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We discuss the notion of noncommutative symmetries based on Hopf
algebras in the geometric models constructed within the framework of non-
commutative geometry. We introduce and discuss several notions of non-
commutative symmetries and outline the construction specific examples, for
instance, finite algebras and the application of symmetries in the derivation
of the Dirac operator for the noncommutative torus.
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1. Aspects of symmetries

It is generally believed that the description of physical systems should
have built-in symmetries, which reflect the symmetries of space and associ-
ated geometrical structures. In particular, the action functional is required
to be invariant under these symmetries, whereas the equations of motions
are covariant. The Noether theorem relates symmetries of the action with
conserved quantities (integrals of motion).
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In quantum field theory the representation of symmetries on the Hilbert
space of particles is generated by the conserved charges. The Hilbert space
decomposes into irreducible representations and only charged operators, .e.
operators which do not commute with the charges, can interpolate between
inequivalent representations. The latter form the so-called superselection
sectors. For instance, one cannot prepare a system in a state, which is a
superposition of spin—% and spin-1 states (at least, such a state has never
been observed). Moreover, by virtue of the symmetries one derives certain
identities of amplitudes, the Ward—Takahashi- and Slavnov- Taylor-identities.
They are essential to prove both renormalisability and unitarity, which are
important physical consistency requirements ensuring the “predictive power”
of the theory.

The most important examples of symmetries in field theory come from
gauge symmetries and Poincaré invariance. The attempts to extend them
have led to concepts that generalized the notion of a group. For instance, in
supersymmetric theories, which provide some of the most studied (both the-
oretically and experimentally) extensions of the standard model, the gauge
groups and the Poincaré group are unified in a supergroup.

Other possibilities such as Hopf algebra symmetries might also play an
important role in Quantum Field Theories, as has been suggested recently.
For instance, they can be used to describe the superselection sectors in
certain low dimensional theories (see [13] for details and references). There
is also some speculation about the Hopf algebra structure underlying the
renormalisability of perturbative Quantum Field Theory [11,12].

In this paper we shall present some new concepts of symmetries built
in the field theory based on noncommutative geometry and formulated in
the language of spectral triples. We propose the definitions of quantum
symmetries of spectral geometry based on the action (or coaction) of the
Hopf algebra. The paper is organized as follows: in section 2 we briefly
review the ideas of symmetries in noncommutative models as well as the
notation of Hopf algebras and spectral triples. In section 3 we present the
proposed definitions of invariant spectral triples (3.1), illustrating it with
results on the properties of such objects (differential calculi), and results
on symmetries of finite geometries (3.2). Finally, we present a derivation
of the spectrum of the invariant Dirac operator for the noncommutative
torus. This provides an excellent illustration of the introduced definitions
and, although the spectrum is well known, to the best of our knowledge such
a derivation following from the symmetry principles has not been published
elsewhere.
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2. Symmetries of noncommutative spaces

The notion of symmetry in geometry is related with groups and Lie
algebras. A space X is said to have a certain symmetry if a group G acts
on it. In Noncommutative Geometry, where no notion of space is present,
this picture can no longer be used. We are left with two possible ways of
generalizations, both coming from the classical picture. First of all, we know
that the action of a group on some space X induces automorphisms of the
algebra of functions on X. Hence, we can take generalized symmetries as
automorphisms of the (not necessarily commutative) algebra. A very good
example is the noncommutative interpretation of the Standard Model, which
changes the interpretation of known physical symmetries. So, for instance,
gauge symmetries are now interpreted as “internal diffeomorphisms”.

Another option is to dualize the picture of a group action, which means
that we represent it as a coaction of the Hopf algebra C(G) (functions on
the group) on the algebra C(X) (functions on the space). Here, the key role
of the symmetry is played by the Hopf algebra. This suggests that in the
noncommutative case we should also consider these objects as generalized
symmetries. A broad class of “noncommutative spaces” with symmetries
understood in this context comes from quantum groups and quantum ho-
mogeneous spaces. One should stress that at present, there are no known
spectral triples for such spaces. Their geometry is usually described by bico-
variant differential calculi and Haar measures (if they exist). It is therefore
an interesting and important task to build a bridge from quantum group
theory to noncommutative geometry based on the Dirac operator.

