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VARIATIONAL APPROACH TO THEBÄCKLUND TRANSFORMATIONSK. SokalskiFa
ulty of Ele
tri
al Engineering, Te
hni
al University of Cz�esto
howaAl. Armii Krajowej 17, 42-200 Cz�sto
howa, Polandand Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandT. Wiete
ha and Z. LisowskiInstitute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived September 5, 2000; revised version re
eived De
ember 15, 2000)Variational approa
h to the Bä
klund transformations is derived on thebasis of strong or semi-strong ne
essary 
ondition for extremum of a fun
-tional. The obtained method is applied to the sine-Gordon and Korteweg�de Vries equations.PACS numbers: 02.30.Wd, 02.60.Lj1. Introdu
tionThere are di�erent ways in whi
h the Bä
klund transformations maybe a
hieved [1�5℄. One of them, a variational approa
h [4℄ seems to bevery promising. A fair 
onne
tion between the Bä
klund transformationsfor some soliton equations and the 
al
ulus of variations has been shown toexist and applied to a 
lass of se
ond-order partial di�erential equations inm independent variables. This 
lass 
ontains the sine-Gordon equation asa spe
ial 
ase for m = 2. Also the variational approa
h after 
ertain adap-tations of the te
hnique was su

essfully applied to the Korteweg�de Vriesequation together with its modi�
ations. However, the Rund's approa
hleads to a parti
ular form of the Bä
klund transformation. He assumes thata pair of the partial di�erential equationsE(u) = 0 ;D(v) = 0 ; (1)(17)
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orresponds to the Euler�Lagrange equations resulting from the variationalprin
iples given by the Lagrangians L(u) and L(v), respe
tively. It is im-portant to say that Euler�Lagrange equations are the ne
essary 
onditionsfor the extremum of a
tion fun
tional to exist (ne
essary 
onditions). Ifthere exists a relation between the fun
tions u and v and their derivativeswhi
h are su
h, as to imply that the di�eren
e L(u)� L(v) is a divergen
e,then E(v) = 0, whenever (1) is satis�ed, and 
onversely. Thus the relations:E(u) = 0 and E(v) = 0 possess the desired property for the Bä
klund trans-formation. They are of a very parti
ular form be
ause there is no 
ouplingbetween u and v like in the original pair (1). It would be more fundamentalto start from the general form of the least a
tion prin
iple leading dire
tly toa general form of the Bä
klund transformations of (1). This 
an be a
hievedby extending the Rund's 
onstraint:L(u)� L(v) = divergen
e (2)to a more general one: Æ�� = 0, where�� = t2Zt1 ZX (L(u) + �0L(v))dtdx + I ; (3)and where I is a topologi
al invariant.Su
h approa
h is more universal and may have a stru
ture whi
h enablesone to redu
e the derivation of the Bä
klund transformation to an algorithm.There is also a parti
ular question how to apply the 
al
ulus of variationsin order to derive the partial di�erential equations of the lower order thenthe order of the 
orresponding Euler�Lagrange equations? Moreover, theset of solutions of the looked for equations must satisfy the Euler�Lagrangeequation. It is obvious that (1) is invariant with respe
t to the s
aling ofits a
tion fun
tional �� by the topologi
al invariants. One 
an 
onsider thetopologi
al invariant in (3) as a 
onstraint for the extremum of the a
tionfun
tional: I = 
onst. This 
onstraint is trivial and does not 
ontribute tothe �eld equation (1) being the ne
essary 
onditions. But if one formulatesvariational problem whi
h breaks invarian
e of ne
essary 
onditions withrespe
t to the gauge s
aling by I, than one derives new �eld equations. Ifthis new variational problem guarantees that the set of solutions of newequations is in
luded in the solution set of (1) then one derive new methodfor the non-linear �eld theory. In order to realize this idea we introdu
e andapply the 
on
ept of strong ne
essary 
ondition. After some 
al
ulationsthe new equations of motion appear to be the Bä
klund transformations.The paper is organized in the following way: In Chapter 2 we introdu
ethe strong ne
essary 
ondition 
on
ept and we derive equations of motion.
