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uss the notion of non
ommutative symmetries based on Hopfalgebras in the geometri
 models 
onstru
ted within the framework of non-
ommutative geometry. We introdu
e and dis
uss several notions of non-
ommutative symmetries and outline the 
onstru
tion spe
i�
 examples, forinstan
e, �nite algebras and the appli
ation of symmetries in the derivationof the Dira
 operator for the non
ommutative torus.PACS numbers: 11.30.�j, 02.10.Tq, 03.65.Fd1. Aspe
ts of symmetriesIt is generally believed that the des
ription of physi
al systems shouldhave built-in symmetries, whi
h re�e
t the symmetries of spa
e and asso
i-ated geometri
al stru
tures. In parti
ular, the a
tion fun
tional is requiredto be invariant under these symmetries, whereas the equations of motionsare 
ovariant. The Noether theorem relates symmetries of the a
tion with
onserved quantities (integrals of motion).y Supported partially by the Polish State Committee for S
ienti�
 Resear
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1898 M. Pas
hke, A. SitarzIn quantum �eld theory the representation of symmetries on the Hilbertspa
e of parti
les is generated by the 
onserved 
harges. The Hilbert spa
ede
omposes into irredu
ible representations and only 
harged operators, i.e.operators whi
h do not 
ommute with the 
harges, 
an interpolate betweeninequivalent representations. The latter form the so-
alled supersele
tionse
tors. For instan
e, one 
annot prepare a system in a state, whi
h is asuperposition of spin-12 and spin-1 states (at least, su
h a state has neverbeen observed). Moreover, by virtue of the symmetries one derives 
ertainidentities of amplitudes, theWard�Takahashi- and Slavnov-Taylor-identities.They are essential to prove both renormalisability and unitarity, whi
h areimportant physi
al 
onsisten
y requirements ensuring the �predi
tive power�of the theory.The most important examples of symmetries in �eld theory 
ome fromgauge symmetries and Poin
aré invarian
e. The attempts to extend themhave led to 
on
epts that generalized the notion of a group. For instan
e, insupersymmetri
 theories, whi
h provide some of the most studied (both the-oreti
ally and experimentally) extensions of the standard model, the gaugegroups and the Poin
aré group are uni�ed in a supergroup.Other possibilities su
h as Hopf algebra symmetries might also play animportant role in Quantum Field Theories, as has been suggested re
ently.For instan
e, they 
an be used to des
ribe the supersele
tion se
tors in
ertain low dimensional theories (see [13℄ for details and referen
es). Thereis also some spe
ulation about the Hopf algebra stru
ture underlying therenormalisability of perturbative Quantum Field Theory [11, 12℄.In this paper we shall present some new 
on
epts of symmetries builtin the �eld theory based on non
ommutative geometry and formulated inthe language of spe
tral triples. We propose the de�nitions of quantumsymmetries of spe
tral geometry based on the a
tion (or 
oa
tion) of theHopf algebra. The paper is organized as follows: in se
tion 2 we brie�yreview the ideas of symmetries in non
ommutative models as well as thenotation of Hopf algebras and spe
tral triples. In se
tion 3 we present theproposed de�nitions of invariant spe
tral triples (3.1), illustrating it withresults on the properties of su
h obje
ts (di�erential 
al
uli), and resultson symmetries of �nite geometries (3.2). Finally, we present a derivationof the spe
trum of the invariant Dira
 operator for the non
ommutativetorus. This provides an ex
ellent illustration of the introdu
ed de�nitionsand, although the spe
trum is well known, to the best of our knowledge su
ha derivation following from the symmetry prin
iples has not been publishedelsewhere.
