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We show that the Hamiltonian dynamics of the self-interacting, Abelian
p-form theory in D = 2p + 2 dimensional space-time gives rise to the quasi-
local structure. Roughly speaking, it means that the field energy is lo-
calized but on closed 2p-dimensional surfaces (quasi-localised). From the
mathematical point of view this approach is implied by the boundary value
problem for the corresponding field equations. Various boundary problems,
e.g. Dirichlet or Neumann, lead to different Hamiltonian dynamics. Physics
seems to prefer gauge-invariant, positively defined Hamiltonians which turn
out to be quasi-local. OQur approach is closely related with the standard
two-potential formulation and enables one to generate e.g. duality transfor-
mations in a perfectly local way (but with respect to a new set of nonlocal
variables). Moreover, the form of the quantization condition displays very
similar structure to that of the symplectic form of the underlying p-form
theory expressed in the quasi-local language.

PACS numbers: 11.15-q, 11.10.Kk, 10.10.Lm

1. Introduction

One of the most important idea of modern physics is locality. 1t is
strongly related with relativity and quantum mechanics and plays a cen-
tral role in relativistic (classical and quantum) field theories. Let us cite
only two very influential books: physics is simple when analyzed locally [1]
and the role of fields is to implement the principle of locality |2]|. It should
be stressed, therefore, from the very beginning that we are not going to dis-
cuss nonlocal theories. The Abelian p-form theory is a simple generalization
of an ordinary electrodynamics in 4-dimensional Minkowski space-time M?*
where the electromagnetic field potential 1-form A, is replaced by a p-form
in D-dimensional space-time [3,4]. This theory is perfectly local, i.e. it is
defined via the local Lagrangian.

(147)
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The motivations to study p-form theory are already discussed in [3].
Recently the new input comes with electric-magnetic duality [5-7]. It was
observed long ago [8] that the duality symmetry for the standard Maxwell
electrodynamics in four dimensional Minkowski space-time (i.e. p = 1 the-
ory) is generated by the nonlocal generator (its physical interpretation as
a chirality operator was discussed in [9]), i.e. it is nonlocal functional of
the electromagnetic field. Therefore, the nonlocality enters into the game in
a very natural way. We shall see that the above mentioned nonlocality is
closely related with the Hamiltonian description of the field dynamics.

To define the Hamiltonian evolution one splits the entire space-time into
space and time and then formulates the initial value problem. But in field
theory one has to specify also the boundary condition for the fields. Very
often one assumes that all fields do vanish at spatial infinity and simply
forgets about this problem. It should be stressed, however, that even if
the boundary values vanish numerically they do not vanish functionally, 7.e.
they are necessary in the proper definition of the functional phase space
of the dynamical problem. This is typical for the problems with infinitely
many degrees of freedom. Boundary value problem is not only a mathemat-
ical problem. It also does belong to physics. Different boundary problems
lead to different Hamiltonians, i.e. different definitions of the field energy,
e.g. energies defined via canonical and symmetric energy-momentum ten-
sors. Now, in the standard (i.e. p = 1) electrodynamics the “canonical”
energy, which is neither gauge-invariant nor positively defined, is related
to the boundary value problem for the scalar potential Ag. On the other
hand the “symmetric energy” (defined by the symmetric energy-momentum
tensor), which is perfectly gauge-invariant and positively defined, is related
to the control of the electric and magnetic fluxes on the boundary [10-13].
Therefore, it distinguishes a new set of electromagnetical variables Q' and
Q? consistent with the boundary problem. Together with the canonically
conjugated momenta IT; and II5 they encode the entire gauge-invariant in-
formation about the electromagnetic field F' = dA, i.e. knowing Q’s and IT’s
one may uniquely reconstruct F' [10]. Actually, it was shown long ago by
Debye [14] that Maxwell theory could be described in terms of two complex
functions (so called Debey potentials). It turns out that this formulation
is very well suited to describe e.g. radiative phenomena [15]. Our @’s and
IT’s (they may be rearranged into complex @ and IT) are closely related
to Debey potentials. They solve the Gauss constraint and, therefore, they
reduce the symplectic form in the space of Cauchy data for the field dynam-
ics. However, they are nonlocal functions of the electromagnetic fields D
and B. The nonlocality is of the very special structure and the Hamiltonian
generating the dynamics defines a quasi-local functional, i.e. performing an
integration over angle variables one obtains perfectly local functional.
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Now, in the Abelian self-interacting p-form theory in D = 2p + 2
dimensional space-time one may perform the similar analysis [16]: instead of
two complex functions () and I7, the dynamical information about a p-form
electromagnetic fields D and B is now encoded into two complex (p — 1)-
forms. In the present paper we relate the quasi-local picture implied by
these (p — 1)-forms with the proper definition of the Hamiltonian dynamics
for a p-form theory. Moreover, we show that this formulation is perfectly
suited for the description of the duality symmetry, ¢.e. the duality rotations
(for odd p) are generated locally in terms of ) and II. We show that the
canonical generator has the following form:

/Qlﬂg —- QI . (1.1)

It is evident that this approach is closely related to the two-potential for-
mulation [7,17] (see Appendix D).

It is well known that there is a crucial difference between theories with
different parities of p, e.g. for even p a theory can not be duality invariant.
Now, it was observed only recently [7| that the quantization condition for
(p — 1)-brane dyons crucially depends upon p, namely

e1g2 + (—1)Peagr = nh, (1.2)

with integer n (h is the Planck constant). It turns out that the symplec-
tic form of a p-form theory written in terms of Q and IT has very similar
structure

2, = /5171 ASQY + (=1)PTL5ITy A 6Q?, (1.3)

therefore, there is a striking correspondence between the form of the quanti-
zation condition (1.2) and the structure of symplectic form (1.3). This corre-
spondence is universal, i.e. it holds for any gauge-invariant, self-interacting
theory.

The paper is organized as follows: we remind the quasi-local structure of
standard (1-form) electrodynamics in Section 2. This is the prototype of the
p-form theory for odd p. Then in Section 3 we make the generalization for
p = 2 which is the prototype for even p. The general case (i.e. an arbitrary
p) is discussed in Appendices B and C. In Section 4 we describe the gauge-
invariant coupling of p-form electrodynamics to the charged matter and the
Hamiltonian structure of the interacting theory. The details of notation are
clarified in Appendix A.
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2. 1-form theory in D = 4

2.1. Generating formula

Let us consider a 1-form theory defined by the Lagrangian £ = L(A, 0A).
Field dynamics of this theory may be written in terms of the following
generating formula (see Appendix A for details of notation):

—0L = 0,(G"6A,) = (0,G"")0A, + G"H6(0,A,) . (2.1)
The formula (2.1) implies the following definition of “momenta’:

oL

Gh = —2 .
OF

(2.2)

Moreover, (2.1) generates dynamical (in general nonlinear) field equations
0,G" =-JH, (2.3)
where the external 1-form current reads:

oL
b= — 2.4
T = ox (2.4)
Let us start with a source free theory, i.e. J = 0. We shall study the p-
form electromagnetism coupled to a charged matter in Sec. 4. To obtain the
Hamiltonian description of the field dynamics let us integrate Eq. (2.1) over
a 3-dimensional volume V contained in the constant-time hyperplane X'

