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MODIFICATIONS OF MESON MASSESAND THE THREE-NUCLEON PROBLEMF. Sammarru
aPhysi
s Department, University of IdahoMos
ow, Idaho 83843, USAH. WitaªaInstitute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand X. MengPhysi
s Department, University of IdahoMos
ow, Idaho 83843, USA(Re
eived June 2, 2000; revised version re
eived September 18, 2000)Motivated in part by re
ent experimental determinations of the �-mesonmass in the nu
lear medium, we apply the Brown�Rho s
aling hypothesisin the three-nu
leon system. We pay parti
ular attention to two openproblems, namely, the binding energy and the analyzing power in neutron-deuteron elasti
 s
attering (�Ay puzzle�). We show that both issues 
an besu

essfully addressed by a s
aling of meson masses 
orresponding to anaverage density of the three-nu
leon system.PACS numbers: 25.10.+s, 21.30.+y, 21.45.+v, 25.40.Dn1. Introdu
tionOne goal of modern nu
lear physi
s is to des
ribe the properties of hotand dense nu
lear matter near the 
hiral phase transition density. Theseextreme 
onditions govern the behavior of systems su
h as neutron starsand supernovae, and 
an be probed via relativisti
 heavy-ion 
ollisions atfa
ilities su
h as RHIC. However, QCD-based theories predi
t that a signa-ture of su
h transition 
ould already be observable in normal nu
lear matter(for a review, see Ref. [1℄). This hypothesis 
an be tested, for instan
e, inheavy-ion experiments or in ele
tro/photonu
lear rea
tions at beam energies(2039)
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ations of the meson spe
tral properties.The CERES dilepton measurements [2℄ do indeed provide strong evi-den
e that the properties of the � meson are nontrivially modi�ed in thenu
lear medium. The experiments report an ex
ess of dilepton produ
tionat low invariant mass, as well as strength missing from the region of the free �mass, although these determinations are not yet very quantitative. The sim-plest explanation for these �ndings 
an be given in terms of hadron massesdropping as a fun
tion of density. This has be
ome known as Brown�Rho(B/R) s
aling [3℄, and establishes an appealing link to the 
hiral stru
tureof the hadroni
 va
uum.Re
ent experiments of �0 photoprodu
tion on 3He [4℄, in whi
h the �0mass was dire
tly a

essed in the measurements, have revealed substantialredu
tion of its mass from the va
uum value. In view of this observation,whi
h indi
ates in a rather indisputable way that meson masses are indeedmodi�ed in a nu
leus as light as 3He, we want to explore the possible impa
tof B/R s
aling on some well-known issues 
on
erning the three-body prob-lem. In this note, we will present an exploratory 
al
ulation of the tritonbinding energy whi
h in
orporates B/R s
aling of meson masses. We willthen show how this re�e
ts on the most problemati
 observable in low-energynd elasti
 s
attering, namely the analyzing power below �25 MeV.From the results shown here, it 
an be 
on
luded that this less 
onven-tional approa
h appears promising and worthwhile further 
onsideration.2. Three-body 
al
ulation with dropping meson massesIt is well known that all modern high-pre
ision nu
leon-nu
leon (NN)potentials used in a 
harge-dependent Faddeev 
al
ulation 
onsistently un-derestimate the triton binding energy by approximately 0.5 MeV or more[5�10℄. The 
onventional wisdom is to interpret the missing energy as evi-den
e for the existen
e of three-nu
leon for
es (3NF). The in
lusion of phe-nomenologi
al attra
tive 3NF, however, does not resolve what has be
omeknown as the �Ay puzzle�: a drasti
 dis
repan
y between the predi
tions byNN for
es and both nd and pd data for the low energy elasti
 s
atteringve
tor analyzing power Ay [11, 12℄. Present day 3NF models have insignif-i
ant e�e
ts [11�15℄ and thus do not remove the dis
repan
y. Be
ause Aydepends very sensitively on the triplet P 
omponents of the NN for
e, atrivial explanation might be that the 3P NN phase-shift parameters frommodern phase-shift analyses have not yet been settled to the true ones [16℄.In Ref. [17℄ arguments are given to show that 
hanges in the NN for
es,with the ex
eption of drasti
 modi�
ations of the well established propertiesof the one-pion ex
hange, are not 
apable of reprodu
ing Ay. On the other
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leon Problem 2041hand, there are still doubts whether the 3P NN for
e 
omponents have been
onstrained su�
iently well by the NN data basis, whi
h might leave someroom to modify 3P NN for
e 
omponents [18℄. If the reason does not liein the NN phases, a 3NF of still unknown properties would be responsible.One possibility for su
h 3N for
es is dis
ussed in Ref. [19℄.For our present purpose, the 
hoi
e of the parti
ular NN potential isnot a 
ru
ial issue, sin
e we are just exploring 
ertain me
hanisms and theirqualitative e�e
t. We take the well-known Bonn B potential [20℄ (whi
his a one-boson-ex
hange potential) as our starting for
e, whi
h produ
esa triton binding energy of 7.82 MeV (using the pp version and ignoring
harge-dependen
e for simpli
ity). Typi
ally, high-pre
ision lo
al potentialsyield between 7.6 and 7.7 MeV for the triton binding energy in a proper
harge-dependent 
al
ulation, while a result of 8.0 MeV is obtained with thenon-lo
al CD-Bonn intera
tion [9, 10℄. Thus our starting value 
an be seenas simulating an average of the most widely a