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ommutative Symmetries 18992. Symmetries of non
ommutative spa
esThe notion of symmetry in geometry is related with groups and Liealgebras. A spa
e X is said to have a 
ertain symmetry if a group G a
tson it. In Non
ommutative Geometry, where no notion of spa
e is present,this pi
ture 
an no longer be used. We are left with two possible ways ofgeneralizations, both 
oming from the 
lassi
al pi
ture. First of all, we knowthat the a
tion of a group on some spa
e X indu
es automorphisms of thealgebra of fun
tions on X. Hen
e, we 
an take generalized symmetries asautomorphisms of the (not ne
essarily 
ommutative) algebra. A very goodexample is the non
ommutative interpretation of the Standard Model, whi
h
hanges the interpretation of known physi
al symmetries. So, for instan
e,gauge symmetries are now interpreted as �internal di�eomorphisms�.Another option is to dualize the pi
ture of a group a
tion, whi
h meansthat we represent it as a 
oa
tion of the Hopf algebra C(G) (fun
tions onthe group) on the algebra C(X) (fun
tions on the spa
e). Here, the key roleof the symmetry is played by the Hopf algebra. This suggests that in thenon
ommutative 
ase we should also 
onsider these obje
ts as generalizedsymmetries. A broad 
lass of �non
ommutative spa
es� with symmetriesunderstood in this 
ontext 
omes from quantum groups and quantum ho-mogeneous spa
es. One should stress that at present, there are no knownspe
tral triples for su
h spa
es. Their geometry is usually des
ribed by bi
o-variant di�erential 
al
uli and Haar measures (if they exist). It is thereforean interesting and important task to build a bridge from quantum grouptheory to non
ommutative geometry based on the Dira
 operator.Within the approa
h of spe
tral triples symmetries 
an have yet anothermeaning. With the basi
 data 
onsisting of an algebra A, its representationon the Hilbert spa
e H and the Dira
 operator D, we 
an 
onsider as sym-metries transformations of unitary equivalen
e. These in
lude, of 
ourse,mainly the automorphisms of A (H is some 
losure of an appropriate mod-ule over A), but also unitaries U , whi
h 
ommute with the algebra, andtherefore do not represent di�eomorphisms. The a
tion of physi
al modelsbased on spe
tral triples � for instan
e the Connes�Chamseddine a
tion �only depend on the unitary equivalen
e 
lass of the data A;H; 
;D; and J .For the quantization of su
h a model, it is very important to take intoa

ount all its symmetries. In parti
ular, the path integral should onlybe taken over the spa
e of equivalen
e 
lasses of �eld 
on�gurations. Forinstan
e, if the a
tion is a fun
tional of the eigenvalues of the Dira
 operator,su
h as the bosoni
 a
tion of the Standard Model, the path integral shouldbe formulated as an integral over the allowed range of these eigenvalues. Forsimple examples of dis
rete spe
tral triples su
h an invariant mesasure 
anindeed be de�ned [18℄.



1900 M. Pas
hke, A. SitarzOne should mention, however, that the eigenvalues of the Dira
 operatorare, in general, not the only degrees of freedom of su
h models.For example, let us 
onsider the dis
rete spe
tral triple whi
h is usedin the non
ommutative des
ription of the Standard Model. Re
all that theDira
 operator of this dis
rete spe
tral triple is physi
ally interpreted as thefermioni
 mass matrix. Hen
e, it 
ontains the fermion masses (its eigenval-ues), but also the unitary Cabibbo-Kobayashi-Maskawa matrix as additionaldegrees of freedom. The latter results from the fa
t that one 
annot simulta-neously diagonalize the representation of the algebra and the Dira
 operatorin the spa
e C 3 of quark-families.The unitary transformations U whi
h leave all physi
al observables (thefermion masses and the entries of the CKM-matrix) invariant, in the sensethat two mass matri
es, M1 and M2, related by M1 = UM2U� des
ribethe same physi
s, 
an then obviously be 
hara
