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The problem of the quantum vacuum in a one-dimensional cavity is dis-
cussed. We put forward a new method to solve Moore’s equation and search
for fundamental classical basis. This new method is applicable to problems
with general wall trajectories and enables us to calculate both phase func-
tions and their derivatives by iterations. We calculate energy densities and
total energies for oscillating cavities. In particular, off resonant motions
are studied.

PACS numbers: 11.10.—z, 03.70.+k

1. Introduction

More than fifty years ago Casimir [1] indicated that the presence of metal-
lic plates changes the structure of the ground state of the electromagnetic
field existed between those plates. In the 70’s [2, 3|, many authors began to
investigate the non-stationary modifications of the electromagnetic vacuum
between moving boundaries [4] (for more extended list of papers see [5]).

Non-stationary boundary conditions can result in creation of real pho-
tons. This effect is known in literature as “dynamical” Casimir effect, being
in fact some generalization of the Unruh effect. The physical interpretation
of production of particles, or in other words the meaning of quantum ra-
diation from the vacuum state due to the perturbation induced by moving
boundaries, is however a difficult problem. The time-dependence of bound-
ary conditions brings about the non-existence of the Hamiltonian and the
Schrodinger picture. Together with the difficulties with the existence of
many unitary inequivalent representations of the quantum field theory, it
makes the formal definition of ‘particles’ hard to introduce. To help this,
one usually assumes that the motion of the wall occurs only during some
finite time interval.

(129)
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This paper comes back to the case of one-dimensional cavity. Fulling
and Davies [3] proved that photons are generated for a single non-uniformly
accelerated mirror, but the number of generated photons is very small unless
we change the wall velocity rapidly. On the other hand, the rapid change
of the wall velocity obscures physical interpretation. In spite of this, it was
found [4,6-9] that it were possible to enhance the energy and the number
of created photons to an observable amount. This is the case of vibrating
cavities, especially for resonant cases with the period of oscillations of some
eigenfrequencies of the unperturbed cavity modes. Small numbers of photons
generated in successive periods can constructively interfere together.

The attention of many authors was to strictly resonant cases, when a fre-
quency of oscillation is equal to a cavity eigenfrequency wy,, = mwgy, where
wo = g—g, m =1,2,3,..., and Lg is the initial distance between the bound-
aries before cavity oscillations start. Usually, the first point to carry out
the quantization is to start with the symplectic space of fundamental solu-
tions, which will be mapped onto the space of linear operators acting in the
Hilbert space of physical states. Moore [2]| constructed a convenient basis
of the space of solutions. The basis is spanned by the analogue of standing
waves. Time-dependent boundary conditions cause that the universal (i.e.
the same for all modes) phase function of generalized standing waves is now
subject to some non-local equation. Some earlier papers studied approxi-
mated solutions to this equation (called usually Moore’s equation) either in
case of short times ewgt < 1 (eLg is the amplitude of oscillations) [10] or for
a long time domain [4]. The first exact analytical solution to the resonant
case was given in [7]. A general method to derive solutions for a broad class
of wall trajectories was presented in [11]. In fact, for practical purposes
this method works only numerically and does not provide equally helpful
recipes for calculating the derivatives of the solution for the phase function.
Therefore, some methods based on the renormalization-group idea [12, 13|
were invented to improve the perturbation approaches to solve the Moore’s
equation. Only few papers discussed off resonant cases [5], where a wall
oscillates with frequency close to resonant one.

