the s.p. nucleon energies of the occupied states in the system
of nuclear matter plus the X hyperon, éx(m1 241,2), in place of the energies
en(m1,2) in pure nuclear matter, which appear in the equation for K. From
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the equations for K and K, one obtains (see, e.g., [7])

k1>kr ka>kr

(K (Kry Ar) — K (Kry Ar)||ma i pmapiop) = Z Z Z

wipy k1 k>

11 .
X K (rir Ar) |1ty pkapip) [— - E] (k1p1pkopopl K (ki A7) My pipmapap) ,

(16)
where
a = ep(m1) + ep(ma) — ep(k1) — ep(ka)
a = ép(mlﬂl) + ép(mﬂb?) - 5p(k1) - 5p(k2) . (17)

Now we follow [5] and make the following approximations: First, we
introduce the expansion

= _% ([ep(mipn) — ep(mi)] + [ep(mzp2) — ep(m2)]) (18)

Q| =
Q|

second, we approximate the differences in the s.p. energies by
ep(mipi) — ep(mi) = (Mipipksps S7 K (k27 [mipipksps X)), (19)

where i = 1,2, and third, we apply the first iteration to Eq. (16), i.e., we
replace K by K on the right hand side of this equation.

Now, we apply the above approximations in (16) and obtain an approx-
imate expression for K — K which we insert into expression (15) for VE..
In this expression for Vg%, we introduce the total spin of the two protons
and its z projection, smg, and also the total isospin and its third component
TTy 2. In this way, we get after some algebra,

mi1<kr ma2<Kr

1 1T
VB = = Y > S [ drdehten T k)
my mo

SMs
X Z(mllulpkglugﬂﬂlC(ﬁT)\T)|m1,u1pk2,u22+) , (20)
M1
where xMsmsTTs (pg¢: k. \;) is the defect function of two nucleons with total

momentum M = my + my and relative momentum m = (m; — my)/2 in
the spin and isospin state sm T T5. The relative position vector of the two

2 We use the convention in which the third component of the isospin of proton (neutron)

is 1 ().
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nucleons is denoted by 7, and their spin and isospin coordinates are denoted
by &. The defect function is the difference between the two nucleon wave
function in nuclear matter ¢ and plane wave ¢, x = 9 — ¢, and is determined
by K through the relation %K ¢ = x, which leads to the appearance of
in expression (20). Notice that plane wave states in our expressions are
normalized in the periodicity box of volume 2 3.

Since the integral [ drd¢ |x|? depends weakly on the nucleon momenta,
we approximate it by its average value in the Fermi sea:

/ drdé | Mo (rg; ki, 0, )| / drdé | M (v ko))

mi1<kr ma2<Kr m1<kr m2<Kr

=% X [arag e m o0 /30y

With this approximation, we may write expression (20) in the form:

VI = —gon Y [ drdehem g

smsg
m1<kr
X Z Z(mllulpkg,u22+|IC(,%T)\T)|m1,u1pk2ugZ’+), (22)
mi
where -
mi1<kr 3
2K 2Z
Pry = Q Z 5= =rll+a), (23)

where p is the density of nuclear matter, p = A/ = 2k3. /3% (kp is the
Fermi momentum of spin and isospin saturated nuclear matter).

From now on, we neglect the dependence of py_ [ dr| x|? on the proton
excess parameter o :

P / drdg |x ™ (85 5, 0| = BT (24)

where the “wound integral” in the state sm T, &5™7 is

BT = T (kp) = p/drd§ T (rés k)| (25)
where x*™ T (r & kp) = X TT3(r, & kry A\ ) g —r,—kp (nOtice that it does

not depend on T3). The accuracy of approximation (24) is discussed in the
next section.

3 The essential steps in obtaining expression (20) are similar to those presented in detail
in [7] (see also [5]).
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With approximation (24), Eq. (22) takes the form:

1 _ 1m1</€'r
Ve = -7 ; R SMs %; %1:(mlulpkguy,ZﬂIC(ﬁT)\T)|m1u1pk2u22+).