terized by the requirementthat they 
ommute with the grading 
, the 
harge 
onjugation J and therepresentation of the algebra.Note that in the 
lassi
al 
ase, where the algebra A is that of fun
tions ona manifold M , the above 
ondition that it 
ommute with everything ex
eptD, states that U is a map from M to the representation of the spin groupon spinors. 2.1. Hopf algebras and spe
tral triples2.1.1. Hopf algebrasHopf algebras are the natural generalization (from the algebrai
 pointof view) of the 
on
ept of groups and lie algebras and therefore the natural
andidate for generalized symmetries. For a 
omprehensive review of Hopfalgebras see, for instan
e, [1�4℄.Here, we shall only re
all the notation, for the Hopf algebra H the 
o-produ
t �, is an algebra homomorphism � : H ! H 
 H (we shall oftenuse Sweedler's notation: �a =P a(1)
a(2)); the 
ounit, an homomorphism" : H ! C and the antipode, an antihomomorphism S : H ! H, i.e.,S(ab) = S(b)S(a).The notion of an a
tion of a group on a spa
e is re�e
ted by a 
oa
tionof the Hopf algebra H on an algebra A. A right 
oa
tion is given as analgebra homomorphism: � : A ! A
H, su
h that (� 
 id)� = (id 
�)�and id = (id
 ")�. A good model for that is the 
oa
tion of the algebra offun
tions on a group on the algebra of fun
tions on its homogeneous spa
e.Similarly, Hopf algebras 
an also a
t on algebras. A left a
tion of H on A,is a map H 
 A 3 h 
 a ! h . a, with the following properties: 1 . a = a,h . 1 = "(h), h . (g . a) = (hg) . a and h . (ab) = (h(1) . a)(h(2) . a). To see



The Geometry of Non
ommutative Symmetries 1901the 
ommutative example one should 
onsider the a
tion of the lie algebraon the spa
e on whi
h the group a
ts.Among possible di�erential stru
tures on an algebra A one 
an single outthose on whi
h the Hopf algebra H a
ts (or 
oa
ts). For the Hopf algebraitself, one may distinguish the left (respe
tively, right) invariant di�erential
al
uli, de�ned by the property that there exist a left (right) 
oa
tion � ofH on the spa
e of one-forms, whi
h 
ommutes with the external derivative:�(da) = (d
 id)�a :Cal
uli whi
h are left and right 
ovariant are bi
ovariant [6℄. In a similarway one introdu
es left and right 
ovariant 
al
uli on arbitrary algebras onwhi
h Hopf algebras 
oa
t or a
t.2.1.2. Spe
tral triplesSpe
tral triples have been introdu
ed [7℄ in order to provide an alge-brai
 des
ription of 
ompa
t spin manifolds. The basi
 data, whi
h de�nesa spe
tral geometry 
onsist of a C� algebra A, its faithfull representationas bounded operators on a Hilbert spa
e H and an unbounded selfadjointoperator D, whi
h must satisfy 
ertain algebrai
 (for instan
e that its 
om-mutators with a dense subalgebra of A are also bounded) and analyti
 
on-ditions (for details, we refer to [7℄, simple �nite-dimensional examples aredis
ussed in [8℄).Su
h data provide information both on topology (C� algebra), as wellas as di�erential and metri
 stru
tures of the �non
ommutative manifold�,whi
h are 
ontained in the operator D. Additional information su
h as thegrading operator (for even-dimensional geometries) and reality operator (forreal spe
tral geometries) further restri
t the realm of possibilities to the 
aseof 
ompa
t real spin manifold. In this situation, the algebra A is the algebraof 
ontinuous fun
tions, while D is the Dira
 operator a
ting on the spa
eof square integrable se
tions of the spinor bundle.3. Symmetries of the Dira
 operatorOne of the most important tasks in �eld theory models is the 
onstru
-tion of the Dira
 operator for spin manifolds and 
hara
terization of itsproperties. A similar problem is en
ountered in the non
ommutative 
ase,where, in most examples, we need to know the Dira
 operator in advan
e to
onstru
t feasible models. However, just as in the 
lassi
al 
ase, for somespe
ial algebras (manifolds) there might exist a natural method, whi
h usessymmetries of the underlying spa
e as the guiding prin
iple.