—d /,cz /ao(g‘”Mi)Jr /gLﬂaA“, (2.5)
|4 14

ov

where L denotes the component orthogonal to the 2-dimensional boundary
oV . To simplify our notation let us introduce the spherical coordinates
on M

xszr, xA:goA; A=1,2, (2.6)

where ¢1, @9 denote spherical angles (usually one writes g1 = @ and p9 = ).
To enumerate angles we shall use capital letters A, B, C,.... The Euclidean
metric tensor is diagonal

g =712, gn=r’sings, gn=1, (2.7)
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and the volume form A; = y/det(gy;) = r?sings. Let V be a 3-ball with
a finite radius R. In such a coordinate system the formula (2.5) takes the
following form:

) /,cz —/80(Di5Ai)+ /DT&AO - /QTBMB, (2.8)
v 14 ov oV

where

Di = gio (29)

denotes the 1-form electric induction density on Y. Now, performing the
Legendre transformation between induction 1-form D* and A; one obtains
the following Hamiltonian formula:

—0H ean = _/ (biaAi —Aiapi) +/DT5A0 —/Q’"BéAB, (2.10)
14 oV oV

where the canonical Hamiltonian

Hean = / (—DiAz- —,c) . (2.11)

v

Equation (2.10) generates an infinite-dimensional Hamiltonian system in
the phase space P, = (D%, A;) fulfilling Dirichlet boundary conditions for
the 1-form potential A;: Ap|0V and A4|0V. From the mathematical point
of view this is the missing part of the definition of the functional space.
The Hamiltonian structure of a general nonlinear 1-form electrodynamics
described above is mathematically well defined, ¢.e. a mixed Cauchy problem
(Cauchy data given on X' and Dirichlet data given on 9V x R) has a unique
solution (modulo gauge transformations which reduce to the identity on
IV x R).

There is, however, another way to describe the Hamiltonian evolution of
fields in the region V. Let us perform the Legendre transformation between
D" and Aj at the boundary dV. One obtains:

— Haym = — / (DiaA,- —A,-(SDZ') - / AgdD" — / GBsAp,  (2.12)
14 A% A%

where the new “symmetric” Hamiltonian

Hsym == Hcan + /DTAO . (213)
oV
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Observe, that formula (2.12) defines the Hamiltonian evolution but on a
different phase space. In order to kill boundary terms in (2.12) one has to
control on 9V: D" (instead of Ag) and Ap. We stress that from the mathe-
matical point of view both descriptions are equally good and an additional
physical argument has to be given if we want to choose one of them as more
fundamental.

2.2. Canonical vs symmetric energy

Now, let us discuss the relation between Hcan and Hgym defined by (2.11)
and (2.13), respectively. One has:

Hsym = Hcan+/DrA0 :H+/ak (DkAo)
oV \%

- / {_piAi — L+ (Aoaka + DkakAO) }
Vv

- /(DZEZ- - L), (2.14)

\%4

where the 1-form electric field is defined by

Therefore, Hsym is related to £ via different Legendre transformation
(compare (2.11) with (2.14)). Contrary to Hcan, Hsym is perfectly gauge-
invariant. It is evident that Hgym is defined via the symmetric energy-
momentum tensor:

TH = FIGY + g™ L, (2.16)
whereas Hcan via the canonical one:
THY = (9" AM)GYy + g™ L, (2.17)

can

i-e. Hsym = [i; Tomm and Hean = [i, Tenn- Therefore, the “symmetric energy”
Hsym is gauge-invariant and positively defined, e.g. for the 1-form Maxwell
theory one has
1 : :
My = / (D'D; + B'By).

On the other hand, the “canonical energy” Hcan is neither positively defined
nor gauge-invariant. These properties show that the Hamiltonian evolution
based on Hgym is more natural from the physical point of view than the one
based on Hean (see also discussion in [12]).
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2.3. Reduction of the generating formula

Now, it turns out that the formula (2.12) may be considerably simplified.
Any geometrical object on a 3-dimensional hyperplane Y may be decom-
posed into the radial and tangential (i.e. tangential to any sphere S2(r))
components, e.g. a 1-form gauge potential A; decomposes into the radial A,
and tangential A4. Now, any 1-form on S?(r) may be further decomposed
into “longitudinal” and “transversal” parts:

Ay =Vau+eapVPiu, (2.18)

where both u and v are scalar functions on S%(r). Now, using (2.18) and
integrating by parts one gets:

/(DidAi —Aiapi) :/{(D’“(SAT—ArdDT)

1% 1%
+ (@D ou—id(0,D")] —eap [(VFD*) su—i6 (VDY)] } | (2.19)

where we have used the Gauss law

VDA = -5,D". (2.20)
Moreover, due to (2.18)
/ GAGA, = — / {—br5u+ (eanVEG™H) 61)} : (2.21)
oV oV

In deriving (2.21) we have used
VG = D", (2.22)

which follows from the field equations V 4G4" +9yG%" = 0. Now, taking into
account (2.19) and (2.21) the generating formula (2.12) may be rewritten in
the following way:

—Hoym = — / { [T)’"d(AT — ) — (AT - ara) 573’“]
1%

~ [(2anVPDY) 60— 06 (495D |}

- / {(Ao — @) D" — (eapV"G ") b0} . (2.23)
[eA%
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Note, that although A,, Ag and u are manifestly gauge-dependent, the com-
binations A, — d,u and Ay — Jyu are gauge-invariant. To simplify our con-
sideration we choose the special gauge v = 0, i.e. a 1-form A4 on S2%(r)
is purely transversal. This condition, due to (2.18), may be equivalently
rewritten as

VA =0. (2.24)
Assuming (2.24) one may show [16]
Ag A" =2 4BV By, (2.25)
where
Ay =12V, vA (2.26)

denotes the 2-dimensional Laplacian on S2%(1), i.e. the 2-dim. Laplace—
Beltrami operator on scalar functions (0-forms). Moreover,

B" =BV, Ap = —r2Agw. (2.27)

Since Ay is invertible in the source free theory [10] the formula (2.23) may
be rewritten as follows:

—0Hsym = — /{ [(rbr)é (T’AaleAB VBBA) - (rAalgAB VBBA) 5(7=D7")]
1%
+ [(r45'eanVEDY) 6(rBT) - (rB7)6 (r Ay Leanv P DY) }

—/{(rle)é(rDT)—f— (AgteanVEG M) a(rBT)} . (2.28)
oV

Now, introducing the following set of variables

Q' = rD", (2.29)
Q* = rB", (2.30)
I, = rA;'e*PVgBa, (2.31)
My = —rA;'eBVpDa, (2.32)

Eq. (2.28) simplifies to

—0Hsym = //11 {(1715@1 - Q15H1> + (H25Q2 B Q25H2>}

1%
+ / A1 (1501 + Xx*5Q) | (2.33)
oV
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where we introduced the boundary momenta:

