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VACUUM ENERGY OF A CAVITYWITH A MOVING BOUNDARYPaweª W�grzyn and Tomasz RógMarian Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived O
tober 11, 2000)The problem of the quantum va
uum in a one-dimensional 
avity is dis-
ussed. We put forward a new method to solve Moore's equation and sear
hfor fundamental 
lassi
al basis. This new method is appli
able to problemswith general wall traje
tories and enables us to 
al
ulate both phase fun
-tions and their derivatives by iterations. We 
al
ulate energy densities andtotal energies for os
illating 
avities. In parti
ular, o� resonant motionsare studied.PACS numbers: 11.10.�z, 03.70.+k1. Introdu
tionMore than �fty years ago Casimir [1℄ indi
ated that the presen
e of metal-li
 plates 
hanges the stru
ture of the ground state of the ele
tromagneti
�eld existed between those plates. In the 70's [2,3℄, many authors began toinvestigate the non-stationary modi�
ations of the ele
tromagneti
 va
uumbetween moving boundaries [4℄ (for more extended list of papers see [5℄).Non-stationary boundary 
onditions 
an result in 
reation of real pho-tons. This e�e
t is known in literature as �dynami
al� Casimir e�e
t, beingin fa
t some generalization of the Unruh e�e
t. The physi
al interpretationof produ
tion of parti
les, or in other words the meaning of quantum ra-diation from the va
uum state due to the perturbation indu
ed by movingboundaries, is however a di�
ult problem. The time-dependen
e of bound-ary 
onditions brings about the non-existen
e of the Hamiltonian and theS
hrödinger pi
ture. Together with the di�
ulties with the existen
e ofmany unitary inequivalent representations of the quantum �eld theory, itmakes the formal de�nition of `parti
les' hard to introdu
e. To help this,one usually assumes that the motion of the wall o

urs only during some�nite time interval. (129)



130 P. W�grzyn, T. RógThis paper 
omes ba
k to the 
ase of one-dimensional 
avity. Fullingand Davies [3℄ proved that photons are generated for a single non-uniformlya

elerated mirror, but the number of generated photons is very small unlesswe 
hange the wall velo
ity rapidly. On the other hand, the rapid 
hangeof the wall velo
ity obs
ures physi
al interpretation. In spite of this, it wasfound [4, 6�9℄ that it were possible to enhan
e the energy and the numberof 
reated photons to an observable amount. This is the 
ase of vibrating
avities, espe
ially for resonant 
ases with the period of os
illations of someeigenfrequen
ies of the unperturbed 
avity modes. Small numbers of photonsgenerated in su

essive periods 
an 
onstru
tively interfere together.The attention of many authors was to stri
tly resonant 
ases, when a fre-quen
y of os
illation is equal to a 
avity eigenfrequen
y !m = m!0, where!0 = �
L0 , m = 1; 2; 3; : : :, and L0 is the initial distan
e between the bound-aries before 
avity os
illations start. Usually, the �rst point to 
arry outthe quantization is to start with the symple
ti
 spa
e of fundamental solu-tions, whi
h will be mapped onto the spa
e of linear operators a
ting in theHilbert spa
e of physi
al states. Moore [2℄ 
onstru
ted a 
onvenient basisof the spa
e of solutions. The basis is spanned by the analogue of standingwaves. Time-dependent boundary 
onditions 
ause that the universal (i.e.the same for all modes) phase fun
tion of generalized standing waves is nowsubje
t to some non-lo
al equation. Some earlier papers studied approxi-mated solutions to this equation (
alled usually Moore's equation) either in
ase of short times "!0t� 1 ("L0 is the amplitude of os
illations) [10℄ or fora long time domain [4℄. The �rst exa
t analyti
al solution to the resonant
ase was given in [7℄. A general method to derive solutions for a broad 
lassof wall traje
tories was presented in [11℄. In fa
t, for pra
ti
al purposesthis method works only numeri
ally and does not provide equally helpfulre
ipes for 
al
ulating the derivatives of the solution for the phase fun
tion.Therefore, some methods based on the renormalization-group idea [12, 13℄were invented to improve the perturbation approa
hes to solve the Moore'sequation. Only few papers dis
ussed o� resonant 
ases [5℄, where a wallos
illates with frequen
y 
lose to resonant one.The paper is organized as follows. In Se
tion 2 we will re
all Moore'sequation and present general methods of evaluating its solutions for anypres
ribed wall motion. Se
tion 3 gives the 
al
ulation of the energy densityfor an arbitrary motion. Se
tion 4 is devoted to the solution of Moore'sequation for o� resonant motions. Energy densities and total energies foro� resonant 
ases are dis
ussed in Se
tion 5.