Within the approach of spectral triples symmetries can have yet another
meaning. With the basic data consisting of an algebra A, its representation
on the Hilbert space H and the Dirac operator D, we can consider as sym-
metries transformations of unitary equivalence. These include, of course,
mainly the automorphisms of A (# is some closure of an appropriate mod-
ule over A), but also unitaries U, which commute with the algebra, and
therefore do not represent diffeomorphisms. The action of physical models
based on spectral triples — for instance the Connes—Chamseddine action —
only depend on the unitary equivalence class of the data A, #H,~y, D, and J.

For the quantization of such a model, it is very important to take into
account all its symmetries. In particular, the path integral should only
be taken over the space of equivalence classes of field configurations. For
instance, if the action is a functional of the eigenvalues of the Dirac operator,
such as the bosonic action of the Standard Model, the path integral should
be formulated as an integral over the allowed range of these eigenvalues. For
simple examples of discrete spectral triples such an invariant mesasure can

indeed be defined [18].
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One should mention, however, that the eigenvalues of the Dirac operator
are, in general, not the only degrees of freedom of such models.

For example, let us consider the discrete spectral triple which is used
in the noncommutative description of the Standard Model. Recall that the
Dirac operator of this discrete spectral triple is physically interpreted as the
fermionic mass matrix. Hence, it contains the fermion masses (its eigenval-
ues), but also the unitary Cabibbo-Kobayashi-Maskawa matrix as additional
degrees of freedom. The latter results from the fact that one cannot simulta-
neously diagonalize the representation of the algebra and the Dirac operator
in the space C3 of quark-families.

The unitary transformations U which leave all physical observables (the
fermion masses and the entries of the CKM-matrix) invariant, in the sense
that two mass matrices, M7 and My, related by M1 = UMyU* describe
the same physics, can then obviously be characterized by the requirement
that they commute with the grading v, the charge conjugation J and the
representation of the algebra.

Note that in the classical case, where the algebra A is that of functions on
a manifold M, the above condition that it commute with everything except
D, states that U is a map from M to the representation of the spin group
on spinors.

2.1. Hopf algebras and spectral triples
2.1.1. Hopf algebras

Hopf algebras are the natural generalization (from the algebraic point
of view) of the concept of groups and lie algebras and therefore the natural
candidate for generalized symmetries. For a comprehensive review of Hopf
algebras see, for instance, [1-4].

Here, we shall only recall the notation, for the Hopf algebra H the co-
product A, is an algebra homomorphism A : H — H ® H (we shall often
use Sweedler’s notation: Aa =) a()®a(y)); the counit, an homomorphism
¢ : H — C and the antipode, an antihomomorphism S : H — H, i.e.,
S(ab) = S(b)S(a).

The notion of an action of a group on a space is reflected by a coaction
of the Hopf algebra H on an algebra A. A right coaction is given as an
algebra homomorphism: «: A - A® H, such that (¢ ® id)a = (id @ A)«a
and id = (id ® €)a. A good model for that is the coaction of the algebra of
functions on a group on the algebra of functions on its homogeneous space.
Similarly, Hopf algebras can also act on algebras. A left action of H on A,
isamap H® A3 h®a — hva, with the following properties: 1>a = a,
he1=¢e(h), h>(g>a) = (hg) > a and h> (ab) = (h) > a)(he) > a). To see
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the commutative example one should consider the action of the lie algebra
on the space on which the group acts.

Among possible differential structures on an algebra A one can single out
those on which the Hopf algebra H acts (or coacts). For the Hopf algebra
itself, one may distinguish the left (respectively, right) invariant differential
calculi, defined by the property that there exist a left (right) coaction S of
H on the space of one-forms, which commutes with the external derivative:

B(da) = (d ®id)Aa .

Calculi which are left and right covariant are bicovariant [6]. In a similar
way one introduces left and right covariant calculi on arbitrary algebras on
which Hopf algebras coact or act.

2.1.2. Spectral triples

Spectral triples have been introduced [7] in order to provide an alge-
braic description of compact spin manifolds. The basic data, which defines
a spectral geometry consist of a C* algebra A, its faithfull representation
as bounded operators on a Hilbert space H and an unbounded selfadjoint
operator D, which must satisfy certain algebraic (for instance that its com-
mutators with a dense subalgebra of A are also bounded) and analytic con-
ditions (for details, we refer to [7|, simple finite-dimensional examples are
discussed in [8]).

