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QUASI-LOCAL STRUCTURE OF p-FORM THEORYDariusz Chru±i«skiInstitute of Physis, Niholas Copernius UniversityGrudzi¡dzka 5/7, 87-100 Toru«, Polande-mail: darh�phys.uni.torun.pl(Reeived Otober 11, 2000)We show that the Hamiltonian dynamis of the self-interating, Abelianp-form theory in D = 2p+2 dimensional spae-time gives rise to the quasi-loal struture. Roughly speaking, it means that the �eld energy is lo-alized but on losed 2p-dimensional surfaes (quasi-loalised). From themathematial point of view this approah is implied by the boundary valueproblem for the orresponding �eld equations. Various boundary problems,e.g. Dirihlet or Neumann, lead to di�erent Hamiltonian dynamis. Physisseems to prefer gauge-invariant, positively de�ned Hamiltonians whih turnout to be quasi-loal. Our approah is losely related with the standardtwo-potential formulation and enables one to generate e.g. duality transfor-mations in a perfetly loal way (but with respet to a new set of nonloalvariables). Moreover, the form of the quantization ondition displays verysimilar struture to that of the sympleti form of the underlying p-formtheory expressed in the quasi-loal language.PACS numbers: 11.15-q, 11.10.Kk, 10.10.Lm1. IntrodutionOne of the most important idea of modern physis is loality. It isstrongly related with relativity and quantum mehanis and plays a en-tral role in relativisti (lassial and quantum) �eld theories. Let us iteonly two very in�uential books: physis is simple when analyzed loally [1℄and the role of �elds is to implement the priniple of loality [2℄. It shouldbe stressed, therefore, from the very beginning that we are not going to dis-uss nonloal theories. The Abelian p-form theory is a simple generalizationof an ordinary eletrodynamis in 4-dimensional Minkowski spae-time M4where the eletromagneti �eld potential 1-form A� is replaed by a p-formin D-dimensional spae-time [3, 4℄. This theory is perfetly loal, i.e. it isde�ned via the loal Lagrangian. (147)



148 D. Chru±i«skiThe motivations to study p-form theory are already disussed in [3℄.Reently the new input omes with eletri-magneti duality [5�7℄. It wasobserved long ago [8℄ that the duality symmetry for the standard Maxwelleletrodynamis in four dimensional Minkowski spae-time (i.e. p = 1 the-ory) is generated by the nonloal generator (its physial interpretation asa hirality operator was disussed in [9℄), i.e. it is nonloal funtional ofthe eletromagneti �eld. Therefore, the nonloality enters into the game ina very natural way. We shall see that the above mentioned nonloality islosely related with the Hamiltonian desription of the �eld dynamis.To de�ne the Hamiltonian evolution one splits the entire spae-time intospae and time and then formulates the initial value problem. But in �eldtheory one has to speify also the boundary ondition for the �elds. Veryoften one assumes that all �elds do vanish at spatial in�nity and simplyforgets about this problem. It should be stressed, however, that even ifthe boundary values vanish numerially they do not vanish funtionally, i.e.they are neessary in the proper de�nition of the funtional phase spaeof the dynamial problem. This is typial for the problems with in�nitelymany degrees of freedom. Boundary value problem is not only a mathemat-ial problem. It also does belong to physis. Di�erent boundary problemslead to di�erent Hamiltonians, i.e. di�erent de�nitions of the �eld energy,e.g. energies de�ned via anonial and symmetri energy-momentum ten-sors. Now, in the standard (i.e. p = 1) eletrodynamis the �anonial�energy, whih is neither gauge-invariant nor positively de�ned, is relatedto the boundary value problem for the salar potential A0. On the otherhand the �symmetri energy� (de�ned by the symmetri energy-momentumtensor), whih is perfetly gauge-invariant and positively de�ned, is relatedto the ontrol of the eletri and magneti �uxes on the boundary [10�13℄.Therefore, it distinguishes a new set of eletromagnetial variables Q1 andQ2 onsistent with the boundary problem. Together with the anoniallyonjugated momenta �1 and �2 they enode the entire gauge-invariant in-formation about the eletromagneti �eld F = dA, i.e. knowing Q's and �'sone may uniquely reonstrut F [10℄. Atually, it was shown long ago byDebye [14℄ that Maxwell theory ould be desribed in terms of two omplexfuntions (so alled Debey potentials). It turns out that this formulationis very well suited to desribe e.g. radiative phenomena [15℄. Our Q's and�'s (they may be rearranged into omplex Q and �) are losely relatedto Debey potentials. They solve the Gauss onstraint and, therefore, theyredue the sympleti form in the spae of Cauhy data for the �eld dynam-is. However, they are nonloal funtions of the eletromagneti �elds Dand B. The nonloality is of the very speial struture and the Hamiltoniangenerating the dynamis de�nes a quasi-loal funtional, i.e. performing anintegration over angle variables one obtains perfetly loal funtional.



Quasi-Loal Struture of p-Form Theory 149Now, in the Abelian self-interating p-form theory in D = 2p + 2dimensional spae-time one may perform the similar analysis [16℄: instead oftwo omplex funtions Q and �, the dynamial information about a p-formeletromagneti �elds D and B is now enoded into two omplex (p � 1)-forms. In the present paper we relate the quasi-loal piture implied bythese (p� 1)-forms with the proper de�nition of the Hamiltonian dynamisfor a p-form theory. Moreover, we show that this formulation is perfetlysuited for the desription of the duality symmetry, i.e. the duality rotations(for odd p) are generated loally in terms of Q and �. We show that theanonial generator has the following form:Z Q1�2 �Q2�1 : (1.1)It is evident that this approah is losely related to the two-potential for-mulation [7, 17℄ (see Appendix D).It is well known that there is a ruial di�erene between theories withdi�erent parities of p, e.g. for even p a theory an not be duality invariant.Now, it was observed only reently [7℄ that the quantization ondition for(p� 1)�brane dyons ruially depends upon p, namelye1g2 + (�1)pe2g1 = nh ; (1.2)with integer n (h is the Plank onstant). It turns out that the symple-ti form of a p-form theory written in terms of Q and � has very similarstruture 
p = Z Æ�1 ^ ÆQ1 + (�1)p+1Æ�2 ^ ÆQ2 ; (1.3)therefore, there is a striking orrespondene between the form of the quanti-zation ondition (1.2) and the struture of sympleti form (1.3). This orre-spondene is universal, i.e. it holds for any gauge-invariant, self-interatingtheory.The paper is organized as follows: we remind the quasi-loal struture ofstandard (1-form) eletrodynamis in Setion 2. This is the prototype of thep-form theory for odd p. Then in Setion 3 we make the generalization forp = 2 whih is the prototype for even p. The general ase (i.e. an arbitraryp) is disussed in Appendies B and C. In Setion 4 we desribe the gauge-invariant oupling of p-form eletrodynamis to the harged matter and theHamiltonian struture of the interating theory. The details of notation arelari�ed in Appendix A.



