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TWO STERILE NEUTRINOS AS A CONSEQUENCEOF MATTER STRUCTURE�Wojieh KrólikowskiInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00�681 Warszawa, Poland(Reeived May 31, 2000)An algebrai argument based on a series of generalized Dira equations,trunated by an �intrinsi Pauli priniple�, shows that there should existtwo sterile neutrinos as well as three families of leptons and quarks. Then,the in�uene of these additional neutrinos on neutrino osillations is stud-ied. As an example, a spei� model of e�etive �ve-neutrino texture isproposed, where only the nearest neighbours in the sequene of �ve neutri-nos ordered as �s; �0s; �e; ��; �� are oupled through the 5� 5 mass matrix.Its diagonal elements are taken as negligible in omparison with its nonzeroo�-diagonal entries.PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh1. IntrodutionThe existene problem of light sterile neutrinos [1℄, free of StandardModel gauge harges, is onneted phenomenologially with the LSND ef-fet for aelerator ��'s [2℄. If on�rmed, it would avail (jointly with theobserved de�its of solar �e's [3℄ and atmospheri ��'s [4℄) the existene ofthe third mass-square di�erene in neutrino osillations, invoking neessarilyat least one kind of light sterile neutrinos, in addition to the familiar threeative neutrinos �e; ��; �� . From the theoretial viewpoint, however, lightsterile neutrinos might exist even in the ase, when the LSND e�et wasnot on�rmed [5℄. At any rate, there might be either three sorts of lightMajorana sterile neutrinos�(s)� = ��R + (��R) (� = e; �; �) (1)� Work supported in part by the Polish KBN Grant 2 P03B 052 16 (1999�2000).(1913)



1914 W. Królikowskibeing struturally right-handed ounterparts of familiar light Majorana a-tive neutrinos �(a)� = ��L + (��L) (� = e; �; �) ; (2)or some quite new Dira or Majorana light sterile neutrinos.The �rst kind appears in the ase of pseudo-Dira option for neutrinos�e; ��; �� [6℄ that ontrasts with the popular seesaw option [7℄ involvingheavy sterile neutrinos of the form (1). If the LSND e�et did not exist,the seesaw option, operating e�etively at low energies with three ativeneutrinos (2) only, would be phenomenologially most eonomial, besidethe simple option of Dira neutrinos �� = ��L+ ��R. At the same time, theseesaw option would be favourable from the standpoint of GUT idea (say, inthe SO(10) version), where a large mass sale of sterile neutrinos of the form(1) ould be understood, at least qualitatively. On the other hand, however,suh an option would not meet the needs of astrophysis for light sterileneutrinos useful in tentatively explaining heavy-element nuleosynthesis [8℄.The sterile neutrinos of the seond kind are suggested to exist [9℄ in theframework of a theoretial sheme based on the series N = 1; 2; 3; : : : ofgeneralized Dira equations [10℄n� (N) � [p� gA(x)℄ �M (N)o (N)(x) = 0 ; (3)where for any N the Dira algebran� (N)� ; � (N)� o = 2g�� (4)is onstruted by means of a Cli�ord algebra,� (N)� � NXi=1 (N)i� ; n(N)i� ; (N)j� o = 2Æijg�� (5)with i ; j = 1; 2; : : : ; N and � ; � = 0; 1; 2; 3. Here, the term g� (N) � A(x)symbolizes the Standard Model gauge oupling, involving� (N)5 � i� (N)0 � (N)1 � (N)2 � (N)3as well as the olor, weak-isospin and hyperharge matries (this ouplingis absent for sterile partiles suh as sterile neutrinos). The mass M (N)is independent of � (N)� . In general, the mass M (N) should be replaed bya mass matrix of elements M (N;N 0) whih would ouple  (N)(x) with allappropriate  (N 0)(x), and it might be natural to assume for N 6= N 0 thath(N)i� ; (N 0)j� i = 0 i.e., h� (N)� ; � (N 0)� i = 0.