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klund Transformations 19Chapter 3 presents derivation of the Bä
klund transformation for the sine-Gordon equation. In Chapter 4 we introdu
e 
on
ept of the semi-strongne
essary 
ondition and we present its appli
ation to the KdV equation. In
on
lusions we dis
uss how to generalize the results of the present paper andsuggest new possible appli
ations of the strong and semi-strong ne
essary
onditions 
on
epts.2. Equations of motion resulting from the strongne
essary 
ondition 
on
eptWe shall 
onsider a partial di�erential equation of motion resulting fromthe least a
tion prin
iple: Æ�[u℄ = 0, where:�[u℄ = ZE2 F (u; u;x; u;t)dxdt (4)and u(�; t) 2 C1 ;u(x; �) 2 C1 :Let us analyse a variationÆ�[u℄ = ZE2 (F;uÆu+ F;u;xÆu;x + F;u;tÆu;t)dxdt ; (5)where Æu is the in
rement of u(x). The ne
essary 
ondition and the assump-tion for the �xed boundaries lead to the Euler�Lagrange equation:F;u �DxF;u;x �DtF;u;t = 0 : (6)The order of (6) is always higher then the highest order of derivative of u(x)appearing in (4). The reason for in
reasing the orders are operators Dx andDt in (6). Therefore, in order to derive the Bä
klund transformation fromthe least a
tion prin
iple we should not apply the Euler�Lagrange's equationas the ne
essary 
ondition. However, the only way to satisfy Æ� = 0 without(6) is to set up the following 
onditions:F;u;x = 0 ; (7)F;u;t = 0 ; (8)F;u = 0 : (9)All solutions of (7)�(9) satisfy the Euler�Lagrange equation (6) but in most
ases the set of solutions of (7)�(9) is trivial (u = 
onst) or empty. In order
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e integral 
onstraints for the extremum of �[u℄:I1 = 
1; I2 = 
2, where I1[u℄ = ZE2 W1(u; u;x)dxdt ; (10)I2[u℄ = ZE2 W2(u; u;t)dxdt ; (11)and where 
i are 
onstants. These 
onstraints should not 
hange the Euler-Lagrange equation, therefore Ii-s must be topologi
al invariants. Topologi
alinvariant means that Ii remains 
onstant while its argument u varies lo
ally:ÆIi � 0. Applying the ne
essary 
ondition for a 
onditional extremum offun
tional to exist we obtain:�0 ZE2 (F;uÆu+ F;u;xÆu;x + F;u;tÆu;t)dxdt�1 ZE2 (W1;uÆu+W1;u;xÆu;x +W1;u;tÆu;t)dxdt�2 ZE2 (W2;uÆu+W2;u;xÆu;x +W2;u;tÆu;t)dxdt = 0 : (12)The 
on
ept of strong ne
essary 
ondition applied to (12) leads to the fol-lowing equations of motion:�0F;u + �1W1;u + �2W2;u = 0 ; (13)�0F;ux + �1W1;ux + �2W2;ux = 0 ; (14)�0F;ut + �1W1;ut + �2W2;ut = 0 : (15)Contrary to the Euler�Lagrange equation now the topologi
al invariants
ontribute to the �eld equation. For a s
alar �eld u(x; t) the Wi 
an be
hosen in the following way: W1 = DxG1(u) ;W2 = DtG2(u) : (16)Expressions (13)�(15) establish a simultaneous set of equations for u(x; t); G1,and G2. It must be stressed again that any solution of (13),(15) for u(x) sat-is�es the Euler�Lagrange equation. Relation between the Euler's theoremand the strong ne
essary 
onditions is presented on Fig.1 and Fig.2.
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Euler-Lagrange�s
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Fig. 1. The invarian
e of the Euler�Lagrange's equation with respe
t to the gaugetransformation.
