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THE SOLITON SOLUTIONSOF THE SCHWINGER MODELAndrzej Wereszzy«skiInstitute of Physis, Jagellonian UniversityReymonta 4, Krakow, Polande-mail: weresz�konwalia.if.uj.edu.pl(Reeived Deember 14, 1999; revised version reeived June 27, 2000)The soliton solutions of the bosonised version of the massive Shwingermodel forNf = 2 in the �rst approximation are found. We disus satteringsuh solutions on eah other in both elasti and non-elasti ases.PACS numbers: 05.45.Yv, 11.10.Kk1. IntrodutionThe Shwinger model [1℄ is a well-understood theoretial model whihis usually used to simulate QCD. It reveals some ruial phenomena knownfrom more realisti four-dimentional models. Indeed, on�nement, sreening,hiral symmetry breaking and topologial vaua appear at one. It is nothard to investigate here a formation of bound states. A tehnial advantageof the Shwinger model, in omparison with the standard QCD, is the fatthat it is a two-dimentional model and many alulations an be arry outexpliitly [2�7℄. In partiular, it would be very intriguing to analyze thepossibility of existene of the mesons omposed of fundamental quarks. Theaim of our work is to �nd these mesons in the limit of quark masses muhbigger than the oupling onstant. We will desribe their sattering as well.The paper is organized as follows. In Setion 2, we will introdue theShwinger model in the standard fermioni form as well as in the bosonisedversion. The topologial harges and the equations of motion will be pre-sented. In Setion 3, we solve a �avor-harged meson solution while a �avor-neutral meson (in the �rst approximation) will be found in Setion 4. A briefdesription of a double-mesoni state is also inluded. Setion 5 is devotedto �nd solutions for elasti sattering of suh mesons. In partiular, thesattering of �avor-neutral mesons is analyze in Setion 6 using an adiabatiapproximation. Setion 7 ontains the disussion and onlusions. In thisSetion we omment on non-elasti sattering solutions.(1885)



1886 A. Wereszzy«ski2. LagrangianWe will onsider Nf fundamental harged and massive Dira fermions intwo-dimensional spaetime, with the well-known Lagrangian density [1℄,L = �14F��F �� + � a(i��� � e�A� �ma) a ; (1)where F�� = ��A� � ��A� : (2)In general, we allow for di�erent masses ma of fermion �elds  a.We are going to adopt standard-Abelian bosonisation rules,Nma [ � a� a℄ = 1p�"�����a ; (3)Nma [ � a a℄ = �maNma [osp4��a℄ ; (4)where �a is the family of anonial pseudosalar �elds and Nma denotesnormal-ordering with respet to fermion masses.Substituting (3), (4) into the Shwinger's Lagrangian it yields, after in-tegrating out the eletri �eld F0, the bosonized version of (1),Le� = NfXa=1 12(���a)2 � Ve� ; (5)Ve� = e22� ( NfXa=1 �a + �p4� )2 � NfXa=1 m2aNma [osp4��a℄ + onst: (6)Di�erent vaua are labeled by the angle parameter �.In this paper, we limit ourselves to the two-�avor ase and set � = 0 (noCP breaking). We separate the Lagrangian into two parts,L0e� = 2Xa=1 12(���a)2 + 2Xa=1 m2aNma [osp4��a℄ ; (7)Linte� = � e22� (�1 + �2)2 : (8)The �rst part desribes the free system of two sine-Gordon �elds. The seondpart stands for the Coulomb interation between them. The boundary valuesof �a at the spatial in�nity are assoiated with the �avor quantum numbersof the fundamental fermion �elds through the relations:Qa = 1p� 1Z�1 �x�adx = 1p��a���1�1 : (9)