epted theoreti
al results forthe triton binding energy.A

ording to the B/R s
aling pres
ription [3℄, meson masses (ex
eptfor the pion, whi
h is prote
ted by its Goldstone boson nature), s
ale withdensity as m�m = 1� C ��0 ; (1)where m� denotes the (s
aled) meson mass in the nu
lear medium and mthe mass in free spa
e. The 
onstant C is approximately 0.15 and �=�0 isthe density in units of nu
lear matter density. In 
hoosing the proper levelof s
aling to be applied here, we are guided by previous 
al
ulations [21℄ ofaverage meson masses in light nu
lei, and redu
e ve
tor and s
alar mesonmasses, as well as the 
orresponding 
uto� masses, to approximately 95% oftheir free-spa
e value.The simultaneous s
aling of masses and 
uto� masses is motivated by
onsisten
y arguments. A 
uto� mass (by preventing short-distan
e ap-proa
h) is essentially equivalent to a repulsive meson 
ontribution, and thusshould be treated on the same footing as meson masses and subje
ted tothe same 
hange of s
ale pres
ribed by Brown�Rho. In fa
t, when Brownet al. have implemented the s
aling s
enario within the nu
lear many-bodyproblem (su
h as, for instan
e, in Ref. [22℄), s
aling of 
uto� masses has beenin
luded as well. Thus, the modi�ed values of masses and 
uto� masses are
losely 
onne
ted 
omponents of the physi
al model we propose.The resulting modi�
ations to the dynami
al input are reported in Ta-ble I. Any parameter not shown in the Table is left to its standard Bonn Bvalue [20℄.With the above modi�
ations applied in the Bonn B potential, we thenpro
eed to a Faddeev 
al
ulation of the triton bound state whi
h in
ludes
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a, H. Witaªa, X. Meng TABLE IStandard and modi�ed meson masses and 
orresponding 
uto� masses. The �parameters given in bra
kets apply to the T = 0 NN potential [20℄.Parameter Standard value (MeV) Modi�ed value (MeV)m� 769 729m! 782.6 742m� 550(720) 521(683)mÆ 983 932�� 1850 1754�! 1850 1754�� 1900(2000) 1801(1896)�Æ 2000 1896partial waves up to a total two-nu
leon subsystem angular momentum ofJ = 4 (all of whi
h are modi�ed), and obtain a triton binding energy of8.49 MeV. This in
rease in binding energy 
an be understood as follows.First, noti
e that the strenght of a one-boson ex
hange diagram dependsinversely on the square of the boson mass, sin
e the meson propagator hasthe stru
ture P = 1m2 + k2 (2)with k the three-momentum transfer. Applying B/R s
aling, the mass inthe above equation is repla
ed by the mass in the medium, m�. Therefore,the dropping of a meson mass always enhan
es the 
ontribution from thatmeson. The 
entral for
es 
reated by �- and !-ex
hange 
arry opposite signand so do the 
orresponding enhan
ements due to B/R s
aling. Thus, thereare large 
an
elations. However, sin
e the enhan
ement of the � is moree�e
tive than the one from the ! (due to the smaller mass of the �), the nete�e
t is an in
rease in the attra
tion.The next step of our exploratory study is to 
he
k whether this pres
rip-tion also helps with the problemati
 issue of the analyzing power in nd elasti
s
attering below �25 MeV. We will apply to the two-body input the samemodi�
ations as used for the bound state, (namely, the modi�
ations as inTable I). However, only the triplet P -waves will now be subje
t to thosemodi�
ations. The reason is the following: in nd s
attering 
al
ulations,one needs the deuteron wave fun
tion in order to keep the appropriate polestru
ture. Now, the modi�
ations in Table I are appropriate for an averagedensity 
orresponding to the three-nu
leon system, and thus should not beapplied to the deuteron (whi
h is essentially free-spa
e). Therefore, in orderto preserve the deuteron properties and pole stru
ture, we do not modify S-and D-waves in the s
attering 
al
ulation. This limitation, however, is not
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t our 
on
lusions in a substantial way, as we explain next. Themajor e�e
t from Brown�Rho s
aling originates from the 
ontributions of �and ! a
ting 
oherently in the spin-orbit for
e (this will be dis
ussed in moredetails later). In the 
entral for
e, large 
an
elations o

