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QUASI-LOCAL STRUCTURE OF p-FORM THEORYDariusz Chru±
i«skiInstitute of Physi
s, Ni
holas Coperni
us UniversityGrudzi¡dzka 5/7, 87-100 Toru«, Polande-mail: dar
h�phys.uni.torun.pl(Re
eived O
tober 11, 2000)We show that the Hamiltonian dynami
s of the self-intera
ting, Abelianp-form theory in D = 2p+2 dimensional spa
e-time gives rise to the quasi-lo
al stru
ture. Roughly speaking, it means that the �eld energy is lo-
alized but on 
losed 2p-dimensional surfa
es (quasi-lo
alised). From themathemati
al point of view this approa
h is implied by the boundary valueproblem for the 
orresponding �eld equations. Various boundary problems,e.g. Diri
hlet or Neumann, lead to di�erent Hamiltonian dynami
s. Physi
sseems to prefer gauge-invariant, positively de�ned Hamiltonians whi
h turnout to be quasi-lo
al. Our approa
h is 
losely related with the standardtwo-potential formulation and enables one to generate e.g. duality transfor-mations in a perfe
tly lo
al way (but with respe
t to a new set of nonlo
alvariables). Moreover, the form of the quantization 
ondition displays verysimilar stru
ture to that of the symple
ti
 form of the underlying p-formtheory expressed in the quasi-lo
al language.PACS numbers: 11.15-q, 11.10.Kk, 10.10.Lm1. Introdu
tionOne of the most important idea of modern physi
s is lo
ality. It isstrongly related with relativity and quantum me
hani
s and plays a 
en-tral role in relativisti
 (
lassi
al and quantum) �eld theories. Let us 
iteonly two very in�uential books: physi
s is simple when analyzed lo
ally [1℄and the role of �elds is to implement the prin
iple of lo
ality [2℄. It shouldbe stressed, therefore, from the very beginning that we are not going to dis-
uss nonlo
al theories. The Abelian p-form theory is a simple generalizationof an ordinary ele
trodynami
s in 4-dimensional Minkowski spa
e-time M4where the ele
tromagneti
 �eld potential 1-form A� is repla
ed by a p-formin D-dimensional spa
e-time [3, 4℄. This theory is perfe
tly lo
al, i.e. it isde�ned via the lo
al Lagrangian. (147)
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i«skiThe motivations to study p-form theory are already dis
ussed in [3℄.Re
ently the new input 
omes with ele
tri
-magneti
 duality [5�7℄. It wasobserved long ago [8℄ that the duality symmetry for the standard Maxwellele
trodynami
s in four dimensional Minkowski spa
e-time (i.e. p = 1 the-ory) is generated by the nonlo
al generator (its physi
al interpretation asa 
hirality operator was dis
ussed in [9℄), i.e. it is nonlo
al fun
tional ofthe ele
tromagneti
 �eld. Therefore, the nonlo
ality enters into the game ina very natural way. We shall see that the above mentioned nonlo
ality is
losely related with the Hamiltonian des
ription of the �eld dynami
s.To de�ne the Hamiltonian evolution one splits the entire spa
e-time intospa
e and time and then formulates the initial value problem. But in �eldtheory one has to spe
ify also the boundary 
ondition for the �elds. Veryoften one assumes that all �elds do vanish at spatial in�nity and simplyforgets about this problem. It should be stressed, however, that even ifthe boundary values vanish numeri
ally they do not vanish fun
tionally, i.e.they are ne
essary in the proper de�nition of the fun
tional phase spa
eof the dynami
al problem. This is typi
al for the problems with in�nitelymany degrees of freedom. Boundary value problem is not only a mathemat-i
al problem. It also does belong to physi
s. Di�erent boundary problemslead to di�erent Hamiltonians, i.e. di�erent de�nitions of the �eld energy,e.g. energies de�ned via 
anoni
al and symmetri
 energy-momentum ten-sors. Now, in the standard (i.e. p = 1) ele
trodynami
s the �
anoni
al�energy, whi
h is neither gauge-invariant nor positively de�ned, is relatedto the boundary value problem for the s
alar potential A0. On the otherhand the �symmetri
 energy� (de�ned by the symmetri
 energy-momentumtensor), whi
h is perfe
tly gauge-invariant and positively de�ned, is relatedto the 
ontrol of the ele
tri
 and magneti
 �uxes on the boundary [10�13℄.Therefore, it distinguishes a new set of ele
tromagneti
al variables Q1 andQ2 
onsistent with the boundary problem. Together with the 
anoni
ally
onjugated momenta �1 and �2 they en
ode the entire gauge-invariant in-formation about the ele
tromagneti
 �eld F = dA, i.e. knowing Q's and �'sone may uniquely re
onstru
t F [10℄. A
tually, it was shown long ago byDebye [14℄ that Maxwell theory 
ould be des
ribed in terms of two 
omplexfun
tions (so 
alled Debey potentials). It turns out that this formulationis very well suited to des
ribe e.g. radiative phenomena [15℄. Our Q's and�'s (they may be rearranged into 
omplex Q and �) are 
losely relatedto Debey potentials. They solve the Gauss 
onstraint and, therefore, theyredu
e the symple
ti
 form in the spa
e of Cau
hy data for the �eld dynam-i
s. However, they are nonlo
al fun
tions of the ele
tromagneti
 �elds Dand B. The nonlo
ality is of the very spe
ial stru
ture and the Hamiltoniangenerating the dynami
s de�nes a quasi-lo
al fun
tional, i.e. performing anintegration over angle variables one obtains perfe
tly lo
al fun
tional.
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ture of p-Form Theory 149Now, in the Abelian self-intera
ting p-form theory in D = 2p + 2dimensional spa
e-time one may perform the similar analysis [16℄: instead oftwo 
omplex fun
tions Q and �, the dynami
al information about a p-formele
tromagneti
 �elds D and B is now en
oded into two 
omplex (p � 1)-forms. In the present paper we relate the quasi-lo
al pi
ture implied bythese (p� 1)-forms with the proper de�nition of the Hamiltonian dynami
sfor a p-form theory. Moreover, we show that this formulation is perfe
tlysuited for the des
ription of the duality symmetry, i.e. the duality rotations(for odd p) are generated lo
ally in terms of Q and �. We show that the
anoni
al generator has the following form:Z Q1�2 �Q2�1 : (1.1)It is evident that this approa
h is 
losely related to the two-potential for-mulation [7, 17℄ (see Appendix D).It is well known that there is a 
ru
ial di�eren
e between theories withdi�erent parities of p, e.g. for even p a theory 
an not be duality invariant.Now, it was observed only re
ently [7℄ that the quantization 
ondition for(p� 1)�brane dyons 
ru
ially depends upon p, namelye1g2 + (�1)pe2g1 = nh ; (1.2)with integer n (h is the Plan
k 
onstant). It turns out that the symple
-ti
 form of a p-form theory written in terms of Q and � has very similarstru
ture 
p = Z Æ�1 ^ ÆQ1 + (�1)p+1Æ�2 ^ ÆQ2 ; (1.3)therefore, there is a striking 
orresponden
e between the form of the quanti-zation 
ondition (1.2) and the stru
ture of symple
ti
 form (1.3). This 
orre-sponden
e is universal, i.e. it holds for any gauge-invariant, self-intera
tingtheory.The paper is organized as follows: we remind the quasi-lo
al stru
ture ofstandard (1-form) ele
trodynami
s in Se
tion 2. This is the prototype of thep-form theory for odd p. Then in Se
tion 3 we make the generalization forp = 2 whi
h is the prototype for even p. The general 
ase (i.e. an arbitraryp) is dis
ussed in Appendi
es B and C. In Se
tion 4 we des
ribe the gauge-invariant 
oupling of p-form ele
trodynami
s to the 
harged matter and theHamiltonian stru
ture of the intera
ting theory. The details of notation are
lari�ed in Appendix A.