The Soliton Solutions of the Shwinger Model 1887We expet that all �nite-energy solutions should approah the vauum asymp-totially. The Lagrangian gives the following �eld equations (a = 1; 2),�2t �a � �2x�a + e2� (�1 + �2) + p4�m2a sin(p4��a) = 0 : (10)It is onvenient to denote � = p4�, �2 = Nf e2� and M2a = �2m2a. Finally,after resaling of �elds �a ! ��a and the oordinates x ! Mx, t ! Mtwe obtain the standard form of the oupled sine-Gordon equation (we setM1 =M2 =M): �2t �a � �2x�a + "2(�1 + �2) + sin�a = 0 : (11)The lassial Euler�Lagrange �eld equations depend only on one parameter" = e2�2 . In the present paper, we try to solve these equations in the limit ofweak interation (" � 1). We �nd loalized solutions, whih orrespond to�mesons� omposed of fundamental �quark� �elds �a.3. Flavor-harged mesonsThe simplest ase is a solution whih desribes the meson with nonzerotopologial harges, with the assumption �1 = ��2. In this ase, we �ndtwo separated sine-Gordon equations. The straightforward solution an bewritten in the form: �1 = (�s; �a); �2 = (�a; �s) ; (12)where �s;a = 4Q artan e(x�x0�vt) (13)and Qs;a = �1 for soliton or for antisoliton respetively [8℄. The energy andmass for the meson solutions (12) are the same,E = Ea +Es = 16 ; (14)m = ma +ms : (15)These mesons are the lowest energy states being the omposition of solitonand antisoliton pair loalized at some point x0. However, if we try to separateomponents for small distane �x, they start to attrat themselves and theenergy grows like the on�ning fore [9℄,�E � (�x)2 : (16)The asymptoti freedom and the on�nement in the Shwinger model are ob-served already at the lassial level provided that we use the dual desription(bosonization).



1888 A. Wereszzy«ski4. Flavor-neutral mesonsOur aim is to �nd a lassial solution of nonlinear equations (11), whihdesribes a meson with vanishing topologial harges in the weak interationlimit " << 1. It orresponds to the following expansion.�1 = �10 + "�11 ; (17)�2 = "21 : (18)On aount of the fat that the topology of the vauum states or asymptoti-al behavior of the �elds is unhanged this expansion appears to be orret.It shows that both �elds are ruial for the topologial reasons. However, aswe see it at the end of this Setion, only one of them gives the ontributionto the energy. Using this assumption we derive from Eq. (11) the followingequations for the expansion oe�ients,(�2t � �2x)�10 + sin�10 = 0 ; (19)(�2t � �2x)�11 + 12�10 + �11 os�10 = 0 ; (20)(�2t � �2x)�21 + 12�10 + �21 = 0 : (21)Taking into aount the fat that we searh for a pure meson state withvanishing topologial harges, we should start with the breather solution ofEq. (19), �10 = �b = 4artan �  sin!t! osh x� ; (22)where  = p1� !2. This solution is periodi in time and it is the lowestenergy omposite state whih possesses zero topologial harge [8℄. The nextstep is the Fourier expansion of the �rst oe�ient �elds,�11 = 1Xn=0�11sn(x) sinn!t+ �11n(x) os n!t ; (23)�21 = 1Xn=0�21sn(x) sinn!t+ �21n(x) os n!t : (24)After some straighforward alulations we ompute,�21sn = 8<: 14n [e�nx xR1 e�ny�bndy + e�n xR�1 eny�bndy℄ n < [ 1! ℄ ;0 n > [ 1! ℄ ; (25)



The Soliton Solutions of the Shwinger Model 1889�21n = 0 ; (26)where �bn is n-th fator in the Fourier expansion of the breather and n =p1� n2!2. With the �eld �11 the situation is more ompliated and forsimpliity we restrit ourselves to analyze only the �rst terms of the Fourierexpansion, �11 = �11s1(x) sin!t+ �111 os!t : (27)This simpli�ation gives, as it is explained in [9℄ a good approximation tothe energy. We put also the approximation for the breather solution in thisase, �10 � � sin!t ; (28)where the funtion � satis�es the following equation,�2x�+ !2�� 2J1(�) = 0 (29)and J1 is the �rst order Bessel funtion. After substitution of (28), (29) into(20) and using the approximation (27) we obtain,�111 = 0 ; (30)�(!2 + �2)�11s1 + 12�+ �11s1 2� �Z0 sin2 t os(� sin t)dt = 0 ; (31)where the lates equation an be resolved with the following asymptotialonditions, �11s1 �! 0; x! �1 : (32)Using a standart proedure we obtain�11s1(x) = 14�x� xZ0 (�y�)�2�2dy : (33)where the latest equation an be resolved with the following asymptotial(29) together with the asymptotial onditions we derive that,� � �b1 ; (34)where �b1 = 8q(! )2 osh2 x+ 1 + ! osh x : (35)



