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The event-by-event azimuthal fluctuations in high-energy heavy-ion col-
lisions are analyzed by means of the so-called #-measure. The fluctuations
due to the collective transverse flow and those caused by the quantum
statistics in the hadron gas are discussed in detail.
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Various phenomena can lead to the nontrivial azimuthal fluctuations in
(ultra-)relativistic heavy-ion collisions. One mentions here jets and minijets
being the result of (semi-)hard parton-parton scattering [1| and the collec-
tive transverse flow due to the anisotropic pressure gradient [2,3|. The latter
phenomenon, which is well known at the intermediate collision energies (for
a review see e.g. [4]), has been recently observed in the nucleus-nucleus col-
lisions at CERN SPS [5,6]. As argued in the series of our papers [7], the
color plasma instabilities also generate a transverse collective flow in heavy-
ion collisions at RHIC and LHC. Since the final state azimuthal fluctuations
appear as remnants of the inhomogeneous or anisotropic early stage of the
collision, when the minijets are copiously produced [8] or the color instabil-
ities occur [7], the effects of interests are expected to be rather small [9].
Thus, it is a real challenge to extract them from the statistical noise.

A method, which has been successfully applied to study the collective
flow in heavy-ion collisions at SPS energies [6], is based on the Fourier anal-
ysis of the azimuthal distribution [11-13]|. Specifically, one expands the
distribution of the particle azimuthal angle measured with respect to the
reaction plane, which is reconstructed on the event-by-event basis, into the
Fourier series. Then, the first harmonic tells us about the so-called directed
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flow, the second one about the elliptic one, etc. Although the method is
very powerful there are subtleties in applying it to the real data. It has
been shown in a very recent paper [12] that the Bose-Einstein correlations
of pions significantly influence the measured Fourier coefficients. The finite
statistics and non-flow interparticle correlations — the jets are expected to
be an important source of such correlations at RHIC — distort the recon-
structed event plane [11]. Due to the finite resolution of the reconstruction
procedure, it is difficult to measure the Fourier coefficients higher than the
second one [13].

The Fourier expansion method has been designed to study the collec-
tive flow which is correlated with the reaction plane. However, the jets or
color instabilities, which have been mentioned above, generate the trans-
verse collective motion being, at least approximately, independent of the re-
action plane orientation. Then, the Fourier expansion method, as developed
in [10,11,13], does not seem to be a right tool to study such phenomena and
it is worth to consider other methods of the data analysis, for example that
one which focuses on the two-particle large-angle azimuthal correlations [14].

In this letter we propose to study the azimuthal fluctuations by means
of the previously introduced fluctuation measure @ [15] which, in fact, has
been invented for other purposes. When the fluctuations of any observable
of heavy-ion collisions are studied one faces a problem how to disentangle
the ‘dynamical’ fluctuations from the ‘trivial’ geometrical ones due to the
impact parameter variation. The latter fluctuations are large and dominate
the fluctuations of all extensive event characteristics such as multiplicity or
transverse energy. Using the fluctuation measure @ resolves the problem in
a specific way. By construction, @ is exactly the same for nucleon-nucleon
(N-N) and nucleus-nucleus (A-A) collisions if the A-A collision is a simple
superposition of N-N interactions. Consequently, @ is independent of the
centrality of A—A collision in such a case. In other words, the strength
of the correlation is not influenced by the number of uncorrelated particle
sources and one can look for the ‘dynamical’ fluctuations among the events
of very different multiplicity. @ is also defined is such a way that it equals
zero when the inter-particle correlations are entirely absent. Let us note
here as well that from the dynamical point of view the @-measure provides
basically the same information as the two-particle correlation function [16].
However, the information is filtered in a very specific way. The measure
@ has been successfully applied to the NA49 experimental data and it has
been found [17,18] that the dynamical transverse momentum correlations,
which are present in N-N collisions, are significantly reduced in the central
Pb—Pb reactions. The pr-correlations observed in these collisions are fully
explained by the effect of Bose statistics of pions [19,21].
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We are going to show in this note that @ is also useful in the studies
of azimuthal fluctuations. The @-measure analysis does not demand the
reaction plane reconstruction and can be easily applied to the data. The
measure is sensitive to various sources of correlations. We compute here the
@-measure of fluctuations caused by the collective transverse flow and those
caused by the quantum statistics and resonance decays in the hadron gas.
The latter correlations are always present in heavy-ion collisions. The fact
that the measure is sensitive to the very different correlations is advantage
and disadvantage at the same time. It is difficult to disentangle different
contributions but, as mentioned above, other methods are not free of the
problem as well. The integrated information provided by @ can be combined
with that offered by other methods, in particular the Fourier expansion.
Since all harmonics contribute to @ one can check, for example, whether
the first two Fourier coefficients, which are usually measured, saturate the
observed value of @. The analysis of ®-measure of ¢-fluctuations can be also
combined with the @-measure studies of other kinematical variables. @ of pp-
fluctuations has been already shown to be very sensitive to jets [22]. Thus,
the simultaneous measurement of ¢- and pp-fluctuations can be helpful in
disentangling various contributions.