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Fig. 2. In�uen
e of the gauge transformation on the �eld equations resulting fromthe strong ne
essary 
ondition 
on
ept.
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klund transformations for the sine-Gordon equationLet us 
onsider the sine-Gordon equation in the light-
one 
oordinatesystem: u;xt = sin(u) : (17)This model possesses poor topology, e.g. all 
on�gurations of the �eld u(x; t)satisfying the boundary 
onditions u(�E2) = 
onst are 
lassi�ed by the ele-ments of homotopy group �2(S1) whi
h is trivial. Nondivergen
e topologi
alinvariants appear to be degrees of elements of �n(Sn) or Hopf invariants of�2n�1(Sn) homotopy groups. Therefore, in order to 
onstru
t them onehas to 
ombine an appropriate number of �elds u; v; :::, a

ordingly to thedimension of the independent variables spa
e. It is also ne
essary to as-sume the boundary 
onditions. In the sine-Gordon 
ase the dimension ofthe independent variables spa
e is equal two, therefore we have to 
onsidera model 
orresponding to the homotopy group �2(S2). Thus, we 
ombinetwo independent sine-Gordon equations:u;xt = sin(u) ;v;xt = sin(v) : (18)An a
tion fun
tional for the two 
omponent model (18) is of the followingform:�[u; v℄ = ZE2 �12u;xu;t � 
os(u) + �0�12v;xv;t � 
os(v)�� dxdt : (19)For the purpose of the strong extremum 
on
ept we suppose the 
onstraintsde�ned by the topologi
al invariants:I1 = ZE2 G1(u; v)(u;xv;t � u;tv; x)dxdt ; (20)I2 = ZE2 DxG2(u; v)dxdt ; (21)I3 = ZE2 DtG3(u; v)dxdt : (22)Expanding (21), (22) we get:�2I2 = ZE2 (f;uu;x + f;vv;x)dxdt ; (23)�3I3 = ZE2 (g;uu;t + g;vv;t)dxdt ; (24)
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h to the Bä
klund Transformations 23where we introdu
e a new notation: �1G1 = G;�2G2 = f and �3G3 = g.Minimizing �� = � + �1I1 + �2I2 + �3I3 we derive the following set ofequations: sin(u) + G;u(u;xv;t � u;tv;x) + (f;uuu;x + f;uvv;x)+ (g;uuu;t + g;uvv;t) = 0 ; (25)�0 sin(v) + G;v(u;xv;t � u;tv;x) + (f;uvu;x + f;vvv;x)+ (g;uvu;t + g;vvv;t) = 0 ; (26)12u;t + Gv;t + f;u = 0 ; (27)12u;x � Gv;x + g;u = 0 ; (28)�02 v;t � Gu;t + f;v = 0 ; (29)�02 v;x + Gu;x + g;v = 0 : (30)It is easy to prove that any solution of (25)�(30) satis�es Euler's equations(18). Equations (25) and (26) 
an be expressed by divergen
es:sin(u) +Dx(f;u +Gv;t) +Dt(g;u �Gv;x) = 0 ; (31)sin(u) +Dx(f;v +Gu;t) +Dt(g;v �Gu;x) = 0 : (32)Following (27)�(30) we express the arguments of Dx and Dt in (31) and (32)by u;x; u;t; v;x and v;t. Results are equations (18)2.All equations (25)�(30) must be self-
onsistent. Formally we have sixsimultaneous equations for the �ve unknown fun
tions: u; v;G; f; g. Weredu
e the number of equations from six to four by making them linearlydependent. We a
hieve this by the following Ansatz:�04 +G2 = 0 ; (33)2Gf;u + f;v = 0 ; (34)2Gg;u � g;v = 0 : (35)Condition (33) implies that G must be a 
onstant. For further 
al
ulationswe 
hoose �0 = �1 and G =+� 12 . Now we have to satisfy four equations(25)�(27) and (29). This we realize by identifying ((25),(26)) with ((27),(29)).The last one we solve using the following Ansatz for f and g:f = � 
