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1898 M. Pashke, A. SitarzIn quantum �eld theory the representation of symmetries on the Hilbertspae of partiles is generated by the onserved harges. The Hilbert spaedeomposes into irreduible representations and only harged operators, i.e.operators whih do not ommute with the harges, an interpolate betweeninequivalent representations. The latter form the so-alled superseletionsetors. For instane, one annot prepare a system in a state, whih is asuperposition of spin-12 and spin-1 states (at least, suh a state has neverbeen observed). Moreover, by virtue of the symmetries one derives ertainidentities of amplitudes, theWard�Takahashi- and Slavnov-Taylor-identities.They are essential to prove both renormalisability and unitarity, whih areimportant physial onsisteny requirements ensuring the �preditive power�of the theory.The most important examples of symmetries in �eld theory ome fromgauge symmetries and Poinaré invariane. The attempts to extend themhave led to onepts that generalized the notion of a group. For instane, insupersymmetri theories, whih provide some of the most studied (both the-oretially and experimentally) extensions of the standard model, the gaugegroups and the Poinaré group are uni�ed in a supergroup.Other possibilities suh as Hopf algebra symmetries might also play animportant role in Quantum Field Theories, as has been suggested reently.For instane, they an be used to desribe the superseletion setors inertain low dimensional theories (see [13℄ for details and referenes). Thereis also some speulation about the Hopf algebra struture underlying therenormalisability of perturbative Quantum Field Theory [11, 12℄.In this paper we shall present some new onepts of symmetries builtin the �eld theory based on nonommutative geometry and formulated inthe language of spetral triples. We propose the de�nitions of quantumsymmetries of spetral geometry based on the ation (or oation) of theHopf algebra. The paper is organized as follows: in setion 2 we brie�yreview the ideas of symmetries in nonommutative models as well as thenotation of Hopf algebras and spetral triples. In setion 3 we present theproposed de�nitions of invariant spetral triples (3.1), illustrating it withresults on the properties of suh objets (di�erential aluli), and resultson symmetries of �nite geometries (3.2). Finally, we present a derivationof the spetrum of the invariant Dira operator for the nonommutativetorus. This provides an exellent illustration of the introdued de�nitionsand, although the spetrum is well known, to the best of our knowledge suha derivation following from the symmetry priniples has not been publishedelsewhere.



The Geometry of Nonommutative Symmetries 18992. Symmetries of nonommutative spaesThe notion of symmetry in geometry is related with groups and Liealgebras. A spae X is said to have a ertain symmetry if a group G atson it. In Nonommutative Geometry, where no notion of spae is present,this piture an no longer be used. We are left with two possible ways ofgeneralizations, both oming from the lassial piture. First of all, we knowthat the ation of a group on some spae X indues automorphisms of thealgebra of funtions on X. Hene, we an take generalized symmetries asautomorphisms of the (not neessarily ommutative) algebra. A very goodexample is the nonommutative interpretation of the Standard Model, whihhanges the interpretation of known physial symmetries. So, for instane,gauge symmetries are now interpreted as �internal di�eomorphisms�.Another option is to dualize the piture of a group ation, whih meansthat we represent it as a oation of the Hopf algebra C(G) (funtions onthe group) on the algebra C(X) (funtions on the spae). Here, the key roleof the symmetry is played by the Hopf algebra. This suggests that in thenonommutative ase we should also onsider these objets as generalizedsymmetries. A broad lass of �nonommutative spaes� with symmetriesunderstood in this ontext omes from quantum groups and quantum ho-mogeneous spaes. One should stress that at present, there are no knownspetral triples for suh spaes. Their geometry is usually desribed by bio-variant di�erential aluli and Haar measures (if they exist). It is thereforean interesting and important task to build a bridge from quantum grouptheory to nonommutative geometry based on the Dira operator.Within the approah of spetral triples symmetries an have yet anothermeaning. With the basi data onsisting of an algebra A, its representationon the Hilbert spae H and the Dira operator D, we an onsider as sym-metries transformations of unitary equivalene. These inlude, of ourse,mainly the automorphisms of A (H is some losure of an appropriate mod-ule over A), but also unitaries U , whih ommute with the algebra, andtherefore do not represent di�eomorphisms. The ation of physial modelsbased on spetral triples � for instane the Connes�Chamseddine ation �only depend on the unitary equivalene lass of the data A;H; ;D; and J .For the quantization of suh a model, it is very important to take intoaount all its symmetries. In partiular, the path integral should onlybe taken over the spae of equivalene lasses of �eld on�gurations. Forinstane, if the ation is a funtional of the eigenvalues of the Dira operator,suh as the bosoni ation of the Standard Model, the path integral shouldbe formulated as an integral over the allowed range of these eigenvalues. Forsimple examples of disrete spetral triples suh an invariant mesasure anindeed be de�ned [18℄.