150 D. Chru±
i«ski2. 1-form theory in D = 42.1. Generating formulaLet us 
onsider a 1-form theory de�ned by the Lagrangian L = L(A; �A).Field dynami
s of this theory may be written in terms of the followinggenerating formula (see Appendix A for details of notation):�ÆL = ��(G��ÆA�) = (��G��)ÆA� + G��Æ(��A�) : (2.1)The formula (2.1) implies the following de�nition of �momenta�:G�� = �2 �L�F�� : (2.2)Moreover, (2.1) generates dynami
al (in general nonlinear) �eld equations��G�� = �J � ; (2.3)where the external 1-form 
urrent reads:J � = �L�A� : (2.4)Let us start with a sour
e free theory, i.e. J = 0. We shall study the p-form ele
tromagnetism 
oupled to a 
harged matter in Se
. 4. To obtain theHamiltonian des
ription of the �eld dynami
s let us integrate Eq. (2.1) overa 3-dimensional volume V 
ontained in the 
onstant-time hyperplane �:�Æ ZV L = ZV �0(G0iÆAi) + Z�V G?�ÆA� ; (2.5)where ? denotes the 
omponent orthogonal to the 2-dimensional boundary�V . To simplify our notation let us introdu
e the spheri
al 
oordinateson �: x3 = r ; xA = 'A ; A = 1; 2 ; (2.6)where '1; '2 denote spheri
al angles (usually one writes '1 = ' and '2 = �).To enumerate angles we shall use 
apital letters A;B;C; :::. The Eu
lideanmetri
 tensor is diagonalg11 = r2; g22 = r2 sin'2; grr = 1 ; (2.7)
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al Stru
ture of p-Form Theory 151and the volume form �1 = pdet(gkl) = r2 sin'2. Let V be a 3-ball witha �nite radius R. In su
h a 
oordinate system the formula (2.5) takes thefollowing form:Æ ZV L = �ZV �0(DiÆAi) + Z�V DrÆA0 � Z�V GrBÆAB ; (2.8)where Di = Gi0 (2.9)denotes the 1-form ele
tri
 indu
tion density on �. Now, performing theLegendre transformation between indu
tion 1-form Di and _Ai one obtainsthe following Hamiltonian formula:�ÆH
an = �ZV � _DiÆAi � _AiÆDi�+ Z�V DrÆA0 � Z�V GrBÆAB ; (2.10)where the 
anoni
al HamiltonianH
an = ZV ��Di _Ai �L� : (2.11)Equation (2.10) generates an in�nite-dimensional Hamiltonian system inthe phase spa
e Pp = (Di; Ai) ful�lling Diri
hlet boundary 
onditions forthe 1-form potential Ai: A0j�V and AAj�V . From the mathemati
al pointof view this is the missing part of the de�nition of the fun
tional spa
e.The Hamiltonian stru
ture of a general nonlinear 1-form ele
trodynami
sdes
ribed above is mathemati
ally well de�ned, i.e. a mixed Cau
hy problem(Cau
hy data given on � and Diri
hlet data given on �V �R) has a uniquesolution (modulo gauge transformations whi
h redu
e to the identity on�V �R).There is, however, another way to des
ribe the Hamiltonian evolution of�elds in the region V . Let us perform the Legendre transformation betweenDr and A0 at the boundary �V . One obtains:�ÆHsym = �ZV � _DiÆAi � _AiÆDi�� Z�V A0ÆDr � Z�V GrBÆAB ; (2.12)where the new �symmetri
� HamiltonianHsym = H
an + Z�V DrA0 : (2.13)
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i«skiObserve, that formula (2.12) de�nes the Hamiltonian evolution but on adi�erent phase spa
e. In order to kill boundary terms in (2.12) one has to
ontrol on �V : Dr (instead of A0) and AB. We stress that from the mathe-mati
al point of view both des
riptions are equally good and an additionalphysi
al argument has to be given if we want to 
hoose one of them as morefundamental. 2.2. Canoni
al vs symmetri
 energyNow, let us dis
uss the relation between H
an and Hsym de�ned by (2.11)and (2.13), respe
tively. One has:Hsym = H
an + Z�V DrA0 = H+ ZV �k �DkA0�= ZV n�Di _Ai �L+ �A0�kDk +Dk�kA0�o= ZV �DiEi �L� ; (2.14)where the 1-form ele
tri
 �eld is de�ned byEi = Fi0 = �[iA0℄ : (2.15)Therefore, Hsym is related to L via di�erent Legendre transformation(
ompare (2.11) with (2.14)). Contrary to H
an, Hsym is perfe
tly gauge-invariant. It is evident that Hsym is de�ned via the symmetri
 energy-momentum tensor: T ��sym = F ��G�� + g��L ; (2.16)whereas H
an via the 
anoni
al one:T ��
an = (��A�)G�� + g��L ; (2.17)i.e. Hsym = RV T 00sym and H
an = RV T 00
an. Therefore, the �symmetri
 energy�Hsym is gauge-invariant and positively de�ned, e.g. for the 1-form Maxwelltheory one has HMaxwellsym = 12 Z (DiDi + BiBi) :On the other hand, the �
anoni
al energy� H
an is neither positively de�nednor gauge-invariant. These properties show that the Hamiltonian evolutionbased on Hsym is more natural from the physi
al point of view than the onebased on H
an (see also dis
ussion in [12℄).
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al Stru
ture of p-Form Theory 1532.3. Redu
tion of the generating formulaNow, it turns out that the formula (2.12) may be 
onsiderably simpli�ed.Any geometri
al obje
t on a 3-dimensional hyperplane � may be de
om-posed into the radial and tangential (i.e. tangential to any sphere S2(r))
omponents, e.g. a 1-form gauge potential Ai de
omposes into the radial Arand tangential AA. Now, any 1-form on S2(r) may be further de
omposedinto �longitudinal� and �transversal� parts:AA = rAu+ "ABrBv ; (2.18)where both u and v are s
alar fun
tions on S2(r). Now, using (2.18) andintegrating by parts one gets:ZV � _DiÆAi � _AiÆDi� = ZV n� _DrÆAr� _ArÆDr�+ h(�r _Dr)Æu� _uÆ(�rDr)i� "AB h�rB _DA� Æv� _vÆ �rBDA�io ; (2.19)where we have used the Gauss lawrADA = ��rDr : (2.20)Moreover, due to (2.18)Z�V GrAÆAA = � Z�V n� _DrÆu+ �"ABrBGrA� Ævo : (2.21)In deriving (2.21) we have usedrAGAr = � _Dr ; (2.22)whi
h follows from the �eld equations rAGAr+�0G0r = 0. Now, taking intoa

ount (2.19) and (2.21) the generating formula (2.12) may be rewritten inthe following way:�ÆHsym = �ZV nh _DrÆ (Ar � �ru)� � _Ar � �r _u� ÆDri� h�"ABrB _DA� Æv � _vÆ �"ABrBDA�io� Z�V �(A0 � _u) ÆDr � �"ABrBGrA� Æv	 : (2.23)
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i«skiNote, that although Ar, A0 and u are manifestly gauge-dependent, the 
om-binations Ar � �ru and A0 � �0u are gauge-invariant. To simplify our 
on-sideration we 
hoose the spe
ial gauge u � 0, i.e. a 1-form AA on S2(r)is purely transversal. This 
ondition, due to (2.18), may be equivalentlyrewritten as rAAA = 0 : (2.24)Assuming (2.24) one may show [16℄�0Ar = r2 "AB rBBA ; (2.25)where �0 = r2rArA (2.26)denotes the 2-dimensional Lapla
ian on S2(1), i.e. the 2-dim. Lapla
e�Beltrami operator on s
alar fun
tions (0-forms). Moreover,Br = "AB rAAB = �r�2�0v : (2.27)Sin
e �0 is invertible in the sour
e free theory [10℄ the formula (2.23) maybe rewritten as follows:�ÆHsym = �ZV nh(r _Dr)Æ �r��10 "AB rBBA���r��10 "AB rB _BA� Æ(rDr)i+ h�r��10 "ABrB _DA� Æ(rBr)� (r _Br)Æ �r��10 "ABrBDA�io� Z�V �(r�1A0)Æ(rDr) + ���10 "ABrBGrA� Æ(rBr)	 : (2.28)Now, introdu
ing the following set of variablesQ1 = rDr ; (2.29)Q2 = rBr ; (2.30)�1 = r��10 "ABrBBA ; (2.31)�2 = �r��10 "ABrBDA ; (2.32)Eq. (2.28) simpli�es to�ÆHsym = ZV �1 n� _�1ÆQ1 � _Q1Æ�1�+ � _�2ÆQ2 � _Q2Æ�2�o+ Z�V �1 ��1ÆQ1 + �2ÆQ2� ; (2.33)
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al Stru
ture of p-Form Theory 155where we introdu
ed the boundary momenta:�1 = �1rA0 ; (2.34)�2 = �r��10 "ABrBGrA : (2.35)Tensor G�� is de�ned by G�� = �1G�� , and, therefore, Di = �1Di. Note,that �l = ÆHsymÆ(�rQl) ; l = 1; 2 : (2.36)For a Maxwell theory one obtainsHMaxwellsym = 12 ZV �1 2Xl=1 � 1r2QlQl � 1r2�r(rQl)��10 �r(rQl)�� l�0� l� ;(2.37)and, therefore �l = 1r ��10 �r(rQl) ; l = 1; 2 ; (2.38)have perfe
tly symmetri
 form.2.4. Canoni
al symmetriesThe symple
ti
 form R ÆDk^ÆAk rewritten in terms of Q's and �'s havethe following form [10, 16℄:
 = Im Z �1 Æ� ^ ÆQ ; (2.39)where we introdu
ed a 
omplex notationQ = Q1 + iQ2 ; (2.40)� = i(�1 + i�2) : (2.41)The form (2.39) is invariant under the following set of R-linear transforma-tions: Q ! ei�Q ; (2.42)Q ! 