150 D. Chru±i«ski2. 1-form theory in D = 42.1. Generating formulaLet us onsider a 1-form theory de�ned by the Lagrangian L = L(A; �A).Field dynamis of this theory may be written in terms of the followinggenerating formula (see Appendix A for details of notation):�ÆL = ��(G��ÆA�) = (��G��)ÆA� + G��Æ(��A�) : (2.1)The formula (2.1) implies the following de�nition of �momenta�:G�� = �2 �L�F�� : (2.2)Moreover, (2.1) generates dynamial (in general nonlinear) �eld equations��G�� = �J � ; (2.3)where the external 1-form urrent reads:J � = �L�A� : (2.4)Let us start with a soure free theory, i.e. J = 0. We shall study the p-form eletromagnetism oupled to a harged matter in Se. 4. To obtain theHamiltonian desription of the �eld dynamis let us integrate Eq. (2.1) overa 3-dimensional volume V ontained in the onstant-time hyperplane �:�Æ ZV L = ZV �0(G0iÆAi) + Z�V G?�ÆA� ; (2.5)where ? denotes the omponent orthogonal to the 2-dimensional boundary�V . To simplify our notation let us introdue the spherial oordinateson �: x3 = r ; xA = 'A ; A = 1; 2 ; (2.6)where '1; '2 denote spherial angles (usually one writes '1 = ' and '2 = �).To enumerate angles we shall use apital letters A;B;C; :::. The Eulideanmetri tensor is diagonalg11 = r2; g22 = r2 sin'2; grr = 1 ; (2.7)



Quasi-Loal Struture of p-Form Theory 151and the volume form �1 = pdet(gkl) = r2 sin'2. Let V be a 3-ball witha �nite radius R. In suh a oordinate system the formula (2.5) takes thefollowing form:Æ ZV L = �ZV �0(DiÆAi) + Z�V DrÆA0 � Z�V GrBÆAB ; (2.8)where Di = Gi0 (2.9)denotes the 1-form eletri indution density on �. Now, performing theLegendre transformation between indution 1-form Di and _Ai one obtainsthe following Hamiltonian formula:�ÆHan = �ZV � _DiÆAi � _AiÆDi�+ Z�V DrÆA0 � Z�V GrBÆAB ; (2.10)where the anonial HamiltonianHan = ZV ��Di _Ai �L� : (2.11)Equation (2.10) generates an in�nite-dimensional Hamiltonian system inthe phase spae Pp = (Di; Ai) ful�lling Dirihlet boundary onditions forthe 1-form potential Ai: A0j�V and AAj�V . From the mathematial pointof view this is the missing part of the de�nition of the funtional spae.The Hamiltonian struture of a general nonlinear 1-form eletrodynamisdesribed above is mathematially well de�ned, i.e. a mixed Cauhy problem(Cauhy data given on � and Dirihlet data given on �V �R) has a uniquesolution (modulo gauge transformations whih redue to the identity on�V �R).There is, however, another way to desribe the Hamiltonian evolution of�elds in the region V . Let us perform the Legendre transformation betweenDr and A0 at the boundary �V . One obtains:�ÆHsym = �ZV � _DiÆAi � _AiÆDi�� Z�V A0ÆDr � Z�V GrBÆAB ; (2.12)where the new �symmetri� HamiltonianHsym = Han + Z�V DrA0 : (2.13)



152 D. Chru±i«skiObserve, that formula (2.12) de�nes the Hamiltonian evolution but on adi�erent phase spae. In order to kill boundary terms in (2.12) one has toontrol on �V : Dr (instead of A0) and AB. We stress that from the mathe-matial point of view both desriptions are equally good and an additionalphysial argument has to be given if we want to hoose one of them as morefundamental. 2.2. Canonial vs symmetri energyNow, let us disuss the relation between Han and Hsym de�ned by (2.11)and (2.13), respetively. One has:Hsym = Han + Z�V DrA0 = H+ ZV �k �DkA0�= ZV n�Di _Ai �L+ �A0�kDk +Dk�kA0�o= ZV �DiEi �L� ; (2.14)where the 1-form eletri �eld is de�ned byEi = Fi0 = �[iA0℄ : (2.15)Therefore, Hsym is related to L via di�erent Legendre transformation(ompare (2.11) with (2.14)). Contrary to Han, Hsym is perfetly gauge-invariant. It is evident that Hsym is de�ned via the symmetri energy-momentum tensor: T ��sym = F ��G�� + g��L ; (2.16)whereas Han via the anonial one:T ��an = (��A�)G�� + g��L ; (2.17)i.e. Hsym = RV T 00sym and Han = RV T 00an. Therefore, the �symmetri energy�Hsym is gauge-invariant and positively de�ned, e.g. for the 1-form Maxwelltheory one has HMaxwellsym = 12 Z (DiDi + BiBi) :On the other hand, the �anonial energy� Han is neither positively de�nednor gauge-invariant. These properties show that the Hamiltonian evolutionbased on Hsym is more natural from the physial point of view than the onebased on Han (see also disussion in [12℄).



Quasi-Loal Struture of p-Form Theory 1532.3. Redution of the generating formulaNow, it turns out that the formula (2.12) may be onsiderably simpli�ed.Any geometrial objet on a 3-dimensional hyperplane � may be deom-posed into the radial and tangential (i.e. tangential to any sphere S2(r))omponents, e.g. a 1-form gauge potential Ai deomposes into the radial Arand tangential AA. Now, any 1-form on S2(r) may be further deomposedinto �longitudinal� and �transversal� parts:AA = rAu+ "ABrBv ; (2.18)where both u and v are salar funtions on S2(r). Now, using (2.18) andintegrating by parts one gets:ZV � _DiÆAi � _AiÆDi� = ZV n� _DrÆAr� _ArÆDr�+ h(�r _Dr)Æu� _uÆ(�rDr)i� "AB h�rB _DA� Æv� _vÆ �rBDA�io ; (2.19)where we have used the Gauss lawrADA = ��rDr : (2.20)Moreover, due to (2.18)Z�V GrAÆAA = � Z�V n� _DrÆu+ �"ABrBGrA� Ævo : (2.21)In deriving (2.21) we have usedrAGAr = � _Dr ; (2.22)whih follows from the �eld equations rAGAr+�0G0r = 0. Now, taking intoaount (2.19) and (2.21) the generating formula (2.12) may be rewritten inthe following way:�ÆHsym = �ZV nh _DrÆ (Ar � �ru)� � _Ar � �r _u� ÆDri� h�"ABrB _DA� Æv � _vÆ �"ABrBDA�io� Z�V �(A0 � _u) ÆDr � �"ABrBGrA� Æv	 : (2.23)



154 D. Chru±i«skiNote, that although Ar, A0 and u are manifestly gauge-dependent, the om-binations Ar � �ru and A0 � �0u are gauge-invariant. To simplify our on-sideration we hoose the speial gauge u � 0, i.e. a 1-form AA on S2(r)is purely transversal. This ondition, due to (2.18), may be equivalentlyrewritten as rAAA = 0 : (2.24)Assuming (2.24) one may show [16℄�0Ar = r2 "AB rBBA ; (2.25)where �0 = r2rArA (2.26)denotes the 2-dimensional Laplaian on S2(1), i.e. the 2-dim. Laplae�Beltrami operator on salar funtions (0-forms). Moreover,Br = "AB rAAB = �r�2�0v : (2.27)Sine �0 is invertible in the soure free theory [10℄ the formula (2.23) maybe rewritten as follows:�ÆHsym = �ZV nh(r _Dr)Æ �r��10 "AB rBBA���r��10 "AB rB _BA� Æ(rDr)i+ h�r��10 "ABrB _DA� Æ(rBr)� (r _Br)Æ �r��10 "ABrBDA�io� Z�V �(r�1A0)Æ(rDr) + ���10 "ABrBGrA� Æ(rBr)	 : (2.28)Now, introduing the following set of variablesQ1 = rDr ; (2.29)Q2 = rBr ; (2.30)�1 = r��10 "ABrBBA ; (2.31)�2 = �r��10 "ABrBDA ; (2.32)Eq. (2.28) simpli�es to�ÆHsym = ZV �1 n� _�1ÆQ1 � _Q1Æ�1�+ � _�2ÆQ2 � _Q2Æ�2�o+ Z�V �1 ��1ÆQ1 + �2ÆQ2� ; (2.33)



