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VACUUM ENERGY OF A CAVITYWITH A MOVING BOUNDARYPaweª W�grzyn and Tomasz RógMarian Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived Otober 11, 2000)The problem of the quantum vauum in a one-dimensional avity is dis-ussed. We put forward a new method to solve Moore's equation and searhfor fundamental lassial basis. This new method is appliable to problemswith general wall trajetories and enables us to alulate both phase fun-tions and their derivatives by iterations. We alulate energy densities andtotal energies for osillating avities. In partiular, o� resonant motionsare studied.PACS numbers: 11.10.�z, 03.70.+k1. IntrodutionMore than �fty years ago Casimir [1℄ indiated that the presene of metal-li plates hanges the struture of the ground state of the eletromagneti�eld existed between those plates. In the 70's [2,3℄, many authors began toinvestigate the non-stationary modi�ations of the eletromagneti vauumbetween moving boundaries [4℄ (for more extended list of papers see [5℄).Non-stationary boundary onditions an result in reation of real pho-tons. This e�et is known in literature as �dynamial� Casimir e�et, beingin fat some generalization of the Unruh e�et. The physial interpretationof prodution of partiles, or in other words the meaning of quantum ra-diation from the vauum state due to the perturbation indued by movingboundaries, is however a di�ult problem. The time-dependene of bound-ary onditions brings about the non-existene of the Hamiltonian and theShrödinger piture. Together with the di�ulties with the existene ofmany unitary inequivalent representations of the quantum �eld theory, itmakes the formal de�nition of `partiles' hard to introdue. To help this,one usually assumes that the motion of the wall ours only during some�nite time interval. (129)



130 P. W�grzyn, T. RógThis paper omes bak to the ase of one-dimensional avity. Fullingand Davies [3℄ proved that photons are generated for a single non-uniformlyaelerated mirror, but the number of generated photons is very small unlesswe hange the wall veloity rapidly. On the other hand, the rapid hangeof the wall veloity obsures physial interpretation. In spite of this, it wasfound [4, 6�9℄ that it were possible to enhane the energy and the numberof reated photons to an observable amount. This is the ase of vibratingavities, espeially for resonant ases with the period of osillations of someeigenfrequenies of the unperturbed avity modes. Small numbers of photonsgenerated in suessive periods an onstrutively interfere together.The attention of many authors was to stritly resonant ases, when a fre-queny of osillation is equal to a avity eigenfrequeny !m = m!0, where!0 = �L0 , m = 1; 2; 3; : : :, and L0 is the initial distane between the bound-aries before avity osillations start. Usually, the �rst point to arry outthe quantization is to start with the sympleti spae of fundamental solu-tions, whih will be mapped onto the spae of linear operators ating in theHilbert spae of physial states. Moore [2℄ onstruted a onvenient basisof the spae of solutions. The basis is spanned by the analogue of standingwaves. Time-dependent boundary onditions ause that the universal (i.e.the same for all modes) phase funtion of generalized standing waves is nowsubjet to some non-loal equation. Some earlier papers studied approxi-mated solutions to this equation (alled usually Moore's equation) either inase of short times "!0t� 1 ("L0 is the amplitude of osillations) [10℄ or fora long time domain [4℄. The �rst exat analytial solution to the resonantase was given in [7℄. A general method to derive solutions for a broad lassof wall trajetories was presented in [11℄. In fat, for pratial purposesthis method works only numerially and does not provide equally helpfulreipes for alulating the derivatives of the solution for the phase funtion.Therefore, some methods based on the renormalization-group idea [12, 13℄were invented to improve the perturbation approahes to solve the Moore'sequation. Only few papers disussed o� resonant ases [5℄, where a wallosillates with frequeny lose to resonant one.The paper is organized as follows. In Setion 2 we will reall Moore'sequation and present general methods of evaluating its solutions for anypresribed wall motion. Setion 3 gives the alulation of the energy densityfor an arbitrary motion. Setion 4 is devoted to the solution of Moore'sequation for o� resonant motions. Energy densities and total energies foro� resonant ases are disussed in Setion 5.