osh�Q+ i sinh�Q ; (2.43)Q ! 
osh �Q+ sinh�Q ; (2.44)
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i«skiand the same rules for �. It is easy to see that these transformations formthe group SO(2,1). In terms of D and B, (2.42)�(2.44) have more familiarform:(2.42) 
orresponds to orthogonal SO(2) duality rotations:D ! D 
os��B sin� ;B ! D sin�+B 
os� ; (2.45)(2.43) 
orresponds to hyperboli
 SO(1,1) rotations:D ! D 
osh�+B sinh� ;B ! D sinh�+B 
osh� ; (2.46)(2.44) 
orresponds to s
aling transformations:D ! e�D ;B ! e��B : (2.47)The 
anoni
al generators 
orresponding to (2.42)�(2.44) have the followingform: G1 = Z �1 (Q2�1 �Q1�2) = Re Z �1 (�Q) ; (2.48)G2 = �Z �1 (Q2�1 +Q1�2) = Re Z �1 (�Q) ; (2.49)G3 = Z �1 (Q1�1 �Q2�2) = Im Z �1 (�Q) : (2.50)Note, that for the duality invariant theory G1 de�ned in (2.48) is 
onstantin time. Its physi
al interpretation was 
lari�ed in [9℄. Obviously, G1, G2and G3 rewritten in terms of D and B are highly nonlo
al fun
tionals ofthe �elds [8, 9℄. 2.5. SummaryThe redu
ed variables (Ql;� l) play the role of generalized positions andmomenta for an ele
tromagneti
 �eld. They are perfe
tly gauge-invariantand 
ontain the entire (gauge-invariant) information about D and B. Letus note that Q's and�'s are nonlo
al fun
tions ofD andB. The nonlo
alityenters via the operations on ea
h sphere S2(r), i.e. via the operator ��10 .On the other hand the operations in the radial dire
tion do not produ
e anynonlo
ality.The Hamiltonian generating the dynami
s is perfe
tly lo
al in D and Bbut is nonlo
al in Q's and �'s. The �eld fun
tional with the above des
ribed
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al Stru
ture of p-Form Theory 157nonlo
ality we shall 
all quasi-lo
al. Note, that generators Gi are perfe
tlylo
al in redu
ed variables.The �symmetri
� Hamiltonian dynami
s is de�ned by the Diri
hletboundary 
onditions for positions Ql. On the other hand the �
anoni
al�formula (2.12) is de�ned by the Diri
hlet boundary 
ondition for �1 and Q2.Note, however, that in the Maxwell 
aseZ�V �1Q1Æ�1 = Z�V �1 1r ���10 Q1� Æ �r(r2Dr) = Z�V r ���10 Q1� Æ (�rDr) ;(2.51)i.e. a Diri
hlet 
ondition �1j�V is equivalent to the Neumann 
ondition�rDrj�V . 3. 2-form theory in D = 63.1. Generating formulaNow, 
onsider a 2-form theory de�ned by the Lagrangian L = L(A; �A).Field dynami
s of this theory may be written in terms of the followinggenerating formula:�ÆL = ��(G���ÆA��) = (��G���)ÆA�� + G���Æ(��A��) : (3.1)The formula (3.1) implies the following de�nition of �momenta�:G��� = �3! �L�F��� : (3.2)Moreover, (3.1) generates dynami
al (in general nonlinear) �eld equations��G��� = �J �� ; (3.3)where the external 2-form 
urrent reads:J �� = 2 �L�A�� : (3.4)In the present se
tion we 
onsider only J = 0 (for J 6= 0 see Se
tion 4.)To obtain the Hamiltonian des
ription of the �eld dynami
s let us integrateequation (3.1) over a 5-dimensional volume V 
ontained in the 
onstant-timehyperplane �:�Æ ZV L = ZV �0(G0ijÆAij) + Z�V G?��ÆA�� ; (3.5)
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i«skiwhere ? denotes the 
omponent orthogonal to the 4-dimensional boundary�V . To simplify our notation let us introdu
e the spheri
al 
oordinates on�:x5 = r ; xA = 'A ; A = 1; 2; 3; 4 ; (3.6)where '1; '2; '3; '4 denote spheri
al angles (to enumerate angles we shalluse 
apital letters A;B;C; :::). The Eu
lidean metri
 on � reads:g11 = r2 sin2 '2 sin2 '3 sin2 '4 ; g22 = r2 sin2 '3 sin2 '4;g33 = r2 sin2 '4 ; g44 = r2 ; g55 � grr = 1 ; (3.7)and the 
orresponding volume form�2 =qdet(gij) = r4 sin'2 sin2 '3 sin3 '4 : (3.8)Let V be a 5-dim. ball with a �nite radius R. In su
h a 
oordinate systemthe formula (3.5) takes the following form:Æ ZV L = ZV �0(DijÆAij)� Z�V 2DrAÆA0A � Z�V GrABÆAAB ; (3.9)where Dij = Gij0 (3.10)denotes the 2-form ele
tri
 indu
tion density. Now, performing the Legen-dre transformation between indu
tion 2-form Dij and _Aij one obtains thefollowing Hamiltonian formula:�ÆH
an = ZV � _DijÆAij � _AijÆDij��Z�V 2DrAÆA0A�Z�V GrABÆAAB ; (3.11)where the 
anoni
al HamiltonianH
an = ZV �Dij _Aij �L� : (3.12)Equation (3.11) generates an in�nite-dimensional Hamiltonian system in thephase spa
e P2 = (Dij; Aij) ful�lling Diri
hlet boundary 
onditions for the2-form potential Aij: A0Aj�V and AAB j�V . From the mathemati
al pointof view this is the missing part of the de�nition of the fun
tional spa
e.The Hamiltonian stru
ture of a general nonlinear 2-form ele
trodynami
sdes
ribed above is mathemati
ally well de�ned, i.e. a mixed Cau
hy problem(Cau
hy data given on � and Diri
hlet data given on �V �R) has a unique
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al Stru
ture of p-Form Theory 159solution (modulo gauge transformations whi
h redu
e to the identity on�V �R).Note the di�eren
e in signs between 
orresponding formulae of the presentse
tion and that of Se
tion 2. This di�eren
e follows from the di�eren