The paper is organized as follows. In Section 2 we will recall Moore’s
equation and present general methods of evaluating its solutions for any
prescribed wall motion. Section 3 gives the calculation of the energy density
for an arbitrary motion. Section 4 is devoted to the solution of Moore’s
equation for off resonant motions. Energy densities and total energies for
off resonant cases are discussed in Section 5.
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2. Fundamental solutions and Moore’s equation

We consider a one-dimensional cavity formed by two walls. For the sake
of simplicity, the left wall is fixed at position x = 0, while the right one is
moving with a given trajectory ¢(t). In the past, say for times ¢ < 0, the
right wall is assumed to be static, its initial position is Lg. As usual, we
have to restrict ourselves to trajectories for which a speed of the wall is not
close to the speed of light. Therefore, the allowed trajectories of the moving
wall are specified by the following requirements:

1. q(t)=1Lo for t<0,
2. |q] <comnst <1,
3. q(t)>0. (1)

The electrodynamics on a line simplifies to the problem of the single
scalar field (being the only component of the vector potential in the Coulomb
gauge) with the corresponding field equation:

(=02 4+ 0H)A(z,t) = 0. (2)

The walls are considered as perfectly reflecting metallic plates. It corre-
sponds to boundary conditions for the electromagnetic field inside the cav-
ity,

A(z =0,t) = A(x = q(t),t) =0 for all times. (3)
Time-dependent Dirichlet boundary conditions implements the continuity of
the electric field in the Lorentz frames in which the walls are instantaneously
at rest.

Following the quantization rules given in [2,3], the field is represented in

terms of creation d};o and annihilation axg operators for photons in the form
(we adopt Schrodinger picture):

o

Alw,t) = apoAx(w,t) + afgAf(z,1) . (4)
k=1

For the case discussed here, Moore [2] found the complete set of mode
functions Ag(z,t), being classical solutions of the field equation, in the fol-
lowing general form with some auxiliary phase function R(z):

Ay, (I, t) _ eika(t—i—m) _ eikR(t—m) ) (5)

The boundary condition on the right wall is fulfilled provided that the phase
function R satisfies the equation:

R(t+q(t)) = R(t —q(t)) + 2. (6)
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To determine phase function R(z) for an arbitrary motion of the wall
q(t), Cole and Schieve [11]| proposed the following iteration procedure. The
crucial point of this method is that Eq. (6) allows us to relate R(z) at later
points of time with those at earlier ones.

Let us calculate the value of R(z) at some given z. We can always put
z = t1 + q(t1), and find #; as a time for which a null line drawn backward
from z intersects the moving wall. We have then R(z) = R(t; + q(t1)).
When we use the boundary condition (6) for ¢; we obtain,

R(z) = R(t1 — q(t1)) + 2. (7)

Further, we consider the argument value 2z’ = t; — ¢(¢1) and find the time
t9, for which a null line drawn backward from 2’ intersects the moving wall:
to + q(t2) = 2'. If we use again the boundary condition (6) and set 2" =
to — q(t2), we obtain,

R(z)=R(Z)+2=R(Y") +4. (8)

The procedure can be continued until we reach the initial static region where
the function R(z) is known. For times ¢ < 0 or equivalently for arguments
z < Ly, the solution of equation (6) is just R(z) = z/Ly.

Following the construction, the value of R(z) increases by 2 every time
the null line intersects the trajectory of the wall. Therefore, we obtain,

R(z) = 2n + tsat/ Lo, (9)

where n is the number of reflections from the moving wall and ¢4, is the
time when the last null line intersects the time axis in the static region
t < Ly. Cole and Schieve [11]| evaluated tg5¢ in terms of the wall positions
at the reflection points,

n
lstat = 2 — 2 ZQ(ti)- (10)
i=1

Finally, for R(z) we obtain formula,

z—2 Z?:l Q(ti) ‘

R(z) =2n+ Lo

(11)

The above described method of solution of Moore’s equation works for
an arbitrary trajectory of the wall. However, to find points of intersection
t; for a specific wall motion, we should use numerical procedures. Moreover,
we cannot handle calculations of derivatives of R(z) here.
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Now, we present another method of solution of Moore’s equation. This
method do not refer to auxiliary reflection points and enables us to find
derivatives of R.

