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The structure of A = 22 nuclei has been studied in the framework
of the collective pair approximation. The collective pairs determined by
diagonalizing the Hamiltonian in the space of two nucleons with respect to
the closed core of 10 have been considered as building blocks to expand
the truncated shell-model space in terms of three pairs. It is shown that
the low-lying, shell-model spectrum can be described by considering only
a selected subset of all possible T'= 0, 1 pairs.

PACS numbers: 27.30.+t

1. Introduction

Fifty years after the pioneering work of Haxel, Jensen and Suess [1] and
Goeppert—Mayer [2], the Shell Model (SM) still plays a crucial role in the
study of nuclear properties. While well suited to describe nuclei with a small
number of nucleons outside the closed shells, however, it is well known that
its application to more complex systems is problematic. On the one hand,
the huge dimensionality of the SM space makes the calculations very difficult.
On the other hand, even when, thanks to the new computational techniques,
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this description becomes possible, it is all but “transparent”. These aspects
of the SM have favoured the development of less refined but easier-to-apply
SM related methods for describing those nuclear systems which are outside
the natural range of applicability of the model. We quote, for instance, the
Broken Pair Approximation [3, 4], the Generalized Seniority Scheme [5, 6]
and the Chain-Calculation Method [7].

In two previous publications [8, 9], a description of 1s0d and 1p0f-shell
nuclei has been provided in terms of the Collective Pair Approximation
(CPA) [10, 11]. The essence of such an approximation consists in singling
out a set of collective pairs in terms of which a subspace of the full SM space
is constructed, and then in diagonalizing the Hamiltonian of the system in
such a subspace. The structure of the collective pairs is fixed by diagonalizing
the Hamiltonian in the space of two active nucleons outside the closed shell
core. The calculations of Refs. [8, 9] have referred to systems having up
to five particles outside the closed shells. This limited number of particles
has also allowed to perform full SM calculations. The comparison between
SM and CPA calculations has provided an excellent testing ground for this
approximation.

A crucial point within the CPA approach is represented by the choice of
the collective pairs. In the just mentioned calculations, we have followed the
simplest possible procedure, namely we have diagonalized the SM Hamil-
tonian in the space of two particles outside the closed shells and we have
selected the pairs whose energy was below a given threshold. These pairs
have then been used to describe systems with three, four and five active
particles.

From the comparison with the exact results, i.e. the SM results, we have
observed that it was possible to reproduce to a good extent the low-lying lev-
els of A=19-21 and A=43-45 [8, 9] nuclei remaining in spaces considerably
reduced with respect to the SM ones.

In the present paper we extend the previous calculations to A = 22
even-even and odd—odd 1s0d-shell nuclei. Also in this case SM calculations
are possible and they will help us to judge the quality of the approximate
results.

The paper is organised as follows. In Section 2, we will describe the basic
formalism of CPA. In Section 3, we will present the method adopted to fix
the structure of the pairs. Finally, in Section 4, we will discuss the results
of our calculations and give some conclusions.

2. Formalism

In this section we illustrate the CPA formalism to describe spectra of
nuclei with 2n(n = 3) nucleons outside the closed shells.
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The operator fll v creating a collective pair of multipolarity I'(= JT)
and projection I''(= J'T") is defined as

Alrr' = Z C%(A1A2)Z}FI(A1A2), (1)
A2

where

Z}F/(AIAQ) = (1 + 5)\1)\2)71/2 |:a&1 X 0&2 (2)

creates a two-nucleon state with nucleons occupying orbitals A; and As and
coupled to total spin-isospin angular momenta I'(J,T') and their projection
I''(= J,T'). The index v denotes different collective pairs with the same
quantum numbers I'I”. The coefficients C.(A;A2) determine the structure
of the collective pairs. Detailed procedures to find these coefficients are
described in Section 3. The collective pairs defined by Eq. (1) are used
as building blocks to construct a truncated SM basis which can be used
to expand the wavefunctions of A = 22 nuclei. The basis states can be
expressed as