Quasi-Loal Struture of p-Form Theory 155where we introdued the boundary momenta:�1 = �1rA0 ; (2.34)�2 = �r��10 "ABrBGrA : (2.35)Tensor G�� is de�ned by G�� = �1G�� , and, therefore, Di = �1Di. Note,that �l = ÆHsymÆ(�rQl) ; l = 1; 2 : (2.36)For a Maxwell theory one obtainsHMaxwellsym = 12 ZV �1 2Xl=1 � 1r2QlQl � 1r2�r(rQl)��10 �r(rQl)�� l�0� l� ;(2.37)and, therefore �l = 1r ��10 �r(rQl) ; l = 1; 2 ; (2.38)have perfetly symmetri form.2.4. Canonial symmetriesThe sympleti form R ÆDk^ÆAk rewritten in terms of Q's and �'s havethe following form [10, 16℄:
 = Im Z �1 Æ� ^ ÆQ ; (2.39)where we introdued a omplex notationQ = Q1 + iQ2 ; (2.40)� = i(�1 + i�2) : (2.41)The form (2.39) is invariant under the following set of R-linear transforma-tions: Q ! ei�Q ; (2.42)Q ! osh�Q+ i sinh�Q ; (2.43)Q ! osh �Q+ sinh�Q ; (2.44)



156 D. Chru±i«skiand the same rules for �. It is easy to see that these transformations formthe group SO(2,1). In terms of D and B, (2.42)�(2.44) have more familiarform:(2.42) orresponds to orthogonal SO(2) duality rotations:D ! D os��B sin� ;B ! D sin�+B os� ; (2.45)(2.43) orresponds to hyperboli SO(1,1) rotations:D ! D osh�+B sinh� ;B ! D sinh�+B osh� ; (2.46)(2.44) orresponds to saling transformations:D ! e�D ;B ! e��B : (2.47)The anonial generators orresponding to (2.42)�(2.44) have the followingform: G1 = Z �1 (Q2�1 �Q1�2) = Re Z �1 (�Q) ; (2.48)G2 = �Z �1 (Q2�1 +Q1�2) = Re Z �1 (�Q) ; (2.49)G3 = Z �1 (Q1�1 �Q2�2) = Im Z �1 (�Q) : (2.50)Note, that for the duality invariant theory G1 de�ned in (2.48) is onstantin time. Its physial interpretation was lari�ed in [9℄. Obviously, G1, G2and G3 rewritten in terms of D and B are highly nonloal funtionals ofthe �elds [8, 9℄. 2.5. SummaryThe redued variables (Ql;� l) play the role of generalized positions andmomenta for an eletromagneti �eld. They are perfetly gauge-invariantand ontain the entire (gauge-invariant) information about D and B. Letus note that Q's and�'s are nonloal funtions ofD andB. The nonloalityenters via the operations on eah sphere S2(r), i.e. via the operator ��10 .On the other hand the operations in the radial diretion do not produe anynonloality.The Hamiltonian generating the dynamis is perfetly loal in D and Bbut is nonloal in Q's and �'s. The �eld funtional with the above desribed



Quasi-Loal Struture of p-Form Theory 157nonloality we shall all quasi-loal. Note, that generators Gi are perfetlyloal in redued variables.The �symmetri� Hamiltonian dynamis is de�ned by the Dirihletboundary onditions for positions Ql. On the other hand the �anonial�formula (2.12) is de�ned by the Dirihlet boundary ondition for �1 and Q2.Note, however, that in the Maxwell aseZ�V �1Q1Æ�1 = Z�V �1 1r ���10 Q1� Æ �r(r2Dr) = Z�V r ���10 Q1� Æ (�rDr) ;(2.51)i.e. a Dirihlet ondition �1j�V is equivalent to the Neumann ondition�rDrj�V . 3. 2-form theory in D = 63.1. Generating formulaNow, onsider a 2-form theory de�ned by the Lagrangian L = L(A; �A).Field dynamis of this theory may be written in terms of the followinggenerating formula:�ÆL = ��(G���ÆA��) = (��G���)ÆA�� + G���Æ(��A��) : (3.1)The formula (3.1) implies the following de�nition of �momenta�:G��� = �3! �L�F��� : (3.2)Moreover, (3.1) generates dynamial (in general nonlinear) �eld equations��G��� = �J �� ; (3.3)where the external 2-form urrent reads:J �� = 2 �L�A�� : (3.4)In the present setion we onsider only J = 0 (for J 6= 0 see Setion 4.)To obtain the Hamiltonian desription of the �eld dynamis let us integrateequation (3.1) over a 5-dimensional volume V ontained in the onstant-timehyperplane �:�Æ ZV L = ZV �0(G0ijÆAij) + Z�V G?��ÆA�� ; (3.5)



158 D. Chru±i«skiwhere ? denotes the omponent orthogonal to the 4-dimensional boundary�V . To simplify our notation let us introdue the spherial oordinates on�:x5 = r ; xA = 'A ; A = 1; 2; 3; 4 ; (3.6)where '1; '2; '3; '4 denote spherial angles (to enumerate angles we shalluse apital letters A;B;C; :::). The Eulidean metri on � reads:g11 = r2 sin2 '2 sin2 '3 sin2 '4 ; g22 = r2 sin2 '3 sin2 '4;g33 = r2 sin2 '4 ; g44 = r2 ; g55 � grr = 1 ; (3.7)and the orresponding volume form�2 =qdet(gij) = r4 sin'2 sin2 '3 sin3 '4 : (3.8)Let V be a 5-dim. ball with a �nite radius R. In suh a oordinate systemthe formula (3.5) takes the following form:Æ ZV L = ZV �0(DijÆAij)� Z�V 2DrAÆA0A � Z�V GrABÆAAB ; (3.9)where Dij = Gij0 (3.10)denotes the 2-form eletri indution density. Now, performing the Legen-dre transformation between indution 2-form Dij and _Aij one obtains thefollowing Hamiltonian formula:�ÆHan = ZV � _DijÆAij � _AijÆDij��Z�V 2DrAÆA0A�Z�V GrABÆAAB ; (3.11)where the anonial HamiltonianHan = ZV �Dij _Aij �L� : (3.12)Equation (3.11) generates an in�nite-dimensional Hamiltonian system in thephase spae P2 = (Dij; Aij) ful�lling Dirihlet boundary onditions for the2-form potential Aij: A0Aj�V and AAB j�V . From the mathematial pointof view this is the missing part of the de�nition of the funtional spae.The Hamiltonian struture of a general nonlinear 2-form eletrodynamisdesribed above is mathematially well de�ned, i.e. a mixed Cauhy problem(Cauhy data given on � and Dirihlet data given on �V �R) has a unique



Quasi-Loal Struture of p-Form Theory 159solution (modulo gauge transformations whih redue to the identity on�V �R).Note the di�erene in signs between orresponding formulae of the presentsetion and that of Setion 2. This di�erene follows from the di�erene be-tween orresponding sympleti strutures [16℄. For 1-form theory one has
1 = ZV ÆG0i ^ ÆAi = +ZV ÆDi ^ ÆAi ; (3.13)whereas for 2-form theory
2 = ZV ÆG0ij ^ ÆAij = �ZV ÆDij ^ ÆAij ; (3.14)Now, in analogy to (2.12) we pass to another Hamiltonian desriptionof the �eld evolution in the �nite region V . Let us perform the Legendretransformation between DrA and A0A at the boundary �V . One obtains:�ÆHsym = ZV � _DijÆAij � _AijÆDij�+Z�V 2A0AÆDrA�Z�V GrABÆAAB ; (3.15)where the new �symmetri� HamiltonianHsym = Han � Z�V 2DrAA0A : (3.16)Observe, that formula (3.15) de�nes the Hamiltonian evolution but on adi�erent phase spae. In order to kill boundary terms in (3.15) one hasto ontrol on �V : DrA (instead of A0A) and AAB . We stress that fromthe mathematial point of view both desriptions are equally good and anadditional physial argument has to be given if we want to hoose one ofthem as more fundamental.3.2. Canonial vs symmetri energyThe relation between Han and Hsym is exatly the same as in p = 1ase: Hsym = Han � Z�V 2DrAA0A = Han � ZV 2 �k �DkiA0i�= ZV nDij _Aij �L+ 2�A0i�kDki +Dki�kA0i�o= ZV �12 DijEij �L� ; (3.17)