1902 M. Pas
hke, A. SitarzSuppose we have an algebra A for whi
h we would like to 
onstru
t thespe
tral data and we know that the Hopf algebra H a
ts on it. We de�ne aspe
tral triple with the symmetry H:De�nition 3.1. Let A, with its representation on H, D, 
, J be a spe
traltriple. Then we 
all it invariant under the a
tion of H if:� H a
ts on the algebra A ,� H is the representation spa
e of the 
ross-produ
t of A and H, i.e., His represented on H and the representation obeys:h(av) = �h(1) . (a)� (h(2)v); 8a 2 A; h 2 H; v 2 H ; (1)� the Dira
 operator D 
ommutes with the representation of H:[D;h℄ = 0; 8h 2 H : (2)In the 
lassi
al 
ase, with A 
ommutative and H a 
o
ommutative Hopfalgebra (the group algebra of G or the universal envelope of its Lie-algebra)the se
ond 
ondition is equivalent to H being a G-homogeneous bundle,while the third one states that the metri
 is invariant under the a
tion ofthe symmetries, i.e. the latter a
t as isometries.If H is a 
ompa
t matrix pseudo-group [5℄ or its dual ( the generalizationof a 
ompa
t group respe
tively its Lie-algebra) H de
omposes into the �nitedimensional irredu
ible representations of H. One 
an then use te
hniquesfrom harmoni
 analysis to work out the Hilbert-spa
e and, with the help ofthe order-one 
ondition, also the Dira
 operator. We shall illustrate this inthe example of the non
ommutative torus in the last se
tion of this 
hapter.As dual notation (i.e. the 
oa
tion of the Hopf algebra H on the algebraA we propose:De�nition 3.2. Let A, with its representation on H, D, 
, J be a spe
traltriple. Then we 
all it left invariant under the 
oa
tion of H, if:� H 
oa
ts from the left on the algebra A, � : A ! H 
A,� H is the left 
orepresentation of H, so there exists a 
orepresentationmap ~� : H! H 
H,� the 
oa
tion and 
orepresentations 
ommute with ea
h other:~�(av) = �(a)~�(v); 8a 2 A; v 2 H ; (3)� the Dira
 operator D 
ommutes with the 
orepresentation of H:~�(Dv) = (id
D)~�(v); 8v 2 H: (4)
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ommutative Symmetries 19033.1. The symmetries of the di�erential 
al
uliThe above dis
ussed notions of symmetries for the Dira
 operator of spe
-tral geometries have immediate 
onsequen
es for the di�erential stru
turesen
oded in the spe
tral data. We prove the following:Lemma 3.3. Let A;H;D be the spe
tral triple invariant under the a
tionof the Hopf algebra H (as de�ned in (3.1). Then there exists the a
tion ofH on the �rst-order di�erential stru
ture determined by the spe
tral data.Proof. Let us simply de�ne (h . da) = [D; (h . a)℄ and extend on the entirebimodule of one-forms through:h . (adb) = (h(1) . a)d(h(2) . b) : (5)Clearly this is a well-de�ned operation, in fa
t we might de�ne the a
tion ofH on any operator O through the identity:h . O = h(1)OSh(2): (6)Indeed, we verify that then for every operator O, h 2 H and v 2 H we have:hOv = h(1)O"(h(2))v = h(1)O(Sh(2))h(3)v= �h(1)OSh(2)�h(3)v = �h(1) . O�h(2)v:Clearly, this a
tion is a proper a
tion of the Hopf algebra on a bimoduleover A (all operators form a natural bimodule over A), we shall 
he
k hereonly the 
ompatibility with the left module stru
ture:h . (aO) = h(1)aOSh(2) = h(1)a(Sh(2))h(3)OSh(4)= (h(1) . a)(h(2) . O):In the 
ase of the 
onsidered bimodule of one-forms it is enough to verifythat the a
tion maps one-forms onto one-forms, however, this is guaranteedby the de�nition (5) and the invarian
e of D.The invarian
e of spe
tral triples under the a
tion and 
oa
tion of theHopf algebra and the resulting properties of the di�erential 
al
ulus, shallbe adressed in a forth
oming paper, with attention fo
used on the �nite
ase, where the relations between the a
tion and 
oa
tion approa
h 
an beestablished (see also [8, 18℄).