Vauum Energy of a Cavity with a Moving Boundary 1312. Fundamental solutions and Moore's equationWe onsider a one-dimensional avity formed by two walls. For the sakeof simpliity, the left wall is �xed at position x = 0, while the right one ismoving with a given trajetory q(t). In the past, say for times t � 0, theright wall is assumed to be stati, its initial position is L0. As usual, wehave to restrit ourselves to trajetories for whih a speed of the wall is notlose to the speed of light. Therefore, the allowed trajetories of the movingwall are spei�ed by the following requirements:1: q(t) = L0 for t � 0 ;2: j _qj � onst < 1 ;3: q(t) > 0 : (1)The eletrodynamis on a line simpli�es to the problem of the singlesalar �eld (being the only omponent of the vetor potential in the Coulombgauge) with the orresponding �eld equation:(��2t + �2x)A(x; t) = 0 : (2)The walls are onsidered as perfetly re�eting metalli plates. It orre-sponds to boundary onditions for the eletromagneti �eld inside the av-ity, A(x = 0; t) = A(x = q(t); t) = 0 for all times: (3)Time-dependent Dirihlet boundary onditions implements the ontinuity ofthe eletri �eld in the Lorentz frames in whih the walls are instantaneouslyat rest.Following the quantization rules given in [2,3℄, the �eld is represented interms of reation âyk0 and annihilation âk0 operators for photons in the form(we adopt Shrödinger piture):Â(x; t) = 1Xk=1 âk0Ak(x; t) + âyk0A�k(x; t) : (4)For the ase disussed here, Moore [2℄ found the omplete set of modefuntions Ak(x; t), being lassial solutions of the �eld equation, in the fol-lowing general form with some auxiliary phase funtion R(z):Ak(x; t) = eik�R(t+x) � eikR(t�x) : (5)The boundary ondition on the right wall is ful�lled provided that the phasefuntion R satis�es the equation:R(t+ q(t)) = R(t� q(t)) + 2 : (6)



132 P. W�grzyn, T. RógTo determine phase funtion R(z) for an arbitrary motion of the wallq(t), Cole and Shieve [11℄ proposed the following iteration proedure. Theruial point of this method is that Eq. (6) allows us to relate R(z) at laterpoints of time with those at earlier ones.Let us alulate the value of R(z) at some given z. We an always putz = t1 + q(t1), and �nd t1 as a time for whih a null line drawn bakwardfrom z intersets the moving wall. We have then R(z) = R(t1 + q(t1)).When we use the boundary ondition (6) for t1 we obtain,R(z) = R(t1 � q(t1)) + 2 : (7)Further, we onsider the argument value z0 � t1 � q(t1) and �nd the timet2, for whih a null line drawn bakward from z0 intersets the moving wall:t2 + q(t2) = z0. If we use again the boundary ondition (6) and set z00 �t2 � q(t2), we obtain, R(z) = R(z0) + 2 = R(z00) + 4 : (8)The proedure an be ontinued until we reah the initial stati region wherethe funtion R(z) is known. For times t � 0 or equivalently for argumentsz � L0, the solution of equation (6) is just R(z) = z=L0.Following the onstrution, the value of R(z) inreases by 2 every timethe null line intersets the trajetory of the wall. Therefore, we obtain,R(z) = 2n+ tstat=L0 ; (9)where n is the number of re�etions from the moving wall and tstat is thetime when the last null line intersets the time axis in the stati regiont � L0. Cole and Shieve [11℄ evaluated tstat in terms of the wall positionsat the re�etion points, tstat = z � 2 nXi=1 q(ti): (10)Finally, for R(z) we obtain formula,R(z) = 2n+ z � 2Pni=1 q(ti)L0 : (11)The above desribed method of solution of Moore's equation works foran arbitrary trajetory of the wall. However, to �nd points of intersetionti for a spei� wall motion, we should use numerial proedures. Moreover,we annot handle alulations of derivatives of R(z) here.



