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PHASE-COHERENCE AND AMPLITUDE-COHERENCERavi S. Singhy and Hari PrakashzPhysis Department, University of AllahabadAllahabad-211002, India(Reeived Otober 20, 1998; revised version Marh 27, 2000)Weight funtion P (�) in the diagonal representation of density op-erator, � = R d2�P (�)j�ih�j, is redued to de�ne separately the weightfuntions for phase, arg (�), and amplitude, j�j, whih leads to oneptsof phase-oherene and amplitude-oherene. For a single mode phase--oherent �eld, it is shown that (i) we an have Hermitian operator ofform, a�ei , where a is annihilation operator and  is a onstant, and(ii) the normally ordered harateristi funtion, �N (�), is a funtion ofonly the imaginary part of �ei . For a single mode amplitude-oherent �eld,it is shown that a�ay = kay, where ay is reation operator and k is a positivereal onstant. When the weight funtion for the �eld is non-lassial, eahof the redued weight funtion may or may not be non-lassial irrespetiveof the nature of the other. Examples of generation of phase-oherent andamplitude-oherent �elds are given.PACS numbers: 42.50.Ar 1. IntrodutionThe onept of oherene an be traed bak to the Young's double slitexperiment whih gives rise to interferene fringes. The superposition ofoptial beams leads to interferene fringes depending upon the ohereneof the beams. This phenomenal de�nition of the oherene leads to thefat that oherene is due to orrelation of optial signals at two spae-timepoints separated in spae or in time or in both [1℄. The early experimentsinvolved the observations of quantities whih were quadrati in �eld strengthand demonstrated suh orrelations, but the milestone experiment of Brownand Twiss [2℄ and latter experiments in nonlinear optis involved quantitieswhih are higher orders in �eld strength.y e-mail: singhravi�hotmail.om or singhphysdept�yahoo.omz e-mail: physdept�nde.vsnl.net.in (2075)



2076 R.S. Singh, H. PrakashOptial signals have random variations in both amplitudes and phase.Classial study of oherene, thus involves a probability distribution funtionontaining, for eah mode, one amplitude and one phase variable. If theanalyti signal for a single mode �eld isv = vr + ivi = xei� ; x = jvj ; � = arg v ; (1.1)properties of the �eld are desribed by oherene funtions de�ned by� (m;n) = hv�mvni = Z d2vf(v)v�mvn ;d2v � dvrdvi = x dx d� ; (1.2)where (n;m) is the order of oherene funtion, h i denotes ensemble averageand f(v)d2v is the probability for analyti signal to be in the interval d2vat v. In quantum theory of oherene, the probability distribution funtionis replaed by the weight funtion of the diagonal representation for thedensity operator. For eah mode, oherent states j�i are de�ned byaj�i = �j�i ; � = �r + i�i = xei� : (1.3)Here a is annihilation operator and � is any omplex number. The densityoperator � an be written in the form [3, 4℄,� = Z d2�P (�)j�ih�j ; (1.4)where P (�) is the weight funtion whih has the obvious properties of beinga real funtion and having normalization,Z d2�P (�) = 1 ; d2� � d�rd�i = x dx d� : (1.5)Whenever P (�) is non-negative de�nite, P (�) plays the role of a probabilitydistribution funtion, properties of the �eld an be desribed by lassialoptis and � = xei� orresponds to lassial amplitude x and phase variable�. On the other hand, when P (�) takes negative values also, the �eld anbe desribed only quantum mehanially. Quantum analogue of Eq. (1.2) is� (m;n) = Tr h�aymani = Z d2�P (�)��m�n : (1.6)Kelly and Kleiner [5℄ disussed separately the distribution funtions foramplitude and phase by onsidering the speial ase where P (�) an befatorized and written as a produt of funtion Q(j�j) of the amplitude j�j