1900 M. Pashke, A. SitarzOne should mention, however, that the eigenvalues of the Dira operatorare, in general, not the only degrees of freedom of suh models.For example, let us onsider the disrete spetral triple whih is usedin the nonommutative desription of the Standard Model. Reall that theDira operator of this disrete spetral triple is physially interpreted as thefermioni mass matrix. Hene, it ontains the fermion masses (its eigenval-ues), but also the unitary Cabibbo-Kobayashi-Maskawa matrix as additionaldegrees of freedom. The latter results from the fat that one annot simulta-neously diagonalize the representation of the algebra and the Dira operatorin the spae C 3 of quark-families.The unitary transformations U whih leave all physial observables (thefermion masses and the entries of the CKM-matrix) invariant, in the sensethat two mass matries, M1 and M2, related by M1 = UM2U� desribethe same physis, an then obviously be haraterized by the requirementthat they ommute with the grading , the harge onjugation J and therepresentation of the algebra.Note that in the lassial ase, where the algebra A is that of funtions ona manifold M , the above ondition that it ommute with everything exeptD, states that U is a map from M to the representation of the spin groupon spinors. 2.1. Hopf algebras and spetral triples2.1.1. Hopf algebrasHopf algebras are the natural generalization (from the algebrai pointof view) of the onept of groups and lie algebras and therefore the naturalandidate for generalized symmetries. For a omprehensive review of Hopfalgebras see, for instane, [1�4℄.Here, we shall only reall the notation, for the Hopf algebra H the o-produt �, is an algebra homomorphism � : H ! H 
 H (we shall oftenuse Sweedler's notation: �a =P a(1)
a(2)); the ounit, an homomorphism" : H ! C and the antipode, an antihomomorphism S : H ! H, i.e.,S(ab) = S(b)S(a).The notion of an ation of a group on a spae is re�eted by a oationof the Hopf algebra H on an algebra A. A right oation is given as analgebra homomorphism: � : A ! A
H, suh that (� 
 id)� = (id 
�)�and id = (id
 ")�. A good model for that is the oation of the algebra offuntions on a group on the algebra of funtions on its homogeneous spae.Similarly, Hopf algebras an also at on algebras. A left ation of H on A,is a map H 
 A 3 h 
 a ! h . a, with the following properties: 1 . a = a,h . 1 = "(h), h . (g . a) = (hg) . a and h . (ab) = (h(1) . a)(h(2) . a). To see



The Geometry of Nonommutative Symmetries 1901the ommutative example one should onsider the ation of the lie algebraon the spae on whih the group ats.Among possible di�erential strutures on an algebra A one an single outthose on whih the Hopf algebra H ats (or oats). For the Hopf algebraitself, one may distinguish the left (respetively, right) invariant di�erentialaluli, de�ned by the property that there exist a left (right) oation � ofH on the spae of one-forms, whih ommutes with the external derivative:�(da) = (d
 id)�a :Caluli whih are left and right ovariant are biovariant [6℄. In a similarway one introdues left and right ovariant aluli on arbitrary algebras onwhih Hopf algebras oat or at.2.1.2. Spetral triplesSpetral triples have been introdued [7℄ in order to provide an alge-brai desription of ompat spin manifolds. The basi data, whih de�nesa spetral geometry onsist of a C� algebra A, its faithfull representationas bounded operators on a Hilbert spae H and an unbounded selfadjointoperator D, whih must satisfy ertain algebrai (for instane that its om-mutators with a dense subalgebra of A are also bounded) and analyti on-ditions (for details, we refer to [7℄, simple �nite-dimensional examples aredisussed in [8℄).Suh data provide information both on topology (C� algebra), as wellas as di�erential and metri strutures of the �nonommutative manifold�,whih are ontained in the operator D. Additional information suh as thegrading operator (for even-dimensional geometries) and reality operator (forreal spetral geometries) further restrit the realm of possibilities to the aseof ompat real spin manifold. In this situation, the algebra A is the algebraof ontinuous funtions, while D is the Dira operator ating on the spaeof square integrable setions of the spinor bundle.3. Symmetries of the Dira operatorOne of the most important tasks in �eld theory models is the onstru-tion of the Dira operator for spin manifolds and haraterization of itsproperties. A similar problem is enountered in the nonommutative ase,where, in most examples, we need to know the Dira operator in advane toonstrut feasible models. However, just as in the lassial ase, for somespeial algebras (manifolds) there might exist a natural method, whih usessymmetries of the underlying spae as the guiding priniple.