Vauum Energy of a Cavity with a Moving Boundary 133Now, we present another method of solution of Moore's equation. Thismethod do not refer to auxiliary re�etion points and enables us to �ndderivatives of R.At the beginning, let us de�ne an auxiliary funtion f(z), whih obeysthe equation: f(t+ q(t)) = t� q(t): (12)This funtion exhibits the following properties:1: f(z) = z � 2L0 for z � 0 ;2: 0 < onst1 � f 0(z) � onst2 <1 ;3: f(z) < z : (13)It an be easily veri�ed that the relation (12) establishes a one-to-oneorrespondene between the allowed trajetories (1) and the funtions de-�ned by properties (13). To speify the motion of the moving wall, we aneither desribe diretly its trajetory q(t) or give some funtion f(z). Thelatter way omits the retardation problem and simpli�es the alulation ofphysial observables. If we speify the funtion f(z), the trajetory q(t) anbe given immediately in a parametri form:( t = z+f(z)2 ;q = z�f(z)2 : (14)Let us also note that periodi trajetories, q(t + T ) = q(t) for all t � 0,orrespond to funtions f satisfying f(z + T ) = f(z) + T for all z � L0.Using the funtion f(z), we an �nd the orresponding solution R(z)and evaluate its derivatives. Note that Moore's equation (6) an be nowrewritten as: R(z)�R(f(z)) = 2 : (15)Obviously, for all z � L0 we have always R(z) = z=L0. We de�ne a sequeneof points Ln by: Ln = (f�1)n(L0) ; (16)where (f�1)n � f�1 Æ f�1 Æ ::: Æ f�1 denotes the ation of n times with theinverse funtion. The solution of Moore's equation is unique and given by:R(z) = 2n+ fn(z)L0 for z 2 [Ln�1; Ln℄ ; (17)where again we denote the multi-omposition as fn � f Æ ::: Æ f .It is straightforward to evaluate R and its derivatives at points Ln,R(Ln) = 2n+ 1 ; R0(Ln) = f 0(L1):::f 0(Ln)L0 : (18)



134 P. W�grzyn, T. Róg3. The energy density of the �eld inside the vibrating avityThe energy density inside the osillating avity was omputed �rst in thepaper [3℄. Let us follow these results and begin with:hT00(x; t)i = 12 8<:* �Â(x; t)�x !2++* �Â(x; t)�t !2+9=; ; (19)where the expetation values are taken with respet to the initial vauumstate. Of ourse, this expression is divergent. Finite results are usually ob-tained through time splitting regularization proedure. To avoid evaluatinga produt of a mode funtion and its onjugate at the same spae-time point(t; x), the latter fator is evaluated at (t + "; x), where " is some in�nites-imal quantity " ! 0+. After that, we obtain T00(x; t) in terms of phasefuntion R,hT00(u; v)i = �4 1Xn=1n�R0(v)R0(v + ")ein�[R(v+")�R(v)℄+R0(u)R0(u+ ")ein�[R(u+")�R(u)℄� : (20)introdued light-one oordinates u = t + x; v = t � x. Diret alulationslead to the expression for hT00(x; t)i with an expliit quadrati divergene,whih is independent of the partiular physial state parameters:hT00(x; t)i = � 12�"2 � [T (u) + T (v)℄ ; (21)where T (z) = 124� "R000(z)R0(z) � 32 �R00(z)R0(z)�2 + 12�2(R0(z))2# : (22)The �nal expression for the energy density average in the initial vauumstate is just obtained after the quadrati divergene is removed,hT00(x; t)iren = �T (u)� T (v) : (23)Beause of the presene of seond and third derivatives in the funtion T (z),any disontinuities of the wall veloity or its aeleration during the motionwill generate Æ-funtion peaks in the energy density. These peaks will prop-agate through the avity with the speed of light, they are re�eted bak andforth between mirrors. Usually, these peaks are ignored and one fouses onthe energy density with delta peaks extrated.



Vauum Energy of a Cavity with a Moving Boundary 1354. Behavior of the phase funtion R(z)The basi period in the problem of the avity de�ned in Setion 2 isT = 2L0 (not L0 as in usual resonant problems). In this paper, we willinvestigate systems in whih the presribed periodi wall motion is given by:L(t) = L0 �1 + d sin�(m+ ") �L0 t�� : (24)We assume m to be a positive integer (the order of the resonane) and " isa perturbation of the resonant frequeny (alled here detuning).
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136 P. W�grzyn, T. RógThe funtion g(z) is growing and has �xed points at the return points. Itis now obvious that n-fold iteration of the funtion g develops stairase forR(z), and steps are loated at the shifted return points.For ases where the wall osillates with o�-resonant frequenies, respe-tive phase funtions R(z) will not develop stairases in general. However, forsu�iently small perturbation to the resonant frequeny, there is still a kindof stairase struture in R(z). Large enough perturbations of the frequenylead to approximately linear phase funtions R(z).