Two Sterile Neutrinos as a Consequene of Matter Struture 1915The Dira-type equation (3) for any N implies that (N)(x) = � (N)�1�2:::�N (x)� ; (6)where eah �i = 1; 2; 3; 4 is the Dira bispinor index de�ned in its hiralrepresentation in whih the matries(N)j5 � i(N)j0 (N)j1 (N)j2 (N)j3 ; �(N)j3 � i2 h(N)j1 ; (N)j2 i (7)are diagonal (note that all matries (7), both with equal and di�erent j's,ommute simultaneously). The wave funtion or �eld  (N)(x) for any Narries also the Standard Model (omposite) label, suppressed in our nota-tion. The mass M (N) gets also suh a label. The Standard Model ouplingof physial Higgs bosons should be eventually added to Eq. (3) for any N .For N = 1 Eq. (3) is, of ourse, the usual Dira equation, for N = 2it is known as the Dira form [11℄ of the Kähler equation [12℄, while forN � 3 Eqs. (3) give us new Dira-type equations [10℄. All of them desribesome spin-hal�nteger or spin-integer partiles for N odd and N even, respe-tively. The nature of these partiles is the main subjet of the present paper(f. also Ref. [10℄).The Dira-type matries � (N)� for any N an be embedded into the newCli�ord algebra n� (N)i� ; � (N)j� o = 2Æijg�� (8)[isomorphi with the Cli�ord algebra introdued for (N)i� in Eq. (5)℄, if � (N)i�are de�ned by the properly normalized Jaobi linear ombinations of (N)i� .In fat, they are given as� (N)1� � � (N)� � 1pN NXi=1 (N)i� ;� (N)i� � 1pi(i� 1) h(N)1� + : : :+ (N)(i�1)� � (i� 1)(N)i� i (9)for i = 1 and i = 2; : : : ; N , respetively. So, � (N)1 and � (N)2 ; : : : ; � (N)Nrepresent respetively the �entre-of-mass� and �relative� Dira-type matri-es. Note that the Dira-type equation (3) for any N does not involve the�relative� Dira-type matries � (N)2 ; : : : ; � (N)N , solely inluding the �entre-of-mass� Dira-type matrix � (N)1 � � (N). Sine � (N)i = PNj=1Oij(N)j ,



1916 W. Królikowskiwhere the N � N matrix O = (Oij) is orthogonal (OT = O�1), we obtainfor the total spin tensor the formulaNXi=1 �(N)i�� = NXi=1 �(N)i�� ; (10)where �(N)j�� � i2 h(N)j� ; (N)j� i ; �(N)j�� � i2 h� (N)j� ; � (N)j� i : (11)Of ourse, the spin tensor (10) is the generator of Lorentz transformationsfor  (N)(x).It is onvenient for any N to pass from the hiral representations forindividual (N)i 's to the hiral representations for Jaobi � (N)i 's in whih thematries � (N)j5 � i� (N)j0 � (N)j1 � (N)j2 � (N)j3 ; �(N)j3 � i2 h� (N)j1 ; � (N)j2 i (12)are diagonal (they all, both with equal and di�erent j's, ommute simul-taneously). Note that � (N)15 � � (N)5 is the Dira-type hiral matrix as itis involved in the Standard Model gauge oupling in the Dira-type equa-tion (3).Using the new Jaobi hiral representations, the �entre-of-mass� Dira-type matries � (N)1� � � (N)� and � (N)15 � � (N)5 an be taken in the reduedforms � (N)� = � 
 1
 � � � 
 1| {z }N�1 times ; � (N)5 = 5 
 1
 � � � 
 1| {z }N�1 times ; (13)where �, 5 � i0123 and 1 are the usual 4 � 4 Dira matries. Forinstane, the Jaobi � (N)i� 's and � (N)i5 's for N = 3 an be hosen as� (3)1� = � 
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 5 : (14)Then, the Dira-type equation (3) for any N an be rewritten in theredued formn � [p� gA(x)℄ �M (N)o�1�1  (N)�1�2:::�N (x) = 0 ; (15)where �1 and �2 ; : : : ; �N are the �entre-of-mass� and �relative� Dirabispinor indies, respetively (here, ( � p)�1�1 = �1�1 � p and �M (N)��1�1 =