At the beginning, let us define an auxiliary function f(z), which obeys
the equation:

ft+q(t) =t —q(t). (12)
This function exhibits the following properties:

1. f(z)=z—-2Ly for 2 <0,
2. 0 < const; < f'(z) < consty < 00,
3. f(z)<=. (13)

It can be easily verified that the relation (12) establishes a one-to-one
correspondence between the allowed trajectories (1) and the functions de-
fined by properties (13). To specify the motion of the moving wall, we can
either describe directly its trajectory ¢(¢) or give some function f(z). The
latter way omits the retardation problem and simplifies the calculation of
physical observables. If we specify the function f(z), the trajectory ¢(¢) can
be given immediately in a parametric form:

t =)

q= 2 .

Let us also note that periodic trajectories, ¢q(t + T') = ¢(t) for all ¢ > 0,
correspond to functions f satisfying f(z +T) = f(z) + T for all z > L.

Using the function f(z), we can find the corresponding solution R(z)
and evaluate its derivatives. Note that Moore’s equation (6) can be now
rewritten as:

R(z) — R(f(2)) = 2. (15)

Obviously, for all z < Ly we have always R(z) = z/Lg. We define a sequence
of points L,, by:

Ln = (f 1)"(Lo), (16)

where (f 1" = f 1o f lo..of ! denotes the action of n times with the

inverse function. The solution of Moore’s equation is unique and given by:

n
R(z) =2n+ fL_(Z) for z € [Lp—_1, Ly], (17)
0
where again we denote the multi-composition as f* = f o...o f.
It is straightforward to evaluate R and its derivatives at points L,
fI(Ly)ef'(Ly)

R(L,)=2n+1, R(L,) = N (18)
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3. The energy density of the field inside the vibrating cavity

The energy density inside the oscillating cavity was computed first in the
paper [3]|. Let us follow these results and begin with:

~ 2 ~ 2
- ()2} o

where the expectation values are taken with respect to the initial vacuum
state. Of course, this expression is divergent. Finite results are usually ob-
tained through time splitting regularization procedure. To avoid evaluating
a product of a mode function and its conjugate at the same space-time point
(t,x), the latter factor is evaluated at (¢ + ¢,x), where ¢ is some infinites-
imal quantity ¢ — 0. After that, we obtain Tyo(z,t) in terms of phase
function R,

(Too(u,0)) = —2 {RR -+ ortnes-rol

+RI(U)RI (’U, + 6)ein7r[R(u+6)fR(u)] } ) (20)

introduced light-cone coordinates v = t 4+ x,v = ¢t — z. Direct calculations
lead to the expression for (Tyo(x,t)) with an explicit quadratic divergence,
which is independent of the particular physical state parameters:

1

(Tio(a.1)) = — g — [T0) + T(0)] @1
where ,
() = 5 | ((ZZ)) -3 @((j))) " %w2(R’(z))2] @

The final expression for the energy density average in the initial vacuum
state is just obtained after the quadratic divergence is removed,

(Too(z,t))ren = —T'(u) — T'(v) . (23)

Because of the presence of second and third derivatives in the function T'(2),
any discontinuities of the wall velocity or its acceleration during the motion
will generate J-function peaks in the energy density. These peaks will prop-
agate through the cavity with the speed of light, they are reflected back and
forth between mirrors. Usually, these peaks are ignored and one focuses on
the energy density with delta peaks extracted.
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4. Behavior of the phase function R(z)

The basic period in the problem of the cavity defined in Section 2 is
T = 2Ly (not Lo as in usual resonant problems). In this paper, we will
investigate systems in which the prescribed periodic wall motion is given by:

L(t) = Ly [1 + dsin <(m + s)Llot)] . (24)

We assume m to be a positive integer (the order of the resonance) and ¢ is
a perturbation of the resonant frequency (called here detuning).

R()20}
15+

10

é 1‘0 1‘5 2‘0 z
Fig. 1. Function R(z) for parameters: Lo =1,d=0.1,m =1, =0.

