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1. Introduction

The Schwinger model [1] is a well-understood theoretical model which
is usually used to simulate QCD. It reveals some crucial phenomena known
from more realistic four-dimentional models. Indeed, confinement, screening,
chiral symmetry breaking and topological vacua appear at once. It is not
hard to investigate here a formation of bound states. A technical advantage
of the Schwinger model, in comparison with the standard QCD, is the fact
that it is a two-dimentional model and many calculations can be carry out
explicitly [2-7]. In particular, it would be very intriguing to analyze the
possibility of existence of the mesons composed of fundamental quarks. The
aim of our work is to find these mesons in the limit of quark masses much
bigger than the coupling constant. We will describe their scattering as well.

The paper is organized as follows. In Section 2, we will introduce the
Schwinger model in the standard fermionic form as well as in the bosonised
version. The topological charges and the equations of motion will be pre-
sented. In Section 3, we solve a flavor-charged meson solution while a flavor-
neutral meson (in the first approximation) will be found in Section 4. A brief
description of a double-mesonic state is also included. Section 5 is devoted
to find solutions for elastic scattering of such mesons. In particular, the
scattering of flavor-neutral mesons is analyze in Section 6 using an adiabatic
approximation. Section 7 contains the discussion and conclusions. In this
Section we comment on non-elastic scattering solutions.
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2. Lagrangian

We will consider Ny fundamental charged and massive Dirac fermions in
two-dimensional spacetime, with the well-known Lagrangian density [1],

L= —3FuF" + " (in" 0, — ey" Ay — ma) 9", (1)

where

F,u,l/ = a;LAV - aVAp, . (2)

In general, we allow for different masses m, of fermion fields /,.
We are going to adopt standard-Abelian bosonisation rules,

N, [§499%] = %e“"auqsa, (3)
N, [1/_)%/}&] = _CmaNma[COS \/E(ﬁ“]’ (4)

where ¢® is the family of canonical pseudoscalar fields and N,,, denotes
normal-ordering with respect to fermion masses.

Substituting (3), (4) into the Schwinger’s Lagrangian it yields, after in-
tegrating out the electric field Fy, the bosonized version of (1),

Ny
1
Let = Y 5(0u6")° = Verr. (5)
a=1
e? ali 0 all
Vg = %(az_l o + T)2 - az_; ¢m?2 Ny, [cos VAT ¢?] + const.  (6)

Different vacua are labeled by the angle parameter 6.
In this paper, we limit ourselves to the two-flavor case and set # = 0 (no
C'P breaking). We separate the Lagrangian into two parts,

2
0o _
Lex = >

a=1

int e’ 1 212
Ly = —%(qﬁ +¢7)°. (8)

The first part describes the free system of two sine-Gordon fields. The second
part stands for the Coulomb interaction between them. The boundary values
of ¢® at the spatial infinity are associated with the flavor quantum numbers
of the fundamental fermion fields through the relations:

2
(0u$™)> + ) emi Nip, [cos Vamg®] (7)
a=1

DN | =

N U N G
Q—ﬁ_éamdx A Q
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We expect that all finite-energy solutions should approach the vacuum asymp-
totically. The Lagrangian gives the following field equations (a = 1,2),

a§¢a-a§¢a+-§§(¢1+—¢%-+c»65hngsﬁmv@}¢a)::o. (10)

It is convenient to denote 8 = V4w, p? = Nfé and M2 = c¢f?m2. Finally,
after rescaling of fields ¢* — [F¢® and the coordinates x — Mz, t — Mt

we obtain the standard form of the coupled sine-Gordon equation (we set
M1 = MQ = M)

%w—%w+;¢+&ymmw:a (11)

The classical Euler—Lagrange field equations depend only on one parameter
2
€= Z—2 In the present paper, we try to solve these equations in the limit of

weak interaction (¢ < 1). We find localized solutions, which correspond to
“mesons” composed of fundamental “quark” fields ¢°.