160 D. Chru±i«skiwhere the 2-form eletri �eld is de�ned byEij = Fij0 = �[iAj0℄ : (3.18)Therefore, Hsym = R T 00sym and Han = R T 00an withT ��sym = 12F ���G��� + g��L ; (3.19)and T ��an = (��A��)G��� + g��L : (3.20)In the 2-form Maxwell theory the �symmetri energy� (gauge-invariant andpositively de�ned) reads:HMaxwellsym = 14 Z (DijDij + BijBij) :3.3. Redution of the generating formulaNow, in analogy to (2.18) let as make the following deomposition:AAB = r[AuB℄ + "ABCDrCvD ; (3.21)where rA denotes a ovariant derivative on eah S4(r) de�ned by the in-dued metri gAB and "ABCD stands for the Lévi�Civita tensor density suhthat "1234 = �2. Both uA and vA are 1-forms on S4(r). Using (3.21) andintegrating by parts one gets:ZV � _DijÆAij � _AijÆDij� = ZV n2 � _DrAÆArA � _ArAÆDrA�+2 h��r _DrA� ÆuA � _uAÆ ��rDrA�i� "ABCD h�rC _DAB� ÆvD � _vDÆ �rCDAB�io ; (3.22)where we have used the Gauss lawrADAB = ��rDrB : (3.23)Moreover, due to (3.21)Z�V GrABÆAAB = � Z�V n�2 _DrAÆuA + �"ABCDrCGrAB� ÆvDo : (3.24)



Quasi-Loal Struture of p-Form Theory 161In deriving (3.24) we have usedrAGABr = � _DrB ; (3.25)whih follows from the �eld equations rAGABr + �0G0Br = 0. Now, takinginto aount (3.22) and (3.24) the generating formula (3.15) may be rewrittenin the following way:�ÆHsym = ZV nh _DrAÆ(2ArA � 2�ruA)� �2 _ArA � 2�r _uA� ÆDrAi� h�"ABCDrC _DAB� ÆvD � _vDÆ �"ABCDrCDAB�io+ Z�V 8<:(2A0A�2 _uA)ÆDrA+Z�V �"ABCDrCGrAB� ÆvD9=; :(3.26)Note, that although ArA, A0A and uA are manifestly gauge-dependent, theombinations ArA � �ruA and A0A � �0uA are gauge-invariant. To simplifyour onsideration we hoose the speial gauge u � 0, i.e. a 2-form AAB onS4(r) is purely transversal. This ondition, due to (3.21), may be equiva-lently rewritten as rAAAB = 0 : (3.27)But now, ontrary to the p = 1 ase, we have an additional ovetor �eldon S4(r), namely ArA. For this ovetor we hoose an analogous gaugeondition, i.e. rAArA = 0 : (3.28)Assuming (3.27) and (3.28) one may show [16℄�1ArD = �r24 "ABCDrCBAB ; (3.29)where �1 = r2rArA � 3 ; (3.30)equals to the Laplae�Beltrami operator on o-exat 1-forms on S4(1) [16℄.Moreover, in analogy to (2.27) one has [16℄BrA = �2r�2�1vA ; (3.31)



162 D. Chru±i«skiand, therefore, the formula (3.26) simpli�es to�ÆHsym = 12 ZV n� h�r _DrD� Æ �r��11 "ABCDrCBAB���r��11 "ABCDrC _BAB� Æ �rDrD�i+ h�r��11 "ABCDrC _DAB� Æ �rBrD���r _BrD�Æ�r��11 "ABCDrCDAB�io+ Z�V �(2r�1A0A)Æ �rDrA���12r��11 "ABCDrCGrAB� Æ �rBrD�� : (3.32)Now, introduing the following set of variablesQ A1 = rDrA ; (3.33)Q A2 = rBrA ; (3.34)�1D = r2��11 "ABCDrCBAB ; (3.35)�2D = �r2��11 "ABCDrCDAB ; (3.36)Eq. (3.32) simpli�es to�ÆHsym = ZV �2 n� _�1AÆQ A1 � _Q A1 Æ�1A�� � _�2AÆQ A2 � _Q A2 Æ�2A�o+ Z�V �2 ��1AÆQ A1 + �2AÆQ A2 � ; (3.37)where we introdued the boundary momenta:�1A = 2rA0A ; (3.38)�2D = �r2��11 "ABCDrCGrAB : (3.39)In (3.37) we de�nedQl A := gAB Q Bl ; � l A := gAB � lB : (3.40)Note the ruial di�erene between (3.37) and (2.33): the sign �+� in (2.33)is replaed by ��� in (3.37).



Quasi-Loal Struture of p-Form Theory 163For a Maxwell theory one obtainsHMaxwellsym = 14ZV �2 2Xl=1� 1r2Q Al QlA� 1r4�r(r3QlA)��11 �r(rQAl )�� lA�1� lA�(3.41)and, therefore �lA = 1r3��11 �r(r3QlA) ; l = 1; 2 : (3.42)3.4. Canonial symmetriesThe sympleti form � R ÆDij ^ ÆAij rewritten in terms of Q's and �'shave the following form [16℄:
 = Im Z �2 Æ�A ^ ÆQA ; (3.43)where we introdued a omplex notationQA = Q1A + iQ2A ; (3.44)�A = i ��A1 + i�A2 � : (3.45)The form (3.43) ontrary to (2.39) is invariant only under the followingtransformations: QA ! osh�QA + sinh�QA ; (3.46)and the same rule for �A. It is easy to see that these transformations formthe group SO(1,1). In terms of Dij and Bij , (3.46) reads:Dij ! e�Dij ;Bij ! e��Bij : (3.47)The anonial generator orresponding to (3.46) has the following form:G4 = �Z �2 �Q1A�A1 +Q2A�A2 � = ImZ �2 ��AQA� : (3.48)



164 D. Chru±i«ski3.5. SummaryContrary to the p = 1 ase the redued variables (QAl ;� lA) do not solveompletely the Gauss onstraints �iDij = �iBij = 0. They ful�ll the follow-ing additional onditions [16℄:rAQAl = rA� lA = 0 ; l = 1; 2: (3.49)In the geometri language it means that ?Ql and ?� l are losed 3-formson S4(r) (? denotes the Hodge dual de�ned via "ABCD). They are gauge-invariant and ontain the entire information about 2-forms Dij and Bij. Thedynamis is generated by the quasi-loal funtional of Q's and �'s.The �symmetri� dynamis de�ned by (3.37) orresponds to the Dirihletboundary ondition for positions Ql whereas the �anonial� dynamis or-responds to the Dirihlet onditions for �1 and Q2. But Dirihlet onditionfor �1A is equivalent to the Neumann ondition for �rDrAZ�V �2QA1 Æ�1A = Z�V r��11 QA1 Æ(�rDrA) : (3.50)4. Coupling to the harged matterIn the present setion we study the oupling of p-form eletrodynamisto the harged matter. We present parallel disussion for p = 1 and p = 2.The general ase is presented in Appendix C.4.1. p = 1Consider a 1-form eletromagnetism interating with the harged matter�eld � (for simpliity let � be a omplex salar �eld). In the presene ofharged matter the Lagrangian generating formula (2.1) has to be replaedby: �ÆL = ��(G��ÆA� + P�Æ�) ; (4.1)where the matter �momentum�P� = � �L�(���) : (4.2)Beause L should de�ne a gauge-invariant theory let us assume that there isa group of gauge transformations U� parameterized by a a funtion (0-form)� ating in the following way: A� ! A� + ��� and �! U�(�).Now, the target spae of the matter �eld � may be reparameterized� = (';U) in suh a way that, a parameter U is gauge invariant and ' is