At the beginning, let us start with the case of resonant motion (see
Fig. 1). The phase function R(z) for long times ¢ — oo looks like staircase
with almost perfectly flat steps and very sharp jumps between the steps. A
careful analysis of the behavior of the phase function R(z) for many different
resonant motion is elaborated in [11]. The authors proved a nice theorem
that R(z) becomes staircase not only for strict periodic resonant motions.
There must exist only a finite set of points {7;} in the interval [0,2Lg) (one
can call them ‘return points’), such that q(m; + 2mLg) = Lo for all m > 0.
Then R(z) will have a perfect staircase-shape with steps at z = 7; + 2m Ly,
respectively for each return point 7;. The proof of the theorem is given in the
appendix of the paper [11]. Let us note, that with the help of our method
(17) we can prove this theorem immediately. The assumptions about the
periodicity and about the existence of return points lead to the the following
function f(z),

f(z2)=(2n—1)Lo+g(¢); 2= (2n+1)Lo+£&, g:[0,2L) — [0,2Lg) . (25)
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The function g(z) is growing and has fixed points at the return points. It
is now obvious that n-fold iteration of the function g develops staircase for
R(z), and steps are located at the shifted return points.

For cases where the wall oscillates with off-resonant frequencies, respec-
tive phase functions R(z) will not develop staircases in general. However, for
sufficiently small perturbation to the resonant frequency, there is still a kind
of staircase structure in R(z). Large enough perturbations of the frequency
lead to approximately linear phase functions R(z).

R(@)
20+

19+
18+
17+

16+

1‘6 1‘7 1‘8 1‘9 2‘0 z
Fig.2. R(z) dependence for parameters Ly = 1, d = 0.05 and for frequencies with
detuning € = 0,0.2,0.4.

Among many periodic solutions elaborated in the previous papers, long-
time patterns of behavior for non-resonant wall motions were not analyzed.
Using our general solution formula (17), we can describe this case as well.
For simplicity, let us consider strictly periodic wall motion with the period T'.
The period T is arbitrary, in particular it may be a non-resonant one. Define
the characteristic intervals (16). Suppose now, there exist positive integers
M and N such that:

Ly =Lo+ MT. (26)

Then, it follows immediately that: Ly x = Ly + MT. Further, the phase
function after the ‘long period” MT is just reproduced but shifted. All
derivatives of R(z) are periodic with respect to the long period MT.
Periodic off-resonant motions develop staircase for the phase function
R(z) for small arguments. Later, approximately linear shape will appear
(see Fig. 9 in the Appendix). But if the relation (26) holds either exactly
or approximately, after the long time MT the phase function will reproduce
its exact or approximate initial shape respectively. In the Appendix, we
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present also figures with long-time oscillations of the total energy and with
the dependence of long-time period MT on the detuning e for off resonant
wall motions.

It is clear that the vacuum energy density will develop sharp peaks at
points (z,t), where function R(z) suddenly changes. Traveling peaks in
the energy density were described in [7]. The total energy for resonant
cases grows exponentially. The energy enhancement will be present also
for motions close to resonant ones. However, there exists then a long-time
oscillation of the total energy (see figures included in the Appendix).

5. Vacuum energy inside the cavity

In this Section, we discuss behavior of the energy density and the total
energy inside the vibrating cavity. Let us call the following part of expression
(23) as a ‘Casimir part’,

(Too) casionir = =35 (R'(w))? + (R'(0))?) - (27)

This term for static boundaries is responsible for well-known static Casimir
force [1], associated with the energy density value (note again that for the
static case R(z) = z/Lo):

T
<T00 (iE, t»static =

——. 28
242 (28)

The other part of the expression (23) will be called an ‘Unruh part’:

1

(T00) Unrun = o4

R"(u) 3 (R'(u)\”

Ré;_§<H&D +W%%M]. (29)
This term is responsible for quantum radiation from a vacuum state induced
by a single moving conducting wall (called usually Unruh-Davies effect).