e be-tween 
orresponding symple
ti
 stru
tures [16℄. For 1-form theory one has
1 = ZV ÆG0i ^ ÆAi = +ZV ÆDi ^ ÆAi ; (3.13)whereas for 2-form theory
2 = ZV ÆG0ij ^ ÆAij = �ZV ÆDij ^ ÆAij ; (3.14)Now, in analogy to (2.12) we pass to another Hamiltonian des
riptionof the �eld evolution in the �nite region V . Let us perform the Legendretransformation between DrA and A0A at the boundary �V . One obtains:�ÆHsym = ZV � _DijÆAij � _AijÆDij�+Z�V 2A0AÆDrA�Z�V GrABÆAAB ; (3.15)where the new �symmetri
� HamiltonianHsym = H
an � Z�V 2DrAA0A : (3.16)Observe, that formula (3.15) de�nes the Hamiltonian evolution but on adi�erent phase spa
e. In order to kill boundary terms in (3.15) one hasto 
ontrol on �V : DrA (instead of A0A) and AAB . We stress that fromthe mathemati
al point of view both des
riptions are equally good and anadditional physi
al argument has to be given if we want to 
hoose one ofthem as more fundamental.3.2. Canoni
al vs symmetri
 energyThe relation between H
an and Hsym is exa
tly the same as in p = 1
ase: Hsym = H
an � Z�V 2DrAA0A = H
an � ZV 2 �k �DkiA0i�= ZV nDij _Aij �L+ 2�A0i�kDki +Dki�kA0i�o= ZV �12 DijEij �L� ; (3.17)
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i«skiwhere the 2-form ele
tri
 �eld is de�ned byEij = Fij0 = �[iAj0℄ : (3.18)Therefore, Hsym = R T 00sym and H
an = R T 00
an withT ��sym = 12F ���G��� + g��L ; (3.19)and T ��
an = (��A��)G��� + g��L : (3.20)In the 2-form Maxwell theory the �symmetri
 energy� (gauge-invariant andpositively de�ned) reads:HMaxwellsym = 14 Z (DijDij + BijBij) :3.3. Redu
tion of the generating formulaNow, in analogy to (2.18) let as make the following de
omposition:AAB = r[AuB℄ + "ABCDrCvD ; (3.21)where rA denotes a 
ovariant derivative on ea
h S4(r) de�ned by the in-du
ed metri
 gAB and "ABCD stands for the Lévi�Civita tensor density su
hthat "1234 = �2. Both uA and vA are 1-forms on S4(r). Using (3.21) andintegrating by parts one gets:ZV � _DijÆAij � _AijÆDij� = ZV n2 � _DrAÆArA � _ArAÆDrA�+2 h��r _DrA� ÆuA � _uAÆ ��rDrA�i� "ABCD h�rC _DAB� ÆvD � _vDÆ �rCDAB�io ; (3.22)where we have used the Gauss lawrADAB = ��rDrB : (3.23)Moreover, due to (3.21)Z�V GrABÆAAB = � Z�V n�2 _DrAÆuA + �"ABCDrCGrAB� ÆvDo : (3.24)
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al Stru
ture of p-Form Theory 161In deriving (3.24) we have usedrAGABr = � _DrB ; (3.25)whi
h follows from the �eld equations rAGABr + �0G0Br = 0. Now, takinginto a

ount (3.22) and (3.24) the generating formula (3.15) may be rewrittenin the following way:�ÆHsym = ZV nh _DrAÆ(2ArA � 2�ruA)� �2 _ArA � 2�r _uA� ÆDrAi� h�"ABCDrC _DAB� ÆvD � _vDÆ �"ABCDrCDAB�io+ Z�V 8<:(2A0A�2 _uA)ÆDrA+Z�V �"ABCDrCGrAB� ÆvD9=; :(3.26)Note, that although ArA, A0A and uA are manifestly gauge-dependent, the
ombinations ArA � �ruA and A0A � �0uA are gauge-invariant. To simplifyour 
onsideration we 
hoose the spe
ial gauge u � 0, i.e. a 2-form AAB onS4(r) is purely transversal. This 
ondition, due to (3.21), may be equiva-lently rewritten as rAAAB = 0 : (3.27)But now, 
ontrary to the p = 1 
ase, we have an additional 
ove
tor �eldon S4(r), namely ArA. For this 
ove
tor we 
hoose an analogous gauge
ondition, i.e. rAArA = 0 : (3.28)Assuming (3.27) and (3.28) one may show [16℄�1ArD = �r24 "ABCDrCBAB ; (3.29)where �1 = r2rArA � 3 ; (3.30)equals to the Lapla
e�Beltrami operator on 
o-exa
t 1-forms on S4(1) [16℄.Moreover, in analogy to (2.27) one has [16℄BrA = �2r�2�1vA ; (3.31)
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i«skiand, therefore, the formula (3.26) simpli�es to�ÆHsym = 12 ZV n� h�r _DrD� Æ �r��11 "ABCDrCBAB���r��11 "ABCDrC _BAB� Æ �rDrD�i+ h�r��11 "ABCDrC _DAB� Æ �rBrD���r _BrD�Æ�r��11 "ABCDrCDAB�io+ Z�V �(2r�1A0A)Æ �rDrA���12r��11 "ABCDrCGrAB� Æ �rBrD�� : (3.32)Now, introdu
ing the following set of variablesQ A1 = rDrA ; (3.33)Q A2 = rBrA ; (3.34)�1D = r2��11 "ABCDrCBAB ; (3.35)�2D = �r2��11 "ABCDrCDAB ; (3.36)Eq. (3.32) simpli�es to�ÆHsym = ZV �2 n� _�1AÆQ A1 � _Q A1 Æ�1A�� � _�2AÆQ A2 � _Q A2 Æ�2A�o+ Z�V �2 ��1AÆQ A1 + �2AÆQ A2 � ; (3.37)where we introdu
ed the boundary momenta:�1A = 2rA0A ; (3.38)�2D = �r2��11 "ABCDrCGrAB : (3.39)In (3.37) we de�nedQl A := gAB Q Bl ; � l A := gAB � lB : (3.40)Note the 
ru
ial di�eren
e between (3.37) and (2.33): the sign �+� in (2.33)is repla
ed by ��� in (3.37).
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ture of p-Form Theory 163For a Maxwell theory one obtainsHMaxwellsym = 14ZV �2 2Xl=1� 1r2Q Al QlA� 1r4�r(r3QlA)��11 �r(rQAl )�� lA�1� lA�(3.41)and, therefore �lA = 1r3��11 �r(r3QlA) ; l = 1; 2 : (3.42)3.4. Canoni
al symmetriesThe symple
ti
 form � R ÆDij ^ ÆAij rewritten in terms of Q's and �'shave the following form [16℄:
 = Im Z �2 Æ�A ^ ÆQA ; (3.43)where we introdu
ed a 
omplex notationQA = Q1A + iQ2A ; (3.44)�A = i ��A1 + i�A2 � : (3.45)The form (3.43) 
ontrary to (2.39) is invariant only under the followingtransformations: QA ! 