Phase-Coherene and Amplitude-Coherene 2077and a funtion R(��) of the phase angle �� where � = j�jei�� . Chandra,Prakash and Vahaspati [6, 7℄ introdued the onept of phase-ohereneby onsidering a Dira-delta funtion type distribution of lassial phaseof a single mode �eld as revealed by the de�nition (1.2) of the oherenefuntions. Eq. (1.2) gives� (m;n) = Bm+nei(m�n) ; (1.7)where Bm+n = hxm+ni, in a speial ase when the random phase variable �takes only one �xed value �  . Chandra, Prakash and Vahaspati de�nedphase-oherene with the help of Eq. (1.7) taking Bm+n and  real. A lessstringent ase � (m;n) = Bm;nei(m�n) (1.8)de�nes quasi-phase-oherene. These authors introdued S-representation[6�8℄ for �� = Z dx dyS(x; y) ���xe�i EDye�i ��� �Dxe�i ��� ye�i E��1 (1.9)and showed that S(x; y) is real for quasi-phase-oherene, if phase is peakedat  , and that, for phase-oherene, S(x; y) involves Æ(x� y). The authorsalso demonstrated onversion of haoti light into quasi-phase-oherent andphase-oherent light in degenerate parametri ampli�ation [6, 7℄. Here itis emphasized that these authors onsidered only the lassial notion of thephase and we also follow the same in this paper [9℄.In this paper, we disuss redued phase- and amplitude-weight funtionsof optial �elds. We also disuss onepts of absolute phase-oherene andamplitude-oherene. Setion 2 deals with the de�nitions. In Setion 3, wederive some properties of phase and amplitude oherent optial �elds anddisuss how suh �elds an be identi�ed, if � or P (�) or the harateristifuntion is given. In Setion 4, non-lassial nature of redued weight fun-tions is disussed. Finally, in Setion 5, examples of produing only phase-and amplitude-oherent optial �elds are desribed.2. Redued phase and amplitude weight funtions, andphase- and amplitude-ohereneWithout demanding the fatorization of P �xei�� into funtions of x and �(f.Kelly and Kleiner [5℄), we an obtain suh funtions by reduing P �xei��.The redued phase and amplitude distribution funtions an be de�ned byPRp (�) � 1Z0 dxxP �xei�� ; PRa (x) � 2�Z0 d�xP �xei�� ; (2.1)



2078 R.S. Singh, H. Prakashwith the normalization properties,2�Z0 d�PRp (�) = 1 ; 1Z0 dxPRa (x) = 1 ; (2.2)obtained from Eqs. (1.5). As an example, the oherent state jx0ei�i (withx0 real and positive) has the weight funtion,Æ2 �xei� � x0ei�0� = x�10 Æ(x � x0)Æ(� � �0) ; (2.3)i.e., it has both a stabilized amplitude and a stabilized phase.De�nition of phase-oherene as given by Chandra, Prakash and Vahas-pati, Eq. (1.7) with real Bm+n and  , demands that P �xei�� must involveÆ(� +  ) and Æ(� +  + �) in the most general ase and is of the form,P �xei�� = P1(x)Æ(� +  ) + P2(x)Æ(� +  + �) (2.4)givingPRp (�) = A1Æ(� +  ) +A2Æ(� +  + �) ; Ai � 1Z0 dxxPi(x) : (2.5)We an de�ne the �eld as absolutely phase-oherent, if only one delta fun-tion is involved.In priniple, if all oherene funtions are given, we an �nd P1 and P2separately. Eqs. (1.6), (1.7) and (2.4) giveBm+n = 1Z0 dxxm+n+1 �P1(x) + (�1)m+nP2(x)� : (2.6)If we de�ne Q(x) � xP1(x)U(x) � xP2(�x)U(�x) ; (2.7)where U(x) is the unit step funtion de�ned by U(x) = 1 for x > 0 ; U(x) =1=2 for x = 0 ; and U(x) = 0 ; for x < 0 ; we haveBm+n = 1Z�1 dxQ(x)xm+n ; (2.8)



Phase-Coherene and Amplitude-Coherene 2079whih shows that onstants B's are the moments of funtion Q(x). Infor-mation of all B's determines Q and therefore P1 and P2. Formally, one maywrite Q(x) = 1Xn=0(�1)n(n!)�1Bn dndxn [Æ(x)℄ (2.9)and thereforeP �xei�� = x�1[Q(x)Æ(� +  ) +Q(�x)Æ(� +  + �) : (2.10)We an similarly disuss the ase where redued amplitude weight fun-tion PRa (x) is of the form Æ(x � x0) : Here x0 is a positive onstant and weall the �eld as amplitude-oherent. For suh a �eld, Eqs. (1.6) and (2.1)give � (m;n) = xm+n0 Am�n ; Am�n = 2�Z0 d�PRp (�)e�i(m�n)� : (2.11)If all oherene funtion � (m;n) of suh a �eld are known, obviously,PRp (�) = (2�)�1 n=1Xn=�1Anein� ;P �xei�� = PRp (�)x�10 Æ(x� x0) : (2.12)3. Some properties of phase-oherent andamplitude-oherent �eldsEqs. (1.4) and (2.4) give� = 1Z0 dxx hP1(x) ���xe�i EDxe�i ���+ P2(x) ���xe�i( +�)EDxe�i( +�)���i :(3.1)This equation and the de�nition in Eq. (1.3) of oherent states show thata� = �aye�2i (3.2)or, that a�ei is Hermitian. It is easily seen that this statement is equivalentto the de�nition, Eq. (1.7). Inidentally, Eq. (3.2) also tells why this de�ni-tion of phase-oherene fails to distinguish between phases  and  + �. If