1904 M. Pas
hke, A. Sitarz3.2. The 
ase of �nite algebrasThe simplest examples of spe
tral triples as non
ommutative geometriesare given by �nite-dimensional semisimple �-algebras. The 
lassi�
ation andthe rules of 
onstru
ting the Dira
 operator were dis
ussed in [8, 9℄.Let us re
all that every su
h algebra (over C ) is a �nite dire
t sum ofsimple matrix algebras. Then the full spe
tral triple over it is de�ned by theinterse
tion form matrix qij, that 
omes from the bilinear mapq : K(A)�K(A) �! Z ;whi
h is indu
ed by the spe
tral triple. From the matrix qij one then obtainsthe dimension of the representation spa
e, grading and reality operators, aswell as the stru
ture of the Dira
 operator.More expli
itly, for an algebra �ki=1Mni(C ), qij is a symmetri
 non-degenerate (k � k)-matrix with integer entries. The representation spa
ede
omposes as H = �i;jHij; whereHij = C ni jqij jnj :The algebra a
ts on Hij by left multipli
ation with the i-th 
omponent Mni .The grading 
 is diagonal with its restri
tion to the spa
e Hij being qijtimes the identity. The reality J is an antilinear operator, whi
h maps Hij toHji. Finally, the Dira
 operator 
an 
onne
t spa
es Hij and Hkl (of di�erentgrading) only if i = k or j = l. In the 
ase i = k (or j = l respe
tively )D must 
ommute with the left a
tion (right a
tion respe
tively) of Mni(Mnj ) on Hij and Hil (Hij and Hkj). This is a 
onsequen
e of the orderone 
ondition. Pi
torially, if one asso
iates the spa
es Hij to the matrix-elements of qij, then D a
ts only along the rows and the 
olumns of thematrix qij.3.2.1. The S0-reality exampleThe �rst example has a dire
t relation to Connes' interpretation of theStandard Model geometry. Consider a Z2-symmetry, whi
h a
ts triviallyon the algebra A (hen
e, as a symmetry it is not a symmetry of the spa
ebut only of the �bres of the spin-bundle). It 
an be represented as anoperator S su
h that S2 = 1 and [S; a℄ = 0 for every a 2 A, we requirealso that it 
ommutes with 
 and anti
ommutes with J . Su
h symmetry isapparently present in the NCG des
ription of the Standard Model, namelythe so-
alled S0-reality, whi
h assigns the eigenvalue +1 to parti
les, and �1to antiparti
les.The physi
al Dira
 operator is invariant under the S0-reality. However,the most general possible Dira
 operator for the Standard Model spe
tral
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ommutative Symmetries 1905triple is not invariant. A general Dira
 operator would then ne
essarilylead to additional 
ouplings between leptons and antiquarks, violating the
onservation of lepton and baryon numbers and enfor
ing the existen
e ofs
alar parti
les (leptoquarks), whi
h might break SU(3) 
olor symmetry.One should mention here that although leptoquarks have not been ob-served yet, they are experimentally not 
ompletely ex
luded. However, with-out requiring the S0-reality the non
ommutative des
ription of the StandardModel would lead to unrealisti
 predi
tions [10℄.3.2.2. Dira
 operators for �nite Hopf algebrasSuppose that a given semisimple �nite algebra allows the Hopf algebrastru
ture. (Note that for one algebra there may exist several inequivalentHopf algebra stru
tures.)What 
an be said of restri
tions whi
h this Hopf algebra stru
ture im-poses on the 
onstru
tion of spe
tral triples? There are several possibleapproa
hes. We shall brie�y show the dire
tions and illustrate them withexamples.Adjoint symmetryThe adjoint a
tion of the Hopf algebra on itself is de�ned by:h .ad p = h(1)p(Sh(2)): (7)Clearly, every representation of the Hopf algebra is adjoint 