osh�QA + sinh�QA ; (3.46)and the same rule for �A. It is easy to see that these transformations formthe group SO(1,1). In terms of Dij and Bij , (3.46) reads:Dij ! e�Dij ;Bij ! e��Bij : (3.47)The 
anoni
al generator 
orresponding to (3.46) has the following form:G4 = �Z �2 �Q1A�A1 +Q2A�A2 � = ImZ �2 ��AQA� : (3.48)
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i«ski3.5. SummaryContrary to the p = 1 
ase the redu
ed variables (QAl ;� lA) do not solve
ompletely the Gauss 
onstraints �iDij = �iBij = 0. They ful�ll the follow-ing additional 
onditions [16℄:rAQAl = rA� lA = 0 ; l = 1; 2: (3.49)In the geometri
 language it means that ?Ql and ?� l are 
losed 3-formson S4(r) (? denotes the Hodge dual de�ned via "ABCD). They are gauge-invariant and 
ontain the entire information about 2-forms Dij and Bij. Thedynami
s is generated by the quasi-lo
al fun
tional of Q's and �'s.The �symmetri
� dynami
s de�ned by (3.37) 
orresponds to the Diri
hletboundary 
ondition for positions Ql whereas the �
anoni
al� dynami
s 
or-responds to the Diri
hlet 
onditions for �1 and Q2. But Diri
hlet 
onditionfor �1A is equivalent to the Neumann 
ondition for �rDrAZ�V �2QA1 Æ�1A = Z�V r��11 QA1 Æ(�rDrA) : (3.50)4. Coupling to the 
harged matterIn the present se
tion we study the 
oupling of p-form ele
trodynami
sto the 
harged matter. We present parallel dis
ussion for p = 1 and p = 2.The general 
ase is presented in Appendix C.4.1. p = 1Consider a 1-form ele
tromagnetism intera
ting with the 
harged matter�eld � (for simpli
ity let � be a 
omplex s
alar �eld). In the presen
e of
harged matter the Lagrangian generating formula (2.1) has to be repla
edby: �ÆL = ��(G��ÆA� + P�Æ�) ; (4.1)where the matter �momentum�P� = � �L�(���) : (4.2)Be
ause L should de�ne a gauge-invariant theory let us assume that there isa group of gauge transformations U� parameterized by a a fun
tion (0-form)� a
ting in the following way: A� ! A� + ��� and �! U�(�).Now, the target spa
e of the matter �eld � may be reparameterized� = (';U) in su
h a way that, a parameter U is gauge invariant and ' is
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al Stru
ture of p-Form Theory 165the phase undergoing the following gauge transformation: ' ! '+ �. Forthe s
alar (
omplex) �eld one has: U := j�j and the ' = Arg�. Therefore,the matter part in (4.1) may be rewritten as follows:P�Æ� = J�Æ'+ p�ÆU : (4.3)Gauge invarian
e of the theory means that the gauge dependent quantities,i.e. A� and ', enter into L via the gauge-invariant 
ombinations only:L = L(F�� ;D�';U; ��U) ; (4.4)where D�' := ��'�A� (4.5)denotes a 
ovariant derivative of '. This implies, that the momentum J�
anoni
ally 
onjugated to ' is equal to the ele
tri
 
urrentJ� = � �L�(��') = �L�A� = ���G�� : (4.6)Now, instead of (2.8) one has�Æ ZV L = ZV �0 �DiÆAi + �Æ' + p0ÆU�+ Z�V ��DrÆA0 + GrBÆAB + JrÆ'+ prÆU� ; (4.7)with � := J0. Performing the set of Lagrange transformations between:(1) Dk and _Ak, (2) � and _', (3) � := p0 and _U in the volume V , and betweenDr and A0 at the boundary �V , one obtains the following generalizationof (2.12):�ÆHsym = � ZV n� _DiÆAi � _AiÆDi�+ ( _�Æ'� _'Æ�) + � _�ÆU � _UÆ��o� Z�V �A0ÆDr + GrBÆAB + JrÆ' + prÆU	 ; (4.8)where the �symmetri
� Hamiltonian of the intera
ting ele
tromagneti
 �eldand the 
harged matter represented by � reads:Hsym = ZV ��Di _Ai � � _'� � _U �L+ �k �A0Dk�� : (4.9)
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i«skiNow, using �kDk = � ; (4.10)implied by (4.6), one gets the following formula for Hsym:Hsym = ZV �DiEi � �D0'� � _U �L� : (4.11)Note, that the gauge-dependent phase ' enters into Hsym via the gauge-invariant 
ombination D0' only. Moreover, due to (4.10), we may rewritethe dynami
al part for ' in (4.8) as follows:ZV ( _�Æ'� _'Æ�) = ZV �� _DkÆ(�k') + (�k _')ÆDk�+ Z�V � _DrÆ' � _'ÆDr� :(4.12)Now, the _Dr at the boundary may be easily eliminated by the �eld equa-tions (4.6) _Dr = ��0Gr0 = ��G�r � �AGAr = �Jr + �AGrA : (4.13)Introdu
ing a hydrodynami
al variables:V� := �D�' ; (4.14)we may rewrite �nally (4.8) as follows:�ÆHsym = �ZV n� _DiÆVi � _ViÆDi�+ � _�ÆU � _UÆ��o� Z�V �V0ÆDr + GrBÆVB + prÆU	 ; (4.15)i.e. (4.15) has exa
tly the same form as (2.12) with A� repla
ed by thegauge-invariant V� and supplemented by the gauge-invariant 
anoni
al pair(U; �) together with the boundary momentum pr.4.2. p = 2Now, 
onsider a 2-form ele
tromagnetism intera
ting with the 
hargedmatter �eld �� (for simpli
ity let �� be a 
omplex ve
tor �eld). In thepresen
e of 
harged matter the Lagrangian generating formula (3.1) has tobe repla
ed by: �ÆL = �� �G���ÆA�� + P��Æ��� ; (4.16)
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al Stru
ture of p-Form Theory 167where the matter �momentum�P�� = �2 �L�(�[���℄) : (4.17)Be
ause L should de�ne a gauge-invariant theory let us assume that there isa group of gauge transformations U� parameterized by a a 1-form � a
tingin the following way: A! A+ d� and �! U�(�).Now, the target spa
e of the matter �eld �� may be reparameterized�� = ('�; U�) in su
h a way that a 1-form U� is gauge invariant and a1-form '� is the phase undergoing the following gauge transformation: '!'+�. For the ve
tor (
omplex) �eld one has: U� := j��j and '� = Arg��.Therefore, the matter part in (4.16) may be rewritten as follows:P��Æ�� = J��Æ'� + p��ÆU� : (4.18)Gauge invarian
e of the theory means that the gauge dependent quantities,i.e. A�� and '�, enter into L via the gauge-invariant 
ombinations only:L = L(F���;D�'� ; U�; ��U�) ; (4.19)where D�'� := 12 �[�'�℄ �A�� (4.20)denotes a �
ovariant derivative� of '� . This implies, that the momentumJ�� 
anoni
ally 
onjugated to '� is equal to the ele
tri
 
urrentJ�� = �2 �L�(�[�'�℄) = 2 �L�A�� = ���G��� : (4.21)Now, instead of (3.9) one has�Æ ZV L = ZV �0 ��DijÆAij � �kÆ'k + �kÆUk�+ Z�V �2DrAÆA0A + GrABÆAAB + �rÆ'0 + JrAÆ'A � �rÆU0 + prAÆUA� ;(4.22)with �k := Jk0 (it de�nes a 1-form 