Such data provide information both on topology (C* algebra), as well
as as differential and metric structures of the “noncommutative manifold”,
which are contained in the operator D. Additional information such as the
grading operator (for even-dimensional geometries) and reality operator (for
real spectral geometries) further restrict the realm of possibilities to the case
of compact real spin manifold. In this situation, the algebra A is the algebra
of continuous functions, while D is the Dirac operator acting on the space
of square integrable sections of the spinor bundle.

3. Symmetries of the Dirac operator

One of the most important tasks in field theory models is the construc-
tion of the Dirac operator for spin manifolds and characterization of its
properties. A similar problem is encountered in the noncommutative case,
where, in most examples, we need to know the Dirac operator in advance to
construct feasible models. However, just as in the classical case, for some
special algebras (manifolds) there might exist a natural method, which uses
symmetries of the underlying space as the guiding principle.
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Suppose we have an algebra A for which we would like to construct the
spectral data and we know that the Hopf algebra H acts on it. We define a
spectral triple with the symmetry H:

Definition 3.1. Let A, with its representation on H, D, «, J be a spectral
triple. Then we call it invariant under the action of H if:

e H acts on the algebra A,

e 7 is the representation space of the cross-product of A and H, i.e., H
is represented on H and the representation obeys:

h(av) = (h(l) > (a)) (heyv), VYae A heHwveH, (1)
e the Dirac operator D commutes with the representation of H:

[D,h] =0, VheH. 2)

In the classical case, with A commutative and H a cocommutative Hopf
algebra (the group algebra of G or the universal envelope of its Lie-algebra)
the second condition is equivalent to H being a G-homogeneous bundle,
while the third one states that the metric is invariant under the action of
the symmetries, i.e. the latter act as isometries.

If H is a compact matrix pseudo-group [5] or its dual ( the generalization
of a compact group respectively its Lie-algebra) H decomposes into the finite
dimensional irreducible representations of H. One can then use techniques
from harmonic analysis to work out the Hilbert-space and, with the help of
the order-one condition, also the Dirac operator. We shall illustrate this in
the example of the noncommutative torus in the last section of this chapter.

As dual notation (i.e. the coaction of the Hopf algebra H on the algebra
A we propose:

Definition 3.2. Let A, with its representation on H, D, «, J be a spectral
triple. Then we call it left invariant under the coaction of H, if:

e H coacts from the left on the algebra A, a: A — H ® A,

e 1 is the left corepresentation of H, so there exists a corepresentation
map a:H— HQH,

e the coaction and corepresentations commute with each other:
alav) = a(a)a(v), Ya € Av e H, (3)
e the Dirac operator D commutes with the corepresentation of H:

a(Dv) = (id® D)a(v), Vv € H. (4)
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3.1. The symmetries of the differential calculi

The above discussed notions of symmetries for the Dirac operator of spec-
tral geometries have immediate consequences for the differential structures
encoded in the spectral data. We prove the following:

Lemma 3.3. Let A,H,D be the spectral triple invariant under the action
of the Hopf algebra H (as defined in (3.1). Then there exists the action of
H on the first-order differential structure determined by the spectral data.

Proof. Let us simply define (h>da) = [D, (h>a)] and extend on the entire
bimodule of one-forms through:

h> (adb) = (b > a)d(h > b) . (5)

Clearly this is a well-defined operation, in fact we might define the action of
H on any operator O through the identity:

h>0O = h(l)OSh(g). (6)
Indeed, we verify that then for every operator O, h € H and v € H we have:

hOv = h(l)Oe(h(Q))v = h(l)O(Sh(g))h(g)v
= (h)OSh) h@v = (ha) > O) heyv.

Clearly, this action is a proper action of the Hopf algebra on a bimodule
over A (all operators form a natural bimodule over A), we shall check here
only the compatibility with the left module structure:

h > (aO) = h(l)aOSh(g) = h(l)a(Sh(Q))h(g)OSh(4)
= (h(l) > a)(h(Q) > O)

In the case of the considered bimodule of one-forms it is enough to verify
that the action maps one-forms onto one-forms, however, this is guaranteed
by the definition (5) and the invariance of D. O

The invariance of spectral triples under the action and coaction of the
Hopf algebra and the resulting properties of the differential calculus, shall
be adressed in a forthcoming paper, with attention focused on the finite
case, where the relations between the action and coaction approach can be
established (see also [8,18]).
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3.2. The case of finite algebras

The simplest examples of spectral triples as noncommutative geometries
are given by finite-dimensional semisimple *-algebras. The classification and
the rules of constructing the Dirac operator were discussed in [8,9].