1
X1 = —;Ao, (2.34)
X2 = —er_l&?ABVBGTA. (2.35)

Tensor G is defined by G* = A; G*, and, therefore, D = A; D’. Note,
that

Xl — 5H5ym
5(87"Ql) ’

For a Maxwell theory one obtains

1=1,2. (2.36)

2
1 1 1 _
Hoym ! = 3 /Al > {T_leQl = 50, (rQ) Ay "0, (rQy) — HZAOHZ} :
Vv =1

(2.37)
and, therefore

1
X =-A00rQ),  1=12, (2.38)
have perfectly symmetric form.

2.4. Canonical symmetries

The symplectic form [ 6D* A S A, rewritten in terms of Q’s and IT’s have
the following form [10, 16]:

Q2 =Tm //11 ST AT, (2.39)

where we introduced a complex notation

Q = Q'+iQ, (2.40)
I = i(IT; +ill,). (2.41)

The form (2.39) is invariant under the following set of R-linear transforma-
tions:

Q - eiC\cQ’ (242)
Q — cosha@Q +isinha @, (2.43)
Q — coshAQ+sinhA\Q, (2.44)
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and the same rules for II. It is easy to see that these transformations form
the group SO(2,1). In terms of D and B, (2.42)—(2.44) have more familiar
form:

(2.42) corresponds to orthogonal SO(2) duality rotations:

D — Dcosa— Bsina,
B — Dsina+ Bcosa, (2.45)

(2.43) corresponds to hyperbolic SO(1,1) rotations:

D — Dcosha+ Bsinha,
B — Dsinha+ Bcosha, (2.46)

(2.44) corresponds to scaling transformations:

D - ¢'D,
B - ¢’ B. (2.47)

The canonical generators corresponding to (2.42)—(2.44) have the following
form:

G1 = //11 (Q2H1 — ang) = Re //11 (H@), (248)
Gy = — / Ay (Q*IT) + Q'IT5) = Re / Ay (ITQ), (2.49)
G; = //11 (Q'IT) — Q*IT) = Tm //11 (11Q). (2.50)

Note, that for the duality invariant theory G defined in (2.48) is constant
in time. Its physical interpretation was clarified in [9]. Obviously, G1, G
and (3 rewritten in terms of D and B are highly nonlocal functionals of
the fields [8,9].

2.5. Summary

The reduced variables (Q;, IT') play the role of generalized positions and
momenta for an electromagnetic field. They are perfectly gauge-invariant
and contain the entire (gauge-invariant) information about D and B. Let
us note that Q’s and II’s are nonlocal functions of D and B. The nonlocality
enters via the operations on each sphere S%(r), i.e. via the operator Aal.
On the other hand the operations in the radial direction do not produce any
nonlocality.

The Hamiltonian generating the dynamics is perfectly local in D and B
but is nonlocal in @’s and II’s. The field functional with the above described
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nonlocality we shall call quasi-local. Note, that generators G; are perfectly
local in reduced variables.

The “symmetric” Hamiltonian dynamics is defined by the Dirichlet
boundary conditions for positions ();. On the other hand the “canonical”
formula, (2.12) is defined by the Dirichlet boundary condition for x!' and Qs.
Note, however, that in the Maxwell case

/A1Q15X = /Al— lQl (58 (T Dr) = /T(A01Q1)5 (8TDT),
o (2.51)

i.e. a Dirichlet condition x'|0V is equivalent to the Neumann condition
o, D"|0V .

3. 2-form theory in D = 6

3.1. Generating formula

Now, consider a 2-form theory defined by the Lagrangian £ = L(A, JA).
Field dynamics of this theory may be written in terms of the following
generating formula:

—0L = 0,(G"" 6 A1) = (0,65 Aun + G50y Apy) - (3.1)
The formula (3.1) implies the following definition of “momenta’:

oL

GHA = =3 :
OF

(3.2)

Moreover, (3.1) generates dynamical (in general nonlinear) field equations

9,G"M = — g (3.3)
where the external 2-form current reads:

oL

JHA =9 .
DA,

(3.4)

In the present section we consider only J = 0 (for J # 0 see Section 4.)
To obtain the Hamiltonian description of the field dynamics let us integrate
equation (3.1) over a 5-dimensional volume V' contained in the constant-time
hyperplane X'

5 / L= / D0(GY5 Aij) + / GsA,, (3.5)
\% 1% oV
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where 1 denotes the component orthogonal to the 4-dimensional boundary
0V . To simplify our notation let us introduce the spherical coordinates on X

=1, z8=pa; A=1,223/4, (3.6)

where 1, @9, 3,4 denote spherical angles (to enumerate angles we shall
use capital letters A, B,C,...). The Euclidean metric on X reads:

2 2 -2 <2 2 .2 -2
g1 = r’sin’ posin® p3sin® oy,  goo = r”sin® gy sin® iy,
2 2 2 _
g33 = rsin” gy, gag =17, 955 = grr = 1, (3.7)

and the corresponding volume form

Ay = y/det(gi;) = r* sin g sin? 3 sin® 4 . (3.8)

Let V be a 5-dim. ball with a finite radius R. In such a coordinate system
the formula (3.5) takes the following form:

5 /E = /30(7)”5141']') - /QDTA5A0A— /QTAB(SAABa (3.9)
14 v ov av

where

D;j = Gijo (3.10)

denotes the 2-form electric induction density. Now, performing the Legen-
dre transformation between induction 2-form D" and A;; one obtains the
following Hamiltonian formula:

—6H ean = / (Diﬂ'aAij —Aijapiﬂ')— / 2D A5 Ags — / G'AB5A g, (3.11)
1% oV oV

where the canonical Hamiltonian

Hean = / (Diinj —£> . (3.12)

1%

Equation (3.11) generates an infinite-dimensional Hamiltonian system in the
phase space Py = (D, A;;) fulfilling Dirichlet boundary conditions for the
2-form potential A;;: Aga|0V and A4p|0V. From the mathematical point
of view this is the missing part of the definition of the functional space.
The Hamiltonian structure of a general nonlinear 2-form electrodynamics
described above is mathematically well defined, ¢.e. a mixed Cauchy problem
(Cauchy data given on X' and Dirichlet data given on 9V x R) has a unique
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solution (modulo gauge transformations which reduce to the identity on
IV x R).

Note the difference in signs between corresponding formulae of the present
section and that of Section 2. This difference follows from the difference be-
tween corresponding symplectic structures [16]. For 1-form theory one has

) = /5g°i ASA; = +/5Di ASA;, (3.13)

whereas for 2-form theory

2y = / 6GY N GA;; = — / 5D NS A;; (3.14)

Now, in analogy to (2.12) we pass to another Hamiltonian description
of the field evolution in the finite region V. Let us perform the Legendre
transformation between D™ and Ag, at the boundary V. One obtains:

—0Hgym = / (Diﬂ'aAij —Aijapiﬂ')Jr / 2 AgadD™A— / G"AB5A g, (3.15)
1% oV

where the new “symmetric” Hamiltonian

Heym = Hean — / 2D A4 . (3.16)
oV

Observe, that formula (3.15) defines the Hamiltonian evolution but on a
different phase space. In order to kill boundary terms in (3.15) one has
to control on dV: D' (instead of Agy) and Asp. We stress that from
the mathematical point of view both descriptions are equally good and an
additional physical argument has to be given if we want to choose one of
them as more fundamental.