Va
uum Energy of a Cavity with a Moving Boundary 1312. Fundamental solutions and Moore's equationWe 
onsider a one-dimensional 
avity formed by two walls. For the sakeof simpli
ity, the left wall is �xed at position x = 0, while the right one ismoving with a given traje
tory q(t). In the past, say for times t � 0, theright wall is assumed to be stati
, its initial position is L0. As usual, wehave to restri
t ourselves to traje
tories for whi
h a speed of the wall is not
lose to the speed of light. Therefore, the allowed traje
tories of the movingwall are spe
i�ed by the following requirements:1: q(t) = L0 for t � 0 ;2: j _qj � 
onst < 1 ;3: q(t) > 0 : (1)The ele
trodynami
s on a line simpli�es to the problem of the singles
alar �eld (being the only 
omponent of the ve
tor potential in the Coulombgauge) with the 
orresponding �eld equation:(��2t + �2x)A(x; t) = 0 : (2)The walls are 
onsidered as perfe
tly re�e
ting metalli
 plates. It 
orre-sponds to boundary 
onditions for the ele
tromagneti
 �eld inside the 
av-ity, A(x = 0; t) = A(x = q(t); t) = 0 for all times: (3)Time-dependent Diri
hlet boundary 
onditions implements the 
ontinuity ofthe ele
tri
 �eld in the Lorentz frames in whi
h the walls are instantaneouslyat rest.Following the quantization rules given in [2,3℄, the �eld is represented interms of 
reation âyk0 and annihilation âk0 operators for photons in the form(we adopt S
hrödinger pi
ture):Â(x; t) = 1Xk=1 âk0Ak(x; t) + âyk0A�k(x; t) : (4)For the 
ase dis
ussed here, Moore [2℄ found the 
omplete set of modefun
tions Ak(x; t), being 
lassi
al solutions of the �eld equation, in the fol-lowing general form with some auxiliary phase fun
tion R(z):Ak(x; t) = eik�R(t+x) � eikR(t�x) : (5)The boundary 
ondition on the right wall is ful�lled provided that the phasefun
tion R satis�es the equation:R(t+ q(t)) = R(t� q(t)) + 2 : (6)