Quasi-Loal Struture of p-Form Theory 165the phase undergoing the following gauge transformation: ' ! '+ �. Forthe salar (omplex) �eld one has: U := j�j and the ' = Arg�. Therefore,the matter part in (4.1) may be rewritten as follows:P�Æ� = J�Æ'+ p�ÆU : (4.3)Gauge invariane of the theory means that the gauge dependent quantities,i.e. A� and ', enter into L via the gauge-invariant ombinations only:L = L(F�� ;D�';U; ��U) ; (4.4)where D�' := ��'�A� (4.5)denotes a ovariant derivative of '. This implies, that the momentum J�anonially onjugated to ' is equal to the eletri urrentJ� = � �L�(��') = �L�A� = ���G�� : (4.6)Now, instead of (2.8) one has�Æ ZV L = ZV �0 �DiÆAi + �Æ' + p0ÆU�+ Z�V ��DrÆA0 + GrBÆAB + JrÆ'+ prÆU� ; (4.7)with � := J0. Performing the set of Lagrange transformations between:(1) Dk and _Ak, (2) � and _', (3) � := p0 and _U in the volume V , and betweenDr and A0 at the boundary �V , one obtains the following generalizationof (2.12):�ÆHsym = � ZV n� _DiÆAi � _AiÆDi�+ ( _�Æ'� _'Æ�) + � _�ÆU � _UÆ��o� Z�V �A0ÆDr + GrBÆAB + JrÆ' + prÆU	 ; (4.8)where the �symmetri� Hamiltonian of the interating eletromagneti �eldand the harged matter represented by � reads:Hsym = ZV ��Di _Ai � � _'� � _U �L+ �k �A0Dk�� : (4.9)



166 D. Chru±i«skiNow, using �kDk = � ; (4.10)implied by (4.6), one gets the following formula for Hsym:Hsym = ZV �DiEi � �D0'� � _U �L� : (4.11)Note, that the gauge-dependent phase ' enters into Hsym via the gauge-invariant ombination D0' only. Moreover, due to (4.10), we may rewritethe dynamial part for ' in (4.8) as follows:ZV ( _�Æ'� _'Æ�) = ZV �� _DkÆ(�k') + (�k _')ÆDk�+ Z�V � _DrÆ' � _'ÆDr� :(4.12)Now, the _Dr at the boundary may be easily eliminated by the �eld equa-tions (4.6) _Dr = ��0Gr0 = ��G�r � �AGAr = �Jr + �AGrA : (4.13)Introduing a hydrodynamial variables:V� := �D�' ; (4.14)we may rewrite �nally (4.8) as follows:�ÆHsym = �ZV n� _DiÆVi � _ViÆDi�+ � _�ÆU � _UÆ��o� Z�V �V0ÆDr + GrBÆVB + prÆU	 ; (4.15)i.e. (4.15) has exatly the same form as (2.12) with A� replaed by thegauge-invariant V� and supplemented by the gauge-invariant anonial pair(U; �) together with the boundary momentum pr.4.2. p = 2Now, onsider a 2-form eletromagnetism interating with the hargedmatter �eld �� (for simpliity let �� be a omplex vetor �eld). In thepresene of harged matter the Lagrangian generating formula (3.1) has tobe replaed by: �ÆL = �� �G���ÆA�� + P��Æ��� ; (4.16)



Quasi-Loal Struture of p-Form Theory 167where the matter �momentum�P�� = �2 �L�(�[���℄) : (4.17)Beause L should de�ne a gauge-invariant theory let us assume that there isa group of gauge transformations U� parameterized by a a 1-form � atingin the following way: A! A+ d� and �! U�(�).Now, the target spae of the matter �eld �� may be reparameterized�� = ('�; U�) in suh a way that a 1-form U� is gauge invariant and a1-form '� is the phase undergoing the following gauge transformation: '!'+�. For the vetor (omplex) �eld one has: U� := j��j and '� = Arg��.Therefore, the matter part in (4.16) may be rewritten as follows:P��Æ�� = J��Æ'� + p��ÆU� : (4.18)Gauge invariane of the theory means that the gauge dependent quantities,i.e. A�� and '�, enter into L via the gauge-invariant ombinations only:L = L(F���;D�'� ; U�; ��U�) ; (4.19)where D�'� := 12 �[�'�℄ �A�� (4.20)denotes a �ovariant derivative� of '� . This implies, that the momentumJ�� anonially onjugated to '� is equal to the eletri urrentJ�� = �2 �L�(�[�'�℄) = 2 �L�A�� = ���G��� : (4.21)Now, instead of (3.9) one has�Æ ZV L = ZV �0 ��DijÆAij � �kÆ'k + �kÆUk�+ Z�V �2DrAÆA0A + GrABÆAAB + �rÆ'0 + JrAÆ'A � �rÆU0 + prAÆUA� ;(4.22)with �k := Jk0 (it de�nes a 1-form harge density on 5-dim. hyperplane �)and �k := p0k. Now, to pass to the Hamiltonian piture one has to performthe following Legendre transformations between: (1) D and _A, (2) � and _',



168 D. Chru±i«ski(3) � and _U in the volume V , and between (4) Dr and A0, (5) �r and '0 and(6) �r and U0 at the boundary �V . One obtains the following generalizationof (3.15):�ÆHsym =ZV n� _DijÆAij� _AijÆDij�+� _�kÆ'k� _'kÆ�k��� _�kÆUk� _UkÆ�k�o� Z�V ��2A0AÆDrA + GrABÆAAB � '0Æ�r + JrAÆ'A + U0Æ�r + prAÆUA	 ;(4.23)where the �symmetri� Hamiltonian of the interating eletromagneti �eldand the harged matter represented by �� reads:Hsym =ZV nDij _Aij+�k ( _'k��k'0)��k _Uk��k �2A0iDki�U0�k��Lo ;(4.24)where we have used �k�k = 0. Now, using�iDik = �k ; (4.25)one gets the following formula for Hsym:Hsym = ZV �12DijEij + 2�kD0'k � �k _Uk �L+ �k(�kU0)� : (4.26)Note, that the gauge-dependent phase '� enters into Hsym via the gauge-invariant ombination D0'�. Moreover, due to (4.25), we may rewrite thedynamial part for '� in (4.23) as follows:ZV � _�kÆ'k � _'kÆ�k� = ZV �� _DikÆ(�i'k) + (�i _'k)ÆDik�+Z�V � _DrAÆ'A � _'AÆDrA� : (4.27)Now, the term _DrA at the boundary may be easily eliminated by the �eldequations (4.21) _DrA = JrA + �BGrAB : (4.28)Introduing hydrodynamial variables:V�� := �D�'� ; (4.29)



Quasi-Loal Struture of p-Form Theory 169we may rewrite �nally (4.23) as follows:�ÆHsym = ZV n� _DijÆVij � _VijÆDij�� � _�kÆUk � _UkÆ�k�o� Z�V ��2V0AÆDrA + GrABÆVAB � U0Æ�r + prAÆUA	 ; (4.30)i.e. (4.15) has exatly the same form as (3.15) with A�� replaed by thegauge-invariant 2-form V�� and supplemented by the gauge-invariant anon-ial pair (Uk; �k) together with the boundary momenta U0 and prA. Allgauge-dependent terms dropped out.Appendix ANotationConsider a p-form potential A de�ned in the D = 2p + 2 dimensionalMinkowski spae-time M2p+2 with the signature of the metri tensor(�;+; : : : ;+). The orresponding �eld tensor is de�ned as a (p+1)-form byF = dA: F�1:::�p+1 = �[�1A�2:::�p+1℄ ; (A.1)where the antisymmetrization is de�ned by X[kl℄ := Xkl � Xlk. Having aLagrangian L of the theory one de�nes another (p+ 1)-form G as follows:G�1:::�p+1 = �(p+ 1)! �L�F�1 :::�p+1 : (A.2)Now one may de�ne the eletri and magneti intensities and indutions inthe obvious way:Ei1:::ip = Fi1:::ip0 ; (A.3)Bi1:::ip = 1(p+ 1)! "i1:::ipj1:::jp+1F j1:::jp+1 ; (A.4)Di1:::ip = Gi1:::ip0 ; (A.5)Hi1:::ip = 1(p+ 1)! "i1:::ipj1:::jp+1Gj1:::jp+1 ; (A.6)where the indies i1; i2; : : : ; j1; j2; : : : run from 1 up to 2p+1 and "i1i2:::i2p+1is the Lévi�Civita tensor in 2p+1 dimensional Eulidean spae, i.e. a spae-like hyperplane � in the Minkowski spae-time. The �eld equations aregiven by the Bianhi identities dF = 0, or in omponents�[�F�1:::�p+1℄ = 0 ; (A.7)



