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Weight function P(a) in the diagonal representation of density op-
erator, p = [d*aP(a)|a){al, is reduced to define separately the weight
functions for phase, arg(«), and amplitude, |a|, which leads to concepts
of phase-coherence and amplitude-coherence. For a single mode phase-
-coherent field, it is shown that (i) we can have Hermitian operator of
form, ape’¥, where a is annihilation operator and % is a constant, and
(#1) the normally ordered characteristic function, xn (&), is a function of
only the imaginary part of £e*¥. For a single mode amplitude-coherent field,
it is shown that apa’ = ka', where a' is creation operator and k is a positive
real constant. When the weight function for the field is non-classical, each
of the reduced weight function may or may not be non-classical irrespective
of the nature of the other. Examples of generation of phase-coherent and
amplitude-coherent fields are given.

PACS numbers: 42.50.Ar

1. Introduction

The concept of coherence can be traced back to the Young’s double slit
experiment which gives rise to interference fringes. The superposition of
optical beams leads to interference fringes depending upon the coherence
of the beams. This phenomenal definition of the coherence leads to the
fact that coherence is due to correlation of optical signals at two space-time
points separated in space or in time or in both [1]. The early experiments
involved the observations of quantities which were quadratic in field strength
and demonstrated such correlations, but the milestone experiment of Brown
and Twiss [2] and latter experiments in nonlinear optics involved quantities
which are higher orders in field strength.
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Optical signals have random variations in both amplitudes and phase.
Classical study of coherence, thus involves a probability distribution function
containing, for each mode, one amplitude and one phase variable. If the
analytic signal for a single mode field is

v=u,+iv; =z z=|v|, 0=argv, (1.1)

properties of the field are described by coherence functions defined by

F(m,n) — <U*mvn> :/dQUf(U)U*mUn’
d*v = dvydv; = zdz db, (1.2)

where (n,m) is the order of coherence function, ( ) denotes ensemble average
and f(v)d?v is the probability for analytic signal to be in the interval d?v
at v. In quantum theory of coherence, the probability distribution function
is replaced by the weight function of the diagonal representation for the
density operator. For each mode, coherent states |«a) are defined by

ala) = ala), a=a, +io; = ze? . (1.3)
Here a is annihilation operator and « is any complex number. The density
operator p can be written in the form [3,4],

p= [ @ar(@)alal. (1.4)

where P(«) is the weight function which has the obvious properties of being
a real function and having normalization,

/d2ozP(oz) =1, d’a=dayda;=xdzdf. (1.5)

Whenever P(«) is non-negative definite, P(«) plays the role of a probability
distribution function, properties of the field can be described by classical
optics and o = ze™ corresponds to classical amplitude = and phase variable
6. On the other hand, when P(«) takes negative values also, the field can
be described only quantum mechanically. Quantum analogue of Eq. (1.2) is

rmn) — 1y [patma”} = /dQOAP(a)a*man. (1.6)
Kelly and Kleiner [5] discussed separately the distribution functions for

amplitude and phase by considering the special case where P(a) can be
factorized and written as a product of function Q(|e|) of the amplitude |«|
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and a function R(6,) of the phase angle 6, where o = |aje?». Chandra,
Prakash and Vachaspati [6, 7] introduced the concept of phase-coherence
by considering a Dirac-delta function type distribution of classical phase
of a single mode field as revealed by the definition (1.2) of the coherence
functions. Eq. (1.2) gives

rmn — g, elm=—mv (1.7)

where By, = (£™7™), in a special case when the random phase variable 6
takes only one fixed value — 9. Chandra, Prakash and Vachaspati defined
phase-coherence with the help of Eq. (1.7) taking By, 1, and 9 real. A less
stringent case

rmn — g, elm=np (1.8)

defines quasi-phase-coherence. These authors introduced S-representation

[6-8] for p
p= /dm dyS(z,y) ‘me_i’/’> <ye_i’/’ <<$e_i¢ ye_i’/’>)71 (1.9)

and showed that S(z,y) is real for quasi-phase-coherence, if phase is peaked
at 1, and that, for phase-coherence, S(z,y) involves §(z — y). The authors
also demonstrated conversion of chaotic light into quasi-phase-coherent and
phase-coherent light in degenerate parametric amplification [6,7]. Here it
is emphasized that these authors considered only the classical notion of the
phase and we also follow the same in this paper [9].