132 P. W�grzyn, T. RógTo determine phase fun
tion R(z) for an arbitrary motion of the wallq(t), Cole and S
hieve [11℄ proposed the following iteration pro
edure. The
ru
ial point of this method is that Eq. (6) allows us to relate R(z) at laterpoints of time with those at earlier ones.Let us 
al
ulate the value of R(z) at some given z. We 
an always putz = t1 + q(t1), and �nd t1 as a time for whi
h a null line drawn ba
kwardfrom z interse
ts the moving wall. We have then R(z) = R(t1 + q(t1)).When we use the boundary 
ondition (6) for t1 we obtain,R(z) = R(t1 � q(t1)) + 2 : (7)Further, we 
onsider the argument value z0 � t1 � q(t1) and �nd the timet2, for whi
h a null line drawn ba
kward from z0 interse
ts the moving wall:t2 + q(t2) = z0. If we use again the boundary 
ondition (6) and set z00 �t2 � q(t2), we obtain, R(z) = R(z0) + 2 = R(z00) + 4 : (8)The pro
edure 
an be 
ontinued until we rea
h the initial stati
 region wherethe fun
tion R(z) is known. For times t � 0 or equivalently for argumentsz � L0, the solution of equation (6) is just R(z) = z=L0.Following the 
onstru
tion, the value of R(z) in
reases by 2 every timethe null line interse
ts the traje
tory of the wall. Therefore, we obtain,R(z) = 2n+ tstat=L0 ; (9)where n is the number of re�e
tions from the moving wall and tstat is thetime when the last null line interse
ts the time axis in the stati
 regiont � L0. Cole and S
hieve [11℄ evaluated tstat in terms of the wall positionsat the re�e
tion points, tstat = z � 2 nXi=1 q(ti): (10)Finally, for R(z) we obtain formula,R(z) = 2n+ z � 2Pni=1 q(ti)L0 : (11)The above des
ribed method of solution of Moore's equation works foran arbitrary traje
tory of the wall. However, to �nd points of interse
tionti for a spe
i�
 wall motion, we should use numeri
al pro
edures. Moreover,we 
annot handle 
al
ulations of derivatives of R(z) here.



Va
uum Energy of a Cavity with a Moving Boundary 133Now, we present another method of solution of Moore's equation. Thismethod do not refer to auxiliary re�e
tion points and enables us to �ndderivatives of R.At the beginning, let us de�ne an auxiliary fun
tion f(z), whi
h obeysthe equation: f(t+ q(t)) = t� q(t): (12)This fun
tion exhibits the following properties:1: f(z) = z � 2L0 for z � 0 ;2: 0 < 
onst1 � f 0(z) � 
onst2 <1 ;3: f(z) < z : (13)It 
an be easily veri�ed that the relation (12) establishes a one-to-one
orresponden
e between the allowed traje
tories (1) and the fun
tions de-�ned by properties (13). To spe
ify the motion of the moving wall, we 
aneither des
ribe dire
tly its traje
tory q(t) or give some fun
tion f(z). Thelatter way omits the retardation problem and simpli�es the 
al
ulation ofphysi
al observables. If we spe
ify the fun
tion f(z), the traje
tory q(t) 
anbe given immediately in a parametri
 form:( t = z+f(z)2 ;q = z�f(z)2 : (14)Let us also note that periodi
 traje
tories, q(t + T ) = q(t) for all t � 0,
orrespond to fun
tions f satisfying f(z + T ) = f(z) + T for all z � L0.Using the fun
tion f(z), we 
an �nd the 
orresponding solution R(z)and evaluate its derivatives. Note that Moore's equation (6) 
an be nowrewritten as: R(z)�R(f(z)) = 2 : (15)Obviously, for all z � L0 we have always R(z) = z=L0. We de�ne a sequen
eof points Ln by: Ln = (f�1)n(L0) ; (16)where (f�1)n � f�1 Æ f�1 Æ ::: Æ f�1 denotes the a
tion of n times with theinverse fun
tion. The solution of Moore's equation is unique and given by:R(z) = 2n+ fn(z)L0 for z 2 [Ln�1; Ln℄ ; (17)where again we denote the multi-
omposition as fn � f Æ ::: Æ f .It is straightforward to evaluate R and its derivatives at points Ln,R(Ln) = 2n+ 1 ; R0(Ln) = f 0(L1):::f 0(Ln)L0 : (18)