Two Sterile Neutrinos as a Consequene of Matter Struture 1917Æ�1�1M (N), but the hiral oupling g � A(x) involves within A(x) also thematrix 5). Note that in the Dira-type equation (15) for any N > 1 the�relative� indies �2 ; : : : ; �N are free, but still are subjets of Lorentz trans-formations (for �2 this was known already in the ase of Dira form [11℄ ofKähler equation [12℄ orresponding to our N = 2).Sine in Eq. (15) the Standard Model gauge �elds interat only with the�entre-of-mass� index �1, this is distinguished from the physially unob-served �relative� indies �2 ; : : : ; �N . Thus, it was natural for us to on-jeture some time ago that the �relative� bispinor indies �2 ; : : : ; �N areall indistinguishable physial objets obeying Fermi statistis along withthe Pauli priniple requiring in turn the full antisymmetry of wave funtion �1�2 ; ::: ; �N (x) with respet to �2 ; : : : ; �N [10℄. Hene, only �ve values ofN satisfying the ondition N � 1 � 4 are allowed, namely N = 1; 3; 5 for Nodd and N = 2; 4 for N even. Then, from the postulate of relativity andthe probabilisti interpretation of  (N)(x) we were able to infer that threeN odd and two N even orrespond to states with total spin 1/2 and totalspin 0, respetively [10℄.Thus, the Dira-type equation (3), jointly with the �intrinsi Pauli prin-iple�, if onsidered on a fundamental level, justi�es the existene in Natureof three and only three families of spin-1/2 fundamental fermions (i.e., lep-tons and quarks) oupled to the Standard Model gauge bosons. In addition,there should exist two and only two families of spin-0 fundamental bosonsalso oupled to the Standard Model gauge bosons.For sterile partiles, Eq. (15) with any N goes over into the free Dira-type equation ��1�1 � p� Æ�1�1M (N)� (N)�1�2:::�N (x) = 0 (16)(as far as only Standard Model gauge interations are onsidered). Here,no Dira bispinor index �i is distinguished by the Standard Model gaugeoupling whih is absent in this ase. The �entre-of mass� index �1 is notdistinguished also by its oupling to the partile's four-momentum, sineEq. (16) is physially equivalent to the free Klein�Gordon equation�p2 �M (N) 2� (N)�1�2:::�N (x) = 0 : (17)Thus, in this ase the intrinsi Pauli priniple requires that N � 4, leadingto N = 1; 3 for N odd and N = 2; 4 for N even. Similarly as before, theyorrespond to states with total spin 1/2 and total spin 0, respetively [9℄.Therefore, there should exist two and only two spin-1/2 sterile funda-mental fermions (i.e., two sterile neutrinos �s and � 0s) and, in addition, twoand only two spin-0 sterile fundamental bosons.



1918 W. KrólikowskiThe wave funtions or �elds of ative fermions (leptons and quarks) ofthree families and sterile neutrinos of two generations an be presented interms of  (N)�1�2:::�N (x) as follows (f)�1 (x) =  (1)�1 (x) ; (f 0)�1 (x) = 14 �C�15��2�3  (3)�1�2�3(x) =  (3)�112(x) =  (3)�134(x) ; (f 00)�1 (x) = 124"�2�3�4�5 (5)�1�2�3�4�5(x) =  (5)�11234(x) (18)and  (�s)�2 (x) =  (1)�2 (x) ; (�0s)�2 (x) = 16 �C�15��2�3 "�3�4�5�6 (3)�4�5�6(x)= 8>>><>>>:  (3)134(x) for �2 = 1� (3)234(x) for �2 = 2 (3)312(x) for �2 = 3� (3)412(x) for �2 = 4 ; (19)respetively, where  (N)�1�2:::�N (x) for ative fermions [Eq. (18)℄ arries alsothe Standard Model (omposite) label, suppressed in our notation, and Cdenotes the usual 4�4 harge-onjugation matrix. We an see that due tothe full antisymmetry in �i indies for i� 2 these wave funtions or �eldsappear (up to the sign) with the multipliities 1, 4, 24 and 1, 6, respetively.Thus, for ative fermions and sterile neutrinos there is given the weightingmatrix �(a) 1=2 = 1p29 0� 1 0 00 p4 00 0 p241A (20)and �(s) 1=2 = 1p7 � 1 00 p6� ; (21)respetively. For all neutrinos (i.e., �e; ��; �� and �s; � 0s) desribed jointly,the overall weighting matrix takes the form�(a+s) 1=2 = 1p36 0BBB� 1 0 0 0 00 p6 0 0 00 0 1 0 00 0 0 p4 00 0 0 0 p241CCCA ; (22)if we use the ordering s; s0; e; �; � . Of ourse, for all these matries Tr � = 1.