In this paper, we discuss reduced phase- and amplitude-weight functions
of optical fields. We also discuss concepts of absolute phase-coherence and
amplitude-coherence. Section 2 deals with the definitions. In Section 3, we
derive some properties of phase and amplitude coherent optical fields and
discuss how such fields can be identified, if p or P(«) or the characteristic
function is given. In Section 4, non-classical nature of reduced weight func-
tions is discussed. Finally, in Section 5, examples of producing only phase-
and amplitude-coherent optical fields are described.

2. Reduced phase and amplitude weight functions, and
phase- and amplitude-coherence

Without demanding the factorization of P (mew) into functions of z and 0

(¢f. Kelly and Kleiner [5]), we can obtain such functions by reducing P (ze'?).
The reduced phase and amplitude distribution functions can be defined by

00 2

PR (9) = / dz P (M’") ., PR(z) = / 6P (Iei‘9> . (21)

0 0
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with the normalization properties,

2 o]
/d@PpR(o) =1, /dxp,f*(x) =1, (2.2)
0 0

obtained from Eqs. (1.5). As an example, the coherent state |zoe™) (with
xo real and positive) has the weight function,

5> (acei‘9 - xoewo> = 25"6(x — 20)5(0 — 6o), (2.3)

1.e., it has both a stabilized amplitude and a stabilized phase.

Definition of phase-coherence as given by Chandra, Prakash and Vachas-
pati, Eq. (1.7) with real By, , and 1, demands that P (:Eew) must involve
d(60 + 1) and §(0 + ¢ + m) in the most general case and is of the form,

P (mei‘g) = Pi(z)3(0 + ) + Py(2)6(0 + 4 + 1) (2.4)

giving

PpR(O) =A100+19Y)+A00+¢+7), A= /dxxPZ(x) (2.5)
0

We can define the field as absolutely phase-coherent, if only one delta func-
tion is involved.

In principle, if all coherence functions are given, we can find P; and P
separately. Egs. (1.6), (1.7) and (2.4) give

o

Bumin = /dmm+n+1 [Pi(z) + (=1)" " Py(z)] . (2.6)
0
If we define
Q(z) = zP(2)U(2) — xPoy(=2)U(-x), (2.7)
where U (z) is the unit step function defined by U(z) =1 forxz > 0, U(z) =

1/2 for x =0, and U(z) =0, for z < 0, we have

o0

Bunin = / dz Q(xz)z™ ", (2.8)

—0o0
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which shows that constants B’s are the moments of function Q(z). Infor-
mation of all B’s determines () and therefore P; and P,. Formally, one may
write

Q) = 3 (1) 1) Bt [5(a)] (29)
n=0
and therefore
P (:Eew) =27 [Q(2)5(0 + ) + Q(—2)5(0 + 1 + ) . (2.10)

We can similarly discuss the case where reduced amplitude weight func-
tion PR (z) is of the form §(z — z¢). Here g is a positive constant and we
call the field as amplitude-coherent. For such a field, Eqgs. (1.6) and (2.1)
give

2w
PO = G A, Aoy = [ dOPRO) 0 @)
0

If all coherence function I"™™) of such a field are known, obviously,

POy = (2m) 1 > Ape™?;

n=—oo

P (Iei‘)) — PR O)zy "5(x — o) . (2.12)

3. Some properties of phase-coherent and
amplitude-coherent fields

Egs. (1.4) and (2.4) give

= /dmm [Pl (x) ‘xe*w> <$e*i¢
' (3.1)

This equation and the definition in Eq. (1.3) of coherent states show that

i)

+ Py(x) ‘me*i(¢+“)> <xe*i(w+”)

ap = pate™?¥ (3.2)

or, that ape’ is Hermitian. It is easily seen that this statement is equivalent
to the definition, Eq. (1.7). Incidentally, Eq. (3.2) also tells why this defini-
tion of phase-coherence fails to distinguish between phases ¢ and 9 4+ w. If
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we write § = ae’¥ and use Eq. (2.7), we can write Eq. (3.1) in the form,

o0

p= /dme(m)‘xew> <$e7w ,

—0o0

(3.3)

or in the form,

p= [P (s |pe ) (g

. P(B) = BQ(B)I(B) .- (3.4)

Eq. (3.3) expresses p in the S-representation [6-8] with a weight function
involving d(z — y). A comparison of Eq. (3.4) with Eq. (1.4) shows that
the weight function P(a) = P'(ae') involves §(Im «e') for phase-coherent
fields. The Fourier transform of weight function, the normally ordered char-
acteristic function, x,(€), is a function of only the imaginary part of £e®.
This can be seen as follows:

X () = Tr el €]
= Y- (mint) e (g

= Bt (69)” ()’
= S B (e - gre )"
p

For amplitude-coherent field Eqgs. (1.4) and (2.12) give

2T

p= /dO P]?(H) ‘xoew> <3100ei‘9

0

and therefore the property,
apa’ = zgp, (3.6)

where z2 is a positive quantity.