170 D. Chru±i«skiand the true dynamial equations d ? G = 0, or equivalently�[� ? G�1:::�p+1℄ = 0 ; (A.8)where the Hodge star operation in M2p+2 is de�ned by:?X�1:::�p+1 = 1(p+ 1)! ��1 :::�p+1�1:::�p+1 X�1:::�p+1 (A.9)and ��1�2:::�2p+2 is the ovariantly onstant volume form in the Minkowskispae-time. Note, that "i1:::i2p+1 := �0i1:::i2p+1 . In terms of eletri andmagneti �elds de�ned in (A.3)�(A.6) the �eld equations (A.7)�(A.8) havethe following form:�0Bi1:::ip = (�1)p 1p! "i1:::ipkj1:::jp rkEj1:::jp ; (A.10)ri1Bi1:::ip = 0 ; (A.11)�0Di1:::ip = 1p! "i1:::ipkj1:::jp rkHj1:::jp ; (A.12)ri1Di1:::ip = 0 ; (A.13)where rk denotes the ovariant derivative on � ompatible with the metrigkl indued fromM2p+2. The Lévi�Civita tensor density satis�es "12:::2p+1 =pg, with g = det(gkl). Appendix BGeneral p-form theory without matterB.1 Generating formulaFor an arbitrary p the formulae (2.1) and (3.1) generalize to:�ÆL = (��G��1:::�pÆA�1:::�p) = (��G��1:::�p)ÆA�1 :::�p+G��1:::�pÆ(��A�1:::�p) :(B.1)The formula (B.1) implies the following de�nition of �momenta�:G�1:::�p+1 = �(p+ 1)! �L�F�1:::�p+1 : (B.2)Moreover, (B.1) generates dynamial (in general nonlinear) �eld equations��G��1:::�p = �J �1:::�p ; (B.3)



Quasi-Loal Struture of p-Form Theory 171where the external p-form urrent reads:J �1:::�p = p! �L�A�1:::�p : (B.4)Let us start with J = 0 and disuss a general p-form harged matter inAppendix C. To obtain the Hamiltonian desription of the �eld dynamis letus integrate equation (B.1) over a (2p+1)-dimensional volume V ontainedin the onstant-time hyperplane �:�Æ ZV L = ZV �0 �G0i1:::ipÆAi1:::ip�+ Z�V G?�1:::�pÆA�1:::�p ; (B.5)where ? denotes the omponent orthogonal to the 2p-dimensional boundary�V . To simplify our notation let us introdue the spherial oordinateson �: x2p+1 = r ; xA = 'A ; A = 1; 2; : : : ; 2p ; (B.6)where '1; '2; : : : ; '2p denote spherial angles (to enumerate angles we shalluse apital letters A;B;C; : : :). The metri tensor gij is diagonal and hasthe following form: g11 = r2 sin2 '2 sin2 '3 : : : sin2 '2p ;g22 = r2 sin2 '3 sin2 '4 : : : sin2 '2p ;...g2p�1;2p�1 = r2 sin2 '2p�1 sin2 '2pg2p;2p = r2 sin2 sin2p ;grr = r2 : (B.7)Therefore, the volume form�p =qdet(gij) = r2p sin'2 sin2 '3 : : : sin2p�2 '2p�1 sin2p�1 '2p : (B.8)Let V be a (2p+1)�dim. ball with a �nite radius R. In suh a oordinatesystem the formula (B.5) takes the following form:Æ ZV L = (�1)p ZV �0 �Di1:::ipÆAi1:::ip�� (�1)p Z�V pDrA2:::ApÆA0A2:::Ap� Z�V GrB1:::BpÆAB1:::Bp ; (B.9)



172 D. Chru±i«skiwhere Di1:::ip = Gi1:::ip0 (B.10)denotes the p-form eletri indution density. Now, performing the Legendretransformation between indution p-form Di1:::ip and _Ai1:::ip one obtains thefollowing Hamiltonian formula:�ÆHan = (�1)p ZV � _Di1:::ipÆAi1:::ip � _Ai1:::ipÆDi1:::ip��(�1)p Z�V pDrA2:::ApÆA0A2:::Ap � Z�V GrB1 :::BpÆAB1:::Bp ; (B.11)where the anonial HamiltonianHan = ZV �(�1)pDi1:::ip _Ai1:::ip �L� : (B.12)Equation (B.11) generates an in�nite-dimensional Hamiltonian system inthe phase spae Pp = (Di1:::ip ; Ai1:::ip) ful�lling Dirihlet boundary ondi-tions for the p-form potential Ai1:::ip : A0A2:::Ap j�V and AA1A2:::Ap j�V . Fromthe mathematial point of view this is the missing part of the de�nition ofthe funtional spae. The Hamiltonian struture of a general nonlinear p-form eletrodynamis desribed above is mathematially well de�ned, i.e. amixed Cauhy problem (Cauhy data given on � and Dirihlet data given on�V �R) has a unique solution (modulo gauge transformations whih redueto the identity on �V �R).The presene of a p-dependent sign (�1)p follows from the p-dependeneof the orresponding sympleti form:
p = ZV ÆG0i1:::ip ^ ÆAi1:::ip = (�1)p+1 ZV ÆDi1 :::ip ^ ÆAi1:::ip : (B.13)There is, however, another way to desribe the Hamiltonian evolution of�elds in the region V . Let us perform the Legendre transformation betweenDrA2:::Ap and A0A2:::Ap at the boundary �V . One obtains:�ÆHsym = (�1)p ZV � _Di1:::ipÆAi1:::ip � _Ai1:::ipÆDi1:::ip�+(�1)p Z�V pA0A2:::ApÆDrA2:::Ap � Z�V GrB1:::BpÆAB1:::Bp ; (B.14)



Quasi-Loal Struture of p-Form Theory 173where the new �symmetri� HamiltonianHsym = Han � (�1)p Z�V pDrA2:::ApA0A2:::Ap : (B.15)Observe, that formula (B.14) de�nes the Hamiltonian evolution but on adi�erent phase spae. In order to kill boundary terms in (B.14) one has toontrol on �V : DrA2:::Ap (instead of A0A2:::Ap) and AB1:::Bp . We stress thatfrom the mathematial point of view both desriptions are equally good andan additional physial argument has to be given if we want to hoose one ofthem as more fundamental.B.2 Canonial vs symmetri energyNow, let us disuss the relation between Han andHsym de�ned by (B.12)and (B.15) respetively. One has:Hsym = Han � (�1)p Z�V pDrA2:::ApA0A2:::Ap= H�(�1)pZV p �k �Dki2:::ipA0i2:::ip�=ZV n(�1)pDi1:::ip _Ai1:::ip�L+(�1)pp�A0i2:::ip�kDki2:::ip+Dki2:::ip�kA0i2:::ip�o= ZV � 1p! Di1:::ipEi1:::ip �L� ; (B.16)where the p-form eletri �eld is de�ned byEi1:::ip = Fi1:::ip0 = �[i1Ai2:::ip0℄ : (B.17)Therefore, Hsym = RV T 00sym and Hp = RV T 00an, whereT ��sym = 1p!F ��1:::�pG��1:::�p + g��L ; (B.18)T ��an = ��A�1:::�pG��1:::�p + g��L : (B.19)Obviously, for the Maxwell theory one has:HMaxwellsym = 12p! Z �Di1:::ipDi1:::ip + Bi1:::ipBi1:::ip� : (B.20)