Two Sterile Neutrinos as a Consequene of Matter Struture 1919Conluding this Introdution, we would like to say that in our approahto families of fundamental partiles Dira bispinor indies (�algebrai par-tons�) play the role of building bloks of omposite states identi�ed as fun-damental partiles. Any fundamental partile, ative with respet to theStandard Model gauge interations, ontains one �ative algebrai parton�(oupled to the Standard Model gauge bosons) and a number N �1 of �ster-ile algebrai partons� (deoupled from these bosons). Due to the intrinsiPauli priniple obeyed by �sterile algebrai partons�, the number N of all�algebrai partons� within a fundamental partile is restrited by the ondi-tion N � 1 � 4, so that only N = 1; 2; 3; 4; 5 are allowed. It turns out thatstates with N = 1; 3; 5 arry total spin 1/2 and are identi�ed with threefamilies of leptons and quarks, while states with N = 2; 4 get total spin 0and so far are not identi�ed. Any fundamental partile, sterile with respetto the Standard Model gauge interations, ontains only a number N � 4 of�sterile algebrai partons�, thus only N = 1; 2; 3; 4 are allowed. States withN = 1; 3 orrespond to total spin 1/2 and have to be identi�ed as two sterileneutrinos, while states with N = 2; 4 have total spin 0 and are still to beidenti�ed.Our algebrai onstrution may be interpreted either as ingeneously al-gebrai (muh like the famous Dira's algebrai disovery of spin 1/2) oras the summit of an ieberg of really omposite states of N spatial partonswith spin 1/2 whose Dira bispinor indies manifest themselves as our �al-gebrai partons�. In the former algebrai option, we avoid automatiallythe irksome existene problem of new interations neessary to bind spatialpartons within leptons and quarks of the seond and third families. For thelatter spatial option see some remarks in the seond Ref. [9℄.2. A model of �ve-neutrino textureIn this setion we onstrut the �ve-neutrino mass matrix M = (M��)under the onjeture that in ordering �; � = s; s0; e; �; � of neutrino sequene�� = �s; � 0s; �e; ��; �� only the nearest neighbours are oupled through thematrix M . In terms of our presentation of three families of ative fermions,Eqs. (18), and two sterile neutrinos, Eqs. (19), suh an ordering of �ve-neutrino sequene tells us that the hain�s $ � 0s $ �e $ �� $ ��of neutrino transitions orresponds to the hain�2 $ �2�3�4 $ �1 $ �1�3�4 $ �1�2�3�4�5of onseutive ats of reation or annihilation of index pairs �i�j with i; j � 2(pairs of �sterile algebrai partons�), allowed by the intrinsi Pauli priniple



1920 W. Królikowskivalid for �i with i � 2. In one of these four ats, �1 must additionallybe interhanged with �2, what should diminish the rate of �1 $ �2�3�4versus �1 $ �1�3�4 (i.e., the magnitude of Ms0e versus Me�). One mayalso argue that the rate of �2 $ �2�3�4 should be still more diminishedversus �1 $ �1�3�4,(i.e., Mss0 versus Me�), as being aused by two suhadditional interhanges of �1 with �2. The allowed alternative hain�1 $ �2�3�4 $ �2 $ �1�3�4 $ �1�2�3�4�5orresponding to �e $ � 0s $ �s $ �� $ ��does not ontain the natural link �1 $ �1�2�3 related to �e $ ��.Thus, under the extra assumption thatMss = 0 ; Ms0s0 = 0 andMee = 0,we an write M = 0BBB� 0 Mss0 0 0 0Ms0s 0 Ms0e 0 00 Mes0 0 Me� 00 0 M�e M�� M��0 0 0 M�� M�� 1CCCA ; (23)where M�� =M��� due to the hermiity of M . When the CP violation maybe ignored in neutrino osillations, we put M��� =M�� (and M�� > 0 ).Operating with the mass matrix (23), we will make the tentative assump-tion that, in omparison with its nonzero o�-diagonal entries, its nonzerodiagonal elements are small enough to be treated as a perturbation of theformer. Suh a property of M may be related to a tiny neutrino masssale involved in its diagonal elements. Then, in the zero perturbative or-der (where M��, M�� are put zero), the matrix (23) an be diagonalizedexatly, giving the following zero-order neutrino masses omi numerated byi = 4; 5; 1; 2; 3:om4 = 0 ; om5;1 = ��A�pB2�1=2 ; om2;3 = ��A+pB2�1=2 ;(24)where 2A = jMe�j2 + jM�� j2 + jMss0 j2 + jMs0ej2 ;4B2 = �jMe�j2 + jM�� j2 � jMss0 j2 � jMs0ej2�2 + 4jM�� j2jMs0ej2 : (25)Next, in the �rst perturbative order with respet to the ratios� �M��=jMe�j ; � �M��=jMe�j (26)