4. Non-classical phase and amplitude weight functions

A field is said to be non-classical if P(«) is not non-negative definite. In
an interesting paper, Glauber [3] introduced non-classical properties of field
by considering a simple case where the weight function is a difference of two
functions, one of which is a displaced Gaussian and the other is a Dirac-delta
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function. We can follow Glauber and construct an example where weight
function is given by,

P (xei‘g) = A§? (xew — xlei¢) + B§? (xew — xgeix) — 62 (xew — xleix) .
(4.1)
Here A, B and C are real constants with A + B — C = 1. The field
described by this weight function is non-classical as P (xe“g) is not non-
negative definite. The reduced weight functions are
P}0) = A58 —¢) + (B—C)6(0 — x) (4.2)
and
PR(z) = (A= C)o(z — 1) + Bé(x — z), (4.3)

each of which may be classical or non-classical depending upon the relative
values of A, B and C. This clearly shows that for a non-classical field, we
can have all four cases, viz;

1. non-classical P;‘(@) and PR(z),
2. classical PpR(G) and PR(z),
3. non-classical P(0) and classical Py(z) and

4. classical P;‘(@) and non-classical PR(z).

5. Examples of generation of phase-coherent and
amplitude-coherent optical fields

Random phase-modulation of coherent state was discussed by Estes,
Kuppenheimer and Narducci [10] and by Picinbono [11]. As coherent state
has stabilized amplitude and phase in the sense of Section 2, this should
generate amplitude-coherent field. Hamiltonian [10] H = (w+ f(t))ata with
a Gaussian random variable f leads to time evolution operator

t
U=exp |[—i wt—{—/f(t)dt ala
0
and hence to

t
a(t) =aexp |—i wt+/f(t)dt ata
0
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For initial state given by p(0) = |){ag|, @ = 2¢e™ on taking average over
the random variable f(¢), using

(f(t2) f(t2)) = 00(t1 — 1) (5.1)

we then have!

t
rmmn) _ <a6mag exp i(’m—n)/f(tl)dtl >
0

= of™af exp [i(m — n)wt — 3(m —n)?0’t] . (5.2)

Since (5.1) is of the form?, Eq. (2.11), the generated field is amplitude-
-coherent.

A random modulation of amplitude of coherent beam can be accom-
plished by taking a linearly polarized coherent beam, making optical rotation
by a random angle € and extracting polarized component in the direction
of incident polarization. For a given propagation vector k along z-axis, co-
herent state |Oéo,,80> with az|050,,60> = 010|010,,80>, ay|050,60> = ,80|010,,80>
generates state |ag cos @ — By sinf, agsinf + [y cos f) on optical rotation by
angle 6. Incident z-polarized state |, 0) will then generate a field for which
the reduced properties of z-components give

x

rimn) =y [paTm n] = og™af (cos™ ™ ) . (5.3)

This is of the form?, Eq. (1.7) and hence describes a phase-coherent field.

N =/-—7
==

Fig. 1.

Y

\
Y
Y

! Relations fot fot dtidts(f(t1) f(t2)) = o’t, f(f dty . fo dtan(f(t1) ... f(t2 ))
(a?t)" <2n—1><2n—3) 3.1, [y dti .. fotdtznﬂ(f(tl) f(tant1)) = 0 give
(explil fo ")dt']) = exp[—11°at]; see also Ref. [10].

% Obviously Al = exp [—zlwt — 11°0%t]; compare with Eq. (2.1).

3 Obviously B; = |ag|'(cos' §); compare with Eq. (1.7).
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Experimentally, this can be achieved [12] by following the arrangement
shown in Fig. 1. Plane polarized light obtained from polariser P; may be
passed through four geometrically identical quartz prisms, out of which the
first and second are made of R quartz and third and fourth are made of L
quartz. Equal paths in R and L quartz ensure that the polarization of light
is finally unaltered. But, if inner two prisms are joined face to face and this
joint prisms are given a random motion perpendicular to the direction of
propagation of light, the total paths in quartz and in air do not change but
a random variation of difference of paths in R and L quartz is introduced
with a zero average. This results in optical rotation by a randomly varying
angle 6 proportional to the displacement of the prism. If plane polarized
component in the direction of incident polarization is now extracted using
polariser Po, random modulation of amplitude by a factor of cos results.
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