3. Flavor-charged mesons

The simplest case is a solution which describes the meson with nonzero
topological charges, with the assumption ¢' = —¢?. In this case, we find
two separated sine-Gordon equations. The straightforward solution can be
written in the form:

b = (¢sa ¢a)a¢2 = (¢a7¢s)a (12)

where
¢s,a = 4Q arctan eV (z—zo—0t) (13)

and @, = %1 for soliton or for antisoliton respectively [8]. The energy and
mass for the meson solutions (12) are the same,
E = E,+ E; =167, (14)
m = Mg+ ms. (15)
These mesons are the lowest energy states being the composition of soliton
and antisoliton pair localized at some point 9. However, if we try to separate

components for small distance Az, they start to attract themselves and the
energy grows like the confining force [9],

AE ~ (Az)?. (16)

The asymptotic freedom and the confinement in the Schwinger model are ob-
served already at the classical level provided that we use the dual description
(bosonization).
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4. Flavor-neutral mesons

Our aim is to find a classical solution of nonlinear equations (11), which
describes a meson with vanishing topological charges in the weak interaction
limit € << 1. It corresponds to the following expansion.

¢l = g+, (17)
$* = €2, (18)

On account of the fact that the topology of the vacuum states or asymptoti-
cal behavior of the fields is unchanged this expansion appears to be correct.
It shows that both fields are crucial for the topological reasons. However, as
we see it at the end of this Section, only one of them gives the contribution
to the energy. Using this assumption we derive from Eq. (11) the following
equations for the expansion coefficients,

(0 = 7)o +sindy = 0, (19)
(@ ~ )91 + 594 + dheosgh = 0, (20)
(@ — ) + 58+ 9 = 0. 1)

Taking into account the fact that we search for a pure meson state with
vanishing topological charges, we should start with the breather solution of
Eq. (19),

(22)

in wt
¢(1) = ¢p = 4arctan [ ysmow ]

w coshyz

where v = /1 — w?. This solution is periodic in time and it is the lowest
energy composite state which possesses zero topological charge [8]. The next
step is the Fourier expansion of the first coefficient fields,

o.¢]
ot = Z b1 4n () sinnwt + ¢l () cos nwt (23)
n=0
P = Z ¢ () sin nwt + ¢3,, () cos nwt . (24)
n=0

After some straighforward calculations we compute,

x x
o ﬁ[e*%“"o{ e Yp,dy +e 7{(} e Ypndy] m < [1],
1

0 n>[a]a
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qﬁcn =0, (26)

where ¢y, is n-th factor in the Fourier expansion of the breather and v, =
V1 —n2w?2 With the field ¢! the situation is more complicated and for
simplicity we restrict ourselves to analyze only the first terms of the Fourier
expansion,

¢ = b1 () sinwt + P}, coswt. (27)

This simplification gives, as it is explained in [9] a good approximation to
the energy. We put also the approximation for the breather solution in this
case,

bo = psinwt, (28)
where the function ¢ satisfies the following equation,
P+ W’ — 2J1(¢) =0 (29)

and J; is the first order Bessel function. After substitution of (28), (29) into
(20) and using the approximation (27) we obtain,

$1e1 =0, (30)
1 2 [
—(w? + 0% g1y + §¢ + ‘75%51; /sin2 tcos(¢sint)dt =0, (31)
0

where the lates equation can be resolved with the following asymptotical
conditions,
¢ty — 0,2 — +o0. (32)

Using a standart procedure we obtain

T
1

Halo) = 00 [(0,0) 2%y, (33)
0

where the latest equation can be resolved with the following asymptotical
(29) together with the asymptotical conditions we derive that,

¢ ~ QSbl ) (34)

where
8

. (35)
\/(f)2 cosh? yz 4+ 1 + 2 coshyz

b1 =
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It is easy to show that the next term of the Fouriar expansion of ¢! vanishes.
Let us summarize, we have computed the approximated solution of the flavor
neutral meson state,

x

13 . _
# = o+ o sinut [ (0,60) *hdy. (36)
0
N:[%} 1 T —00
P = ¢ Z 1 e7”$/e7"y¢bndy+e7”"”/e7"y¢bndy sinnwt . (37)
n=1 00 z

The solution describes time oscillations around the breather state for the
field ¢' and the vacuum state for the field ¢?. Obviously, the oscillations
are localized at the spatial space around the origin.

The energy density following from the Lagrangian (5) has the form for
this solution,

E = Z %(8“15“)2 + (1 —cos ¢) + Z((pl +§?)? (38)
a=1,2
= By + (00400241 + Dupodipi + ¢1 sin go] + oe) (39)

where Ej is the energy density of the breather. The residual field ¢? gives a
contribution at the higher orders in ¢.