Two Sterile Neutrinos as a Consequene of Matter Struture 1921we obtain mi = omi + Æmi, whereÆmi = (Ci=Di)jMe�j (27)withCi = (� + �) om4i � �� �jMe�j2+jMss0 j2+jMs0ej2�+ � �jMss0 j2+jMs0ej2�� om2i+ �jMe�j2jMss0 j2 ;Di = 5 om4i � 3 �jMe�j2 + jM�� j2 + jMss0 j2 + jMs0ej2� om2i + jM�� j2jMs0ej2 :(28)Note that the minus sign possible at m5 and ertain at m2 is irrelevant sine�5 and �2 are relativisti partiles for whih only m25 and m22 have physialmeaning.If our argument outlined in the �rst paragraph of this setion works,the mass matrix elements Mss0 and Ms0e (whih ouple the sterile neutrinos�s ; � 0s among themselves and � 0s with the ative �e, respetively) shouldbe smaller than the elements Me� and M�� (oupling the ative neutrinos�e; ��; �� ), and also the element Mss0 should be smaller than Ms0e: jMss0 j <jMs0ej < jMe�j. Assuming tentatively jMss0 j � jMe�j and jMs0ej � jMe�j,it an be seen that in the lowest approximation in the ratios� � jMs0ej=jMe�j ; � � jMss0 j=jMe�j (29)the formulae (24) and (27) giveom4 = 0 ; om5;1 = � ��22 + �2�1=2 jMe�j ; om2;3 = �1s jMe�j (30)and Æm4 = � �2s2�22 + �2 jMe�j ;Æm5;1 = 12� �22s2�22 + �2 jMe�j ;Æm2;3 = 12(�2 + �)jMe�j ; (31)respetively, where the abbreviationss � jMe�j(jMe�j2 + jM�� j2)1=2 ;  � jM�� j(jMe�j2 + jM�� j2)1=2 = (1� s2)1=2 (32)



1922 W. Królikowskiare used. Note that Pi Æmi = M�� + M�� , as it should be beause ofPi omi = 0 and Mss =Ms0s0 =Mee = 0. For the masses mi = omi+ Æmi, theformulae (30) and (31) show that m25 <� m21 � m22 <� m23 and m24 � m22.Now, we an alulate the unitary matrix U = (U�i) diagonalizing themass matrix M = (M��) given in Eq. (23):U yMU = diag (m4;m5;m1;m2;m3):In the zero perturbative order with respet to �; � and in the lowest approx-imation in �; �, the result isU = 0BBBBBB� f � ��p2f ��p2f 0 00 1p2 1p2 �s2p2 �s2p2���f � p2f p2f � sp2 sp20 ��s2p2 ��2s2p2 1p2 1p2�s�f sp2f � sp2f � p2 p2
1CCCCCCA ; (33)where f = �1 + �2�22��1=2 ; ��f = � ��22 + �2��1=2 (34)assuming that � 6= 0. In Eq. (33), a possible small e�et of CP violation inneutrino osillations is ignored by taking M�� = jM�� j.If not only Mss0 � Me� and Ms0e � Me� but tentatively also Mss0 �Ms0e, then beside � � 1 and � � 1 also � � �, and so, we an put� = 0 and f = 1. As is seen from Eq. (33), in this ase the sterile neutrino�s is deoupled from � 0s; �e; ��; �� and, therefore, our �ve-neutrino textureis e�etively redued to a four-neutrino texture, where the masses mi =omi + Æmi given in Eqs. (30) and (31) beomem4 = 0 ;m5;1 = ���+ 12�s2�Me� ;m2;3 = ��1s + 12 ��2 + ���Me� : (35)Here, m24 <� m25 <� m21 � m22 <� m23.When the e�et of mixing harged leptons e�; ��; �� does not appear ormay be ignored in the original Lagrangian, then V = U y is the �ve-neutrinoextension of the lepton ounterpart of the familiar Cabibbo�Kobayashi�Maskawa mixing matrix for quarks. In suh a situation, the �avor neutrinos



Two Sterile Neutrinos as a Consequene of Matter Struture 1923�� and their states j��i an be expressed as�� =Xi U�i�i ; j��i = �y�j0i =Xi U��ij�ii ; (36)where �i and j�ii are massive neutrinos and their states, numerated by i =4; 5; 1; 2; 3. Then, in the ase of �2 � �22, for instane, we obtain fromEqs. (33) the following simple mixing of massive neutrinos:�s = �4 � �� �5 � �1p2 ;� 0s = �5 + �1p2 + �s2 �2 + �3p2 ;�e = ���5 � �1p2 + ���4�� s�2 � �3p2 ;�� = �2 + �3p2 � �s2 �5 + �1p2 ;�� = s��5 � �1p2 + ���4�� �2 � �3p2 : (37)Here, we have f=1 up to O(�2=�22). Obviously, the assumption �2 � �22leading to �2 = 0 is weaker than �� � implying � = 0: in the former asethe sterile neutrino �s is still oupled to � 0s ; �e ; �� ; �� , although by a smalloe�ient = O(�=�).3. Five-neutrino osillationsFinally, in this setion we an evaluate �ve-neutrino osillation probabil-ities making use of the formulaeP (�� ! ��) = jh��jeiPLj��ij2 = Æ�� � 4Xj>i U��jU�jU�iU��i sin2 xji ; (38)valid when the CP violation may be ignored (then U��i = U�i). Here,xji = 1:27�m2jiLE ; �m2ji = m2j �m2i (39)with �m2ji, L and E expressed in eV2, km and GeV, respetively, while pi =qE2 �m2i ' E �m2i =2E are eigenvalues of neutrino momentum operatorP and L denotes the experimental baseline.