1902 M. Pashke, A. SitarzSuppose we have an algebra A for whih we would like to onstrut thespetral data and we know that the Hopf algebra H ats on it. We de�ne aspetral triple with the symmetry H:De�nition 3.1. Let A, with its representation on H, D, , J be a spetraltriple. Then we all it invariant under the ation of H if:� H ats on the algebra A ,� H is the representation spae of the ross-produt of A and H, i.e., His represented on H and the representation obeys:h(av) = �h(1) . (a)� (h(2)v); 8a 2 A; h 2 H; v 2 H ; (1)� the Dira operator D ommutes with the representation of H:[D;h℄ = 0; 8h 2 H : (2)In the lassial ase, with A ommutative and H a oommutative Hopfalgebra (the group algebra of G or the universal envelope of its Lie-algebra)the seond ondition is equivalent to H being a G-homogeneous bundle,while the third one states that the metri is invariant under the ation ofthe symmetries, i.e. the latter at as isometries.If H is a ompat matrix pseudo-group [5℄ or its dual ( the generalizationof a ompat group respetively its Lie-algebra) H deomposes into the �nitedimensional irreduible representations of H. One an then use tehniquesfrom harmoni analysis to work out the Hilbert-spae and, with the help ofthe order-one ondition, also the Dira operator. We shall illustrate this inthe example of the nonommutative torus in the last setion of this hapter.As dual notation (i.e. the oation of the Hopf algebra H on the algebraA we propose:De�nition 3.2. Let A, with its representation on H, D, , J be a spetraltriple. Then we all it left invariant under the oation of H, if:� H oats from the left on the algebra A, � : A ! H 
A,� H is the left orepresentation of H, so there exists a orepresentationmap ~� : H! H 
H,� the oation and orepresentations ommute with eah other:~�(av) = �(a)~�(v); 8a 2 A; v 2 H ; (3)� the Dira operator D ommutes with the orepresentation of H:~�(Dv) = (id
D)~�(v); 8v 2 H: (4)



The Geometry of Nonommutative Symmetries 19033.1. The symmetries of the di�erential aluliThe above disussed notions of symmetries for the Dira operator of spe-tral geometries have immediate onsequenes for the di�erential struturesenoded in the spetral data. We prove the following:Lemma 3.3. Let A;H;D be the spetral triple invariant under the ationof the Hopf algebra H (as de�ned in (3.1). Then there exists the ation ofH on the �rst-order di�erential struture determined by the spetral data.Proof. Let us simply de�ne (h . da) = [D; (h . a)℄ and extend on the entirebimodule of one-forms through:h . (adb) = (h(1) . a)d(h(2) . b) : (5)Clearly this is a well-de�ned operation, in fat we might de�ne the ation ofH on any operator O through the identity:h . O = h(1)OSh(2): (6)Indeed, we verify that then for every operator O, h 2 H and v 2 H we have:hOv = h(1)O"(h(2))v = h(1)O(Sh(2))h(3)v= �h(1)OSh(2)�h(3)v = �h(1) . O�h(2)v:Clearly, this ation is a proper ation of the Hopf algebra on a bimoduleover A (all operators form a natural bimodule over A), we shall hek hereonly the ompatibility with the left module struture:h . (aO) = h(1)aOSh(2) = h(1)a(Sh(2))h(3)OSh(4)= (h(1) . a)(h(2) . O):In the ase of the onsidered bimodule of one-forms it is enough to verifythat the ation maps one-forms onto one-forms, however, this is guaranteedby the de�nition (5) and the invariane of D.The invariane of spetral triples under the ation and oation of theHopf algebra and the resulting properties of the di�erential alulus, shallbe adressed in a forthoming paper, with attention foused on the �nitease, where the relations between the ation and oation approah an beestablished (see also [8, 18℄).