3.2. Canonical vs symmetric energy

The relation between Hcan and Hgym is exactly the same as in p = 1
case:

7'lsyrn = Hcan - /2DTAA0A = 7'lcaun - /2ak (DkZAm)
1%

= / DY Aj; — L +2 (AOZBkD’“ + DklakAoZ)}

1%

:/ 1DYE; -~ L), (3.17)
1%
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where the 2-form electric field is defined by

E;j = Fijo = 0340, (3.18)
Therefore, Hoym = [ Tayy, and Hean = [ Tep, with
T = LFMIGY 4+ g™ L, (3.19)
and
TH = (O AM)GY, + g L. (3.20)

In the 2-form Maxwell theory the “symmetric energy” (gauge-invariant and
positively defined) reads:

Hé\gﬂfwe“ _ %/(Dijpij + BijBij) .

3.3. Reduction of the generating formula

Now, in analogy to (2.18) let as make the following decomposition:
Aup = V[AUB} +6ABCDVCUD, (3.21)

where V4 denotes a covariant derivative on each S*(r) defined by the in-
duced metric g4 and € 4pcp stands for the Lévi—Civita tensor density such
that 1234 = As. Both uy and v# are 1-forms on S4(r). Using (3.21) and
integrating by parts one gets:

/ (D5 — AyoD") = / {2 (D044 - A aoD™)
14 14
+2[ (9D duq — iad (9,0)]

— eapeD [(VCDAB) goP — D6 (VCDAB)] } , (3.22)
where we have used the Gauss law
VDAB = —5.D"B . (3.23)
Moreover, due to (3.21)

/ G BAup = — / {—zbrA(suAJr (eacpVEGP) 5UD} . (3.24)
ov ov
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In deriving (3.24) we have used
VAGAPT = DB | (3.25)

which follows from the field equations V 4GAB" 4+ 9yG9B™ = 0. Now, taking
into account (3.22) and (3.24) the generating formula (3.15) may be rewritten
in the following way:

ey = /{[DTA(;(Q App —20,uy) — (QATA — 28TuA) 5DTA}
v

= |(eanco VDY) 0 iP5 (canon VDY) | |

+ / (2A0A—2’ll,4)5'DrA+/ (€ABCDVCQTAB) svP .(3.26)

oV oV
Note, that although A, 4, Apa and w4 are manifestly gauge-dependent, the
combinations A, 4 — 0,u4 and Agg — Jyu 4 are gauge-invariant. To simplify
our consideration we choose the special gauge u = 0, i.e. a 2-form A4p on

S4(r) is purely transversal. This condition, due to (3.21), may be equiva-
lently rewritten as

VA =0, (3.27)

But now, contrary to the p = 1 case, we have an additional covector field
on S*(r), namely A,4. For this covector we choose an analogous gauge
condition, i.e.

VAA™ = 0. (3.28)

Assuming (3.27) and (3.28) one may show [16]

2
AL AP = _TZ eBCO 7 Bup, (3.29)

where
A =12V ,VA -3, (3.30)

equals to the Laplace-Beltrami operator on co-exact 1-forms on S4(1) [16].
Moreover, in analogy to (2.27) one has [16]

B™ = —2r2 A4, (3.31)
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and, therefore, the formula (3.26) simplifies to

—0Hgym = %/{_ [(TDTD> 0 (rA7 eapop VOBAP)
\%4

— (rAl_leABCDVCBAB) 0 (TDTD)]

+ [(rAT eanopVODAP) 5 (rB7P) - (rBP)8(r AT e apep VODAR) ||

+/{(2r1A0A)5 (rD") - <%TA116ABCDVCQTAB> b (rBTD)} . (3.32)

oV

Now, introducing the following set of variables

QlA — ,},,DTA’
QQA — ’I"BTA,

T
my, = §A1_15ABCDVCBABa

H2D — _gAl—lgABCDVcDAB ’

Eq. (3.32) simplifies to

M = / A { (700" - Qo) — (112,6Q,"

1%

+ //12 (X1A5Q1A +X2A5Q2A) )
oV
where we introduced the boundary momenta:

2
1
= -A
X A , 0A »
T T
p = —§A1 e apepVEGTAB |
In (3.37) we defined

Qia=gap Q°, MmM*:=g¢"% 1.

oo}

(3.37)

(3.38)

(3.39)

(3.40)

Note the crucial difference between (3.37) and (2.33): the sign “+” in (2.33)

is replaced by “—" in (3.37).
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For a Maxwell theory one obtains

2
1 1 1 _
Hé\gfﬁ(weu = Z/A2 E {T—QQZAQIA—Tjar(T?’QZA)Al 1ar(7'Qi4)—HlAA1H,Z4}
v =1

(3.41)
and, therefore

1 .
X a= T—3A1 L0, (r3Qua) [=1,2. (3.42)

3.4. Canonical symmetries

The symplectic form — [ DY A 0A;; rewritten in terms of ()’s and II’s
have the following form [16]:

Q2 =1Im /A2 SITA A GQy, (3.43)

where we introduced a complex notation

Qa = Q4 +iQ%, (3.44)
ot = i (I +4113") . (3.45)

The form (3.43) contrary to (2.39) is invariant only under the following
transformations:

Qs — coshAQa +sinhAQ 4, (3.46)

and the same rule for IT4. Tt is easy to see that these transformations form
the group SO(1,1). In terms of D" and B", (3.46) reads:

D — DY,
BY — e B, (3.47)

The canonical generator corresponding to (3.46) has the following form:

Gi = - [ 4 (@t + Q4n) =t [ 42 (1) . (349
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3.5. Summary

Contrary to the p = 1 case the reduced variables (Qf‘, 17 do not solve
completely the Gauss constraints 9; D% = 9;B* = 0. They fulfill the follow-
ing additional conditions [16]:

VaAQl =VvAm, =0, 1=1,2 (3.49)

In the geometric language it means that xQ; and xIT' are closed 3-forms
on S*(r) (x denotes the Hodge dual defined via e4P¢P). They are gauge-
invariant and contain the entire information about 2-forms D% and B%. The
dynamics is generated by the quasi-local functional of Q)’s and II’s.

The “symmetric” dynamics defined by (3.37) corresponds to the Dirichlet
boundary condition for positions ; whereas the “canonical” dynamics cor-
responds to the Dirichlet conditions for x! and Q. But Dirichlet condition
for x! 4 is equivalent to the Neumann condition for 9,D" ,

/ AQE5 = / rAT'Q(0, 7). (3.50)

4. Coupling to the charged matter

In the present section we study the coupling of p-form electrodynamics
to the charged matter. We present parallel discussion for p = 1 and p = 2.
The general case is presented in Appendix C.