1924 W. KrólikowskiIn the ase of our mixing matrix (33), valid in the zero perturbative orderwith respet to �; � and in the lowest approximation in �; �, the formulae(38) in the ase of �2 � �22 giveP (�e ! �e) = 1� 4 sin2 x15 � (s)2 �sin2 x21+sin2 x31+sin2 x25+sin2 x35��s4 sin2 x32' 1� 4 sin2 x15 � (2s)2 sin2 x21 � s4 sin2 x32 ;P (�� ! ��) = 1� sin2 x32 ;P (�� ! �e) = s2 sin2 x32 � �s3 �sin2 x21 � sin2 x31 � sin2 x25 + sin2 x35�' s2 sin2 x32 : (40)Here, due to Eqs. (38) and (34) we have �m221 ' �m231 ' �m225 ' �m235and�m215 = 2��s2M2e� ; �m232 = 2�2 + �s M2e� ; �m221 = 1s2M2e� : (41)When 1:27�m232Latm=Eatm = O(1) for atmospheri ��'s and thus�m232 = �m2atm � 3:5 � 10�3 eV2 [4℄, the seond formula (40) is ableto desribe atmospheri neutrino osillations (dominated in our ase by themode �� $ �� ) with maximal amplitude 1. Thus, the seond equation (40)leads to the estimation2�2 + �s M2e� � 3:5� 10�3eV2 : (42)Hene, � + �! 0 with ! 1 for Me� �xed. Also � and �! 0, sine � and� � 0.On the other hand, when �m215Lsol=Esol = O(1) for solar �e's and so,�m215 = �m2sol � (6:5� 10�11 or 4:4� 10�10) eV2 [3℄ (when onsidering the�small� or �large� vauum solution), then the �rst formula (40) has a haneto desribe solar neutrino osillations (dominated now by the mode �e ! � 0s)with the large amplitude 4 = sin2 2�sol � 0:72 or 0.90, respetively. In fat,due to �m215 � �m232 � �m221 the �rst formula (40) beomesP (�e ! �e) ' 1� 4 sin2 x15 � �2s22 + s4=2� ; (43)where the disturbing last term, 2s22 + s4=2 � 0:27 or 0.099, may be toolarge, but it tends quikly to zero with 4 ! 1. Thus, from the �rst Eq. (41)the estimate 2��s2M2e� � �6:5 � 10�11 or 4:4� 10�10� eV2 (44)is suggested.



Two Sterile Neutrinos as a Consequene of Matter Struture 1925Sine 2 � 0:85 or 0.95 and  � 0:92 or 0.97, Eqs. (42) and (44) in thease of � � � (i.e., M�� �M�� ) give the estimation�M2e� � (8:0 or 4:2)� 10�4 eV2 ; � � 2:9 � 10�7 or 1:1� 10�5 : (45)Suh a tiny value � shows thatMs0e (oupling � 0s with �e) is really very smallversus Me� : Ms0e = �Me�. In this ase, we get from Eqs. (35)m5;1 : m2;3 ' �s� 12�s3 � �1:0� 10�7 or 2:3� 10�6�� 2:4� 10�6 (eV=Me�)2 ;m2;3= � 1sMe� � �(2:6 or 4:4)Me� : (46)Thus, in order to obtain, for instane, jm2j ' m3 � (1 to 10) eV one shouldtake Me� � (0:38 to 3:8) or (0:23 to 2:3) eV. Then, from the �rst Eq. (44)we infer that � � 5:6 � �10�3 to 10�5� or 7:9 � �10�3 to 10�5� (47)for 4 � 0:72 or 0.90, respetively. However, when Me� is kept �xed, � tendsquikly to zero with 4 ! 1.In the ase of Chooz experiment searhing for osillations of reator��e's [13℄, where it happens that 1:27�m2atmLChooz=EChooz = O(1), the �rstformula (40) with �m232 = �m2atm and �m215 = �m2sol beomesP (��e ! ��e) ' 1� s4 sin2 x32 � 2s22 ' 1� �2s22 + s4� ; (48)sine �m215 � �m232 � �m221. This is onsistent with the negative resultP (��e ! ��e) = 1 of Chooz experiment up to 28% or 10%, but this deviationfrom 1 tends quikly to zero with 4 ! 1. Note that Ue3 = s=p2 � 0:28 or0.16, respetively.The third formula (40) may imply the existene of �� ! �e osillationswith the amplitude equal to s2 � 0:15 or 0.05 and the mass-square salegiven by �m232 = �m2atm � 3:5� 10�3 eV2, while the estimate from LSNDexperiment [2℄ is, say, sin2 2�LSND � 0:02 and �m2LSND � 0:5 eV2. Thus,our four-neutrino texture, if �tted to atmospheri and solar results, annotexplain the LSND observation. In order to inlude the LSND e�et, onemight depart from our onjeture on nearest-neighbour oupling in the four-or �ve-neutrino mass matrix.