ovariant inthe sense of (1):hgv = h(1)g"(h(2))v = h(1)gS(h(2))h(3)v = (h(1) .ad g)h(2)v:Then, 
learly, the invarian
e of the Dira
 operator with respe
t to the adjointa
tion implies that D 
ommutes with the representation of the algebra, andthe di�erential algebra is thus trivial.. However, we may relax the 
onditionand require that D is invariant not under the a
tion of the entire Hopfalgebra H but only under the a
tion of its sub-Hopf-algebra H0 � H.Bi
ovarian
e of di�erential stru
turesAnother possibility to restri
t the freedom of 
hoi
e of the Dira
 oper-ator, mu
h weaker than the one mentioned in the previous se
tion, is therequirement that the di�erential stru
ture generated by D is (at least in the�rst order) bi
ovariant (or left 
ovariant).Let us take a simple example of a 
ommutative �nite algebra (fun
tionson a dis
rete group G). The generators of the left-
ovariant di�erential
al
ulus are one-forms �g, whi
h, in the spe
tral triple representation are the



1906 M. Pas
hke, A. Sitarzfollowing operators, using the de
omposition of the representation spa
e wehave 8i;j2G�gij : H(ig�1)j ! Hij and it is easy to verify that �gij = Dij;(ig�1)j .First of all the left 
ovarian
e of a 
al
ulus in whi
h �g is present enfor
esthat for all i there must exist a j su
h that Dij;(ig�1)j does not vanish,otherwise we would have eh�g = 0, whi
h 
annot happen.Now let us verify whether the 
al
ulus given by D is bi
ovariant. It isknown that the generators of su
h a 
al
ulus 
orrespond to orbits of theadjoint a
tion in G. Suppose that for a given g �g vanishes, whi
h meansthat 8i; j 2 G Dij;(ig�1)j = 0. Then in order to preserve the bi
ovarian
eone must have Dij;(ih�1)j = 0 for all h in the adjoint orbit of g.Another simple, interesting example 
omes from studying group algebrasand their spe
tral triples. This is more interesting sin
e the algebras are nolonger ne
essarily 
ommutative. For instan
e, the smallest nonabelian groupS3 has the group algebra M2(C ) � C � C . The bi
ovariant (or, in fa
t, left
ovariant, be
ause of 
o
ommutativity) 
al
uli on group algebras 
orrespondto the representations of the group algebra. In the 
ase of C S3 it happens,that the 
al
ulus either has a splitting property (so that it is a dire
t sum ofthe 
al
ulus on M2(C ) and the 
al
ulus on C � C ) or has a 
entral elementin the bimodule of one forms. Neither of these is possible for the 
al
uliobtained from the (�nite) spe
tral triples. So the result is, that no Dira
operator respe
ts the C S3 symmetry in that sense.Invarian
e under the a
tion of the dual Hopf algebraAgain, as an illustrative example we shall 
onsider spe
tral triples builton �nite Hopf algebras. The notion of symmetry, whi
h we introdu
e now isstronger than the previous one. We shall use the 
anoni
al a
tion of the dualHopf algebra H� on H: (h . a) =< h; a(2) > a(1), where <;> is the pairingbetween the Hopf algebra and its dual. For instan
e, take a 
ommutativealgebra of fun
tions on a group C(G) with its basis eg; g 2 G and its dual,the group algebra G with the basis g 2 G. Then the a
tion, expressed in theabove basis be
omes: g . eh = ehg�1 :To pro
eed with the notion of invarian
e as proposed in de�nition (3.1)we need to 
onstru
t the representation of the 
rossprodu
t of H� and H.The set of algebrai
 rules for the 
ross produ
t algebra is given by:eheg = ehÆgh; geh = ehg�1g;for all elements g of G. We 
onstru
t the spe
tral triple for the subalgebragenerated by eh, whi
h is a representation spa
e for the entire 
ross produ
talgebra and we look for a Dira
 operator that 
ommutes with all g 2 G.