1890 A. Wereszzy«skiIt is easy to show that the next term of the Fouriar expansion of �11 vanishes.Let us summarize, we have omputed the approximated solution of the �avorneutral meson state,�1 = �0 + "4�x�b1 sin!t xZ0 (�y�b1)�2�2b1dy ; (36)�2 = "N=[ 1! ℄Xn=1 14 24enx xZ1 e�ny�bndy + e�nx �1Zx eny�bndy35 sinn!t : (37)The solution desribes time osillations around the breather state for the�eld �1 and the vauum state for the �eld �2. Obviously, the osillationsare loalized at the spatial spae around the origin.The energy density following from the Lagrangian (5) has the form forthis solution,E = Xa=1;2 12(���a)2 + (1� os�a) + "4(�1 + �2)2 (38)= Eb + "[�x�0�x�11 + �t�0�t�11 + �11 sin�0℄ + o(") ; (39)where Eb is the energy density of the breather. The residual �eld �2 gives aontribution at the higher orders in ".The lowest two-meson state an be obtained in the same assumption likein the one-meson state i.e. if we put �1 = ��2 in (11). Then the solution is,(Q �Qq�q) = (�b;��b) : (40)On the ontrary to one-�avor-neutral ase this state does not ontain theresidual �elds. 5. Sattering solutionIt is easy to �nd the elasti sattering solution when we satter two�avor-harged mesons (Q stands here for the �eld �1 and q refers to the�eld �2), Q�q + �Qq ! Q�q + �Qq : (41)The solution is, � = (�sa;��sa) ; (42)where �sa is well-known solution of the sine-Gordon equation, whih de-sribes sattering of a soliton and an antisoliton [8℄,�sa = 4artan � sinhvtv osh x� : (43)



The Soliton Solutions of the Shwinger Model 1891Asymptotially we �nd two single meson states whih propagate in oppositediretions.The similar ase refers to the elasti sattering of a meson on a mesonof the same type (both are �avor-harged),Q�q +Q�q ! Q�q +Q�q : (44)The solution an be found in the analogous way,� = (�ss;��ss) ; (45)where �ss is the double soliton sattering solution of the sine-Gordon equa-tion [8℄, �ss = artan � osh vtv sinhx� : (46)A less straightforward task is to �nd the solution of the equation (11) whihdesribes the elasti sattering of the two �avor-neutral mesons (at least inthe limit of small ", Q �Q+ q�q ! Q �Q+ q�q : (47)We ompute the above solution in the �rst order approximation,	 = 	0 + " 1 ; (48)where 	0 = ( 10 ;  20) = ( b(x� vt);  b(x+ vt)) (49)is solution of two independent sine-Gordon equations whih are obtained tak-ing the limit " = 0. This solution ontains two sine-Gordon breathers whihmove in opposite diretions with the same veloity. The �rst orretion 	1an be interpreted as the interation of the breathers. The interation issmall when the breathers are separated. It beomes to play a signi�antway only during the short time when the enters of the breathers ome losetogether. Let us investigate that in a more detailed way. Comparing leadingorder terms in the parameter " in the equation of motion (11) we obtain,(�2t � �2x) 11 +  11 os 10 = �12( 10 +  20) ; (50)where  11 is one of two �eld omponents of 	1. In order to solve this lineardi�erential equation we divide it into two parts.The �rst one reads,(�2t � �2x) 11 +  11 os�b(x� vt) = �12�b(x� vt) (51)