1926 W. Królikowski4. Final remarks: a spei� proposal for mass matrix elementsIn a spei� model of three-neutrino texture disussed by the authorpreviously (e.g. [5℄ and the �rst Ref. [6℄), the following nonzero mass matrixelements based on the ansatz (55) were proposed:M�� = 4 � 809 �29 ; M�� = 24 � 62425 �29 ; Me� = 2g29 ; M�� = 8p3 g29 ; (49)where � and g stood for two small mass sales. Then,M�� = 16:848M�� ; M�� = p48Me� (50)and from Eqs. (26)� = 299:52�=g; � = 17:778�=g = �=16:848 : (51)Thus, � � 1 if and only if g � 299:52�, the latter inequality implying g � �ertainly. In the zero perturbative order with respet to � or �=g we put� = 0.When aepting the values (49) for Me� and M�� , we obtain fromEqs. (32) s = 1=7 = 0:14286;  = p48=7 = 0:98974 : (52)So, the estimation (42) provided by atmospheri neutrino experiments im-plies �M2e� � 2:4� 10�4 eV2 : (53)Then, due to Eq. (43) and the �rst Eq. (41), the mass-square di�erene andosillation amplitude for solar neutrinos should be�m2sol = 2��s2Me� � 9:7� 10�6 � eV2 ; sin2 �sol = 4 = 0:95960 ; (54)respetively, while the disturbing last term in Eq. (43) would beome smallerthan before, giving now 2s22 + s4=2 � 0:040.The values (49) proposed for elements of the three-neutrino mass matrixM (a) = (M��) (�; � = e ; � ; �) an be exatly dedued from the simpleansatz ([10℄ and the �rst Ref. [6℄):M (a) = �(a)1=2 h�(N2 �N�2) + g(a+ ay)i �(a)1=2 : (55)Here, N = 1 + 2aya = 0� 1 0 00 3 00 0 5 1A (56)



Two Sterile Neutrinos as a Consequene of Matter Struture 1927is the matrix of number of all Dira bispinor indies �i (all �algebrai par-tons�) used in Eqs. (18) to present ative neutrinos �e ; �� ; �� , whilea = 0� 0 1 00 0 p20 0 0 1A ; ay = 0� 0 0 01 0 00 p2 0 1A (57)are (trunated) annihilation and reation matries of index pairs �i�j withi; j � 2 (pairs of �sterile algebrai partons�) inluded in Eqs. (18) for ativeneutrinos. The latter matries satisfy, jointly with the matrix of number ofsuh index pairs, n = aya = 0� 0 0 00 1 00 0 2 1A ; (58)the familiar ommutation relations[a ; n℄ = a ; [ay ; n℄ = �ay ; (59)and, in addition, the trunation relations a3=0 and ay3=0 onsistent withthe intrinsi Pauli priniple for Dira bispinor indies �i with i�2 (obviously,neither boson nor fermion anonial ommutation relations, [a; ay℄� = 1,are satis�ed here). Finally, �(a)1=2 stands in Eq. (55) for the ative-neutrinoweighting matrix (20).In the mass matrix (55), the �rst term ontaining �N2 may be intuitivelyinterpreted as an interation of all N �algebrai partons� treated on equalfooting, while the seond involving ��N�2, as a subtration term ausedby the fat that there is one �ative algebrai parton� distinguished (byits external oupling) among all N �algebrai partons� of whih N � 1, as�sterile� are indistinguishable. This distinguished �algebrai parton� appears,therefore, with the probability [N !=(N � 1)!℄�1 = N�1 that, when squared,leads to an additional interation involving �N�2. The latter interationshould be subtrated from the former in order to obtain forN = 1 the matrixelement Mee assumed to be zero. The third term in the mass matrix (55)ontaining g(a+ay) annihilates and reates pairs of �sterile algebrai partons�and so, is responsible in a natural way for mixing of three ative neutrinos.