(26)
Proceeding in the same way with V*% and V{3, and adding the expressions
so obtained to expression (26), we get

Vsr(ps, X ks) = -k Vs (ps, X1, kx), (27)

where the wound integral & is:

1
F=g > @r+ 1R (28)
smgT
Eq. (27) leads to
Vor(ps, X kg) = —&Vo(uz, X1, ks), (29)
Uo(ps, 2% ks) = (1 —&)Vo(px, X, kx), (30)
and
Var(ps, X1 kx) = —EVa(us, 21 kx), (31)
Up(ps, 7 kp) = (1 - 8)Va(ps, ¥ kx), (32)

where z stands for 7. Expressions for Vy and V,, which may be obtained
from Eq. (13), are given in L.

The procedure with V,r and Vg is similar, and the resulting expres-
sions turn out to be identical with (31), (32). This means that expressions
(31), (32) are valid not only for = 7, but also for z = o and z = o7.

3. Discussion of the results

In deriving the simple relation between V,g and V,, Eq. (31), we made
an additional approximation which for = 7 has the form of Eq. (24). It is
relatively simple to estimate the effect of the a,; dependence of p,_ neglected
in approximation (24), and of py_ neglected in similar approximations used
in calculating V2% and Vi.5,. This leads to the conclusion that the contribu-
tion of this neglected a, dependence to V, g is a few times smaller than our
contribution (31). We believe that this conclusion would not be changed by
including the «, dependence of [ drd¢| x|? also neglected in approximation
(24). Namely if we apply the single density approximation applied in [§],
we may express this neglected a; dependence through the dependence of
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[ drdé|x(ré; kr)|? on kp, which appears to be much weaker than this de-
pendence of p (see e.g. [9]). For z = o, o7, the situation is similar.

Our final result for the effect of the rearrangement potential on the
isospin and spin dependent component of the X s.p. potential in nuclear
matter, expressions (31), (32), is very simple. It turns out that the simple
form of this effect in isospin and spin saturated nuclear matter, Eqs (29),
(30), also applies in the case of nuclear matter with isospin and spin excess.

The magnitude of the whole effect depends on one parameter: the wound
integral 5. As was discussed in [5], & is determined predominantly by acting
of the hard core in the S state of the interacting nucleons, which leads to
the result & = 0.15 for the had core radius r. = 0.4 fm. Results obtained
with soft core NN interactions are smaller. In general, values of the wound
integral considered in the literature are in the range: 0.15 2 & 2 0.10. Here,
we shall use the value k = 0.15 calculated in [5].

In Table I, we present the results for Vg, Uy, and V,, U, (for x = 1,0,
and o7). Results for V), V, are taken from I where they were calculated
with the help of the YNG effective X' N interaction of Yamamoto et al. [6],
which represents the reaction matrix K calculated in the LOB theory from
the model D [10], model F [11], and the soft-core (SC) model [12] of the
Nijmegen baryon—baryon interaction. Also included are results calculated
in I with the help of the YNG interaction obtained from the new soft-core
(NSC) model of Rijken et al. [13].

TABLE 1

Different components (in MeV) of Us (ks = 0) calculated at kr = 1.35 fm~! with
the YNG interaction obtained from the indicated models of the YN interaction,
and with £ = 0.15.

x | Model Vo Uy V. U,
D —13.1 -—11.1 55.1 46.8
T F 23.5 20.0 80.4 68.3
SC -9.6 —8.2 31.0 26.4
NSC -16.6 -—-14.1 -36.7 —31.2
D -13.1 -11.1 66.8 56.8
o F 23.5 20.0 72.3 61.5
SC -9.6 —8.2 3.3 2.8
NSC —-166 —14.1 —-404 —-34.3
D -13.1 -11.1 63.9 54.3
oT F 23.5 20.0 95.6 81.3
SC -9.6 —8.2 56.3 47.9
NSC -16.6 —14.1 70.7 60.1
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Because of the rearrangement effect all components of the X' s.p. po-
tential in nuclear matter are reduced by the factor (1 — &) ~ 0.85. With
this reduction taken into account, the discussion in I remains essentially un-
changed. In particular, the conclusion remains valid, that the new strangeness
exchange experiments at Brookhaven [14,15] favor model F of the Nijmegen
interaction.

This research was partly supported by Polish State Committee for Sci-
entific Research (KBN) under Grant No. 2-P03B-048-12.
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