1892 A. Wereszzy«skiand it is idential with the equation onsidered previously for (Q �Q) mesonstate. Therefore the solution an be presented in the following form, 11 = �11(x� vt) : (52)Now let us turn to the seond equation,(�2t � �2x) 11 +  11 os�b(x� vt) = �12�b(x+ vt) : (53)The solution of (53) an be written as, 11 = f(x; t)�21(x+ vt) : (54)The shape funtion f(x; t) should posses the above mentioned asymptotialproperties namely f(x; t) ! 1 if the breathers are separated. It is easy toverify that this limit is approahed exponentially.Thus the approximated solution for the ontat interations during thesattering of two �avor-neutral mesons an be written as follows,	 = (	1; 	2) ; (55)where 	1 = �b(x� vt) + "[�11(x� vt) + f(x; t)�21(x+ vt)℄ : (56)In the formula for 	2 we have to interhange x� vt with x+ vt.This solution has the required asymptotial behavior and a �nite energy.In a similar way the solution whih desribes elasti sattering of themesons Q �Q and Q�q an be found,Q �Q+Q�q ! Q �Q+Q�q : (57)If we put again " = 0, then the equation (11) separates into two independentsine-Gorgon equations and the respetive solution is,� = (�b�s; �a) : (58)The funtion �b�s is the sattering solution of the sine-Gordon equationwhere a breather satters on a soliton [10℄. This solution represents aninteration between the meson Q �Q and the quark Q while the quark �q isnon-interating in the zero order approximation. When we onsider �rstorder orretions we �nd new e�ets. The quarks, whih were primary free,are on�ned around the same point. The point, usually alled enter, movesduring the time evolution. This is the mehanism of the mesonQ�q formation.



The Soliton Solutions of the Shwinger Model 18936. Adiabati evolutionThe most general form of the breather whih solves the standard sine-Gordon equation an be written down,�b = 4artan �tan� sin(� os�)osh(z sin�)� ; (59)z = x� �p1� V 2 ; � = V t+ �0 ; (60)� = t� V xp1� V 2 + �0 : (61)The parameter � is the amplitude of the breather. If we add a small termP [�℄ to the sine-Gordon equation, then the solution of the extended equationan be found as the perturbation of the breather (59). In the adiabatiapproximation we an ompute a general perturbation-indued evolutionequation for the parameters �, V and � [11℄. We are going to analyze twoparameters (the amplitude and the veloity) in details.d�dt = "(1� V 2)1=2(4 os �)�1I1 ; (62)dVdt = �"(1� V 2)3=2(4 os �)�1I2 ; (63)where I1 = 1Z�1 osh x os(os��)osh2 x+ tan2 � sin2(os��)P [�b℄dx ; (64)I2 = � 1Z�1 sinhx sin(os��)osh2 x+ tan2 � sin2(os��)P [�b℄dx ; (65)where the integration is over the variable x = sin�z. The above equationan be expanded in the parameter ". Let us introdue the expansions � =�0 + "�1 and V = V0 + V1. The breather parameters �0 and V0 referto the amplitude and the veloity of the standard sine-Gordon breatherrespetively. We obtain the equations for �1 and V1,d�1dt = (1�V 20 )1=2(4 os �0)�1 1Z�1 oshx os(os�0�)osh2 x+tan2 �0 sin2(os�0�)P [�b℄dx; (66)dV1dt = (1�V 20 )3=2(4 os �0)�1 1Z�1 sinhx sin(os�0�)osh2 x+tan2 �0 sin2(os�0�)P [�b℄dx: (67)