134 P. W�grzyn, T. Róg3. The energy density of the �eld inside the vibrating 
avityThe energy density inside the os
illating 
avity was 
omputed �rst in thepaper [3℄. Let us follow these results and begin with:hT00(x; t)i = 12 8<:* �Â(x; t)�x !2++* �Â(x; t)�t !2+9=; ; (19)where the expe
tation values are taken with respe
t to the initial va
uumstate. Of 
ourse, this expression is divergent. Finite results are usually ob-tained through time splitting regularization pro
edure. To avoid evaluatinga produ
t of a mode fun
tion and its 
onjugate at the same spa
e-time point(t; x), the latter fa
tor is evaluated at (t + "; x), where " is some in�nites-imal quantity " ! 0+. After that, we obtain T00(x; t) in terms of phasefun
tion R,hT00(u; v)i = �4 1Xn=1n�R0(v)R0(v + ")ein�[R(v+")�R(v)℄+R0(u)R0(u+ ")ein�[R(u+")�R(u)℄� : (20)introdu
ed light-
one 
oordinates u = t + x; v = t � x. Dire
t 
al
ulationslead to the expression for hT00(x; t)i with an expli
it quadrati
 divergen
e,whi
h is independent of the parti
ular physi
al state parameters:hT00(x; t)i = � 12�"2 � [T (u) + T (v)℄ ; (21)where T (z) = 124� "R000(z)R0(z) � 32 �R00(z)R0(z)�2 + 12�2(R0(z))2# : (22)The �nal expression for the energy density average in the initial va
uumstate is just obtained after the quadrati
 divergen
e is removed,hT00(x; t)iren = �T (u)� T (v) : (23)Be
ause of the presen
e of se
ond and third derivatives in the fun
tion T (z),any dis
ontinuities of the wall velo
ity or its a

eleration during the motionwill generate Æ-fun
tion peaks in the energy density. These peaks will prop-agate through the 
avity with the speed of light, they are re�e
ted ba
k andforth between mirrors. Usually, these peaks are ignored and one fo
uses onthe energy density with delta peaks extra
ted.



Va
uum Energy of a Cavity with a Moving Boundary 1354. Behavior of the phase fun
tion R(z)The basi
 period in the problem of the 
avity de�ned in Se
tion 2 isT = 2L0 (not L0 as in usual resonant problems). In this paper, we willinvestigate systems in whi
h the pres
ribed periodi
 wall motion is given by:L(t) = L0 �1 + d sin�(m+ ") �L0 t�� : (24)We assume m to be a positive integer (the order of the resonan
e) and " isa perturbation of the resonant frequen
y (
alled here detuning).
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zFig. 1. Fun
tion R(z) for parameters: L0 = 1, d = 0:1, m = 1, " = 0.At the beginning, let us start with the 
ase of resonant motion (seeFig. 1). The phase fun
tion R(z) for long times t ! 1 looks like stair
asewith almost perfe
tly �at steps and very sharp jumps between the steps. A
areful analysis of the behavior of the phase fun
tion R(z) for many di�erentresonant motion is elaborated in [11℄. The authors proved a ni
e theoremthat R(z) be
omes stair
ase not only for stri
t periodi
 resonant motions.There must exist only a �nite set of points f�ig in the interval [0; 2L0) (one
an 
all them `return points'), su
h that q(�i + 2mL0) = L0 for all m � 0.Then R(z) will have a perfe
t stair
ase-shape with steps at z = �i + 2mL0,respe
tively for ea
h return point �i. The proof of the theorem is given in theappendix of the paper [11℄. Let us note, that with the help of our method(17) we 
an prove this theorem immediately. The assumptions about theperiodi
ity and about the existen
e of return points lead to the the followingfun
tion f(z),f(z) = (2n�1)L0+g(�) ; z = (2n+1)L0+� ; g : [0; 2L0)! [0; 2L0) : (25)