The Geometry of Non
ommutative Symmetries 1907Using the known form of the �nite spe
tral triple we establish �rst thatg a
t as an operator g : �jHij ! �H(ig�1)j . Let us denote its restri
tion toHij, whi
h maps it to H(ig�1)l by gij;l. (Note, that, sin
e g is invertible, Hijand H(ig�1)l must be of the same dimension if gij;l 6= 0.)Now, sin
e D 
ommutes with every g we have:Xm Dkl;(ig�1)mgij;m =Xm g(kg)m;lD(kg)m;ij ;whi
h after taking into a

ount the restri
tion on D be
omes:Dkj;(ig�1)jgij;j = g(kg)j;jD(kg)j;ij ;and Xm D(ig�1)l;(ig�1)mgij;m =Xm gim;lDim;ij :Thus, depending on the spe
tral triple and the 
hosen representation ofthe 
ross produ
t, we obtain a severe restri
tion on possible Dira
 operators.Physi
ally, the symmetry requirement is a 
onstraint for the fermioni
 
on-tent of the theory, espe
ially their masses. In a few simple examples, thatwe worked out, these masses, in fa
t, are �xed (up to a s
ale) by the aboveequations on D. Note, that, sin
e the algebra here is 
ommutative there
annot be any mixing of fermions.The tra
e and the Haar measureFinally, let us brie�y mention the possibility of using the Haar measureon the Hopf algebra. In the general theory of spe
tral triples the s
alar prod-u
t of forms is de�ned through the tra
e of the representation of the algebra(and di�erential forms). However, one may modify it, for instan
e by in-trodu
ing di�erent weight 
oe�
ients for ea
h 
omponent of our semisimplealgebra. If the algebra is the Hopf algebra, there exists a unique 
hoi
e ofsu
h 
oe�
ients, whi
h gives the normalized Haar measure.The physi
al 
onsequen
e of su
h a 
hoi
e is the 
hange of possible massrelations within the model.3.3. Quantum torus: non
ommutative spa
e with 
lassi
al symmetriesAfter presenting our ideas of symmetries for spe
tral triples we would liketo show their appli
ation in the most renowned example in non
ommutativegeometry: the quantum torus and its symmetries.Consider the group U(1)�U(1). It has two 
ommuting generators Æ1; Æ2:[Æ1; Æ2℄ = 0;



1908 M. Pas
hke, A. Sitarzand, a

ordingly, all its its irredu
ible representations Vnm are one-dimensional, 
hara
terized by two integers n;m :Æ1jn;mi = njn;mi ;Æ2jn;mi = mjn;mi ; jn;mi 2 Vnm:Being a Lie-algebra, the 
oprodu
t of the generators is, of 
ourse,4Æi = id
 Æi + Æi 
 id :We are now looking for algebras whi
h 
ontain ea
h irredu
ible representa-tion exa
tly on
e.Suppose we have two unitaries U; V on whi
h the generators Æ1; Æ2 a
t inthe following way: Æ1U = U; Æ2U = 0 ;Æ1V = 0; Æ2V = V :Now, 
learly the element U�1V �1UV is annihilated both by Æ1 and Æ2,therefore the above symmetry-requirement U(1)�U(1) enfor
es thatU�1V �1UV must be proportional to the identity operator, hen
e we ob-tain: UV = �V U; j�j = 1;whi
h is, of 
ourse, the de�ning relation for the non
ommutative torus.The non
ommutative torus is therefor the most general algebra with twogenerators possessing the required U(1)�U(1) symmetry.The only 
ovariant representation (up to equivalen
e) of this algebra isthen the one 
orresponding to the free module of rank 1. In the Hilbertspa
e H0 there exists a orthonormal basis jn;mi and the representation isgiven by U jn;mi = jn+ 1;mi;V jn;mi = ��njn;m+ 1i:In parti
ular j0; 0i is a 
y
li
 separating ve
tor, and the Tomita�Takesaki-theorem provides J0 as J0jn;mi = ��nmj � n;�mi:In order to obtain 
 and the Dira
 operator D one doubles the Hilbert-spa
e H = H0 �H0 and sets
 = � 1 00 �1 � ; J = � 0 �J0J0 0 � :
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ommutative Symmetries 1909Being selfadjoint and anti
ommuting with 
, D is 
learly of the formD = � 0 ��� 0 � :Sin
e we would like the group U(1)�U(1) to a
t as isometries, we require thatD 
ommutes with the two generators Æ1; Æ2. As we shall see, this assumption�xes � up to a normalization fa
tor.Let us denote the basis of 
ommon eigenve