174 D. Chru±i«skiB.3 Redution of the generating formulaAny geometrial objet on (2p + 1)-dimensional hyperplane � may bedeomposed into the radial and tangential omponents, e.g. a p-form gaugepotential Ai1:::ip deomposes into the radial ArA2:::Ap and tangential AA1:::Ap .On eah sphere 2p-dimensional sphere S2p(r), ArA2:::Ap de�nes a (p � 1)-form whereas AA1:::Ap a p-form. Now, any p-form on S2p(r) may be furtherdeomposed into �longitudinal� and �transversal� parts:AA1:::Ap = r[A1uA2:::Ap℄ + "A1:::ApB1:::BprB1vB2:::Bp ; (B.21)where "A1:::ApB1:::Bp denotes the Lévi�Civita tensor density on S2p(r) suhthat "12:::2p = �p. Both u and v are (p � 1)-forms on S2p(r). Now, us-ing (B.21) and integrating by parts one gets:ZV � _Di1:::ipÆAi1 :::ip � _Ai1:::ipÆDi1:::ip�= ZV pn� _DrA2:::ApÆArA2:::Ap � _ArA2:::ApÆDrA2:::Ap�+p! h��r _DrA2:::Ap� ÆuA2:::Ap � _uA2:::ApÆ ��rDrA2:::Ap�i� "A1:::ApB1:::Bp h�rB1 _DA1:::Ap� ÆvB2:::Bp � _vB2:::BpÆ �rB1DA1:::Ap�io ;(B.22)where we have used the Gauss lawrA1DA1:::Ap = ��rDrA2:::Ap : (B.23)Moreover, due to (B.21)Z�V GrA1:::ApÆAA1:::Ap= Z�V n(�1)pp! _DrA2:::ApÆuA2:::Ap��"A1:::ApB1:::BprB1GrA1:::Ap� ÆvB2:::Bpo :(B.24)In deriving (B.24) we have usedrA1GA1:::Apr = � _DrA2:::Ap ; (B.25)



Quasi-Loal Struture of p-Form Theory 175whih follows from the �eld equations rA1GA1:::Apr+�0G0A2:::Apr = 0. Now,taking into aount (B.22) and (B.24) the generating formula (B.14) maybe rewritten in the following way:�ÆHsym = (�1)p ZV nh _DrA2:::ApÆ �pArA2:::Ap � p!�ruA2:::Ap�� �p _ArA2:::Ap � p!�r _uA2:::Ap� ÆDrA2:::Api�h �"A1:::ApB1:::BprB1 _DA1:::Ap� ÆvB2:::Bp� _vB2:::BpÆ �"A1:::ApB1:::BprB1DA1:::Ap� io+(�1)p Z�V �pA0A2:::Ap � p! _uA2:::Ap� ÆDrA2:::Ap+ Z�V �"A1:::ApB1:::BprB1GrA1:::Ap� ÆvB2:::Bp : (B.26)Note, that although ArA2:::Ap , A0A2:::Ap and uA2:::Ap are manifestly gauge-dependent, the ombinations pArA2:::Ap � p! �ruA2:::Ap and pA0A2:::Ap �p! �0uA2:::Ap are gauge-invariant. To simplify our onsideration we hoosethe speial gauge u � 0, i.e. a p-form AA1:::Ap on S2p(r) is purely transver-sal. This ondition, due to (B.21), may be equivalently rewritten asrA1AA1:::Ap = 0 : (B.27)Let us hoose the same ondition for the radial partrA2ArA2:::Ap = 0 : (B.28)Assuming (B.27) and (B.28) one may show [16℄�p�1ArB2:::Bp = (�1)p+1 r2p p! "A1:::ApB1:::BprB1BA1:::Ap ; (B.29)where �p�1 = (p� 1)! �r2rArA � (p2 � 1)� (B.30)equals the Laplae�Beltrami operator on o-exat (p � 1)-forms on S2p(1)[16℄. In the same way BrA2:::Ap = � p!r2 �p�1vA2:::Ap : (B.31)



176 D. Chru±i«skiFinally, introduingQ A2:::Ap1 = DrA2:::Ap ; (B.32)Q A2:::Ap2 = BrA2:::Ap ; (B.33)�1B2:::Bp = rp! ��1p�1 �"A1:::ApB1:::BprB1BA1:::Ap� ; (B.34)�2B2:::Bp = � rp! ��1p�1 �"A1:::ApB1:::BprB1DA1:::Ap� ; (B.35)the formula (B.26) simpli�es to�ÆHsym = ZV �p n� _�1A2:::ApÆQ A2:::Ap1 � _Q A2:::Ap1 Æ�1A2:::Ap�+ (�1)p+1 � _�2A2:::ApÆQ A2:::Ap2 � _Q A2:::Ap2 Æ�2A2:::Ap�o+ Z�V �p ��1A2:::ApÆQ A2:::Ap1 + �1A2:::ApÆQ A2:::Ap1 � ; (B.36)where we introdued the boundary momenta:�1A2:::Ap = (�1)p pr A0A2:::Ap ; (B.37)�2B2:::Bp = � rp! ��11 "A1:::ApB1:::BprB1GrA1:::Ap : (B.38)In the formula (B.36) we have introdued:Ql A2:::Ap := gA2B2 : : : gApBp Q B2:::Bpl ; (B.39)� l A2:::Ap := gA2B2 : : : gApBp � lB2:::Bp ; (B.40)for l = 1; 2. For the Maxwell theoryHMaxwellsym = 12(p� 1)! ZV �p 2Xl=1 � 1r2Q A2:::Apl Ql A2:::Ap�� l A2:::Ap�p�1� lA2:::Ap� 1r2p�r(r2p�1Ql A2:::Ap)��1p�1�r �rQ A2:::Apl �� ; (B.41)and, therefore, the boundary momenta read:�lA2:::Ap = 1r2p�1�p�11 �r �r2p�1Ql A2:::Ap� ; l = 1; 2: (B.42)



Quasi-Loal Struture of p-Form Theory 177B.4 SummaryThe quasi-loal redued variables �Q A2:::Apl ;� lA2:::Ap� ful�ll the follow-ing onditions [16℄:rA2Q A2:::Apl = rA2� lA2:::Ap = 0 ; l = 1; 2; (B.43)whih follow from the Gauss laws. In the geometri language it means that?Ql and ?� l are losed (p+ 1)-forms on S2p(r) (? denotes the Hodge dualde�ned via "A1:::ApB1:::Bp). They are gauge-invariant and ontain the entireinformation about p-forms D and B.The �symmetri� dynamis de�ned by (B.36) orresponds to the Dirih-let boundary ondition for positions Ql whereas the �anonial� dynamisorresponds to the Dirihlet onditions for �1A2:::AP and Q2. But Dirihletondition for �1A is equivalent to the Neumann ondition for �rDrA2:::ApZ�V �pQ A2:::Ap1 Æ�1A2:::Ap = Z�V r��1p�1Q A2:::Ap1 Æ ��rDrA2:::Ap� : (B.44)Appendix CGeneral p-form theory with matterNow, onsider a p-form eletromagnetism interating with the hargedmatter �eld � (for simpliity let � be a omplex (p � 1)-form). In thepresene of harged matter the Lagrangian generating formula (B.1) has tobe replaed by:�ÆL = �� �G��1:::�pÆA�1�p + P��2:::�pÆ��2:::�p� ; (C.1)where the matter �momentum�P�1�2:::�p = �p! �L�(�[�1��2:::�p℄) : (C.2)Beause L should de�ne a gauge-invariant theory let us assume that there isa group of gauge transformations U� parameterized by a a p-form � atingin the following way: A! A+ d� and �! U�(�).Now, the target spae of the matter �eld � may be reparameterized� = (';U) in suh a way that a (p � 1)-form U is gauge invariant and a(p� 1)-form ' is the phase undergoing the following gauge transformation:'! '+�. For the (omplex) (p�1)-form one has: U�1:::�p�1 := j��1:::�p�1 j