Let us recall that every such algebra (over C) is a finite direct sum of
simple matrix algebras. Then the full spectral triple over it is defined by the
intersection form matrix g;;, that comes from the bilinear map

q : KA XKWA —Z,

which is induced by the spectral triple. From the matrix g;; one then obtains
the dimension of the representation space, grading and reality operators, as
well as the structure of the Dirac operator.

More explicitly, for an algebra @¥ M, (C), ¢;; is a symmetric non-
degenerate (k x k)-matrix with integer entries. The representation space
decomposes as H = ®; ;H;;, where

Hij = Crilaialns,

The algebra acts on H;; by left multiplication with the -th component M,y,.

The grading «y is diagonal with its restriction to the space H;; being g;;
times the identity. The reality .J is an antilinear operator, which maps H;; to
Hj;. Finally, the Dirac operator can connect spaces H;; and Hy; (of different
grading) only if 4 = k or j = [. In the case i = k (or j = [ respectively )
D must commute with the left action (right action respectively) of My,
(My;) on H;;j and Hy (H;; and Hyj). This is a consequence of the order
one condition. Pictorially, if one associates the spaces H;; to the matrix-
elements of g;;, then D acts only along the rows and the columns of the
matrix g;;.

3.2.1. The Sp-reality example

The first example has a direct relation to Connes’ interpretation of the
Standard Model geometry. Consider a Zo-symmetry, which acts trivially
on the algebra A (hence, as a symmetry it is not a symmetry of the space
but only of the fibres of the spin-bundle). It can be represented as an
operator S such that S? = 1 and [S,a] = 0 for every a € A, we require
also that it commutes with v and anticommutes with J. Such symmetry is
apparently present in the NCG description of the Standard Model, namely
the so-called Sy-reality, which assigns the eigenvalue +1 to particles, and —1
to antiparticles.

The physical Dirac operator is invariant under the Sy-reality. However,
the most general possible Dirac operator for the Standard Model spectral
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triple is not invariant. A general Dirac operator would then necessarily
lead to additional couplings between leptons and antiquarks, violating the
conservation of lepton and baryon numbers and enforcing the existence of
scalar particles (leptoquarks), which might break SU(3) color symmetry.

One should mention here that although leptoquarks have not been ob-
served yet, they are experimentally not completely excluded. However, with-
out requiring the Sp-reality the noncommutative description of the Standard
Model would lead to unrealistic predictions [10].

3.2.2. Dirac operators for finite Hopf algebras

Suppose that a given semisimple finite algebra allows the Hopf algebra
structure. (Note that for one algebra there may exist several inequivalent
Hopf algebra structures.)

What can be said of restrictions which this Hopf algebra structure im-
poses on the construction of spectral triples? There are several possible
approaches. We shall briefly show the directions and illustrate them with
examples.

Adjoint symmetry

The adjoint action of the Hopf algebra on itself is defined by:

hag p = hyp(Shz)). (7)

Clearly, every representation of the Hopf algebra is adjoint covariant in
the sense of (1):

hgv = h(1yge(h))v = h1)gS(h@))h@)v = (1) >aa 9)h(2)v-

Then, clearly, the invariance of the Dirac operator with respect to the adjoint
action implies that D commutes with the representation of the algebra, and
the differential algebra is thus trivial.. However, we may relax the condition
and require that D is invariant not under the action of the entire Hopf
algebra H but only under the action of its sub-Hopf-algebra Hy C H.

Bicovariance of differential structures

Another possibility to restrict the freedom of choice of the Dirac oper-
ator, much weaker than the one mentioned in the previous section, is the
requirement that the differential structure generated by D is (at least in the
first order) bicovariant (or left covariant).

Let us take a simple example of a commutative finite algebra (functions
on a discrete group G). The generators of the left-covariant differential
calculus are one-forms x9, which, in the spectral triple representation are the
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following operators, using the decomposition of the representation space we
have Vi,jeGng : Hg—1); — Hjj and it is easy to verify that ij = Djj ig-1);-
First of all the left covariance of a calculus in which x9 is present enforces
that for all ¢ there must exist a j such that D;; ;,-1); does not vanish,
otherwise we would have e;x9 = 0, which cannot happen.

Now let us verify whether the calculus given by D is bicovariant. It is
known that the generators of such a calculus correspond to orbits of the
adjoint action in G. Suppose that for a given g  xY vanishes, which means
that Vi,j € G Dy (;,-1); = 0. Then in order to preserve the bicovariance
one must have Dj; ;5-1); = 0 for all h in the adjoint orbit of g.