2080 R.S. Singh, H. Prakashwe write � = �ei and use Eq. (2.7), we an write Eq. (3.1) in the form,� = 1Z�1 dxxQ(x) ���xe�i EDxe�i ��� ; (3.3)or in the form,� = Z d2�P 0(�) ����e�i ED�e�i ��� ; P 0(�) = �rQ(�r)Æ(�i) : (3.4)Eq. (3.3) expresses � in the S-representation [6�8℄ with a weight funtioninvolving Æ(x � y). A omparison of Eq. (3.4) with Eq. (1.4) shows thatthe weight funtion P (�) = P 0(�ei ) involves Æ(Im �ei ) for phase-oherent�elds. The Fourier transform of weight funtion, the normally ordered har-ateristi funtion, �n(�), is a funtion of only the imaginary part of �ei .This an be seen as follows:�N (�) = Tr h�e�aye���ai= Xm;n(m!n!)�1�m(���)n� (m;n)= Xm;nBm+n(m!n!)�1 ��ei �m ����e�i �n= Xp Bp(p!)�1 ��ei � ��e�i �p :For amplitude-oherent �eld Eqs. (1.4) and (2.12) give� = 2�Z0 d� PRp (�) ���x0ei�EDx0ei���� (3.5)and therefore the property, a�ay = x20� ; (3.6)where x20 is a positive quantity.4. Non-lassial phase and amplitude weight funtionsA �eld is said to be non-lassial if P (�) is not non-negative de�nite. Inan interesting paper, Glauber [3℄ introdued non-lassial properties of �eldby onsidering a simple ase where the weight funtion is a di�erene of twofuntions, one of whih is a displaed Gaussian and the other is a Dira-delta



Phase-Coherene and Amplitude-Coherene 2081funtion. We an follow Glauber and onstrut an example where weightfuntion is given by,P �xei�� = AÆ2 �xei� � x1ei��+BÆ2 �xei� � x2ei���CÆ2 �xei� � x1ei�� :(4.1)Here A; B and C are real onstants with A + B � C = 1. The �elddesribed by this weight funtion is non-lassial as P �xei�� is not non-negative de�nite. The redued weight funtions arePRp (�) = AÆ(� � �) + (B �C)Æ(� � �) (4.2)and PRa (x) = (A� C)Æ(x� x1) +BÆ(x� x2) ; (4.3)eah of whih may be lassial or non-lassial depending upon the relativevalues of A; B and C. This learly shows that for a non-lassial �eld, wean have all four ases, viz;1. non-lassial PRp (�) and PRa (x),2. lassial PRp (�) and PRa (x),3. non-lassial PRp (�) and lassial PRa (x) and4. lassial PRp (�) and non-lassial PRa (x).5. Examples of generation of phase-oherent andamplitude-oherent optial �eldsRandom phase-modulation of oherent state was disussed by Estes,Kuppenheimer and Nardui [10℄ and by Piinbono [11℄. As oherent statehas stabilized amplitude and phase in the sense of Setion 2, this shouldgenerate amplitude-oherent �eld. Hamiltonian [10℄ H = (!+f(t))aya witha Gaussian random variable f leads to time evolution operatorU = exp24�i8<:!t+ tZ0 f(t)dt9=; aya35and hene to a(t) = a exp24�i8<:!t+ tZ0 f(t)dt9=; aya35 :



2082 R.S. Singh, H. PrakashFor initial state given by �(0) = j�0ih�0j; � = x0ei�0 on taking average overthe random variable f(t), usinghf(t1)f(t2)i = �2Æ(t1 � t2) (5.1)we then have1� (m;n) = *��m0 �n0 exp24i(m� n) tZ0 f(t0)dt035+= ��m0 �n0 exp �i(m� n)!t� 12(m� n)2�2t� : (5.2)Sine (5.1) is of the form2, Eq. (2.11), the generated �eld is amplitude--oherent.A random modulation of amplitude of oherent beam an be aom-plished by taking a linearly polarized oherent beam, making optial rotationby a random angle � and extrating polarized omponent in the diretionof inident polarization. For a given propagation vetor k along z-axis, o-herent state j�0; �0i with axj�0; �0i = �0j�0; �0i, ayj�0; �0i = �0j�0; �0igenerates state j�0 os �� �0 sin �; �0 sin �+ �0 os �i on optial rotation byangle �. Inident x-polarized state j�0; 0i will then generate a �eld for whihthe redued properties of x-omponents give� (m;n)x = Tr h�aymx anxi = ��m0 �n0 
osm+n �� : (5.3)This is of the form3, Eq. (1.7) and hene desribes a phase-oherent �eld.
Fig. 1.1 Relations R t0 R t0 dt1dt2hf(t1)f(t2)i = �2t, R t0 dt1 : : : R t0 dt2nhf(t1) : : : f(t2n)i =(�2t)n(2n� 1)(2n � 3) : : : 3:1, R t0 dt1 : : : R t0 dt2n+1hf(t1) : : : f(t2n+1)i = 0 givehexp[il R t0 f(t0)dt0℄i = exp[� 12 l2�2t℄; see also Ref. [10℄.2 Obviously Al = exp ��il!t� 12 l2�2t�; ompare with Eq. (2.1).3 Obviously Bl = j�0jlhosl �i; ompare with Eq. (1.7).
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