4.1.p=1
Consider a 1-form electromagnetism interacting with the charged matter
field @ (for simplicity let @ be a complex scalar field). In the presence of

charged matter the Lagrangian generating formula (2.1) has to be replaced
by:

—0L = 0,(G""6A, + PY6P), (4.1)
where the matter “momentum”
oL
V= — . 4.2
P = S, (42)

Because L should define a gauge-invariant theory let us assume that there is
a group of gauge transformations U, parameterized by a a function (0-form)
A acting in the following way: A, — A, + 0,A and & — U,(D).

Now, the target space of the matter field & may be reparameterized
® = (p,U) in such a way that, a parameter U is gauge invariant and ¢ is
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the phase undergoing the following gauge transformation: ¢ — ¢ + A. For
the scalar (complex) field one has: U := |®| and the ¢ = Arg®. Therefore,
the matter part in (4.1) may be rewritten as follows:

PY6P = JV6¢ + p”oU . (4.3)

Gauge invariance of the theory means that the gauge dependent quantities,
i.e. A, and ¢, enter into £ via the gauge-invariant combinations only:

L=L(F,D,p,U0,U), (4.4)
where
Dyp:=0up— A, (4.5)

denotes a covariant derivative of ¢. This implies, that the momentum J#
canonically conjugated to ¢ is equal to the electric current

oL oL
JH = — = _— =-9,G"". 4.6
30, 94, (46)

Now, instead of (2.8) one has

—5 /c = /ao (D' A; + poy + p°oU)
1% 1%

+/ (=D"6A¢ + G'P6Ap + T 6 +p"oU) ., (4.7)
oV
with p := J° Performing the set of Lagrange transformations between:

(1) D* and Ay, (2) p and ¢, (3) 7 := p° and U in the volume V', and between
D" and Ap at the boundary 9V, one obtains the following generalization
of (2.12):

—Hegm = — / { (DiaAi - Aiapi) + (960 — $8p) + (7%5U - an) }
1%
- / {A06D" +G"P5Ap + J"0p +p"oU} (4.8)
ov

where the “symmetric” Hamiltonian of the interacting electromagnetic field
and the charged matter represented by @ reads:

Heym = / (—DiAi —pp— U — L+ 8, (AODk)> . (4.9)
1%
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Now, using
wDF =p, (4.10)

implied by (4.6), one gets the following formula for Heym:

Hsym = / (DiEi — pDop — U — E) . (4.11)
1%
Note, that the gauge-dependent phase ¢ enters into Hgym via the gauge-

invariant combination Dyg only. Moreover, due to (4.10), we may rewrite
the dynamical part for ¢ in (4.8) as follows:

[ 00— et0) = [ (~D*6(0u0) + @1)90*) + [ (Drdp - pav7)
v v ov (412

Now, the D" at the boundary may be easily eliminated by the field equa-
tions (4.6)

D" = -G = 0,G" — 904G\ = —J" + 0aG™ . (4.13)
Introducing a hydrodynamical variables:
Vii=-Dup, (4.14)

we may rewrite finally (4.8) as follows:

—Hegm = — / {(D'V; - VioD") + (76U — Uor) }
1%
— / {VodD" + G BV +p"U} (4.15)
[eA%

i.e. (4.15) has exactly the same form as (2.12) with A, replaced by the
gauge-invariant V), and supplemented by the gauge-invariant canonical pair
(U, ) together with the boundary momentum p".

4.2.p=2
Now, consider a 2-form electromagnetism interacting with the charged
matter field @, (for simplicity let ¢, be a complex vector field). In the
presence of charged matter the Lagrangian generating formula (3.1) has to
be replaced by:

6L =0, (GWMAM + P”“éqﬁﬂ) , (4.16)
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where the matter “momentum”

oL
PUE = 9= 4.17
8(8[V§Z5#]) ( )

Because L should define a gauge-invariant theory let us assume that there is
a group of gauge transformations U, parameterized by a a 1-form A acting
in the following way: A — A +dA and & — Ux(®).

Now, the target space of the matter field ¢, may be reparameterized
@, = (pu,U,) in such a way that a 1-form U, is gauge invariant and a
1-form ¢,, is the phase undergoing the following gauge transformation: ¢ —
¢+ A. For the vector (complex) field one has: U, := |®,| and ¢, = Arg®,,.
Therefore, the matter part in (4.16) may be rewritten as follows:

PUROD, = J S, + pHoU,, . (4.18)

Gauge invariance of the theory means that the gauge dependent quantities,
i.e. Ay, and @, enter into £ via the gauge-invariant combinations only:

L= E(FuuAaDuﬁouaUmauUu), (4.19)
where
1
Dy, = 9 a[u‘Pu} - A;w (4.20)

denotes a “covariant derivative” of ¢,. This implies, that the momentum
JHX canonically conjugated to ¢y is equal to the electric current

oL oL

JHA = -2 =2
A(9upy) OA,n

= —9,G"M . (4.21)
Now, instead of (3.9) one has
-4 /ﬁ = /80 (—DijéAij — pFopr + ﬂkéUk)
v v

+ / (2D 46 A0 + G PS5 A + p" S0 + T 04 — 176U + p"oUL)

2d%
(4.22)

with pF := J*O (it defines a 1-form charge density on 5-dim. hyperplane X))
and 7% := p° . Now, to pass to the Hamiltonian picture one has to perform
the following Legendre transformations between: (1) D and A, (2) p and ¢,
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(3) m and U in the volume V, and between (4) D" and Ay, (5) p" and ¢q and
(6) " and Uy at the boundary V. One obtains the following generalization
of (3.15):
_5Hsym :/{(DZJ(;A” —AijéDij> + (,Ok(;(pk — (pképk) — (ﬂk(sUk — Uk5Wk>}
v

- / {=24040D™ + G544 — 0obp” + T34 + Updn” + p" 46U},
ov

(4.23)

where the “symmetric” Hamiltonian of the interacting electromagnetic field
and the charged matter represented by @, reads:

Hsym :/{Diinj‘f'Pk (‘pk—ak@o)_ﬂkUk_ak <2A01Dki_Uoﬂk) _E} ’
14
(4.24)

where we have used 0p* = 0. Now, using
oD* = pk | (4.25)

one gets the following formula for Heym:

1 .. .
Heym = / <§D”Eij + 20" Doy, — 7*U, — L+ ak(wka)) . (4.26)
14

Note, that the gauge-dependent phase ¢, enters into Hgym via the gauge-
invariant combination Dgyp,. Moreover, due to (4.25), we may rewrite the
dynamical part for ¢, in (4.23) as follows:

/(ﬁk(ssok—%(spk) = /<—Dik5(3i¢k)+(3i¢k)5pik)

\%4 \%4

+ / (1’)“‘5@ s ¢A5D7"A) . (4.27)
oV

Now, the term D4 at the boundary may be easily eliminated by the field
equations (4.21)

D = J 4 + 05GP (4.28)
Introducing hydrodynamical variables:

Vuu = _Du(Pua (429)



Quasi-Local Structure of p-Form Theory 169

we may rewrite finally (4.23) as follows:

—Hgym = /{(DU&VU — Vidiij> — (#kéUk - Uk57fk)}
v

- / {—2Vpa0D™ + G AB§Vap — Updn” + p™4oU4} | (4.30)
2d%

i.e. (4.15) has exactly the same form as (3.15) with A,, replaced by the
gauge-invariant 2-form V), and supplemented by the gauge-invariant canon-
ical pair (Uy,n*) together with the boundary momenta Uy and p™. All
gauge-dependent terms dropped out.