tors of Æ1; Æ2; 
 in H byjn;m;�i. It follows that�jn;m;�i = dn;mjn;m;+i;and the 
omplex numbers dn;m are to be 
al
ulated from the order-one 
ondi-tion �[D; a℄; b0� = 0; 8a; b 2 A. This dire
tly leads to the re
ursion relationsbetween the 
oe�
ients dn;m:dn+2;m = 2dn+1;m � dn;m;dn;m+2 = 2dn;m+1 � dn;mwith the solution (up to a normalization and a 
onstant term)dn;m = n+m� � 2 C ;The obtained result agrees, of 
ourse, with the usual Dira
 operator onthe non
ommutative torus. However, one should stress, that as 
ompared tousual 
onstru
tions, here we have derived it from the order-one 
ondition.Moreover we have used the symmetries to �nd the representation of A, whi
h
orresponds to the spin-bundle. Note that by doing so, one also introdu
esthe norm on the algebra.Along the same the lines, on 
an 
onstru
t spe
tral triples for other Lie-algebras. For su(2) and the algebra of fun
tions on the two-sphere, this hasbeen done in [18℄. In that 
ase, there are in�nitely many su(2)-homogeneousline-bundles, from whi
h the spin-bundle 
ould be 
onstru
ted. The latteris identi�ed by the requirements that 
 be a Ho
hs
hild-
y
le and that thereexists a reality stru
ture J .An interesting question, whi
h arises in this 
ontext is whether also non-
o
ommutative Hopf-algebras 
an serve as isometries. For instan
e, thereexists a two-parameter family of deformations S2q;� of the algebra of fun
-tions on the sphere, whi
h for q = 1; � = 0 agree with the 
lassi
al 
ase.In the general 
ase, for any � there exists however an a
tion of Uq(su(2))(the q-deformed universal envelope of su(2)) on this algebra. With the helpof their symmetries, one 
an attempt to 
onstru
t spe
tral triples for thequantum sphere. Work in this dire
tion is in progress [17℄.
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hke, A. Sitarz4. Con
lusionsSymmetries are very important and fundamental in physi
s and it is
ommonly believed that they are the key to our understanding of parti
lephysi
s and gravity and many other phenomena. Perhaps one of the mostinteresting open questions in this respe
t is whether symmetries � in theextended sense (supersymmetries, Hopf algebra symmetries) � are as fun-damental as group symmetries and what role they play (if any) in parti
lephysi
s.Both in theoreti
al and experimental physi
s one would like to verifywhether there are any �new� symmetries , whi
h are broken at low energies,when physi
s is e�e
tively des
ribed by the Standard Model. For instan
e, itis an ex
iting question, whether there is any symmetry behind the observedmasses and mixing matri
es. Another thing that requires further studies arethe possible relations between the �nite spe
tral triples, whi
h are the geo-metri
al setup for the Standard Model and �nite Hopf algebras originatingfrom quantum groups at roots of unity � for details see [14�16℄.The above dis
ussed examples of possibilities for extended types of sym-metries and their realisation open new paths, even within the physi
s of theStandard Model. They 
ould also provide guiding prin
iples to �nd new ex-tensions of the Standard model and, even more, they 
ould lead to a betterunderstanding of Quantum (Field) Theory.It seems appropriate to add at this moment that all symmetries in physi
smust be veri�ed experimentally. At present, it is rather likely that variousextensions of the Standard Model (or at least some of them) might be testedwithin the next years. Whether this will 
on�rm new symmetries (super-symmetry, for instan
e) or not is hard to spe
ulate.Having formulated 
lassi
al (in the sense of the vanishing Plan
k 
on-stant) �eld theories on non
ommutative spa
es, the next task will be thequantisation of su
h models. In view of the importan
e of symmetries for the
onsisten
y of quantum �eld theories on 
ommutative spa
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