harge density on 5-dim. hyperplane �)and �k := p0k. Now, to pass to the Hamiltonian pi
ture one has to performthe following Legendre transformations between: (1) D and _A, (2) � and _',
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i«ski(3) � and _U in the volume V , and between (4) Dr and A0, (5) �r and '0 and(6) �r and U0 at the boundary �V . One obtains the following generalizationof (3.15):�ÆHsym =ZV n� _DijÆAij� _AijÆDij�+� _�kÆ'k� _'kÆ�k��� _�kÆUk� _UkÆ�k�o� Z�V ��2A0AÆDrA + GrABÆAAB � '0Æ�r + JrAÆ'A + U0Æ�r + prAÆUA	 ;(4.23)where the �symmetri
� Hamiltonian of the intera
ting ele
tromagneti
 �eldand the 
harged matter represented by �� reads:Hsym =ZV nDij _Aij+�k ( _'k��k'0)��k _Uk��k �2A0iDki�U0�k��Lo ;(4.24)where we have used �k�k = 0. Now, using�iDik = �k ; (4.25)one gets the following formula for Hsym:Hsym = ZV �12DijEij + 2�kD0'k � �k _Uk �L+ �k(�kU0)� : (4.26)Note, that the gauge-dependent phase '� enters into Hsym via the gauge-invariant 
ombination D0'�. Moreover, due to (4.25), we may rewrite thedynami
al part for '� in (4.23) as follows:ZV � _�kÆ'k � _'kÆ�k� = ZV �� _DikÆ(�i'k) + (�i _'k)ÆDik�+Z�V � _DrAÆ'A � _'AÆDrA� : (4.27)Now, the term _DrA at the boundary may be easily eliminated by the �eldequations (4.21) _DrA = JrA + �BGrAB : (4.28)Introdu
ing hydrodynami
al variables:V�� := �D�'� ; (4.29)
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al Stru
ture of p-Form Theory 169we may rewrite �nally (4.23) as follows:�ÆHsym = ZV n� _DijÆVij � _VijÆDij�� � _�kÆUk � _UkÆ�k�o� Z�V ��2V0AÆDrA + GrABÆVAB � U0Æ�r + prAÆUA	 ; (4.30)i.e. (4.15) has exa
tly the same form as (3.15) with A�� repla
ed by thegauge-invariant 2-form V�� and supplemented by the gauge-invariant 
anon-i
al pair (Uk; �k) together with the boundary momenta U0 and prA. Allgauge-dependent terms dropped out.Appendix ANotationConsider a p-form potential A de�ned in the D = 2p + 2 dimensionalMinkowski spa
e-time M2p+2 with the signature of the metri
 tensor(�;+; : : : ;+). The 
orresponding �eld tensor is de�ned as a (p+1)-form byF = dA: F�1:::�p+1 = �[�1A�2:::�p+1℄ ; (A.1)where the antisymmetrization is de�ned by X[kl℄ := Xkl � Xlk. Having aLagrangian L of the theory one de�nes another (p+ 1)-form G as follows:G�1:::�p+1 = �(p+ 1)! �L�F�1 :::�p+1 : (A.2)Now one may de�ne the ele
tri
 and magneti
 intensities and indu
tions inthe obvious way:Ei1:::ip = Fi1:::ip0 ; (A.3)Bi1:::ip = 1(p+ 1)! "i1:::ipj1:::jp+1F j1:::jp+1 ; (A.4)Di1:::ip = Gi1:::ip0 ; (A.5)Hi1:::ip = 1(p+ 1)! "i1:::ipj1:::jp+1Gj1:::jp+1 ; (A.6)where the indi
es i1; i2; : : : ; j1; j2; : : : run from 1 up to 2p+1 and "i1i2:::i2p+1is the Lévi�Civita tensor in 2p+1 dimensional Eu
lidean spa
e, i.e. a spa
e-like hyperplane � in the Minkowski spa
e-time. The �eld equations aregiven by the Bian
hi identities dF = 0, or in 
omponents�[�F�1:::�p+1℄ = 0 ; (A.7)
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al equations d ? G = 0, or equivalently�[� ? G�1:::�p+1℄ = 0 ; (A.8)where the Hodge star operation in M2p+2 is de�ned by:?X�1:::�p+1 = 1(p+ 1)! ��1 :::�p+1�1:::�p+1 X�1:::�p+1 (A.9)and ��1�2:::�2p+2 is the 
ovariantly 
onstant volume form in the Minkowskispa
e-time. Note, that "i1:::i2p+1 := �0i1:::i2p+1 . In terms of ele
tri
 andmagneti
 �elds de�ned in (A.3)�(A.6) the �eld equations (A.7)�(A.8) havethe following form:�0Bi1:::ip = (�1)p 1p! "i1:::ipkj1:::jp rkEj1:::jp ; (A.10)ri1Bi1:::ip = 0 ; (A.11)�0Di1:::ip = 1p! "i1:::ipkj1:::jp rkHj1:::jp ; (A.12)ri1Di1:::ip = 0 ; (A.13)where rk denotes the 
ovariant derivative on � 
ompatible with the metri
gkl indu
ed fromM2p+2. The Lévi�Civita tensor density satis�es "12:::2p+1 =pg, with g = det(gkl). Appendix BGeneral p-form theory without matterB.1 Generating formulaFor an arbitrary p the formulae (2.1) and (3.1) generalize to:�ÆL = (��G��1:::�pÆA�1:::�p) = (��G��1:::�p)ÆA�1 :::�p+G��1:::�pÆ(��A�1:::�p) :(B.1)The formula (B.1) implies the following de�nition of �momenta�:G�1:::�p+1 = �(p+ 1)! �L�F�1:::�p+1 : (B.2)Moreover, (B.1) generates dynami
al (in general nonlinear) �eld equations��G��1:::�p = �J �1:::�p ; (B.3)
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ture of p-Form Theory 171where the external p-form 
urrent reads:J �1:::�p = p! �L�A�1:::�p : (B.4)Let us start with J = 0 and dis
uss a general p-form 
harged matter inAppendix C. To obtain the Hamiltonian des
ription of the �eld dynami
s letus integrate equation (B.1) over a (2p+1)-dimensional volume V 
ontainedin the 
onstant-time hyperplane �:�Æ ZV L = ZV �0 �G0i1:::ipÆAi1:::ip�+ Z�V G?�1:::�pÆA�1:::�p ; (B.5)where ? denotes the 
omponent orthogonal to the 2p-dimensional boundary�V . To simplify our notation let us introdu
e the spheri
al 
oordinateson �: x2p+1 = r ; xA = 'A ; A = 1; 2; : : : ; 2p ; (B.6)where '1; '2; : : : ; '2p denote spheri
al angles (to enumerate angles we shalluse 
apital letters A;B;C; : : :). The metri
 tensor gij is diagonal and hasthe following form: g11 = r2 sin2 '2 sin2 '3 : : : sin2 '2p ;g22 = r2 sin2 '3 sin2 '4 : : : sin2 '2p ;...g2p�1;2p�1 = r2 sin2 '2p�1 sin2 '2pg2p;2p = r2 sin2 sin2p ;grr = r2 : (B.7)Therefore, the volume form�p =qdet(gij) = r2p sin'2 sin2 '3 : : : sin2p�2 '2p�1 sin2p�1 '2p : (B.8)Let V be a (2p+1)�dim. ball with a �nite radius R. In su
h a 
oordinatesystem the formula (B.5) takes the following form:Æ ZV L = (�1)p ZV �0 �Di1:::ipÆAi1:::ip�� (�1)p Z�V pDrA2:::ApÆA0A2:::Ap� Z�V GrB1:::BpÆAB1:::Bp ; (B.9)
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i«skiwhere Di1:::ip = Gi1:::ip0 (B.10)denotes the p-form ele
tri
 indu
tion density. Now, performing the Legendretransformation between indu
tion p-form Di1:::ip and _Ai1:::ip one obtains thefollowing Hamiltonian formula:�ÆH
an = (�1)p ZV � _Di1:::ipÆAi1:::ip � _Ai1:::ipÆDi1:::ip��(�1)p Z�V pDrA2:::ApÆA0A2:::Ap � Z�V GrB1 :::BpÆAB1:::Bp ; (B.11)where the 
anoni
al HamiltonianH
an = ZV �(�1)pDi1:::ip _Ai1:::ip �L� : (B.12)Equation (B.11) generates an in�nite-dimensional Hamiltonian system inthe phase spa