Another simple, interesting example comes from studying group algebras
and their spectral triples. This is more interesting since the algebras are no
longer necessarily commutative. For instance, the smallest nonabelian group
Ss has the group algebra M>(C) @ C @ C. The bicovariant (or, in fact, left
covariant, because of cocommutativity) calculi on group algebras correspond
to the representations of the group algebra. In the case of CS3 it happens,
that the calculus either has a splitting property (so that it is a direct sum of
the calculus on M5(C) and the calculus on C @ C) or has a central element
in the bimodule of one forms. Neither of these is possible for the calculi
obtained from the (finite) spectral triples. So the result is, that no Dirac
operator respects the CS3 symmetry in that sense.

Invariance under the action of the dual Hopf algebra

Again, as an illustrative example we shall consider spectral triples built
on finite Hopf algebras. The notion of symmetry, which we introduce now is
stronger than the previous one. We shall use the canonical action of the dual
Hopf algebra H* on H: (h>a) =< h,a(9) > a(y), where <, > is the pairing
between the Hopf algebra and its dual. For instance, take a commutative
algebra of functions on a group C(G) with its basis ey,¢9 € G and its dual,
the group algebra G with the basis g € G. Then the action, expressed in the
above basis becomes:

gbep = €hg—1-
To proceed with the notion of invariance as proposed in definition (3.1)

we need to construct the representation of the crossproduct of H* and H.
The set of algebraic rules for the cross product algebra is given by:

€p€g = eh(sgha gép = €pg—19,

for all elements g of G. We construct the spectral triple for the subalgebra
generated by ey, which is a representation space for the entire cross product
algebra and we look for a Dirac operator that commutes with all g € G.
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Using the known form of the finite spectral triple we establish first that
g act as an operator g : ®;H;; — ®H(;4-1y;. Let us denote its restriction to
H;j, which maps it to H;g—-1y; by gij,- (Note, that, since g is invertible, H;;
and H;,-1); must be of the same dimension if g;;; # 0.)

Now, since D commutes with every g we have:

Z Dkl,(igfl)mgij,m = Z g(kg)m,lD(kg)m,ija
m m
which after taking into account the restriction on D becomes:

Dijig-1)79i5,5 = 9(kg)ji D (kg)isig»

and
Z D ig-1y1,(ig-1ymYijm = Z Gim 1 Dim.ij-
m m

Thus, depending on the spectral triple and the chosen representation of
the cross product, we obtain a severe restriction on possible Dirac operators.
Physically, the symmetry requirement is a constraint for the fermionic con-
tent of the theory, especially their masses. In a few simple examples, that
we worked out, these masses, in fact, are fixed (up to a scale) by the above
equations on D. Note, that, since the algebra here is commutative there
cannot be any mixing of fermions.

The trace and the Haar measure

Finally, let us briefly mention the possibility of using the Haar measure
on the Hopf algebra. In the general theory of spectral triples the scalar prod-
uct of forms is defined through the trace of the representation of the algebra
(and differential forms). However, one may modify it, for instance by in-
troducing different weight coefficients for each component of our semisimple
algebra. If the algebra is the Hopf algebra, there exists a unique choice of
such coefficients, which gives the normalized Haar measure.

The physical consequence of such a choice is the change of possible mass
relations within the model.

3.3. Quantum torus: noncommutative space with classical symmetries

After presenting our ideas of symmetries for spectral triples we would like
to show their application in the most renowned example in noncommutative
geometry: the quantum torus and its symmetries.

Consider the group U(1)xU(1). It has two commuting generators 1, do:

[515 62] = Oa
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and, accordingly, all its its irreducible representations V,, are one-
dimensional, characterized by two integers n,m :

d|n,m) = n|n,m),

do|n,m) = m|n,m), |n,m) € Vom.
Being a Lie-algebra, the coproduct of the generators is, of course,
AN, =1d®d; +6; ®id.

We are now looking for algebras which contain each irreducible representa-
tion exactly once.

Suppose we have two unitaries U, V' on which the generators d1,do act in
the following way:

5\U = U, 5,0 =0,

Now, clearly the element U~'V~'UV is annihilated both by §; and s,
therefore the above symmetry-requirement U(1)xU(1) enforces that
U~'W~'UV must be proportional to the identity operator, hence we ob-
tain:

UV = \VT, I\ =1,

which is, of course, the defining relation for the noncommutative torus.