Appendix A
Notation

Consider a p-form potential A defined in the D = 2p + 2 dimensional
Minkowski space-time M?P*2 with the signature of the metric tensor
(—,+,...,+). The corresponding field tensor is defined as a (p+ 1)-form by
F =dA:

Fuy iy = 8[#1

A (A1)

where the antisymmetrization is defined by Xy := Xy — Xjx. Having a
Lagrangian L of the theory one defines another (p + 1)-form G as follows:

oL
H1eefp41 —
g (p+ 1).(9 : (A.2)

B fipt1

W2eelpt1] 0

Now one may define the electric and magnetic intensities and inductions in
the obvious way:

Ei .5, = Fiy..i0, (A.3)
By .i, = ﬁ Eiripgtorpin FILIPH (A.4)
Di,.iy = Giy..ip0 (A.5)
Hiy.iy = ﬁ Eir ity G0 (A.6)
where the indices 41,19, ..., 1, j2,... run from 1 up to 2p+1 and Eiyig..ispt1

is the Lévi—Civita tensor in 2p+ 1 dimensional Euclidean space, i.e. a space-
like hyperplane 3’ in the Minkowski space-time. The field equations are
given by the Bianchi identities dF' = 0, or in components

B fipg1
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and the true dynamical equations d x G = 0, or equivalently
B[A*gmmﬂpﬂ] = 0, (AS)

where the Hodge star operation in M?P*? is defined by:

1

*XMI---Herl —
(p+1)!

nul...up+1u1---vp+1 X (Ag)

Vi...Vp+1

and pt1H2-H2p+2 ig the covariantly constant volume form in the Minkowski
space-time. Note, that gfi-i2p+1 := p0it-@2p+1  In terms of electric and
magnetic fields defined in (A.3)-(A.6) the field equations (A.7)-(A.8) have
the following form:

aOle...’Lp — (_1)pﬁ 621...2pk]1---]p VkEjljp , (AIO)
0D = }; gh-inkir--jp kajl-.-jp7 (A'12)

where Vj denotes the covariant derivative on Y compatible with the metric
gr; induced from M?P+2. The Lévi-Civita tensor density satisfies €12..2p4+1 =

V9, with g = det(gg;).

Appendix B

General p-form theory without matter

B.1 Generating formula

For an arbitrary p the formulae (2.1) and (3.1) generalize to:

—0L = (augyulmupdAul...up) = (augVMI---Mp)(;Aulmup +gyulmup6(auAu1...up) .

(B.1)
The formula (B.1) implies the following definition of “momenta’:
oL
ght-trtt = —(p+ 1)l ————. (B.2)
OF s i

Moreover, (B.1) generates dynamical (in general nonlinear) field equations

anVHLan — _jltl---#p , (B.3)
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where the external p-form current reads:

oL

j#l---#p — p! e —
aA#L"#p

(B.4)

Let us start with J = 0 and discuss a general p-form charged matter in
Appendix C. To obtain the Hamiltonian description of the field dynamics let
us integrate equation (B.1) over a (2p-+1)-dimensional volume V' contained
in the constant-time hyperplane X

-a/az/%w%”wmh@+/bwwwmmww (B.5)
1% 1%

oV

where | denotes the component orthogonal to the 2p-dimensional boundary
dV. To simplify our notation let us introduce the spherical coordinates
on X'

Pt =, ot =pa; A=1,2,...,2p, (B.6)
where @1, @9, .., @2, denote spherical angles (to enumerate angles we shall
use capital letters A, B,C,...). The metric tensor g;; is diagonal and has
the following form:

g1 = r? sin? V2 sin? ©3... sin? V2 5
g22 = r? sin? ©3 sin? 04 ... sin? V2 5
gap—1,2p—1 = 17 sin® @91 sin g,
9op2p = r? sin? singy, ,
Grr = 12, (B.7)

Therefore, the volume form

Ay = \/det(gi;) = 7 sin g sin® 3 ... sin??2 @9, 1 sin? " g, . (B.8)

Let V be a (2p+1)-dim. ball with a finite radius R. In such a coordinate
system the formula (B.5) takes the following form:

o /ﬁ = (—1)p/30 (D78 Ayy.,) — (—1)p/pDTA2“'A”5A0A2...Ap
v v av

—/whﬁmﬁh%, (B.9)
oV
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where

D, ..ip, = Giy..ip0 (B.10)

denotes the p-form electric induction density. Now, performing the Legendre
transformation between induction p-form D*' % and Ail...z‘p one obtains the
following Hamiltonian formula:

—0Hcan = (—1)p/ (Dil"'ip5z4i1...ip - Ail...ip(SDil“'iP)
v

—(=1y / pD" 0 Aos, ap - / Gro-BriAp, .p,, (B.11)
ov oV

where the canonical Hamiltonian

Hean = / ((_1)pDi1"'ipAi1...ip - £> . (B.12)
1%

Equation (B.11) generates an infinite-dimensional Hamiltonian system in
the phase space P, = (Dil“'ip,Ailmip) fulfilling Dirichlet boundary condi-
tions for the p-form potential A;,. ;,: Aoa,...4,|0V and Aa, a,..4,|0V. From
the mathematical point of view this is the missing part of the definition of
the functional space. The Hamiltonian structure of a general nonlinear p-
form electrodynamics described above is mathematically well defined, i.e. a
mixed Cauchy problem (Cauchy data given on X and Dirichlet data given on
0V x R) has a unique solution (modulo gauge transformations which reduce
to the identity on 0V X R).

The presence of a p-dependent sign (—1)? follows from the p-dependence
of the corresponding symplectic form:

2, = / 8G - NG Ay g = (—1)PT / D ANGA; . (B.13)
14 14

There is, however, another way to describe the Hamiltonian evolution of
fields in the region V. Let us perform the Legendre transformation between
Dré2--Ap and Apa,...a, at the boundary V. One obtains:

—0Hgym = (—1)p/ (bil"'ip(SAil...i,, - Ail...ipéDil"-iP)
v

+(_1)P /pAOAQ...Ap(;’DTAQ'"Ap _ /gTBL..BPéABlme, (B.14)
ov ov
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where the new “symmetric” Hamiltonian

Hepm = Hean — (—1)7 / pD A Ay (B.15)
oV

Observe, that formula (B.14) defines the Hamiltonian evolution but on a
different phase space. In order to kill boundary terms in (B.14) one has to
control on V: D'424r (instead of Aoa,..a,) and Ap, . p,. We stress that
from the mathematical point of view both descriptions are equally good and
an additional physical argument has to be given if we want to choose one of
them as more fundamental.