[

i) = v lo{Ta sl ') = HALH X AZQFQ} X A13F3:|F , 0),

I't2
(3)
where square brackets indicate the order of spin-isospin angular momenta
couplings, the intermediate spin-isospin angular momenta are specified by
I'19, while the total spin-isospin angular momenta and their projections are
indicated by I and I'’. In the case of two identical pairs, i.e. v = o and
It = Iy, the spin and isospin angular momenta I'js = (J12T%2) have to fulfil
the condition (—)/1+2=T12 =1,
Taking into account the completeness of the basis states [2nSAA’) span-
ning the full SM space of nuclei with nucleons in active orbits, the identity
operator can be defined

A

I(2n) = Y [2nBAN)(2nBAN, (4)

BAN

where the quantum numbers AA’ define the total spin-isospin angular mo-
menta and their projections and g give a set of additional quantum numbers
to distinguish states with the same AA’. By inserting the I(2n = 4) and
I(2n = 6) into Eq. (3), employing the Wigner-Eckart theorem and utilizing
the orthonormality conditions of the Clebsch-Gordan coefficients, Eq. (3)
can be expressed as

i) = [l { T }us Dy IT") = Y Cigl2n = 65IT") (5)
8
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2F12+1)1/2

Cig = Z CE (M) CF (A3A)CLE (A5 Xe) <m

A1 A2 A3 A As5 06814
{ INnI5I9
X

st b ar11ZE (a8 A (A A 2], Gar [T (e o).

(6)

In Eq. (6) the symbol { } stands for the product of the spin and isospin 63 co-
efficients and the coefficients (... ||th|| ...) are the reduced matrix elements

of the two-nucleon transfer operator Z} defined by Eq. (2).

States of Eq. (5) are neither normalised nor linearly independent. By
constructing the overlap matrix (i|j) and diagonalizing it, we find a new set
of orthonormal states

N
|¢7FF’>:(N’Y)71/QZJC’L'7|7:>’ 7:172a"'7N' (7)
=1

The number N of states (7) whose norm N, > 0, in general, is less than
the number N of states |7). Due to Eq. (5), these states can be expanded in
terms of the complete SM basis states |2n = 68I'I") as follows

@) = (N3) ™2 fiy Cigl2n = 68II) . (8)
0B

Thus, the matrix representation of the SM Hamiltonian in the CPA space
spanned by the states (8) can be written as

(Do || H|| Dy ) = (NyNy) V2N fi,Cipl2n = 68| H||2n
' BB’
— 6,Blpl>0i’5’fi”yl . (9)

Looking at Eqgs (6) and (9) one sees that in order to solve the eigenvalue
problem of the Hamiltonian in the CPA space spanned by states (8) the
matrix elements of the two-nucleon transfer operator (Eqs (2) and (6)) and
matrix elements of the Hamiltonian expressed in the complete SM basis have
to be known. Both these matrix elements can be calculated with the aid of
standard SM programs [12].
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3. Structure of collective pairs

The notation which we will adopt in this paper is the same of previous
works [8-9]. Therefore, s,d, g pairs will stand for T'= 1, J = 0, 2,4 pairs
while @1, @3, O5 for T' =0, J =1, 3,5 pairs, respectively. The structure of
the collective pairs has been fixed by simply diagonalizing the Hamiltonian
of the system in the space of two nucleons moving in the orbitals Ods /o, 151 /9
and 0d3 /o outside the closed 0s0p shells, 7.e. the space of states

{75 (M A2)[0)} (10)

and using the Wildenthal’s interaction [13]. The T'= 0 and 1 spectra which
result from this diagonalization are shown in Table I. As in Refs [8-9], we
have selected the lowest five T' = 1 pairs, i.e. the s, d, g, s’ and d’ pairs, and
the lowest three T' = 0 pairs, i.e. the @1, @3, and G5 pairs. Such a choice
has been guided by the presence of small gaps in the energy spectra which
separate these pairs from the remaining ones (see Table I).

TABLE 1
The energies of the 7= 0 and T = 1 pairs. For details see text.