1904 M. Pashke, A. Sitarz3.2. The ase of �nite algebrasThe simplest examples of spetral triples as nonommutative geometriesare given by �nite-dimensional semisimple �-algebras. The lassi�ation andthe rules of onstruting the Dira operator were disussed in [8, 9℄.Let us reall that every suh algebra (over C ) is a �nite diret sum ofsimple matrix algebras. Then the full spetral triple over it is de�ned by theintersetion form matrix qij, that omes from the bilinear mapq : K(A)�K(A) �! Z ;whih is indued by the spetral triple. From the matrix qij one then obtainsthe dimension of the representation spae, grading and reality operators, aswell as the struture of the Dira operator.More expliitly, for an algebra �ki=1Mni(C ), qij is a symmetri non-degenerate (k � k)-matrix with integer entries. The representation spaedeomposes as H = �i;jHij; whereHij = C ni jqij jnj :The algebra ats on Hij by left multipliation with the i-th omponent Mni .The grading  is diagonal with its restrition to the spae Hij being qijtimes the identity. The reality J is an antilinear operator, whih maps Hij toHji. Finally, the Dira operator an onnet spaes Hij and Hkl (of di�erentgrading) only if i = k or j = l. In the ase i = k (or j = l respetively )D must ommute with the left ation (right ation respetively) of Mni(Mnj ) on Hij and Hil (Hij and Hkj). This is a onsequene of the orderone ondition. Pitorially, if one assoiates the spaes Hij to the matrix-elements of qij, then D ats only along the rows and the olumns of thematrix qij.3.2.1. The S0-reality exampleThe �rst example has a diret relation to Connes' interpretation of theStandard Model geometry. Consider a Z2-symmetry, whih ats triviallyon the algebra A (hene, as a symmetry it is not a symmetry of the spaebut only of the �bres of the spin-bundle). It an be represented as anoperator S suh that S2 = 1 and [S; a℄ = 0 for every a 2 A, we requirealso that it ommutes with  and antiommutes with J . Suh symmetry isapparently present in the NCG desription of the Standard Model, namelythe so-alled S0-reality, whih assigns the eigenvalue +1 to partiles, and �1to antipartiles.The physial Dira operator is invariant under the S0-reality. However,the most general possible Dira operator for the Standard Model spetral



The Geometry of Nonommutative Symmetries 1905triple is not invariant. A general Dira operator would then neessarilylead to additional ouplings between leptons and antiquarks, violating theonservation of lepton and baryon numbers and enforing the existene ofsalar partiles (leptoquarks), whih might break SU(3) olor symmetry.One should mention here that although leptoquarks have not been ob-served yet, they are experimentally not ompletely exluded. However, with-out requiring the S0-reality the nonommutative desription of the StandardModel would lead to unrealisti preditions [10℄.3.2.2. Dira operators for �nite Hopf algebrasSuppose that a given semisimple �nite algebra allows the Hopf algebrastruture. (Note that for one algebra there may exist several inequivalentHopf algebra strutures.)What an be said of restritions whih this Hopf algebra struture im-poses on the onstrution of spetral triples? There are several possibleapproahes. We shall brie�y show the diretions and illustrate them withexamples.Adjoint symmetryThe adjoint ation of the Hopf algebra on itself is de�ned by:h .ad p = h(1)p(Sh(2)): (7)Clearly, every representation of the Hopf algebra is adjoint ovariant inthe sense of (1):hgv = h(1)g"(h(2))v = h(1)gS(h(2))h(3)v = (h(1) .ad g)h(2)v:Then, learly, the invariane of the Dira operator with respet to the adjointation implies that D ommutes with the representation of the algebra, andthe di�erential algebra is thus trivial.. However, we may relax the onditionand require that D is invariant not under the ation of the entire Hopfalgebra H but only under the ation of its sub-Hopf-algebra H0 � H.Biovariane of di�erential struturesAnother possibility to restrit the freedom of hoie of the Dira oper-ator, muh weaker than the one mentioned in the previous setion, is therequirement that the di�erential struture generated by D is (at least in the�rst order) biovariant (or left ovariant).Let us take a simple example of a ommutative �nite algebra (funtionson a disrete group G). The generators of the left-ovariant di�erentialalulus are one-forms �g, whih, in the spetral triple representation are the



1906 M. Pashke, A. Sitarzfollowing operators, using the deomposition of the representation spae wehave 8i;j2G�gij : H(ig�1)j ! Hij and it is easy to verify that �gij = Dij;(ig�1)j .First of all the left ovariane of a alulus in whih �g is present enforesthat for all i there must exist a j suh that Dij;(ig�1)j does not vanish,otherwise we would have eh�g = 0, whih annot happen.Now let us verify whether the alulus given by D is biovariant. It isknown that the generators of suh a alulus orrespond to orbits of theadjoint ation in G. Suppose that for a given g �g vanishes, whih meansthat 8i; j 2 G Dij;(ig�1)j = 0. Then in order to preserve the biovarianeone must have Dij;(ih�1)j = 0 for all h in the adjoint orbit of g.Another simple, interesting example omes from studying group algebrasand their spetral triples. This is more interesting sine the algebras are nolonger neessarily ommutative. For instane, the smallest nonabelian groupS3 has the group algebra M2(C ) � C � C . The biovariant (or, in fat, leftovariant, beause of oommutativity) aluli on group algebras orrespondto the representations of the group algebra. In the ase of C S3 it happens,that the alulus either has a splitting property (so that it is a diret sum ofthe alulus on M2(C ) and the alulus on C � C ) or has a entral elementin the bimodule of one forms. Neither of these is possible for the aluliobtained from the (�nite) spetral triples. So the result is, that no Diraoperator respets the C S3 symmetry in that sense.Invariane under the ation of the dual Hopf algebraAgain, as an illustrative example we shall onsider spetral triples builton �nite Hopf algebras. The notion of symmetry, whih we introdue now isstronger than the previous one. We shall use the anonial ation of the dualHopf algebra H� on H: (h . a) =< h; a(2) > a(1), where <;> is the pairingbetween the Hopf algebra and its dual. For instane, take a ommutativealgebra of funtions on a group C(G) with its basis eg; g 2 G and its dual,the group algebra G with the basis g 2 G. Then the ation, expressed in theabove basis beomes: g . eh = ehg�1 :To proeed with the notion of invariane as proposed in de�nition (3.1)we need to onstrut the representation of the rossprodut of H� and H.The set of algebrai rules for the ross produt algebra is given by:eheg = ehÆgh; geh = ehg�1g;for all elements g of G. We onstrut the spetral triple for the subalgebragenerated by eh, whih is a representation spae for the entire ross produtalgebra and we look for a Dira operator that ommutes with all g 2 G.