The lowest two-meson state can be obtained in the same assumption like
in the one-meson state i.e. if we put ¢! = —¢? in (11). Then the solution is,

(QQaq) = (bv, — ) - (40)

On the contrary to one-flavor-neutral case this state does not contain the
residual fields.

5. Scattering solution

It is easy to find the elastic scattering solution when we scatter two
flavor-charged mesons (Q stands here for the field ¢! and q refers to the
field ¢?),

Q4+ Qq — Qg+ Qq. (41)
The solution is,

¢ = (¢saa _¢sa) s (42)

where ¢4, is well-known solution of the sine-Gordon equation, which de-
scribes scattering of a soliton and an antisoliton [§],

(43)

inh ~yvt
Dsa :4arctan[sm Al ] .

v cosh yzx
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Asymptotically we find two single meson states which propagate in opposite
directions.

The similar case refers to the elastic scattering of a meson on a meson
of the same type (both are flavor-charged),

QI+Q7— Qi+ Qq. (44)

The solution can be found in the analogous way,

D = (s, —bss) » (45)

where ¢4 is the double soliton scattering solution of the sine-Gordon equa-
tion [8],
cosh yvt ]

46
vsinhvyz (46)

¢ss = arctan |:
A less straightforward task is to find the solution of the equation (11) which
describes the elastic scattering of the two flavor-neutral mesons (at least in
the limit of small ¢,

QQ+4qq — QQ +qq. (47)

We compute the above solution in the first order approximation,
v = !p() + 5¢1 ) (48)

where
Ty = (g, 95) = (u(z — vt), Py (z + vt)) (49)

is solution of two independent sine-Gordon equations which are obtained tak-
ing the limit e = 0. This solution contains two sine-Gordon breathers which
move in opposite directions with the same velocity. The first correction ¥
can be interpreted as the interaction of the breathers. The interaction is
small when the breathers are separated. It becomes to play a significant
way only during the short time when the centers of the breathers come close
together. Let us investigate that in a more detailed way. Comparing leading
order terms in the parameter ¢ in the equation of motion (11) we obtain,

(0F = 02)u1 + 41 cos by = —35 (45 + 45) , (50)

where 11 is one of two field components of ¥;. In order to solve this linear
differential equation we divide it into two parts.
The first one reads,

(07 — )1 + bt cos gy(x — vt) = —5¢p(z — vt) (51)
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and it is identical with the equation considered previously for (QQ) meson
state. Therefore the solution can be presented in the following form,

)i = di(z —t). (52)
Now let us turn to the second equation,
(0F — 2)1pi + 41 cos dy(z — vt) = —Sdy(z + vt) . (53)
The solution of (53) can be written as,

)i = fla,t)di(z +ot). (54)

The shape function f(z,t) should posses the above mentioned asymptotical
properties namely f(x,t) — 1 if the breathers are separated. It is easy to
verify that this limit is approached exponentially.

Thus the approximated solution for the contact interactions during the
scattering of two flavor-neutral mesons can be written as follows,

v = (0!, 0?), (55)

where
U= gy(x — vt) + ey (x — vt) + f(z, )67 (@ + vt)]. (56)

In the formula for ¥? we have to interchange x — vt with z + vt.
This solution has the required asymptotical behavior and a finite energy.
In a similar way the solution which describes elastic scattering of the
mesons QQ and Qg can be found,

QQ+Qq— QQ+Qq. (57)

If we put again e = 0, then the equation (11) separates into two independent
sine-Gorgon equations and the respective solution is,

D = (Pv—s; Pa) - (58)

The function ¢p_, is the scattering solution of the sine-Gordon equation
where a breather scatters on a soliton [10]. This solution represents an
interaction between the meson QQ and the quark @ while the quark § is
non-interacting in the zero order approximation. When we consider first
order corrections we find new effects. The quarks, which were primary free,
are confined around the same point. The point, usually called center, moves
during the time evolution. This is the mechanism of the meson Qg formation.



The Soliton Solutions of the Schwinger Model 1893

6. Adiabatic evolution

The most general form of the breather which solves the standard sine-
Gordon equation can be written down,

sin(n cos )

¢y = 4arctan tan'ucosh(zsinu) ) (59)
p= P28 e—vige (60)
Vi-v? "

RV R
The parameter p is the amplitude of the breather. If we add a small term
P[#] to the sine-Gordon equation, then the solution of the extended equation
can be found as the perturbation of the breather (59). In the adiabatic
approximation we can compute a general perturbation-induced evolution
equation for the parameters p, V and n [11]. We are going to analyze two
parameters (the amplitude and the velocity) in details.