136 P. W�grzyn, T. RógThe fun
tion g(z) is growing and has �xed points at the return points. Itis now obvious that n-fold iteration of the fun
tion g develops stair
ase forR(z), and steps are lo
ated at the shifted return points.For 
ases where the wall os
illates with o�-resonant frequen
ies, respe
-tive phase fun
tions R(z) will not develop stair
ases in general. However, forsu�
iently small perturbation to the resonant frequen
y, there is still a kindof stair
ase stru
ture in R(z). Large enough perturbations of the frequen
ylead to approximately linear phase fun
tions R(z).
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zFig. 2. R(z) dependen
e for parameters L0 = 1, d = 0:05 and for frequen
ies withdetuning " = 0; 0:2; 0:4.Among many periodi
 solutions elaborated in the previous papers, long-time patterns of behavior for non-resonant wall motions were not analyzed.Using our general solution formula (17), we 
an des
ribe this 
ase as well.For simpli
ity, let us 
onsider stri
tly periodi
 wall motion with the period T .The period T is arbitrary, in parti
ular it may be a non-resonant one. De�nethe 
hara
teristi
 intervals (16). Suppose now, there exist positive integersM and N su
h that: LN = L0 +MT : (26)Then, it follows immediately that: LN+k = Lk +MT . Further, the phasefun
tion after the `long period' MT is just reprodu
ed but shifted. Allderivatives of R(z) are periodi
 with respe
t to the long period MT .Periodi
 o�-resonant motions develop stair
ase for the phase fun
tionR(z) for small arguments. Later, approximately linear shape will appear(see Fig. 9 in the Appendix). But if the relation (26) holds either exa
tlyor approximately, after the long time MT the phase fun
tion will reprodu
eits exa
t or approximate initial shape respe
tively. In the Appendix, we



Va
uum Energy of a Cavity with a Moving Boundary 137present also �gures with long-time os
illations of the total energy and withthe dependen
e of long-time period MT on the detuning " for o� resonantwall motions.It is 
lear that the va
uum energy density will develop sharp peaks atpoints (x; t), where fun
tion R(z) suddenly 
hanges. Traveling peaks inthe energy density were des
ribed in [7℄. The total energy for resonant
ases grows exponentially. The energy enhan
ement will be present alsofor motions 
lose to resonant ones. However, there exists then a long-timeos
illation of the total energy (see �gures in
luded in the Appendix).5. Va
uum energy inside the 
avityIn this Se
tion, we dis
uss behavior of the energy density and the totalenergy inside the vibrating 
avity. Let us 
all the following part of expression(23) as a `Casimir part',hT00iCasimir = � �48 �(R0(u))2 + (R0(v))2� : (27)This term for stati
 boundaries is responsible for well-known stati
 Casimirfor
e [1℄, asso
iated with the energy density value (note again that for thestati
 
ase R(z) = z=L0):hT00(x; t)istati
 = � �24L20 : (28)The other part of the expression (23) will be 
alled an `Unruh part':hT00iUnruh = � 124� "R000(u)R0(u) � 32 �R00(u)R0(u) �2 + (u ! v)# : (29)This term is responsible for quantum radiation from a va
uum state indu
edby a single moving 
ondu
ting wall (
alled usually Unruh�Davies e�e
t).For resonant or 
lose to resonant 
ases (small "), the Unruh part of theenergy is signi�
ant. It may be hundreds of times greater than the stati
part, so it may 
hange an overall sign of the total energy. For strong o�resonant 
ases (large "), the Unruh part is typi
ally only a small 
orre
tionto the Casimir part.Now we will study the shape of the energy density inside the 
avity. Itis very simple to dedu
e from that, what kind of motion we are dealingwith. When the wall os
illates with a strong o�-resonant frequen
y, theenergy density �u
tuates around the �at stati
 Casimir value. There are welldeveloped peaks in the energy density, if the wall vibrates with a resonantor almost resonant frequen
y.The plot above presents behavior of the energy density for times between80L0 and 81L0. From now on, energy density values are s
aled by the stati
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Fig. 3. Behavior of the energy density during one period. Assigned parameters ofthe motion are d = 0:01, m = 2, L0 = �10 , " = 0.energy density W0 = �24L20 . We start the analysis of the energy density fromthe top left plot, i.e. at t = 80L0. The right peak is traveling to the tothe stati
 wall on the left, and the left one to the right in the dire
tion ofmoving wall. Then, they meet ea
h other and there is an lo
al enhan
ementin the density. The peaks pass ea
h other and move on. After boun
ingfrom the stati
 wall, a peak preserves its height. It is not surprising as thereis no energy 
hange for re�e
tions from the stati
 wall, peaks only 
hangetheir dire
tions of movement. While re�e
ted from the os
illating wall, they
an gain or lose energy. For stri
tly resonant 
ases, the energy is alwayspumped into the system between the walls. When the boundary os
illateswith o�-resonant frequen
y the energy of the 
avity os
illates around thestati
 value � �24L20 , represented by the solid line in Fig. 4. After integratingover the whole 
avity, there will be no 
hange of the total energy due to themotion of the wall.
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Fig. 4. Energy density for o�-resonant wall motion. " = 0:5. Other parameters asin Fig 3.
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Fig. 5. Time dependen
e of the total energy a