Let us introduce the correlation (or fluctuation) measure . We define

the variable z % —, where z is a single particle characteristics such as the
particle transverse momentum or the azimuthal angle. The overline denotes
averaging over a single particle inclusive distribution. In our further consid-

erations, z is identified with the particle azimuthal angle. The event variable

7, which is a multiparticle analog of z, is defined as Z def Zf\;l(mz - ),

where the summation runs over particles from a given event. By construc-
tion, (Z) = 0, where (...) represents averaging over events (collisions). The
measure @ is finally defined in the following way

qsdéf,/%—\/z:? (1)

We first compute the @-measure of the azimthal fluctuations caused be
the transverse collective flow. The inclusive ¢—distrubtion is, of course, flat
1.€.

Poc(d) = 5 ©(9) OCr — 9) )

™

which gives ¢ = 7 and E = %772, and consequently, 22 = %7‘(’ . Following

[10], the azimuthal distribution of a single event is chosen in the form of the
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Fourier series i.e.

1

Pev(¢) = 5

o O(¢)O(2m —¢), (3)

1+ Z (Xncos(ng) + Yysin(ne))
n=1

where the parameters X, and Y,, change from event to event. The distribu-
tion (3) is usually rewritten as

Pa() = 5= [1423 vncos(n(é — )| O(9) O — ), (4)
n=1
where
Xy, = 2v,co8(nihy,) Y, = 2u,sin(ny,) .

The first term of the Fourier series from Eq. (3) or (4) corresponds to the
so-called transverse directed flow. The amplitude v; controls strength of the
flow while 17 determines the reaction plane. The meaning of v,, and %), for
n > 1 is analogous.

The angles 1), vary from event to event and their distributions are flat.
Therefore, the event distribution (4) averaged over events provides, as it
should, the inclusive distribution (2). Further, we consider two extreme
cases. In the first one, which seems to be appropriate for the hydrodynamic
flow analysis, the 1, angles are maximally correlated to each other and
uniquely determined by the reaction plane angle v, i.e. ¥, = n, + ay.
Then, the averaging over events corresponds to the integration over the
angle 1,. In the second case, the angles 1), are independent from each other
and one integrates over all v, to average over events.

Since Z = Zﬁil(qﬁi — ¢) one finds in the first case that

2 27 2
(2 = [P [ [ dbw o). Pulo)
0 N 0 0

X(¢1+ ...+ ¢n — N§)2, (5)

where Py is the multiplicity distribution. The formula analogous to (5),
which corresponds to the second case, includes the averaging over all angles
. Tt is understood that there is one more averaging in Eq. (5) which is
not explicitly shown. Namely, the averaging over the amplitudes v, which
also change from event to event. To simplify the notation we also neglect
here a correlation between the event multiplicity and the flow strength. At
first glance, the multi-particle distribution from Eq. (5) might look as a
simple product of the one-particle distributions. One should note however
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that every Poy(¢) depends on the reaction plane angle 1,. Therefore, the
integration over v, leads to the correlated multi-particle distribution.
After elementary calculation, one finds from Eq. (5) that

7'{'2
(7%) = 5 (N) + ((N*) = (N) S,

with )
(NF) = S NFPy
N
and

< P (%”)2> for 1-—st case,
<(ZZO:1 %")2> for 2—nd case.

72 (N2) — (N)) s
=+ | |S——=. 6
¢3 (i V3 R
As expected, @ = 0 for S = 0. When S — 0, (N?) = (N)2 and (N) > 1,
we get an approximate expression

S=2

Finally, we get

3

d~ 7
272

12

(N)S . (7)

Equations (6), (7) establish the relation between the $-measure and the
Fourier coefficients v,,. One sees that, in principle, all v,, contribute to @.
The measure also depends on how the angles 1, are actually correlated
among each other. We have considered the two extreme cases of the depen-
dence.

Let us now estimate the expected effect. The amplitudes v; and wo
observed in Pb—Pb collision at 158 GeV per nucleon do not exceed for pions
the value of 0.03 [6]. We take v; = v = 0.03 and v, = 0 for n > 2. We also
neglect here the variation of v; and vy. Then, one finds from Eq. (7) that
for (N) = 170 [6] ® equals 0.058 in the first case and 0.105 in the second
one.

As already mentioned, the transverse flow is far not the only source of the
azimuthal fluctuations. In particular, the quantum correlations contribute
here. We compute @ in the ideal quantum gas to estimate the effect of quan-
tum statistics. Modifying our previous calculations [19-21], one immediately

finds
(Z?) 1/ d3p A1efE

W ) @ O G ®)
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where

d3p 1
P= / (27)3 A\—1ePE £1° )

B = T~ is the inverse temperature; A = eP# denotes the fugacity and pu
the chemical potential; E is the particle energy equal to \/m?2 + p2 with m

being the particle mass and p its momentum; the upper sign is for fermions
while the lower one for bosons.
Since the inclusive azimuthal distribution is again given by (2), we get

@:%(ﬁ—l), (10)

3 -1,8E
7= [ a2 o (1)
)3 (AlefE £ 1)

As seen, @ is an intensive thermodynamic quantity, i.e. it is independent
of the system volume. It is also independent of the number of the particle
internal degrees of freedom. One easily observes that @ < 0 for fermions,
@ > 0 for bosons and @ = 0 in the classical limit (A~! > 1).