The noncommutative torus is therefor the most general algebra with two
generators possessing the required U(1)xU(1) symmetry.

The only covariant representation (up to equivalence) of this algebra is
then the one corresponding to the free module of rank 1. In the Hilbert
space Hj there exists a orthonormal basis |n,m) and the representation is
given by

Uln,m) = |n+1,m),
Vin,m) = A" |n,m+1).

In particular |0,0) is a cyclic separating vector, and the Tomita—Takesaki-
theorem provides Jy as

Joln,m) = X" — n,—m).

In order to obtain v and the Dirac operator D one doubles the Hilbert-
space H = Hy ® Hj and sets

(1 0 (0 —J
= 4) e a )
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Being selfadjoint and anticommuting with v, D is clearly of the form

0 0
- (2 7).

Since we would like the group U(1)xU(1) to act as isometries, we require that
D commutes with the two generators d1,d2. As we shall see, this assumption
fixes 0 up to a normalization factor.

Let us denote the basis of common eigenvectors of 1,09, in H by
|n,m,£). It follows that

8|n, m, —> = dn,m|n7 m, +>7

and the complex numbers d,, ,,, are to be calculated from the order-one condi-
tion [[D, al, bo] =0, VYa,b € A. This directly leads to the recursion relations
between the coefficients d,, ,,:

dn+2,m = 2dnJrl,m - dn,ma
dn,m—l—? = 2dn,m—l—l - dn,m

with the solution (up to a normalization and a constant term)
dpm =n+mT T €C,

The obtained result agrees, of course, with the usual Dirac operator on
the noncommutative torus. However, one should stress, that as compared to
usual constructions, here we have derived it from the order-one condition.
Moreover we have used the symmetries to find the representation of A, which
corresponds to the spin-bundle. Note that by doing so, one also introduces
the norm on the algebra.

Along the same the lines, on can construct spectral triples for other Lie-
algebras. For su(2) and the algebra of functions on the two-sphere, this has
been done in [18]. In that case, there are infinitely many su(2)-homogeneous
line-bundles, from which the spin-bundle could be constructed. The latter
is identified by the requirements that v be a Hochschild-cycle and that there
exists a reality structure J.

An interesting question, which arises in this context is whether also non-
cocommutative Hopf-algebras can serve as isometries. For instance, there
exists a two-parameter family of deformations Sg y of the algebra of func-
tions on the sphere, which for ¢ = 1, A\ = 0 agree with the classical case.
In the general case, for any A there ex1sts however an action of U, (su(2))
(the g-deformed universal envelope of su(2)) on this algebra. With the help
of their symmetries, one can attempt to construct spectral triples for the
quantum sphere. Work in this direction is in progress [17].



1910 M. PASCHKE, A. SITARZ

4. Conclusions

Symmetries are very important and fundamental in physics and it is
commonly believed that they are the key to our understanding of particle
physics and gravity and many other phenomena. Perhaps one of the most
interesting open questions in this respect is whether symmetries — in the
extended sense (supersymmetries, Hopf algebra symmetries) — are as fun-
damental as group symmetries and what role they play (if any) in particle
physics.

Both in theoretical and experimental physics one would like to verify
whether there are any “new” symmetries , which are broken at low energies,
when physics is effectively described by the Standard Model. For instance, it
is an exciting question, whether there is any symmetry behind the observed
masses and mixing matrices. Another thing that requires further studies are
the possible relations between the finite spectral triples, which are the geo-
metrical setup for the Standard Model and finite Hopf algebras originating
from quantum groups at roots of unity — for details see [14-16].

The above discussed examples of possibilities for extended types of sym-
metries and their realisation open new paths, even within the physics of the
Standard Model. They could also provide guiding principles to find new ex-
tensions of the Standard model and, even more, they could lead to a better
understanding of Quantum (Field) Theory.

It seems appropriate to add at this moment that all symmetries in physics
must be verified experimentally. At present, it is rather likely that various
extensions of the Standard Model (or at least some of them) might be tested
within the next years. Whether this will confirm new symmetries (super-
symmetry, for instance) or not is hard to speculate.

Having formulated classical (in the sense of the vanishing Planck con-
stant) field theories on noncommutative spaces, the next task will be the
quantisation of such models. In view of the importance of symmetries for the
consistency of quantum field theories on commutative spaces, we strongly
believe that it will be unavoidable to exploit all the symmetries of these
models as the first step.
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