os u+ v2 ;g = � 
os u� v2 :
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ha, Z. LisowskiWe derive from (25) and (26):sin u� v2 = �2 u;x + v;x2 ; (36)sin u+ v2 = �2 u;t � v;t2 ; (37)and from (27)�(30): u;t � v;t2 � �2 sin u+ v2 = 0 ; (38)u;x + v;x2 � �2 sin u� v2 = 0 : (39)(40)We get 
onsisten
y of (36)�(39) for �� = 4 or letting �2 = � and �2 = 1� .Finally, (36),(37) is equivalent to (38),(39) and forms the Bä
klund trans-formation for the sine-Gordon system.4. Semi-strong ne
essary 
ondition 
on
ept and KdV equationIn order to make our formalism more universal we have to extend thestrong ne
essary 
ondition 
on
ept to a semi-strong one. Let � be a fun
-tional on a set of di�erentiable fun
tions. These fun
tions 
an be regarded aselements of the spa
e C2. Let � depend on the higher derivatives of u(x; t):�[u℄ = t2Zt1 ZX F (u; u;t; u;x; u;xx)dxdt : (41)A

ordingly, one 
an investigate the ne
essary 
ondition for the extremumof (41) to exist:t2Zt1 ZX (�F�u Æu+ �F�u;t Æu;t + �F�u;x Æu;x + �F�u;xx Æu;xx)dxdt = 0 : (42)Now, there are more then one possibilities to satisfy (42) without Euler�Lagrange's equation. One of them is a semi-strong ne
essary 
ondition:F;u = 0 ; (43)F;u;t = 0 ; (44)F;u;x �DxF;u;xx = 0 : (45)
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klund Transformations 25If (41) depends on the higher derivatives of u(x; t) up to u(x; t);kx then (45)takes the following extended form:F;u;x�DxF;u;xx+D2xF;u;xxx�D3xF;u;xxxx+:::+(�1)k�1Dk�1x F;u;kx = 0 ; (46)where u;kx means the derivative of the order k.Semi-strong ne
essary 
ondition 
on
ept supplies a helpful tool for thetheory of non-linear partial di�erential equations. We present its appli
ationto the Korteweg�de Vries equation.The topology asso
iated with the KdV equation is similar to that asso
i-ated with the sine-Gordon equation. Therefore, we have to 
onsider twoindependent �elds �u and �v governed by KdV equations:�u;t � 6�u�u;x + �u;xxx = 0 ;�v;t � 6�v�v;x + �v;xxx = 0 : (47)It is easy to see that the Lagrangian densityF (u; v; u;x; v;x; u;t; v;t; u;xx; v;xx)= 12u;xu;t � u3;x � 12u2;xx + �(12v;xv;t � v3;x � 12v2;xx) (48)generates (47) as the 
orresponding Euler�Lagrange equations, where�u = u;x and �v = v;x, [6℄. We atta
h three topologi
al invariants with thefollowing fun
tional densities:W1 = G1(u; v)(u;xv;t � u;tv;x) ;W2 = DtG2(u; v) ;W3 = DxG3(u; v; u;x; v;x; u;xx; v;xx; u;xxx; v;xxx) : (49)E�e
tive a
tion fun
tional in
luding the topologi
al 
onstraints de�ned by(49) takes the following form:��[u; v℄ = ZE2 (F (u; v; u;x; v;x; u;t; v;t; u;xx; v;xx) +W1(u; v; u;x; v;x; u;t; v;t)+W2(u; v; u;t; v;t) +W3(u; v; u;x; v;x; u;xx; v;xx; u;xxx; v;xxx; u;xxxx; v;xxxx))dxdt :(50)Applying to (50) the 
on
ept of the semi-strong 
ondition we derive thefollowing set equations of motion:G1;u(u;xv;t � u;tv;x) + (G2;u);t + (G3;u);x = 0 ;G1;v(u;xv;t � u;tv;x) + (G2;v);t + (G3;v);x = 0 ; (51)