The Geometry of Nonommutative Symmetries 1907Using the known form of the �nite spetral triple we establish �rst thatg at as an operator g : �jHij ! �H(ig�1)j . Let us denote its restrition toHij, whih maps it to H(ig�1)l by gij;l. (Note, that, sine g is invertible, Hijand H(ig�1)l must be of the same dimension if gij;l 6= 0.)Now, sine D ommutes with every g we have:Xm Dkl;(ig�1)mgij;m =Xm g(kg)m;lD(kg)m;ij ;whih after taking into aount the restrition on D beomes:Dkj;(ig�1)jgij;j = g(kg)j;jD(kg)j;ij ;and Xm D(ig�1)l;(ig�1)mgij;m =Xm gim;lDim;ij :Thus, depending on the spetral triple and the hosen representation ofthe ross produt, we obtain a severe restrition on possible Dira operators.Physially, the symmetry requirement is a onstraint for the fermioni on-tent of the theory, espeially their masses. In a few simple examples, thatwe worked out, these masses, in fat, are �xed (up to a sale) by the aboveequations on D. Note, that, sine the algebra here is ommutative thereannot be any mixing of fermions.The trae and the Haar measureFinally, let us brie�y mention the possibility of using the Haar measureon the Hopf algebra. In the general theory of spetral triples the salar prod-ut of forms is de�ned through the trae of the representation of the algebra(and di�erential forms). However, one may modify it, for instane by in-troduing di�erent weight oe�ients for eah omponent of our semisimplealgebra. If the algebra is the Hopf algebra, there exists a unique hoie ofsuh oe�ients, whih gives the normalized Haar measure.The physial onsequene of suh a hoie is the hange of possible massrelations within the model.3.3. Quantum torus: nonommutative spae with lassial symmetriesAfter presenting our ideas of symmetries for spetral triples we would liketo show their appliation in the most renowned example in nonommutativegeometry: the quantum torus and its symmetries.Consider the group U(1)�U(1). It has two ommuting generators Æ1; Æ2:[Æ1; Æ2℄ = 0;



1908 M. Pashke, A. Sitarzand, aordingly, all its its irreduible representations Vnm are one-dimensional, haraterized by two integers n;m :Æ1jn;mi = njn;mi ;Æ2jn;mi = mjn;mi ; jn;mi 2 Vnm:Being a Lie-algebra, the oprodut of the generators is, of ourse,4Æi = id
 Æi + Æi 
 id :We are now looking for algebras whih ontain eah irreduible representa-tion exatly one.Suppose we have two unitaries U; V on whih the generators Æ1; Æ2 at inthe following way: Æ1U = U; Æ2U = 0 ;Æ1V = 0; Æ2V = V :Now, learly the element U�1V �1UV is annihilated both by Æ1 and Æ2,therefore the above symmetry-requirement U(1)�U(1) enfores thatU�1V �1UV must be proportional to the identity operator, hene we ob-tain: UV = �V U; j�j = 1;whih is, of ourse, the de�ning relation for the nonommutative torus.The nonommutative torus is therefor the most general algebra with twogenerators possessing the required U(1)�U(1) symmetry.The only ovariant representation (up to equivalene) of this algebra isthen the one orresponding to the free module of rank 1. In the Hilbertspae H0 there exists a orthonormal basis jn;mi and the representation isgiven by U jn;mi = jn+ 1;mi;V jn;mi = ��njn;m+ 1i:In partiular j0; 0i is a yli separating vetor, and the Tomita�Takesaki-theorem provides J0 as J0jn;mi = ��nmj � n;�mi:In order to obtain  and the Dira operator D one doubles the Hilbert-spae H = H0 �H0 and sets = � 1 00 �1 � ; J = � 0 �J0J0 0 � :