For resonant or close to resonant cases (small ¢), the Unruh part of the
energy is significant. It may be hundreds of times greater than the static
part, so it may change an overall sign of the total energy. For strong off
resonant cases (large ¢), the Unruh part is typically only a small correction
to the Casimir part.

Now we will study the shape of the energy density inside the cavity. It
is very simple to deduce from that, what kind of motion we are dealing
with. When the wall oscillates with a strong off-resonant frequency, the
energy density fluctuates around the flat static Casimir value. There are well
developed peaks in the energy density, if the wall vibrates with a resonant
or almost resonant frequency.

The plot above presents behavior of the energy density for times between
80Ly and 81Ly. From now on, energy density values are scaled by the static
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Fig. 3. Behavior of the energy density during one period. Assigned parameters of
the motion are d = 0.01, m = 2, Lo = {5, € = 0.

energy density Wy = We start the analysis of the energy density from

m
24L3"
the top left plot, i.e. atot = 80Lg. The right peak is traveling to the to
the static wall on the left, and the left one to the right in the direction of
moving wall. Then, they meet each other and there is an local enhancement
in the density. The peaks pass each other and move on. After bouncing
from the static wall, a peak preserves its height. It is not surprising as there
is no energy change for reflections from the static wall, peaks only change
their directions of movement. While reflected from the oscillating wall, they
can gain or lose energy. For strictly resonant cases, the energy is always
pumped into the system between the walls. When the boundary oscillates
with off-resonant frequency the energy of the cavity oscillates around the
static value —ﬁ, represented by the solid line in Fig. 4. After integrating
over the whole cavity, there will be no change of the total energy due to the
motion of the wall.
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Fig.4. Energy density for off-resonant wall motion. € = 0.5. Other parameters as
in Fig 3.
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Fig.5. Time dependence of the total energy accumulated inside the cavity. The
parameters are d = 0.01, m = 2, Lo = /10, e = 0.

Now, let us trace time dependence of the total energy accumulated inside
the cavity. For resonant cases, we can observe generally an exponential
growth of energy with time.

Figure 5A shows the overall shape of the energy-time dependence. Fig-
ures B,C,D are the magnified parts of A. The total energy in the plots is
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scaled by the static value of the Casimir energy Fc = ﬁ. As it is seen,
general behavior of the energy for resonant motions is exponential, but there
exist flat regions between following increases. Their explanation come triv-
ially from the picture of traveling peaks in the energy density. The question
is why each following increase is greater than previous one. The explanation
is quite simple: expression for (Tyo) and (T71) parts of the energy-momentum
tensor are the same. (T%1) describes the force from the field acting on the
oscillating wall. The force of interaction with the boundary is increasing
with each period. To hold our moving wall to oscillate in a prescribed way,
we have to apply to it an enhanced force. The greater force we are acting,
the greater energy transfer to the slab is pumped.

The second plot of Fig. 5 shows energy versus time dependence for a
long-time domain between 47.5Lg and 63Lg. The structure of the graph
consists of well developed steps. The lower plot shows energy behavior for
short times (¢ < 207p). At the beginning of motion, the energy oscillates
around the static energy, quite similar as for off-resonant cases (compare
to Fig 6). After several periods the field excitations interfere constructively
and the falls in the graph are flattened.

We would like to describe further what we called ‘Casimir’ and ‘Unruh’
parts in the energy. The above plots show that resonant and off-resonant
cases are dramatically different. For the non-resonant case, the Unruh part
(top left graph)is negligible while the ‘Casimir’ part oscillates around the
static value. Thus, there is no energy enhancement and the number of
radiated photons will be very small. Quite different picture is for resonant
and close to resonant wall motions. We have already learned that the Unruh
part dominates and its plot is staircase, but we have also a significant change
in the Casimir part.

Let us now look into the dependence of the total energy on the frequency
of wall oscillations. The energy increases not only for strictly resonant cases,
but for also for cases close to resonant ones.