umulated inside the 
avity. Theparameters are d = 0:01, m = 2, L0 = �=10, " = 0.Now, let us tra
e time dependen
e of the total energy a

umulated insidethe 
avity. For resonant 
ases, we 
an observe generally an exponentialgrowth of energy with time.Figure 5A shows the overall shape of the energy-time dependen
e. Fig-ures B,C,D are the magni�ed parts of A. The total energy in the plots is
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aled by the stati
 value of the Casimir energy EC = �24L0 . As it is seen,general behavior of the energy for resonant motions is exponential, but thereexist �at regions between following in
reases. Their explanation 
ome triv-ially from the pi
ture of traveling peaks in the energy density. The questionis why ea
h following in
rease is greater than previous one. The explanationis quite simple: expression for hT00i and hT11i parts of the energy-momentumtensor are the same. hT11i des
ribes the for
e from the �eld a
ting on theos
illating wall. The for
e of intera
tion with the boundary is in
reasingwith ea
h period. To hold our moving wall to os
illate in a pres
ribed way,we have to apply to it an enhan
ed for
e. The greater for
e we are a
ting,the greater energy transfer to the slab is pumped.The se
ond plot of Fig. 5 shows energy versus time dependen
e for along-time domain between 47:5L0 and 63L0. The stru
ture of the graph
onsists of well developed steps. The lower plot shows energy behavior forshort times (t < 20T0). At the beginning of motion, the energy os
illatesaround the stati
 energy, quite similar as for o�-resonant 
ases (
ompareto Fig 6). After several periods the �eld ex
itations interfere 
onstru
tivelyand the falls in the graph are �attened.We would like to des
ribe further what we 
alled `Casimir' and `Unruh'parts in the energy. The above plots show that resonant and o�-resonant
ases are dramati
ally di�erent. For the non-resonant 
ase, the Unruh part(top left graph)is negligible while the `Casimir' part os
illates around thestati
 value. Thus, there is no energy enhan
ement and the number ofradiated photons will be very small. Quite di�erent pi
ture is for resonantand 
lose to resonant wall motions. We have already learned that the Unruhpart dominates and its plot is stair
ase, but we have also a signi�
ant 
hangein the Casimir part.Let us now look into the dependen
e of the total energy on the frequen
yof wall os
illations. The energy in
reases not only for stri
tly resonant 
ases,but for also for 
ases 
lose to resonant ones.As we 
an see in the pi
ture for time 20L0 for both frequen
ies alloweddetuning is about 0:1 whereas for time 60L0 it is only about 0:03. It isnot very surprising, if we think about photons 
reated in the 
avity in ea
h
y
le. Every period there are 
reated photons with frequen
y of 
reation!
 = m 2�L(t) . For resonant motion, photons from one 
y
le 
an 
onstru
tivelyinterfere with photons from the following 
y
le, be
ause they have the samephase, and there will be some energy in
rease. But for slightly o�-resonantos
illations photons originating from the previous period are a little bit tooearly or too late in the next 
y
le to interfere exa
tly. They have a littlebit di�erent phase. After su�
ient long time phase shift will be big enough,and destru
tive interferen
e will destroy any energy in
rease.
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