ur between the �and the ! 
ontributions, as pointed out above when dis
ussing the bindingenergy result. As far as the tensor for
e is 
on
erned, a 5% s
aling of the �meson mass would have a negligible e�e
t (in fa
t, systemati
 work by Sam-marru
a, Stephenson, and 
ollaborators [23℄ with proton-nu
leus s
atteringhas shown that e�e
ts from s
aling only the � mass are very small, even at a10-20% level, whi
h is mu
h more than what applied in the present 
ontext).Therefore, at this level of s
aling, B/R e�e
ts are essentially �-! e�e
ts onthe spin-orbit 
omponent, whi
h is of 
ourse the 
hief me
hanism behind theP -waves. It is then reasonable to expe
t that even this sele
tive appli
ationof the modi�ed intera
tion (entirely due to te
hni
al reasons), will give us arealisti
 insight of Brown�Rho s
aling e�e
ts on the s
attering observables.The results are shown in Fig. 1 at various in
ident laboratory energies.All s
attering 
al
ulations in
lude two-nu
leon angular momenta up to J=3,whi
h give 
onverged results for the low energies of interest here. In all 
ases,the solid 
urve is a 
al
ulation based on the original Bonn B potential, whilethe dashed 
urve 
ontains the modi�
ations as in Table I, but applied onlyto the triplet P -waves (to whi
h Ay is mostly sensitive), for the reasonsexplained above. Clearly the predi
tions whi
h in
lude B/R s
aling move inthe right dire
tion, indi
ating enhan
ement of the spin-orbit for
e. The spin-orbit for
es generated by �- and !-ex
hange add up 
oherently and so do theenhan
ements 
aused by B/R s
aling. Thus the e�e
t is quite large. Noti
ethat this is in 
ontrast to the 
ase of the 
entral for
e dis
ussed above. Thee�e
t is most dramati
 at the lower energies, where the 
ontribution of theP -waves to Ay is largest, and de
reases with in
reasing in
ident energy. Thedi�erential 
ross se
tion is dominated by the S-waves,and be
ause these arenot modi�ed at the present stage of the 
al
ulation, no signi�
ant di�eren
esexist, see Fig. 2.Con
erning other spin observables, the general pattern we have observedis very well represented by the observables displayed in Figs. 3�7, where theoriginal Bonn B predi
tions (solid line) as well as the predi
tions in
ludingB/R s
aling (dashed) are shown. Besides the dramati
 improvement inAy, the deuteron ve
tor analyzing power iT11 also shows improvement as a
onsequen
e of B/R s
aling. This is not surprising, given its sensitivity tothe P -waves. Overall, the quality of the predi
tions for the other observablesremains essentially unaltered.
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Fig. 1. The analyzing power for nd elasti
 s
attering at various energies. In ea
h
ase, the solid 
urve uses the Bonn B potential as the input two-body for
e; thedashed 
urve is obtained with triplet P -waves modi�ed by the B/R pres
ription asexplained in the text. The experimental data shown at 3, 10, 22.7, and 65 MeVwere taken from Ref. [24�26℄ and [27℄, respe
tively.