The Geometry of Nonommutative Symmetries 1909Being selfadjoint and antiommuting with , D is learly of the formD = � 0 ��� 0 � :Sine we would like the group U(1)�U(1) to at as isometries, we require thatD ommutes with the two generators Æ1; Æ2. As we shall see, this assumption�xes � up to a normalization fator.Let us denote the basis of ommon eigenvetors of Æ1; Æ2;  in H byjn;m;�i. It follows that�jn;m;�i = dn;mjn;m;+i;and the omplex numbers dn;m are to be alulated from the order-one ondi-tion �[D; a℄; b0� = 0; 8a; b 2 A. This diretly leads to the reursion relationsbetween the oe�ients dn;m:dn+2;m = 2dn+1;m � dn;m;dn;m+2 = 2dn;m+1 � dn;mwith the solution (up to a normalization and a onstant term)dn;m = n+m� � 2 C ;The obtained result agrees, of ourse, with the usual Dira operator onthe nonommutative torus. However, one should stress, that as ompared tousual onstrutions, here we have derived it from the order-one ondition.Moreover we have used the symmetries to �nd the representation of A, whihorresponds to the spin-bundle. Note that by doing so, one also introduesthe norm on the algebra.Along the same the lines, on an onstrut spetral triples for other Lie-algebras. For su(2) and the algebra of funtions on the two-sphere, this hasbeen done in [18℄. In that ase, there are in�nitely many su(2)-homogeneousline-bundles, from whih the spin-bundle ould be onstruted. The latteris identi�ed by the requirements that  be a Hohshild-yle and that thereexists a reality struture J .An interesting question, whih arises in this ontext is whether also non-oommutative Hopf-algebras an serve as isometries. For instane, thereexists a two-parameter family of deformations S2q;� of the algebra of fun-tions on the sphere, whih for q = 1; � = 0 agree with the lassial ase.In the general ase, for any � there exists however an ation of Uq(su(2))(the q-deformed universal envelope of su(2)) on this algebra. With the helpof their symmetries, one an attempt to onstrut spetral triples for thequantum sphere. Work in this diretion is in progress [17℄.



1910 M. Pashke, A. Sitarz4. ConlusionsSymmetries are very important and fundamental in physis and it isommonly believed that they are the key to our understanding of partilephysis and gravity and many other phenomena. Perhaps one of the mostinteresting open questions in this respet is whether symmetries � in theextended sense (supersymmetries, Hopf algebra symmetries) � are as fun-damental as group symmetries and what role they play (if any) in partilephysis.Both in theoretial and experimental physis one would like to verifywhether there are any �new� symmetries , whih are broken at low energies,when physis is e�etively desribed by the Standard Model. For instane, itis an exiting question, whether there is any symmetry behind the observedmasses and mixing matries. Another thing that requires further studies arethe possible relations between the �nite spetral triples, whih are the geo-metrial setup for the Standard Model and �nite Hopf algebras originatingfrom quantum groups at roots of unity � for details see [14�16℄.The above disussed examples of possibilities for extended types of sym-metries and their realisation open new paths, even within the physis of theStandard Model. They ould also provide guiding priniples to �nd new ex-tensions of the Standard model and, even more, they ould lead to a betterunderstanding of Quantum (Field) Theory.It seems appropriate to add at this moment that all symmetries in physismust be veri�ed experimentally. At present, it is rather likely that variousextensions of the Standard Model (or at least some of them) might be testedwithin the next years. Whether this will on�rm new symmetries (super-symmetry, for instane) or not is hard to speulate.Having formulated lassial (in the sense of the vanishing Plank on-stant) �eld theories on nonommutative spaes, the next task will be thequantisation of suh models. In view of the importane of symmetries for theonsisteny of quantum �eld theories on ommutative spaes, we stronglybelieve that it will be unavoidable to exploit all the symmetries of thesemodels as the �rst step. REFERENCES[1℄ Chr.Kassel, Quantum Groups, Springer 1995.[2℄ S. Majid, Foundations of Quantum Group Theory, Cambridge UniversityPress, 1995.[3℄ V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge UniversityPress, 1994.[4℄ S. Shnider, S. Sternberg, Quantum Groups, International Press 1993.
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