As we can see in the picture for time 20Lq for both frequencies allowed
detuning is about 0.1 whereas for time 60Lg it is only about 0.03. It is
not very surprising, if we think about photons created in the cavity in each
cycle. Every period there are created photons with frequency of creation
We = m% For resonant motion, photons from one cycle can constructively
interfere with photons from the following cycle, because they have the same
phase, and there will be some energy increase. But for slightly off-resonant
oscillations photons originating from the previous period are a little bit too
early or too late in the next cycle to interfere exactly. They have a little
bit different phase. After sufficient long time phase shift will be big enough,
and destructive interference will destroy any energy increase.
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Fig.6. Time dependence of ‘Casimir’ and ‘Unruh’ parts of the energy. The param-
eters of motion are: for the left off-resonant case e = 0.5, for the right resonant one
€ = 0, other parameters as those for Fig. 3.
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Fig.7. Frequency dependence of the energy for times ¢ = 20Ly and 60Lg, the
parameters are d = 0.01, Lo = /10, the energy is scaled by 7/24L.
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Fig. 8. Energy versus time dependence for different frequencies. Parameters are
Ly = {5, 6 = 0.01, and frequencies are: A — ¢ = 0.025, B — ¢ = 0.02, C —
e=0.01,D —e=0.

For short times, Fig. 8 compares the energy initial growth for different
frequencies, less or more detuned with respect to a resonant value. The
long-time behavior is presented in the Appendix.
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Appendix
200 60
Rz R@) !
150 55
/3
100 50
2
50
. 50 55 60
50 100 150 200
Number of periods Number of periods
100 140
R(2) 2 R(2) 3
95 135
90 130

90 95 100 / 130 135 140
Number of periods

Number of periods

Fig.9. The phase function for one off-resonant case. The plots 1, 2 and 3 are
the magnified part of the top-left plot. We observe staircase and almost linear
structures interchangeably.



144

P. WEGrzyYN, T. RoG

£=0.06

0.2 E €=0.04
E H H ESlalic
ESanc 1 ﬂ
0.4
0.5
0.6
o [ o 50 ool J50 | 3fo 50
0.8
-0.5
sl 100 100 00 A0 w0 %0 1 J U U ' U b
Number of periods Number of periods
g” £=0.024 e” £30.024
E’Staic ESauc
20 2
15 15
10 10
5 5
7 5% 0 N om0 0 S w0 Boo V do U Viodh V Viaod

Number of periods Number of periods

Fig. 10. The total energy for off-resonant cases. The long-time periods and staircase
in each period can be easily observed.
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146 P. WEGrzyYN, T. RoG

REFERENCES

[1] H.B.G. Casimir, Proc. Kon. Ned. Wet. 51, 739 (1948).
[2] G.T. Moore, J. Math. Phys. 11, 2679 (1970).
[3] S.A. Fulling, C.W. Davies, Proc. R. Soc. Lond. A348, 393 (1976).
[4] V.V. Dodonov, A.B. Klimov, D.E. Nikonov, J. Math. Phys. 34, 2742 (1993).
[5] V.V. Dodonov, A.B. Klimov, Phys. Rev. A53, 2664 (1996).
[6] C.K. Law, Phys. Rev. A49, 433 (1994).
[7] C.K. Law, Phys. Rev. Lett. 73, 1931 (1994).
[8] M.T. Jaeckel, S. Reynaud, J. Phys. I (France) 2, 149 (1992).
[9] V.V. Dodonov, J.Phys. A: Math. Gen. 31, 9835 (1998).
[10] V.V. Dodonov, A.B. Klimov, D.E. Nikonov, Phys. Lett. A149, 225 (1990).
[11] C.K. Cole, W.C. Schieve, Phys. Rev. A53, 4495 (1995).
[12] D.A. Dalvit, F.D. Mazzitelli, Phys. Rev. A57, 2113 (1998).
[13] D. A. Dalvit, F.D. Mazitelli, Phys. Rev. A59, 3049 (1999).