1928 W. KrólikowskiOf ourse, the three-neutrino matrix M (a) = (M��) (�; � = e; �; �)onsidered in this setion is a submatrix of our �ve-neutrino mass matrixM = (M��) (�; � = s; s0; e; �; �), viz.M=0BBB� 0 Mss0 0 0 0Ms0s 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 01CCCA + 0BBB� 0 0 0 0 00 0 Ms0e 0 00 Mes0 0 0 00 0 0 0 00 0 0 0 01CCCA+ 0BBB� 0 0 0 0 00 0 0 0 00 0 0 Me� 00 0 M�e M�� M��0 0 0 M�� M�� 1CCCA ; (60)where Mss0 = �Me� and Ms0e = �Me�. Thus, the 2 � 2 matrix involvedin the middle 5 � 5 matrix plays the role of oupling between the sterile2� 2 matrix M (s) and ative 3� 3 matrix M (a). If � were zero, both sterileneutrinos �s and � 0s would be deoupled from the three ative. When � isput zero, �s beomes deoupled from � 0s as well as from �e; ��; �� (M (s) isthen a zero matrix).Originally, the ansatz (55) was introdued for mass matrix M (e) =�M (e)�� � (�; � = e; �; �) of harged leptons e�; ��; ��. In this ase, in orderto get a small but nonzero value of M (e)ee , the quantity ��(1 � ")N�2 witha small " (rather than the quantity ��N�2) was used in the seond term ofM (e).Then, the nonzero mass matrix elements wereM (e)ee = " �29 ;M (e)�� = 4(80 + ")25 �29 ;M (e)�� = 24(624 + ")25 �29 ;M (e)e� = 2g29 ;M (e)�� = 8p3g29 : (61)Making the onjeture that for harged leptons diagonal elements of M (e)dominate over its o�-diagonal entries (i.e., � � 1 what is ertainly true forg � �), we alulated the masses me;m�;m� as eigenvalues of M (e) in thelowest (quadrati) perturbative order with respet to 1=� or g=�. Then, we



Two Sterile Neutrinos as a Consequene of Matter Struture 1929expressed m� , � and " in terms of me;m� and (g=�)2, obtainingm� = �1776:80 + 10:12112(g=�)2� MeV ;� = �85:9924 +O �(g=�)2�	 MeV ;" = 0:172329 +O �(g=�)2� ; (62)where the experimental values of Me and M� were taken as the only in-put. Comparing this predition for m� with the experimental value mexp� =1777:05+0:29�0:26 MeV [14℄, we got(g=�)2 = 0:024+0:028�0:025 (63)for harged leptons. In suh a way, we ahieved in the ase of harged leptonsa really good agreement of our ansatz for M (e) with the experimental massspetrum (even in the zero perturbative order).This result has motivated the appliation of our ansatz for M (e) alsoto the ase of ative neutrinos �e ; �� ; �� (orresponding to e�; ��; ��). Intheir ase, however, the inverse onjeture � � 1 or g � � seems natural inview of experimentally suggested large neutrino mixing that is in ontradis-tintion to small mixing of harged leptons [f. Eq. (63)℄. In terms of threeative neutrinos alone this ansatz leads to maximal amplitude for atmo-spheri �� ! �� osillations, but it requires introduing at least one sterileneutrino to explain solar �e ! �e osillations ([5℄ and the present paper).Even in this ase, the LSND e�et does not appear, however. Thus, if thise�et was on�rmed in a lear manner, the onjeture on nearest-neighbouroupling in the four- or �ve-neutrino mass matrix and, in partiular, ouransatz (55) would not be orret for neutrinos. In this ase, a di�erent neu-trino texture, also inluding one or more sterile neutrinos, would be needed.If, on the ontrary, the LSND e�et was not seen, our four- or �ve-neutrino texture might be realized in Nature. However, muh more eonom-ial would be then a three-neutrino texture involving (as e.g. in Ref. [15℄)ative neutrinos �e; ��; �� with the mass hierarhy m21 <� m22 � m23 (in plaeof m21 � m22 <� m23 valid in the present paper). They ought to be oupledin a di�erent way than in the present paper in order to explain both theatmospheri and solar neutrino results (added in proof: nearest-neighbouroupling still may be then possible, but within the mixing matrix ratherthan within the mass matrix [16℄). The argument for our texture disussedhere would be the absene of LSND e�et and, at the same time, the exper-imental existene of one or two sterile neutrinos mixing with the ative (fora possible astrophysial aspet of sterile neutrinos f. e.g. Ref. [8℄).
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