Cfl_l: = (1 =V ?(4cos p)~ 1y, (62)
% = —¢(1- V2)3/2(4 cos )y, (63)
where

T cosh z cos(cos un)
I = Pl¢yldz 64
! / cosh? & + tan? yu sin®(cos un) 9]z (64

— o
7 sinh z sin(cos un)

I, — — Pl¢pldx, 65
2 / cosh? z 4 tan? i sin?(cos 7)) (9ol (%)

where the integration is over the variable x = sinuz. The above equation
can be expanded in the parameter €. Let us introduce the expansions y =
po + ey and Vo= Vy + V5. The breather parameters pg and Vg refer
to the amplitude and the velocity of the standard sine-Gordon breather
respectively. We obtain the equations for p; and Vi,

oo

d _ (1-V)?(4 cos uo)_l/ coshz cos(cos fign) P[p)dz, (66)

dt . cosh? 2 ++tan? jg sin? (cos o7)
o.¢]
davi 213/2 1/ sinh z sin(cos pon)
5 = 1=V (4 cos Plgy)da. (67
dt ( o) o) cosh? z+tan? yq sin’(cos pon) [#old- (67)

—0o0



1894 A. WERESZCZYNSKI

In the case of the meson (QQ) the perturbation is represented by,

Plgs] = ¢b- (68)

It is easy to see that V; vanishes so that the free meson (QQ) moves with
constant velocity Vp. But behaviour of u; is more sophisticated. The am-
plitude (thickness) is periodic in time with the period,

7o VIV (69)

COS 4o

The period is twice smaller then the period of the standard breather oscilla-
tions. Then, in our solution the perturbed breather oscillates in the thickness
twice during the period of the fundamental oscillations of the sine-Gordon
breather. The amplitude of the oscillations is much smaller than the instant
width of the breather.

Let us consider the above mentioned elastic scattering mesons (QQ) and
(qG). Now the perturbation term has the form,

Plg] = ¢p(z + vt) + dp(z — v1). (70)

First, we can observe that the solution of such problem tends asymptotically
to the free meson solution. The difference is that the velocity is no longer
fixed. There is a small correction V; being periodic in time. The period of
the oscillations is the same as for .

During the scattering the mesons (QQ) and (¢q) attract and push away
each other periodically. This interaction is observed when the centers of the
meson (QQ) and (qq) are close together.

7. Summary and conclusion

In this article we studied the existence and the properties of soliton solu-
tions in the Schwinger model (a bosonized version) when the quarks masses
are equal (SU(2) flavor symmetry). We found the lowest states for the
flavor-charged and the flavor-neutral mesons in the approximation of weak
interactions. These mesons possess topological charges and finite energies.
Their stability is guaranteed by topological charges i.e. by the form of the
ground state. In both mesons we have the confinement of the fundamen-
tal quarks at the classical level. However, the way how the confinement
appears in the above mesons is different. In the flavor-charged case it is
implied directly by the Coulomb interactions between fields ¢2 (8), while
in the flavor-neutral case the confinement follows from the mechanism which
stabilizes the breather and it is crucial based on the interactions with the
vacuum.
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These mesons can form bound states (i.e. the two-flavor-neutral state)
as well as scattering states. In particular, we found the elastic scattering
solution for various configurations of the mesons. The flavor-neutral case
was obtained in the approximation of weak interactions. We observed small
and fast vanishing oscillations of the amplitude and the velocity. The period
of the oscillations is twice smaller than the basic period of the breather.

The above SU(2)-flavor solutions can be easy embedded in the SU(3)-
flavor case. However, non-trivial SU(3) solutions, which contain all funda-
mental fields should also exist. These mesons and their behaviour will be
investigated in the next paper.

It is still too difficult to analyze the non-elastic scattering solution in
the above framework. The ground state is given by a soliton of sine-Gordon
equation and it cannot be transformed into another solution. Time evolution
does not destroy the ground state. We can assume that our approximation
is failed when the correction to the amplitude of the breather satisfy,

o ~ EfL - (71)

In this case fundamental quarks of the scattering mesons are mixed and
interchanged.

I would like to thank Dr. P. Wegrzyn for his help and many stimulating
discussions. T am also grateful to Professor H. Arodz for reading the paper
and helpful remarks.
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