B.2 Canonical vs symmetric energy

Now, let us discuss the relation between Hcan and Hgym defined by (B.12)
and (B.15) respectively. One has:

Hsym = Hcan - (_1)1) /pDTA2...ApA0A2...Ap
ov

= ’H—(—l)p/p O (DkiQ---ipAoZ-Q...z-p)
|4

:/{(_1)pzDi1...ipAZ_1mZ_p_£+(_1)pp (AOQ...ipaksziz...ip_i_sziz...ipakAOiQmip)}
1%

1 . .
-/ (H DU By = ﬁ) : (B.16)
14

where the p-form electric field is defined by

Ei, i, = Fiy.i,0 = 03, Aiy i) - (B.17)

sym

Therefore, Hsym = [ Too, and H, = [T, where
v v

1

Tom = "G, + 9L (B.18)
Tean = AMGE, L, + gL (B.19)

Obviously, for the Maxwell theory one has:

Hé\grar)l(well — 2_p' / (,DZI'"ZpDil...ip + le...zpBilmip) ) (BQO)
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B.3 Reduction of the generating formula

Any geometrical object on (2p + 1)-dimensional hyperplane X may be
decomposed into the radial and tangential components, e.g. a p-form gauge
potential A;, _;, decomposes into the radial A, 4,...4, and tangential A4, 4, .
On each sphere 2p-dimensional sphere S?P(r), Ay a,.. 4, defines a (p — 1)-
form whereas A4, .4, a p-form. Now, any p-form on S?P(r) may be further
decomposed into “longitudinal” and “transversal” parts:

Apyny = Via i, 4+ €ay..a,B,..8,V 072 Pr (B.21)

where €4,...4,B,..B, denotes the Lévi-Civita tensor density on S?P(r) such
that €12..9p = A,. Both u and v are (p — 1)-forms on S?(r). Now, us-
ing (B.21) and integrating by parts one gets:

/ (Dil“'i”(mz‘l...z‘p - Ail...iP5Di1"'ip)
v

= /p { (DTAQ...AP6A7A2...AP — ATAQ..,AP5DTA2"'AP)
1%

9 [ (D742 ) Gun,.a, = iay.a,8 (0D 12

_ 6A1~~~ApB1...Bp [(VB1DA1...AP) 5,UB2...BP _ /l')BQ...Bp(; (vBlDAl...Ap)]} ,
(B.22)

where we have used the Gauss law
VAIDAl...Ap — —aTDTAQ"'Ap . (B23)

Moreover, due to (B.21)

/g'I‘Al...Ap(SAAlmAP
oV

= /{(—1)%! DA Suy, 4, —(ear.a,8,..8, V7 G A Ar) GuP2Br } :
av
(B.24)

In deriving (B.24) we have used

vAl gAl...ApT — _DTA2~~~AP , (B25)
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which follows from the field equations VAlgAl“'AP’“ +80g0A2"'APr = 0. Now,
taking into account (B.22) and (B.24) the generating formula (B.14) may
be rewritten in the following way:

0t = (1P [ { [ (p Aty = PO 0,)
1%

_ (pArA2..,Ap —p!(?ruAQ___Ap) (YDTAQ.“AP}
O St s

_/[)B2...Bp5 (6,41...ApBl...prBIDAIH.Ap) ] }
+(=1)P / (p Aoa,...a, — pliia,...a,) 6D A2
oV

+/ (gAlmApBlmevBlgrAl...Ap) 5UB2“'BP ) (B26)
oV

Note, that although Aya,..a,, A0a,..a, and ua,.. 4, are manifestly gauge-
dependent, the combinations p Aya,..4, — P! Opua,..a, and p Aga,..a, —
plOoua,...a, are gauge-invariant. To simplify our consideration we choose
the special gauge u = 0, i.e. a p-form AAI---Ap on 5’27’(7') is purely transver-
sal. This condition, due to (B.21), may be equivalently rewritten as

VoAM=, (B.27)
Let us choose the same condition for the radial part
V4, ATA2 A0 = ), (B.28)

Assuming (B.27) and (B.28) one may show [16]

2
r
ApflArB}“Bp — (_1)p+1_ €A1...APB1...prBlBAlmA

oo (B.29)

where
Api = (p— ) [PPVAVA = (* = 1)] (B.30)

equals the Laplace-Beltrami operator on co-exact (p — 1)-forms on S?P(1)
[16]. In the same way

Briz.Ap _ _b Ap_lvAQ“'Ap . (B.31)
r
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Finally, introducing

QIAQ...Ap — DTAQ...AP’ (B32)
QQAQ...Ap — BTAQ...AP’ (B33)
T
H1B2...Bp = ﬁﬂpil (eay..,Br..., VP BATAr) (B.34)
[
H2B2...Bp = o Al (ea..n,By...B, VP DAAr) (B.35)

the formula (B.26) simplifies to

: Ay A AgiA
—0Heym = /Ap{<H1A2...Ap5Q1 - p5H1A2...Ap>
1%

: AsAy 5 AgiA
+ (-1t (HQAQ...AP(SQQ T —Qy p5H2A2...Ap)}

As A As.. A
+/Ap (XIAQ...AP5Q1 T X 4,00, p) , (B.36)
oV

where we introduced the boundary momenta:
; = (-2 4 B.37
Xay..n, = (=1) g 045 Ay (B.37)
ro._
XQBQ...BP = AT'eay . ayBy..8, VI GTATAr (B.38)

In the formula (B.36) we have introduced:

Bs>...B
Qi Az Ay = YAsBy---94,B, Q) T, (B.39)
1424y = gA2Ba  (ApBp UIBQ...Bpa (B.40)

for [ = 1,2. For the Maxwell theory

2
1 1 Ay.4
Maxwell __ 2
Hsy?nwe - 2(p — 1)' /Ap Z {'I'_QQI leA2...Ap
v =1
_Hl A2mApAp—1HlA2“,Ap
1 _ _ As... A
- erar(T2p 1Q1A2...Ap)Ap,118r (TQZ 2 p)} 3 (B41)

and, therefore, the boundary momenta read:

1 B
X apn, = 7,2,,—_14119 O (r ' Quay..a,) » =12 (B.42)
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B.4 Summary

As.

The quasi-local reduced variables (Qz <A T ... Ap) fulfill the follow-

ing conditions [16]:
VAQQlAz...Ap — VA2H1A2...AP =0, [=1,2, (B.43)

which follow from the Gauss laws. In the geometric language it means that
xQ; and +IT! are closed (p + 1)-forms on S?”(r) (x denotes the Hodge dual
defined via e414»B1-Br) They are gauge-invariant and contain the entire
information about p-forms D and B.