1894 A. Wereszzy«skiIn the ase of the meson (Q �Q) the perturbation is represented by,P [�b℄ = �b : (68)It is easy to see that V1 vanishes so that the free meson (Q �Q) moves withonstant veloity V0. But behaviour of �1 is more sophistiated. The am-plitude (thikness) is periodi in time with the period,T = �p1� V 20os�0 : (69)The period is twie smaller then the period of the standard breather osilla-tions. Then, in our solution the perturbed breather osillates in the thiknesstwie during the period of the fundamental osillations of the sine-Gordonbreather. The amplitude of the osillations is muh smaller than the instantwidth of the breather.Let us onsider the above mentioned elasti sattering mesons (Q �Q) and(q�q). Now the perturbation term has the form,P [�℄ = �b(x+ vt) + �b(x� vt) : (70)First, we an observe that the solution of suh problem tends asymptotiallyto the free meson solution. The di�erene is that the veloity is no longer�xed. There is a small orretion V1 being periodi in time. The period ofthe osillations is the same as for �1.During the sattering the mesons (Q �Q) and (q�q) attrat and push awayeah other periodially. This interation is observed when the enters of themeson (Q �Q) and (q�q) are lose together.7. Summary and onlusionIn this artile we studied the existene and the properties of soliton solu-tions in the Shwinger model (a bosonized version) when the quarks massesare equal (SU(2) �avor symmetry). We found the lowest states for the�avor-harged and the �avor-neutral mesons in the approximation of weakinterations. These mesons possess topologial harges and �nite energies.Their stability is guaranteed by topologial harges i.e. by the form of theground state. In both mesons we have the on�nement of the fundamen-tal quarks at the lassial level. However, the way how the on�nementappears in the above mesons is di�erent. In the �avor-harged ase it isimplied diretly by the Coulomb interations between �elds �1;2 (8), whilein the �avor-neutral ase the on�nement follows from the mehanism whihstabilizes the breather and it is ruial based on the interations with thevauum.



The Soliton Solutions of the Shwinger Model 1895These mesons an form bound states (i.e. the two-�avor-neutral state)as well as sattering states. In partiular, we found the elasti satteringsolution for various on�gurations of the mesons. The �avor-neutral asewas obtained in the approximation of weak interations. We observed smalland fast vanishing osillations of the amplitude and the veloity. The periodof the osillations is twie smaller than the basi period of the breather.The above SU(2)-�avor solutions an be easy embedded in the SU(3)-�avor ase. However, non-trivial SU(3) solutions, whih ontain all funda-mental �elds should also exist. These mesons and their behaviour will beinvestigated in the next paper.It is still too di�ult to analyze the non-elasti sattering solution inthe above framework. The ground state is given by a soliton of sine-Gordonequation and it annot be transformed into another solution. Time evolutiondoes not destroy the ground state. We an assume that our approximationis failed when the orretion to the amplitude of the breather satisfy,�0 � "�1 : (71)In this ase fundamental quarks of the sattering mesons are mixed andinterhanged.I would like to thank Dr. P. W�grzyn for his help and many stimulatingdisussions. I am also grateful to Professor H. Arod¹ for reading the paperand helpful remarks. REFERENCES[1℄ J. Shwinger, Phys. Rev. 128, 2425 (1962).[2℄ J.H. Lovenstein, J.A. Swiea, Ann. Phys. 68, 172 (1971).[3℄ A. Casher, J. Kogut, L. Susskind, Phys. Rev. D10, 732 (1974).[4℄ J. Kogut, L. Susskind, Phys. Rev. D11, 3594 (1975).[5℄ S. Coleman, R. Jakiw, L. Susskind, Ann. Phys. 93, 267 (1975).[6℄ R. Link, Phys. Rev. D42, 2103 (1990).[7℄ D. Sen, Phys. Lett. B212, 191 (1988).[8℄ R. Rajaraman, Solitons and Instantons, North-Holland Publishing Company,1982.[9℄ M. Sadzikowski, P. Wegrzyn, Mod. Phys. Lett. A11, 1947 (1996).[10℄ G. Eilenberger, Solitons. Mathematial Methods for Physiists, Springer-Verlag, 1982.[11℄ Y.S. Kivshar, B.A. Malomed, Rev. Mod. Phys. 61, 763 (1989).