e Pp = (Di1:::ip ; Ai1:::ip) ful�lling Diri
hlet boundary 
ondi-tions for the p-form potential Ai1:::ip : A0A2:::Ap j�V and AA1A2:::Ap j�V . Fromthe mathemati
al point of view this is the missing part of the de�nition ofthe fun
tional spa
e. The Hamiltonian stru
ture of a general nonlinear p-form ele
trodynami
s des
ribed above is mathemati
ally well de�ned, i.e. amixed Cau
hy problem (Cau
hy data given on � and Diri
hlet data given on�V �R) has a unique solution (modulo gauge transformations whi
h redu
eto the identity on �V �R).The presen
e of a p-dependent sign (�1)p follows from the p-dependen
eof the 
orresponding symple
ti
 form:
p = ZV ÆG0i1:::ip ^ ÆAi1:::ip = (�1)p+1 ZV ÆDi1 :::ip ^ ÆAi1:::ip : (B.13)There is, however, another way to des
ribe the Hamiltonian evolution of�elds in the region V . Let us perform the Legendre transformation betweenDrA2:::Ap and A0A2:::Ap at the boundary �V . One obtains:�ÆHsym = (�1)p ZV � _Di1:::ipÆAi1:::ip � _Ai1:::ipÆDi1:::ip�+(�1)p Z�V pA0A2:::ApÆDrA2:::Ap � Z�V GrB1:::BpÆAB1:::Bp ; (B.14)
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al Stru
ture of p-Form Theory 173where the new �symmetri
� HamiltonianHsym = H
an � (�1)p Z�V pDrA2:::ApA0A2:::Ap : (B.15)Observe, that formula (B.14) de�nes the Hamiltonian evolution but on adi�erent phase spa
e. In order to kill boundary terms in (B.14) one has to
ontrol on �V : DrA2:::Ap (instead of A0A2:::Ap) and AB1:::Bp . We stress thatfrom the mathemati
al point of view both des
riptions are equally good andan additional physi
al argument has to be given if we want to 
hoose one ofthem as more fundamental.B.2 Canoni
al vs symmetri
 energyNow, let us dis
uss the relation between H
an andHsym de�ned by (B.12)and (B.15) respe
tively. One has:Hsym = H
an � (�1)p Z�V pDrA2:::ApA0A2:::Ap= H�(�1)pZV p �k �Dki2:::ipA0i2:::ip�=ZV n(�1)pDi1:::ip _Ai1:::ip�L+(�1)pp�A0i2:::ip�kDki2:::ip+Dki2:::ip�kA0i2:::ip�o= ZV � 1p! Di1:::ipEi1:::ip �L� ; (B.16)where the p-form ele
tri
 �eld is de�ned byEi1:::ip = Fi1:::ip0 = �[i1Ai2:::ip0℄ : (B.17)Therefore, Hsym = RV T 00sym and Hp = RV T 00
an, whereT ��sym = 1p!F ��1:::�pG��1:::�p + g��L ; (B.18)T ��
an = ��A�1:::�pG��1:::�p + g��L : (B.19)Obviously, for the Maxwell theory one has:HMaxwellsym = 12p! Z �Di1:::ipDi1:::ip + Bi1:::ipBi1:::ip� : (B.20)
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i«skiB.3 Redu
tion of the generating formulaAny geometri
al obje
t on (2p + 1)-dimensional hyperplane � may bede
omposed into the radial and tangential 
omponents, e.g. a p-form gaugepotential Ai1:::ip de
omposes into the radial ArA2:::Ap and tangential AA1:::Ap .On ea
h sphere 2p-dimensional sphere S2p(r), ArA2:::Ap de�nes a (p � 1)-form whereas AA1:::Ap a p-form. Now, any p-form on S2p(r) may be furtherde
omposed into �longitudinal� and �transversal� parts:AA1:::Ap = r[A1uA2:::Ap℄ + "A1:::ApB1:::BprB1vB2:::Bp ; (B.21)where "A1:::ApB1:::Bp denotes the Lévi�Civita tensor density on S2p(r) su
hthat "12:::2p = �p. Both u and v are (p � 1)-forms on S2p(r). Now, us-ing (B.21) and integrating by parts one gets:ZV � _Di1:::ipÆAi1 :::ip � _Ai1:::ipÆDi1:::ip�= ZV pn� _DrA2:::ApÆArA2:::Ap � _ArA2:::ApÆDrA2:::Ap�+p! h��r _DrA2:::Ap� ÆuA2:::Ap � _uA2:::ApÆ ��rDrA2:::Ap�i� "A1:::ApB1:::Bp h�rB1 _DA1:::Ap� ÆvB2:::Bp � _vB2:::BpÆ �rB1DA1:::Ap�io ;(B.22)where we have used the Gauss lawrA1DA1:::Ap = ��rDrA2:::Ap : (B.23)Moreover, due to (B.21)Z�V GrA1:::ApÆAA1:::Ap= Z�V n(�1)pp! _DrA2:::ApÆuA2:::Ap��"A1:::ApB1:::BprB1GrA1:::Ap� ÆvB2:::Bpo :(B.24)In deriving (B.24) we have usedrA1GA1:::Apr = � _DrA2:::Ap ; (B.25)
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ture of p-Form Theory 175whi
h follows from the �eld equations rA1GA1:::Apr+�0G0A2:::Apr = 0. Now,taking into a

ount (B.22) and (B.24) the generating formula (B.14) maybe rewritten in the following way:�ÆHsym = (�1)p ZV nh _DrA2:::ApÆ �pArA2:::Ap � p!�ruA2:::Ap�� �p _ArA2:::Ap � p!�r _uA2:::Ap� ÆDrA2:::Api�h �"A1:::ApB1:::BprB1 _DA1:::Ap� ÆvB2:::Bp� _vB2:::BpÆ �"A1:::ApB1:::BprB1DA1:::Ap� io+(�1)p Z�V �pA0A2:::Ap � p! _uA2:::Ap� ÆDrA2:::Ap+ Z�V �"A1:::ApB1:::BprB1GrA1:::Ap� ÆvB2:::Bp : (B.26)Note, that although ArA2:::Ap , A0A2:::Ap and uA2:::Ap are manifestly gauge-dependent, the 
ombinations pArA2:::Ap � p! �ruA2:::Ap and pA0A2:::Ap �p! �0uA2:::Ap are gauge-invariant. To simplify our 
onsideration we 
hoosethe spe
ial gauge u � 0, i.e. a p-form AA1:::Ap on S2p(r) is purely transver-sal. This 
ondition, due to (B.21), may be equivalently rewritten asrA1AA1:::Ap = 0 : (B.27)Let us 
hoose the same 
ondition for the radial partrA2ArA2:::Ap = 0 : (B.28)Assuming (B.27) and (B.28) one may show [16℄�p�1ArB2:::Bp = (�1)p+1 r2p p! "A1:::ApB1:::BprB1BA1:::Ap ; (B.29)where �p�1 = (p� 1)! �r2rArA � (p2 � 1)� (B.30)equals the Lapla
e�Beltrami operator on 
o-exa
t (p � 1)-forms on S2p(1)[16℄. In the same way BrA2:::Ap = � p!r2 �p�1vA2:::Ap : (B.31)
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i«skiFinally, introdu
ingQ A2:::Ap1 = DrA2:::Ap ; (B.32)Q A2:::Ap2 = BrA2:::Ap ; (B.33)�1B2:::Bp = rp! ��1p�1 �"A1:::ApB1:::BprB1BA1:::Ap� ; (B.34)�2B2:::Bp = � rp! ��1p�1 �"A1:::ApB1:::BprB1DA1:::Ap� ; (B.35)the formula (B.26) simpli�es to�ÆHsym = ZV �p n� _�1A2:::ApÆQ A2:::Ap1 � _Q A2:::Ap1 Æ�1A2:::Ap�+ (�1)p+1 � _�2A2:::ApÆQ A2:::Ap2 � _Q A2:::Ap2 Æ�2A2:::Ap�o+ Z�V �p ��1A2:::ApÆQ A2:::Ap1 + �1A2:::ApÆQ A2:::Ap1 � ; (B.36)where we introdu
ed the boundary momenta:�1A2:::Ap = (�1)p pr A0A2:::Ap ; (B.37)�2B2:::Bp = � rp! ��11 "A1:::ApB1:::BprB1GrA1:::Ap : (B.38)In the formula (B.36) we have introdu
ed:Ql A2:::Ap := gA2B2 : : : gApBp Q B2:::Bpl ; (B.39)� l A2:::Ap := gA2B2 : : : gApBp � lB2:::Bp ; (B.40)for l = 1; 2. For the Maxwell theoryHMaxwellsym = 12(p� 1)! ZV �p 2Xl=1 � 1r2Q A2:::Apl Ql A2:::Ap�� l A2:::Ap�p�1� lA2:::Ap� 1r2p�r(r2p�1Ql A2:::Ap)��1p�1�r �rQ A2:::Apl �� ; (B.41)and, therefore, the boundary momenta read:�lA2:::Ap = 1r2p�1�p�11 �r �r2p�1Ql A2:::Ap� ; l = 1; 2: (B.42)