The “symmetric” dynamics defined by (B.36) corresponds to the Dirich-
let boundary condition for positions (); whereas the “canonical” dynamics
corresponds to the Dirichlet conditions for x' Ay...Ap and Q2. But Dirichlet

condition for x' 4 is equivalent to the Neumann condition for 9,D",, A,

/ApQ1A2"'Ap5X1A2...AP = /TA,,IIQlAQ'"A”(S (@DTAQ...AP) . (B.44)
oV av

Appendix C

General p-form theory with matter

Now, consider a p-form electromagnetism interacting with the charged
matter field @ (for simplicity let ¢ be a complex (p — 1)-form). In the
presence of charged matter the Lagrangian generating formula (B.1) has to
be replaced by:

5L =0, (GuﬂlmﬂpéAu1up + ’PVMQ"'IW(S@#%--MJ) , (Cl)
where the matter “momentum”
oL
PHLIB2-Hp — _p|— . (02)
a(a[ulqjm---up})

Because L should define a gauge-invariant theory let us assume that there is
a group of gauge transformations U, parameterized by a a p-form A acting
in the following way: A — A +dA and & — Ux(P).

Now, the target space of the matter field & may be reparameterized
® = (p,U) in such a way that a (p — 1)-form U is gauge invariant and a
(p — 1)-form ¢ is the phase undergoing the following gauge transformation:
¢ — @+ A. For the (complex) (p—1)-form one has: Uy, .,y = [Ppy .., |
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and ¢y, .y, = Arg Py, .y, ,. Therefore, the matter part in (C.1) may be
rewritten as follows:

Pl b sD,, = T 6@, g, PP U L, - (C.3)

Gauge invariance of the theory means that the gauge dependent quantities,
i.e. A and ¢, enter into £ via the gauge-invariant combinations only:

L=CL (Fu/l---up+l’DV@UI---U}Jfl’ UMI---U}Jfl’aVUMl---Upfl) ) (C4)
where
1
Doy .y = 5‘9[”9%1-.-@71} = Avpr oy (C.5)

denotes a covariant derivative of ¢, ., ,. This implies, that the momentum
JH1--lp canonically conjugated to ¢y, is equal to the electric current

it — ) oL _ o

L
a(a[ul ‘Puz---up]) OA s ..qup

Now, instead of (B.9) one has

) /,C:/80{(—1)pDi1"'iP(SAZ'1“_Z'p
1% 1%

+(_1)p,0i1"'ip715S0i1...ip_1 _ ﬂ-il“.ipil(SUil...ip_l }

= —9,G"Mtr - (C.6)

- / {(—1)ppDrA2'“Ap5A0A2...Ap
oV
+GM AL, + (FDP(p = D G0 a4,

+ A2 Ao 0, a4, —(p = D)3 5UG A, a, +prA2'"Ap5UA2~~Ap} )
(©.7)

with pit-ir=1 := Jit-i-10 (it defines a (p—1)-form charge density on (2p+1)-
dim. hyperplane X) and 7%1-%-1 := p0i-+ip-1 Now, to pass to the Hamil-
tonian picture one has to perform the following Legendre transformations
between: (1) D and A, (2) p and ¢, (3) 7 and U in the volume V', and
between (4) D" and Ag, (5) p" and g and (6) 7" and Uy at the boundary
dV. One obtains the following generalization of (B.14):
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—0Hsym = / {(—1)p <Di1"'ip5Ail...z‘p - Ail...z‘p5Di1"'iP>
Vv

+(_1)p (pZI...Zp715§0i1...ip_1 - Qbi1...ip_15:0“mzp71)

_ (#il...ip,léUilmip71 _ Uil...ip,l(hil"'ip’l)}

_/{(_1)pA0A2...Ap5DTA2"'Ap
av

+GTA1"'AP5AA1...A,, + (_1)p(p _ 1)(POA3...AP5PTA3"'AP
—JT A0 4y a, — (0 — 1)Upag...a,0m" 4340 — prAQWAp(SUAQ“'AP} ’
(C.8)

where the “symmetric” Hamiltonian of the interacting electromagnetic field
and the charged matter represented by & reads:

Hogm = [ {(-17D4,

14
+(_1)ppi1...ip_1(pilmip71 _ piteip— Uil...z‘p,l _r
— 0 [(~1)Pp DF Ag, s,

F(=1)P(p — D)phiaingg; o — (p— 1)7rki3...ipU0i3mZ.p] } _

Now, using

one gets the following formula for Heym:

1. .
Hsym:/{H,D“mZPEil...ip
1%

+(_1)pppi1...ip_1D0s0i1mZ_p_1 N 71,2'1...1'1,,_1 Uil...ip_l ey
+0y, [(p - 1)7rki3“'ipU0¢3...z‘p} } : (C.11)
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Moreover, due to (C.10), we may rewrite the dynamical part for ¢
in (C.8) as follows:

/ (pZQZpé(PZZZp _ (Pzgzp(sPZZZp)
1%

(—bkh'"i”fs(ak%g...ip) + (3k¢i2...ip)573ki2"'ip>

+ (D’“AQ'"A”&DAQ...AP - ¢A2...AP5D’“A2'“A”> . (C.12)

T T —

Now, the term DrA2-Ap at the boundary may be easily eliminated by the
field equations (C.6)

D'I‘A2...Ap — (_1)p (J'I‘A2...Ap _ 8A1g7‘A1A2...Ap) . (013)
Introducing hydrodynamical variables:

VMIH?---M) = _Duﬁoug...up ) (C14)

we may rewrite finally (C.8) as follows:

_5Hsym = / {(_1)1) (,Dilmip(s‘/h...ip - “/i1...ip(SDi1“'ip)
1%
_ (ﬁil"'ipfl(SUil...ip,l _ Uil...ip,ldﬁil"'in)}

_/{(_1)p%A2...AP5D7‘A2mAP+gTA1mAp6VA1...Ap
oV

_(p _ 1)U0A3_..Ap67TTA3MAP —pTA2"'AP5UA2...Ap} , (015)

i.e. (C.15) has exactly the same form as (B.14) with A replaced by the gauge-
invariant p-form V and supplemented by the gauge-invariant canonical pair
of (p — 1)-forms (U, ) together with the boundary momenta: (p — 2)-form
Uy and (p — 1)-form p" on 9V. All gauge-dependent terms dropped out.
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Appendix D

2 potentials vs reduced variables
Let us introduce a second p-form gauge potential Z on X' such that
Dil...ip — €i1mipkj1mjp8k Zjl ] . (D].)
ceedp
Assuming for Z the same gauge conditions as for A, i.e.

Vo, 284 =0, (D.2)
VA2ZTA2...AP =0, (D3)
we have in analogy to (B.29)
2
ApflerQ.“Bp — (_1)p+1 T_ gAlmApBlmevBlDAl...Ap . (D4)
pp!
Therefore, taking into account (B.34)-(B.35) one has:

T
HlBQ...Bp = (—1)P*! > ArB,..By s (D.5)
T
H2B2...Bp = (_1)]7 2; ZT‘B2...Bp 9 (DG)

i.e. the entire gauge-invariant information about two p-forms Z and A on X
is encoded into two complex (p — 1)-forms @Q and IT on each S?(r).
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