Fig. 2. Angular distributions for nd elasti
 s
attering at 10 MeV (a) and 22.7 MeV(b). The de�nition of the 
urves is as in Fig. 1. Data from Ref. [26℄.
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Fig. 3. The deuteron ve
tor analyzing power iT11 for nd elasti
 s
attering at 10MeV (a) and 22.7 MeV (b). The de�nition of the 
urves is as in Fig. 1. Data fromRef. [26℄.

Fig. 4. The deuteron tensor analyzing powers T20, T21, and T22 in nd elasti
 s
at-tering at 10 MeV. The de�nition of the 
urves is as in Fig. 1. Data from Ref. [26℄.
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Fig. 5. The deuteron tensor analyzing powers T20 and T22 in nd elasti
 s
atteringat 22.7 MeV. The de�nition of the 
urves is as in Fig. 1. Data from Ref. [26℄.

Fig. 6. Some nu
leon to nu
leon spin-transfer 
oe�
ients in nd elasti
 s
atteringat 10 MeV. De�nition of 
urves as in Fig. 1. Data from Ref. [26℄.
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Fig. 7. Some nu
leon to deuteron polarization transfer 
oe�
ients in nd elasti
s
attering at 10 MeV. De�nition of 
urves as in Fig. 1. Data from Ref. [26℄.3. Con
lusionsWe have applied the B/R model for density-dependent meson massesto 
al
ulate the triton binding energy and various observables of nd elasti
s
attering at several in
ident energies. Con
erning the 
ontinuum, we havepaid parti
ular attention to the analyzing power Ay, whi
h has been, for overten years, one of the most elusive problems in low-energy few-body physi
s.For both the bound state energy and the nd analyzing power, the e�e
tdue to B/R s
aling goes in the desired dire
tion, diminishing the dis
repan
ybetween data and 3N predi
tions obtained with modern free NN for
es. No-ti
e that this is not a trivial result. The two main open problems 
on
erningthe three-nu
leon system are of very di�erent nature. The triton bindingenergy is typi
ally underpredi
ted by 0.7�0.2 MeV. This �gure must be
ompared with the total potential energy of the triton, whi
h is approxi-mately �50 MeV. Thus, only about 2% of the potential energy is missing,whi
h is very little. On the other hand, in the 
ase of the Ay puzzle the dis-agreement with the data is as large as 30% in the region of the maximum,whi
h is a large dis
repan
y. Be
ause of the di�erent nature of the two ob-
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ause of the very di�erent sizes of the dis
repan
ies in thetwo 
ases, it is by no means trivial that a single me
hanism 
an �x bothproblems simultaneously. For the binding energy the 
entral for
e plays themain role, while for the analyzing power the spin-orbit for
e is 
ru
ial. The
entral for
es 
reated by � and ! are opposite in sign, whi
h results in asmall net e�e
t, while the 
orresponding spin-orbit for
es add up 
oherentlygiving rise to a large e�e
t. Thus, the B/R s
aling me
hanism is exa
tly ofthe nature needed to address both problems su

essfully. Thus we 
on
ludethat this approa
h is promising and deserves further 
onsideration.Part of the numeri
al 
al
ulations have been performed on the CRAYT90 of the John von Neumann Institute for Computing, Jüli
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