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al redu
ed variables �Q A2:::Apl ;� lA2:::Ap� ful�ll the follow-ing 
onditions [16℄:rA2Q A2:::Apl = rA2� lA2:::Ap = 0 ; l = 1; 2; (B.43)whi
h follow from the Gauss laws. In the geometri
 language it means that?Ql and ?� l are 
losed (p+ 1)-forms on S2p(r) (? denotes the Hodge dualde�ned via "A1:::ApB1:::Bp). They are gauge-invariant and 
ontain the entireinformation about p-forms D and B.The �symmetri
� dynami
s de�ned by (B.36) 
orresponds to the Diri
h-let boundary 
ondition for positions Ql whereas the �
anoni
al� dynami
s
orresponds to the Diri
hlet 
onditions for �1A2:::AP and Q2. But Diri
hlet
ondition for �1A is equivalent to the Neumann 
ondition for �rDrA2:::ApZ�V �pQ A2:::Ap1 Æ�1A2:::Ap = Z�V r��1p�1Q A2:::Ap1 Æ ��rDrA2:::Ap� : (B.44)Appendix CGeneral p-form theory with matterNow, 
onsider a p-form ele
tromagnetism intera
ting with the 
hargedmatter �eld � (for simpli
ity let � be a 
omplex (p � 1)-form). In thepresen
e of 
harged matter the Lagrangian generating formula (B.1) has tobe repla
ed by:�ÆL = �� �G��1:::�pÆA�1�p + P��2:::�pÆ��2:::�p� ; (C.1)where the matter �momentum�P�1�2:::�p = �p! �L�(�[�1��2:::�p℄) : (C.2)Be
ause L should de�ne a gauge-invariant theory let us assume that there isa group of gauge transformations U� parameterized by a a p-form � a
tingin the following way: A! A+ d� and �! U�(�).Now, the target spa
e of the matter �eld � may be reparameterized� = (';U) in su
h a way that a (p � 1)-form U is gauge invariant and a(p� 1)-form ' is the phase undergoing the following gauge transformation:'! '+�. For the (
omplex) (p�1)-form one has: U�1:::�p�1 := j��1:::�p�1 j
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i«skiand '�1:::�p�1 = Arg��1:::�p�1 . Therefore, the matter part in (C.1) may berewritten as follows:P�1:::�pÆ��2:::�p = J�1:::�pÆ'�2 :::�p + p�1:::�pÆU�2 :::�p : (C.3)Gauge invarian
e of the theory means that the gauge dependent quantities,i.e. A and ', enter into L via the gauge-invariant 
ombinations only:L = L �F�1:::�p+1 ;D�'�1:::�p�1 ; U�1:::�p�1 ; ��U�1:::�p�1� ; (C.4)where D�'�1:::�p�1 := 1p �[�'�1:::�p�1℄ �A��1:::�p�1 (C.5)denotes a 
ovariant derivative of '�1:::�p�1 . This implies, that the momentumJ�1:::�p 
anoni
ally 
onjugated to '�1:::�p is equal to the ele
tri
 
urrentJ�1:::�p = �p! �L�(�[�1'�2:::�p℄) = p! �L�A�1 :::�p = ���G��1:::�p : (C.6)Now, instead of (B.9) one hasÆ ZV L = ZV �0�(�1)pDi1:::ipÆAi1:::ip+(�1)p�i1:::ip�1Æ'i1:::ip�1 � �i1:::ip�1ÆUi1:::ip�1�� Z�V �(�1)ppDrA2:::ApÆA0A2:::Ap+GrA1:::ApÆAA1:::Ap + (�1)p(p� 1)�rA3:::ApÆ'0A3:::Ap+JrA2:::ApÆ'A2:::Ap�(p� 1)�rA3:::ApÆU0A3:::Ap+prA2:::ApÆUA2:::Ap� ;(C.7)with �i1:::ip�1 := J i1:::ip�10 (it de�nes a (p�1)-form 
harge density on (2p+1)-dim. hyperplane �) and �i1:::ip�1 := p0i1:::ip�1 . Now, to pass to the Hamil-tonian pi
ture one has to perform the following Legendre transformationsbetween: (1) D and _A, (2) � and _', (3) � and _U in the volume V , andbetween (4) Dr and A0, (5) �r and '0 and (6) �r and U0 at the boundary�V . One obtains the following generalization of (B.14):
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�ÆHsym = ZV n(�1)p � _Di1:::ipÆAi1:::ip � _Ai1:::ipÆDi1:::ip�+(�1)p � _�i1:::ip�1Æ'i1:::ip�1 � _'i1:::ip�1Æ�i1 :::ip�1�� � _�i1:::ip�1ÆUi1 :::ip�1 � _Ui1:::ip�1Æ�i1:::ip�1�o� Z�V n(�1)pA0A2:::ApÆDrA2:::Ap+GrA1:::ApÆAA1:::Ap + (�1)p(p� 1)'0A3:::ApÆ�rA3:::Ap�JrA2:::ApÆ'A2:::Ap � (p� 1)U0A3 :::ApÆ�rA3:::Ap � prA2:::ApÆUA2:::Apo ;(C.8)where the �symmetri
� Hamiltonian of the intera
ting ele
tromagneti
 �eldand the 
harged matter represented by � reads:Hsym = ZV n(�1)pDi1:::ip _Ai1:::ip+(�1)p�i1:::ip�1 _'i1:::ip�1 � �i1:::ip�1 _Ui1:::ip�1 �L��k h(�1)ppDki2:::ipA0i2:::ip+(�1)p(p� 1)�ki3:::ip'0i3:::ip � (p� 1)�ki3:::ipU0i3:::ipio : (C.9)Now, using �kDki2:::ip = �i2:::ip ; (C.10)one gets the following formula for Hsym:Hsym = ZV n 1p!Di1:::ipEi1:::ip+(�1)pp �i1:::ip�1D0'i1:::ip�1 � �i1:::ip�1 _Ui1:::ip�1 �L+�k h(p� 1)�ki3:::ipU0i3:::ipio : (C.11)
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i«skiMoreover, due to (C.10), we may rewrite the dynami
al part for 'in (C.8) as follows:ZV � _�i2:::ipÆ'i2 :::ip � _'i2:::ipÆ�i2:::ip�= ZV �� _Dki2:::ipÆ(�k'i2:::ip) + (�k _'i2:::ip)ÆDki2:::ip�+ Z�V � _DrA2:::ApÆ'A2:::Ap � _'A2:::ApÆDrA2:::Ap� : (C.12)Now, the term _DrA2:::Ap at the boundary may be easily eliminated by the�eld equations (C.6)_DrA2:::Ap = (�1)p �JrA2:::Ap � �A1GrA1A2:::Ap� : (C.13)Introdu
ing hydrodynami
al variables:V�1�2:::�p := �D�1'�2:::�p ; (C.14)we may rewrite �nally (C.8) as follows:�ÆHsym = ZV n(�1)p � _Di1:::ipÆVi1:::ip � _Vi1:::ipÆDi1:::ip�� � _�i1:::ip�1ÆUi1:::ip�1 � _Ui1:::ip�1Æ�i1:::ip�1�o� Z�V n(�1)pV0A2:::ApÆDrA2:::Ap + GrA1:::ApÆVA1:::Ap�(p� 1)U0A3:::ApÆ�rA3:::Ap � prA2:::ApÆUA2:::Apo ; (C.15)i.e. (C.15) has exa
tly the same form as (B.14) with A repla
ed by the gauge-invariant p-form V and supplemented by the gauge-invariant 
anoni
al pairof (p � 1)-forms (U; �) together with the boundary momenta: (p� 2)-formU0 and (p� 1)-form pr on �V . All gauge-dependent terms dropped out.
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ture of p-Form Theory 181Appendix D2 potentials vs redu
ed variablesLet us introdu
e a se
ond p-form gauge potential Z on � su
h thatDi1:::ip = "i1:::ipkj1:::jp�k Zj1:::jp : (D.1)Assuming for Z the same gauge 
onditions as for A, i.e.rA1ZA1:::Ap = 0 ; (D.2)rA2ZrA2:::Ap = 0 ; (D.3)we have in analogy to (B.29)�p�1ZrB2:::Bp = (�1)p+1 r2p p! "A1:::ApB1:::BprB1DA1:::Ap : (D.4)Therefore, taking into a

ount (B.34)�(B.35) one has:�1B2:::Bp = (�1)p+1 rp ArB2:::Bp ; (D.5)�2B2:::Bp = (�1)p rp ZrB2:::Bp ; (D.6)i.e. the entire gauge-invariant information about two p-forms Z and A on �is en
oded into two 
omplex (p� 1)-forms Q and � on ea
h S2p(r).This work was partially supported by the Polish State Committee forS
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