178 D. Chru±i«skiand '�1:::�p�1 = Arg��1:::�p�1 . Therefore, the matter part in (C.1) may berewritten as follows:P�1:::�pÆ��2:::�p = J�1:::�pÆ'�2 :::�p + p�1:::�pÆU�2 :::�p : (C.3)Gauge invariane of the theory means that the gauge dependent quantities,i.e. A and ', enter into L via the gauge-invariant ombinations only:L = L �F�1:::�p+1 ;D�'�1:::�p�1 ; U�1:::�p�1 ; ��U�1:::�p�1� ; (C.4)where D�'�1:::�p�1 := 1p �[�'�1:::�p�1℄ �A��1:::�p�1 (C.5)denotes a ovariant derivative of '�1:::�p�1 . This implies, that the momentumJ�1:::�p anonially onjugated to '�1:::�p is equal to the eletri urrentJ�1:::�p = �p! �L�(�[�1'�2:::�p℄) = p! �L�A�1 :::�p = ���G��1:::�p : (C.6)Now, instead of (B.9) one hasÆ ZV L = ZV �0�(�1)pDi1:::ipÆAi1:::ip+(�1)p�i1:::ip�1Æ'i1:::ip�1 � �i1:::ip�1ÆUi1:::ip�1�� Z�V �(�1)ppDrA2:::ApÆA0A2:::Ap+GrA1:::ApÆAA1:::Ap + (�1)p(p� 1)�rA3:::ApÆ'0A3:::Ap+JrA2:::ApÆ'A2:::Ap�(p� 1)�rA3:::ApÆU0A3:::Ap+prA2:::ApÆUA2:::Ap� ;(C.7)with �i1:::ip�1 := J i1:::ip�10 (it de�nes a (p�1)-form harge density on (2p+1)-dim. hyperplane �) and �i1:::ip�1 := p0i1:::ip�1 . Now, to pass to the Hamil-tonian piture one has to perform the following Legendre transformationsbetween: (1) D and _A, (2) � and _', (3) � and _U in the volume V , andbetween (4) Dr and A0, (5) �r and '0 and (6) �r and U0 at the boundary�V . One obtains the following generalization of (B.14):
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�ÆHsym = ZV n(�1)p � _Di1:::ipÆAi1:::ip � _Ai1:::ipÆDi1:::ip�+(�1)p � _�i1:::ip�1Æ'i1:::ip�1 � _'i1:::ip�1Æ�i1 :::ip�1�� � _�i1:::ip�1ÆUi1 :::ip�1 � _Ui1:::ip�1Æ�i1:::ip�1�o� Z�V n(�1)pA0A2:::ApÆDrA2:::Ap+GrA1:::ApÆAA1:::Ap + (�1)p(p� 1)'0A3:::ApÆ�rA3:::Ap�JrA2:::ApÆ'A2:::Ap � (p� 1)U0A3 :::ApÆ�rA3:::Ap � prA2:::ApÆUA2:::Apo ;(C.8)where the �symmetri� Hamiltonian of the interating eletromagneti �eldand the harged matter represented by � reads:Hsym = ZV n(�1)pDi1:::ip _Ai1:::ip+(�1)p�i1:::ip�1 _'i1:::ip�1 � �i1:::ip�1 _Ui1:::ip�1 �L��k h(�1)ppDki2:::ipA0i2:::ip+(�1)p(p� 1)�ki3:::ip'0i3:::ip � (p� 1)�ki3:::ipU0i3:::ipio : (C.9)Now, using �kDki2:::ip = �i2:::ip ; (C.10)one gets the following formula for Hsym:Hsym = ZV n 1p!Di1:::ipEi1:::ip+(�1)pp �i1:::ip�1D0'i1:::ip�1 � �i1:::ip�1 _Ui1:::ip�1 �L+�k h(p� 1)�ki3:::ipU0i3:::ipio : (C.11)



180 D. Chru±i«skiMoreover, due to (C.10), we may rewrite the dynamial part for 'in (C.8) as follows:ZV � _�i2:::ipÆ'i2 :::ip � _'i2:::ipÆ�i2:::ip�= ZV �� _Dki2:::ipÆ(�k'i2:::ip) + (�k _'i2:::ip)ÆDki2:::ip�+ Z�V � _DrA2:::ApÆ'A2:::Ap � _'A2:::ApÆDrA2:::Ap� : (C.12)Now, the term _DrA2:::Ap at the boundary may be easily eliminated by the�eld equations (C.6)_DrA2:::Ap = (�1)p �JrA2:::Ap � �A1GrA1A2:::Ap� : (C.13)Introduing hydrodynamial variables:V�1�2:::�p := �D�1'�2:::�p ; (C.14)we may rewrite �nally (C.8) as follows:�ÆHsym = ZV n(�1)p � _Di1:::ipÆVi1:::ip � _Vi1:::ipÆDi1:::ip�� � _�i1:::ip�1ÆUi1:::ip�1 � _Ui1:::ip�1Æ�i1:::ip�1�o� Z�V n(�1)pV0A2:::ApÆDrA2:::Ap + GrA1:::ApÆVA1:::Ap�(p� 1)U0A3:::ApÆ�rA3:::Ap � prA2:::ApÆUA2:::Apo ; (C.15)i.e. (C.15) has exatly the same form as (B.14) with A replaed by the gauge-invariant p-form V and supplemented by the gauge-invariant anonial pairof (p � 1)-forms (U; �) together with the boundary momenta: (p� 2)-formU0 and (p� 1)-form pr on �V . All gauge-dependent terms dropped out.



Quasi-Loal Struture of p-Form Theory 181Appendix D2 potentials vs redued variablesLet us introdue a seond p-form gauge potential Z on � suh thatDi1:::ip = "i1:::ipkj1:::jp�k Zj1:::jp : (D.1)Assuming for Z the same gauge onditions as for A, i.e.rA1ZA1:::Ap = 0 ; (D.2)rA2ZrA2:::Ap = 0 ; (D.3)we have in analogy to (B.29)�p�1ZrB2:::Bp = (�1)p+1 r2p p! "A1:::ApB1:::BprB1DA1:::Ap : (D.4)Therefore, taking into aount (B.34)�(B.35) one has:�1B2:::Bp = (�1)p+1 rp ArB2:::Bp ; (D.5)�2B2:::Bp = (�1)p rp ZrB2:::Bp ; (D.6)i.e. the entire gauge-invariant information about two p-forms Z and A on �is enoded into two omplex (p� 1)-forms Q and � on eah S2p(r).This work was partially supported by the Polish State Committee forSienti� Researh (KBN) Grant no 2 P03A 047 15.REFERENCES[1℄ C. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, W.H. Freeman and Co.,San Franiso, 1973.[2℄ R. Haag, Loal Quantum Physis, Springer-Verlag, Berlin 1996.[3℄ C. Teitelboim, Phys. Lett. B167, 63 (1986); M. Henneaux, C. Teitelboim,Found. Phys. 16, 593 (1986).[4℄ R. Nepomehie, Phys. Rev. D31, 1921 (1985).[5℄ G.W. Gibbons, D.A. Rasheed, Nul. Phys. B454, 18 (1995).[6℄ S. Deser, A. Gombero�, M. Henneaux, C. Teitelboim, Phys. Lett. B400, 80(1997).[7℄ S. Deser, A. Gombero�, M. Henneaux, C. Teitelboim, Nul. Phys. B520, 179(1998).
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