T=0 T=1
pair J EMeV) | pair J E(MeV)
é, 1 —-13.583 s 0 -12171
O3 3 —-12.212 d 2 -9.991
O; 5 —=12.121 g 4 —8&8.389
O, 2 -9.277 | & 0 —7.851
e; 3 -9.076 | d' 2 —7.732
O, 1 -8671| f 3 —6.445
e 1 —6.872 d" 4 —3.421

4. Results and discussion

The calculations we are going to discuss in this section refer to A = 22,
T = 0-2 systems. Their results are displayed in Figs 1-3 where in the
columns denoted by (SM) and (CPA) we report the SM levels and the re-
sults obtained within CPA| respectively. We compre our results with the SM
ones, whose quality with respect to the experimental data has been widely
discussed in several papers (see for instance Ref. [13]). For each level we show
the angular momentum and, in parenthesis, the overlap between correspond-
ing CPA and SM states. In Table II, we also show the dimensionalities of
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Fig. 1. Comparison between the shell model (SM) and the collective pair approxi-
mation (CPA) spectra of the T' = 0 states of A = 22 nuclei. The CPA spectra are
calculated in terms of the set of pairs ss’ dd' ¢@; @30;5. For details see text.
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Fig. 2. The same as in Fig. 1 but for the T = 1 states of A = 22 nuclei.
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Fig. 3. The same as in Fig. 1 but for the T' = 2 states of A = 22 nuclei.

the SM and CPA spaces. As we see, in the case T'= 3 the CPA dimension-
alities coincide in most of the cases with the SM ones. Therefore, the two
calculations give almost identical results and we do not present them. The
overall agreement is reasonably good for all T" values and particularly good
for T = 1. In this case all the overlaps of the 18 states lying below 8 MeV
excitation energy are larger than 0.95. One can observe a few inversions in
the order of the levels with respect to the SM spectrum. We stress, however,
that the difference in energy is never larger than ~ 200 KeV. For T' = 0 and
T = 2, the quality of the overlaps remains basically the same while the dis-
crepancy in the energies is a bit larger in the average, the maximum being,
however, only ~ 250 KeV. As shown in Table IT the CPA dimensionalities
for the T' = 0-2 systems are considerably reduced with respect to the SM
ones.

These calculations confirm that CPA can be considered as an effective
tool for the study of the low-lying spectra of nuclei with several nucleons
outside closed shells and that a further extension of the CPA method to
nuclei with more than three collective pairs is feasible. Adequate candidates
for such studies are the medium weight nuclei with active nucleons in the
1p0f shell above the closed A = 40 core as well as heavier nuclei. Although
for these nuclei the large-scale SM calculations are already feasible [14-15],
it is undoubtedly not very useful to look at several hundred thousands if
not several million expansion coefficients of an eigenstate [16-17]. Therefore
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TABLE II

Comparison between the shell model (SM) and collective pair approximation (CPA)
dimension for the T' = 1-3 states of A = 22 nuclei. In the columns we report:
the spin (J) of the state, the shell model dimension (SM) and the collective pair

approximation dimensions (CPA) for the set of pairs ss’ dd' g@, O30s.

T=0 T=1 T=2 T=3
J SM CPA SM CPA SM CPA SM CPA
0 71 9|148 76| 54 26| 14 14
1 243  88(351 107|164 85| 19 10
2 307 84525 221|219 118| 33 33
3 366 138 | 537 203 (232 137 | 29 25
4 311 106|502 241|195 129 | 26 26
5 259 117369 178 | 144 116 | 12 12
6 169 77255 163 | 82 80| 8 8
7 107  68|135 95| 41 41| 1 1
8 47 31| 67 66| 14 14

9 24 24| 21 21| 3 3

10 5 50 6 6

n1 1

for an instructive understanding of the structure of the individual states
and the relation between them, irrespective of whether the large-scale SM
calculations are feasible or not, realistic truncations of the SM space have to
be found. The calculations presented in this paper show that the CPA can
give the answer to the question on how to truncate the huge SM space to
a manageable subspace without loosing the fundamental philosophy of the

SM.

Work on the extension of the CPA to nuclei with a larger number of
collective pairs is in progress.

E.K. would like to thank the INFN and the Department of Physics of
the University of Catania for their hospitality and financial support.
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