When the particles are massless and their chemical potential vanishes
(A =1), @ can be calculated analytically and the result reads

oo w2 (2/3 1) ~ —0.082
-G (1) )= (o)
where ((z) is the Riemann zeta function with ((3) £ 1.202.

In Fig. 1 we present with dashed lines the @-measure of ¢p—fluctuations
in the ideal pion gas as a function of temperature. The pions are, of course,
massive (m, = 140 MeV). The calculations are performed for several values
of the pion chemical potential. The chemical equilibrium corresponds to
i = 0. As seen, ¢ grows with the temperature. In the classical limit, when
B — —oo, the ¢-measure vanishes.

It is a far going idealization to treat a fireball at freeze-out as an ideal gas
of pions. A substantial fraction of the final state pions come from the hadron
resonances. The role of resonances is twofold. On one hand, the pions, which
originate form the resonance decays, do not ‘feel’ the Bose—Einstein statis-
tics at freeze-out and consequently the finite value of @ due to the quantum
effects is significantly reduced. On the other hand, there are extra corre-
lations among pions from the resonances caused by the decay kinematics.
In particular, the two-body decays produce the strong correlation. Below,
we estimate the role of resonances as in our earlier papers [20,21], i.e. we

where
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Fig. 1. #—measure of p—fluctuations in the hadron gas as a function of temperature
for four values of the chemical potential. The resonances are either neglected
(dashed lines) or taken into account (solid lines). The most upper dashed and solid
lines correspond to u = 70 MeV, the lower ones to u = 0, etc.

take into account only the first effect. The correlations due to the decay
kinematics will be discussed elsewhere.

The spectrum of pions, which originate from the resonance decays, is
not dramatically different than that given by the equilibrium distribution
[23]|. Therefore, we treat the fireball at freeze-out as a mixture of ‘quantum’
pions — those called ‘direct’ — and the ‘classical’ ones which come from
the resonance decays. The ¢—measure is again given by Eq. (10) but the
formulas (9), (11) are modified as

d®p 1
_ —BE
o= [ [ o2

3 -1 _8E
o [ L [ 0]
(2m)3 | (A "1eBE —1)2
The parameter A, is chosen is such a way that the number of ‘classical’
pions equals the number of pions from the resonance decays. Thus, A,
is temperature dependent. In the actual calculations we have taken into
account the lightest resonances: p(770) and w(782) which give the dominant
contribution. The life time of p, which is 1.3 fm/c, is not much longer than
the time of the fireball decoupling and some pions from the p decays can
still ‘feel’” the effect of Bose statitistics. Therefore, the contribution of p to
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the ‘classical’ pions is presumably overestimated in our calculations. Since
we neglect the heavier resonances and weakly decaying particles, which also
contribute to the final state pions, the two effects partially compensate each
other. In any case, our calculations show that the resonances do not change
the value of @ dramatically in the domain of temperatures of interest.

In Figs. 1 the solid lines represent ®—measure which includes the reso-
nances. The chemical potentials of p and w are assumed to be equal to that
of pions. As seen, the role of the resonances is negligible at the tempera-
tures below 100 MeV but above this temperature the resonances reduce the
fluctuations noticeably. The freeze-out temperature in Pb—Pb collisions at
158 GeV per nucleon, which is obtained by means of the simultaneous anal-
ysis of the single particle spectra and the two-particle correlations, is about
120 MeV [24]. For T' = 120 MeV and p = 0 the $—measure equals 0.078,
when the resonances are neglected, and is reduced to 0.066 when the reso-
nances are taken into account. One observes that the effects of the quantum
statistics and transverse flow are of comparable size.

The #—measure given by Eq. (1) corresponds to the second moment of
the fluctuating quantity. It has been suggested [25] to use the higher mo-
ments in an analogous way. However, we have shown [21] that only the third
moment measure preserves the advantageous properties of @ while the higher
moment measures do not. We have also argued [21] that the simultaneous
usage of @5 and @3 may help in identifying the origin of correlations observed
in the final state of heavy-ion collisions. Unfortunately, the third moment
measure is useless in the studies of ¢—fluctuations. One easily shows that
due to the symmetry 23 = 0 and (Z3) = 0 when the variable z is identified
with the azimuthal angle.

We conclude our considerations as follows. The ¢—measure, which can
be easily applied to the experimental data, seems to be a useful tool to an-
alyze the azimuthal fluctuations in heavy-ion collisions. It is sensitive to
the different nontrivial fluctuations, in particular those caused by the trans-
verse flow and quantum statistics which have been quantitatively discussed
here. The $#—measure analysis combined with other techniques, such as the
Fourier expansion method [10-13], will help to identify various sources of
the fluctuations.

T'am very grateful to Marek Gazdzicki, Art Poskanzer and Sergei Voloshin
for their stimulating criticism.
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