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ha, Z. Lisowski12u;x �G1v;x +G2;u = 0 ;�2 v;x +G1u;x +G2;v = 0 ; (52)12u;t � 3u2;x + u;xxx +G1v;t +G3;u = 0 ;�(12v;t � 3v2;x + v;xxx)�G1u;t +G3;v = 0 : (53)Performan
e of partial derivatives with respe
t to x (1,2 and 3 degrees) gen-erates a lot of 
ompli
ated terms. (51),(52) and (53) have the �nal redu
edform obtained with the aid of the following theorem.If W3 is a divergen
e of an arbitrary order n:W3 = DxG3(u; v; u;x; v;x; u;xx; v;xx; :::; u;nx; v;nx) ; (54)then the semi-strong ne
essary 
ondition:F �;u;x �DxF �;u;xx +D2xF �;u;xxx + :::+ (�1)n�1D(n�1)x F �;u;nx = 0 ;F �;v;x �DxF �;v;xx +D2xF �;v;xxx + :::+ (�1)n�1D(n�1)x F �;v;nx = 0 ; (55)
an be redu
ed to (53), where F � = F + W1 + W2 + W3. The proof 
anbe done by indu
tion starting from n = 2: G3(u; v; u;x; v;x; u;xx; v;xx). (51)�(53) establish a system of six simultaneous equations for the �ve unknownfun
tions: u; v;G1; G2; G3. In order to make them 
onsistent we have tosubstitute G1 = 12 , � = �1 andG2 = 112(u� v)3 + 
(u� v) ;G3(u; v; :::; u;xxx; v;xxx) = ��32(u2;x + v2;x) + 12(u;xxx + v;xxx)� (u� v) ;(56)where 
 is an arbitrary real 
onstant. In 
onsequen
e two equations (52)redu
e to one equation: (u+ v);x = 2
 + 12(u� v)2 (57)and (53) to the following one:(u� v);t � 3(u2;x � v2;x) + (u� v);xxx = 0 : (58)Finally, using (57) we redu
e (51) to(u� v) �(u� v);t � 3(u2;x � v2;x) + (u� v);xxx� = 0 : (59)(57)�(59) establish the Bä
klund transformation for the Korteweg�de Vriesequation.
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luding remarksAppli
ation of minimization pro
edure with the topologi
al 
onstraintshas been developed sin
e twenty years [7�10℄ and applied to non-linear mod-els asso
iated with non-trivial homotopy groups �n(Sn) and �2n�1(Sn). Inall these 
ases the derived equations were equivalent to the Bogomolny de-
omposition [11, 12℄. However, the models 
onne
ted to trivial homotopygroups generate a new quality. For instan
e, the sine-Gordon or Korteweg�de Vries equations are asso
iated with the trivial homotopy group �2(S1).In order to generate a topologi
al invariant di�erent than a divergen
e wehad to atta
h a se
ond independent �eld model asso
iated with identi
alhomotopy group (18), (47). In this way we obtained the models 
onne
tedto �2(S2). Then, applying the strong ne
essary 
ondition 
on
ept to su
h
omplex models we derived the Bä
klund transformations. One 
an imag-ine a lot of new possibilities in appli
ation of this pro
edure. First, (18) or(47) need not to 
onsist of identi
al equations. For instan
e, instead of twoKdV equations one 
an 
onsider two independent equations from the KdV-hierar
hy, or a 
ombination of KdV and modi�ed KdV ones. Se
ond, one 
an
ombine two or more di�erent topologies leading to the nontrivial homotopygroup. Both ways lead to a new 
lass of asso
iated equations of the lowerdegree than the original equation of motion. The Bogomolny de
ompositionand the Bä
klund transformations establish the �rst two 
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