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Vauum Energy of a Cavity with a Moving Boundary 137present also �gures with long-time osillations of the total energy and withthe dependene of long-time period MT on the detuning " for o� resonantwall motions.It is lear that the vauum energy density will develop sharp peaks atpoints (x; t), where funtion R(z) suddenly hanges. Traveling peaks inthe energy density were desribed in [7℄. The total energy for resonantases grows exponentially. The energy enhanement will be present alsofor motions lose to resonant ones. However, there exists then a long-timeosillation of the total energy (see �gures inluded in the Appendix).5. Vauum energy inside the avityIn this Setion, we disuss behavior of the energy density and the totalenergy inside the vibrating avity. Let us all the following part of expression(23) as a `Casimir part',hT00iCasimir = � �48 �(R0(u))2 + (R0(v))2� : (27)This term for stati boundaries is responsible for well-known stati Casimirfore [1℄, assoiated with the energy density value (note again that for thestati ase R(z) = z=L0):hT00(x; t)istati = � �24L20 : (28)The other part of the expression (23) will be alled an `Unruh part':hT00iUnruh = � 124� "R000(u)R0(u) � 32 �R00(u)R0(u) �2 + (u ! v)# : (29)This term is responsible for quantum radiation from a vauum state induedby a single moving onduting wall (alled usually Unruh�Davies e�et).For resonant or lose to resonant ases (small "), the Unruh part of theenergy is signi�ant. It may be hundreds of times greater than the statipart, so it may hange an overall sign of the total energy. For strong o�resonant ases (large "), the Unruh part is typially only a small orretionto the Casimir part.Now we will study the shape of the energy density inside the avity. Itis very simple to dedue from that, what kind of motion we are dealingwith. When the wall osillates with a strong o�-resonant frequeny, theenergy density �utuates around the �at stati Casimir value. There are welldeveloped peaks in the energy density, if the wall vibrates with a resonantor almost resonant frequeny.The plot above presents behavior of the energy density for times between80L0 and 81L0. From now on, energy density values are saled by the stati
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Fig. 3. Behavior of the energy density during one period. Assigned parameters ofthe motion are d = 0:01, m = 2, L0 = �10 , " = 0.energy density W0 = �24L20 . We start the analysis of the energy density fromthe top left plot, i.e. at t = 80L0. The right peak is traveling to the tothe stati wall on the left, and the left one to the right in the diretion ofmoving wall. Then, they meet eah other and there is an loal enhanementin the density. The peaks pass eah other and move on. After bouningfrom the stati wall, a peak preserves its height. It is not surprising as thereis no energy hange for re�etions from the stati wall, peaks only hangetheir diretions of movement. While re�eted from the osillating wall, theyan gain or lose energy. For stritly resonant ases, the energy is alwayspumped into the system between the walls. When the boundary osillateswith o�-resonant frequeny the energy of the avity osillates around thestati value � �24L20 , represented by the solid line in Fig. 4. After integratingover the whole avity, there will be no hange of the total energy due to themotion of the wall.
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Fig. 4. Energy density for o�-resonant wall motion. " = 0:5. Other parameters asin Fig 3.
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140 P. W�grzyn, T. Rógsaled by the stati value of the Casimir energy EC = �24L0 . As it is seen,general behavior of the energy for resonant motions is exponential, but thereexist �at regions between following inreases. Their explanation ome triv-ially from the piture of traveling peaks in the energy density. The questionis why eah following inrease is greater than previous one. The explanationis quite simple: expression for hT00i and hT11i parts of the energy-momentumtensor are the same. hT11i desribes the fore from the �eld ating on theosillating wall. The fore of interation with the boundary is inreasingwith eah period. To hold our moving wall to osillate in a presribed way,we have to apply to it an enhaned fore. The greater fore we are ating,the greater energy transfer to the slab is pumped.The seond plot of Fig. 5 shows energy versus time dependene for along-time domain between 47:5L0 and 63L0. The struture of the graphonsists of well developed steps. The lower plot shows energy behavior forshort times (t < 20T0). At the beginning of motion, the energy osillatesaround the stati energy, quite similar as for o�-resonant ases (ompareto Fig 6). After several periods the �eld exitations interfere onstrutivelyand the falls in the graph are �attened.We would like to desribe further what we alled `Casimir' and `Unruh'parts in the energy. The above plots show that resonant and o�-resonantases are dramatially di�erent. For the non-resonant ase, the Unruh part(top left graph)is negligible while the `Casimir' part osillates around thestati value. Thus, there is no energy enhanement and the number ofradiated photons will be very small. Quite di�erent piture is for resonantand lose to resonant wall motions. We have already learned that the Unruhpart dominates and its plot is stairase, but we have also a signi�ant hangein the Casimir part.Let us now look into the dependene of the total energy on the frequenyof wall osillations. The energy inreases not only for stritly resonant ases,but for also for ases lose to resonant ones.As we an see in the piture for time 20L0 for both frequenies alloweddetuning is about 0:1 whereas for time 60L0 it is only about 0:03. It isnot very surprising, if we think about photons reated in the avity in eahyle. Every period there are reated photons with frequeny of reation! = m 2�L(t) . For resonant motion, photons from one yle an onstrutivelyinterfere with photons from the following yle, beause they have the samephase, and there will be some energy inrease. But for slightly o�-resonantosillations photons originating from the previous period are a little bit tooearly or too late in the next yle to interfere exatly. They have a littlebit di�erent phase. After su�ient long time phase shift will be big enough,and destrutive interferene will destroy any energy inrease.
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