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1. Introduction

There are different ways in which the Bécklund transformations may
be achieved [1-5]. One of them, a variational approach [4] seems to be
very promising. A fair connection between the Béacklund transformations
for some soliton equations and the calculus of variations has been shown to
exist and applied to a class of second-order partial differential equations in
m independent variables. This class contains the sine-Gordon equation as
a special case for m = 2. Also the variational approach after certain adap-
tations of the technique was successfully applied to the Korteweg—de Vries
equation together with its modifications. However, the Rund’s approach
leads to a particular form of the Béicklund transformation. He assumes that
a pair of the partial differential equations

E(u)=0,
D(v) =0, (1)

(17)
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corresponds to the Euler-Lagrange equations resulting from the variational
principles given by the Lagrangians L(u) and L(v), respectively. It is im-
portant to say that Fuler—Lagrange equations are the necessary conditions
for the extremum of action functional to exist (necessary conditions). If
there exists a relation between the functions u and v and their derivatives
which are such, as to imply that the difference L(u) — L(v) is a divergence,
then F(v) = 0, whenever (1) is satisfied, and conversely. Thus the relations:
E(u) =0 and E(v) = 0 possess the desired property for the Backlund trans-
formation. They are of a very particular form because there is no coupling
between u and v like in the original pair (1). It would be more fundamental
to start from the general form of the least action principle leading directly to
a general form of the Bicklund transformations of (1). This can be achieved
by extending the Rund’s constraint:

L(u) — L(v) = divergence (2)

to a more general one: §@* = 0, where

// )+ XoL(v))dtdz + T, (3)

and where I is a topological invariant.

Such approach is more universal and may have a structure which enables
one to reduce the derivation of the Bécklund transformation to an algorithm.
There is also a particular question how to apply the calculus of variations
in order to derive the partial differential equations of the lower order then
the order of the corresponding Fuler-Lagrange equations? Moreover, the
set of solutions of the looked for equations must satisfy the Euler—Lagrange
equation. It is obvious that (1) is invariant with respect to the scaling of
its action functional @* by the topological invariants. One can consider the
topological invariant in (3) as a constraint for the extremum of the action
functional: I = const. This constraint is trivial and does not contribute to
the field equation (1) being the necessary conditions. But if one formulates
variational problem which breaks invariance of necessary conditions with
respect to the gauge scaling by I, than one derives new field equations. If
this new variational problem guarantees that the set of solutions of new
equations is included in the solution set of (1) then one derive new method
for the non-linear field theory. In order to realize this idea we introduce and
apply the concept of strong necessary condition. After some calculations
the new equations of motion appear to be the Bécklund transformations.
The paper is organized in the following way: In Chapter 2 we introduce
the strong necessary condition concept and we derive equations of motion.
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Chapter 3 presents derivation of the Bicklund transformation for the sine-
Gordon equation. In Chapter 4 we introduce concept of the semi-strong
necessary condition and we present its application to the KdV equation. In
conclusions we discuss how to generalize the results of the present paper and
suggest new possible applications of the strong and semi-strong necessary
conditions concepts.

2. Equations of motion resulting from the strong
necessary condition concept

We shall consider a partial differential equation of motion resulting from
the least action principle: 0@[u] = 0, where:

Plu] = /F(u,u’z,uJ)daEdt (4)
E2
and
u('a t) € Cl )
u(z,-) € C'.
Let us analyse a variation
5B[u] = / (Fubu+ Fuu dus + Fo,du)dadt, (5)
E2

where du is the increment of u(z). The necessary condition and the assump-
tion for the fixed boundaries lead to the Euler-Lagrange equation:

F,—D,F, —D,F,, =0. (6)

The order of (6) is always higher then the highest order of derivative of u(z)
appearing in (4). The reason for increasing the orders are operators D, and
D, in (6). Therefore, in order to derive the Bécklund transformation from
the least action principle we should not apply the Euler-Lagrange’s equation
as the necessary condition. However, the only way to satisfy & = 0 without
(6) is to set up the following conditions:

Eu,z = O’ (7)
F7u,t = 0’ (8)
Fu = 0. (9)

All solutions of (7)—(9) satisfy the Euler-Lagrange equation (6) but in most
cases the set of solutions of (7)—(9) is trivial (v = const) or empty. In order
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to extend this set we introduce integral constraints for the extremum of @[ul:
Iy = ¢q, Ir = co, where

L[y = / W, ) davdt (10)
E2

Llu] = /Wg(u,u’t)dxdt, (11)
E2

and where ¢; are constants. These constraints should not change the Euler-
Lagrange equation, therefore I;-s must be topological invariants. Topological
invariant means that I; remains constant while its argument u varies locally:
0I; = 0. Applying the necessary condition for a conditional extremum of
functional to exist we obtain:

Ao /(Eudu + Fy,0uy + Fy duy)dedt
E2

A1 /(WLU(SU + Wl,uqzéu@ + Wl,u’t(yu,t)d.’lidt
B2

Ao /(WQ,U5U + WQ’u,méu@ + Wg’u,téu’t)dxdt =0. (12)
E2

The concept of strong necessary condition applied to (12) leads to the fol-
lowing equations of motion:

MoF oy + Wiy +XWo, =0, (13)
MF oy, + Wiy, + AWa,, =0, (14)
MF oy, + MW, + AWy, =0. (15)

Contrary to the Fuler-Lagrange equation now the topological invariants
contribute to the field equation. For a scalar field u(z,t) the W; can be
chosen in the following way:

W, = DacGl(u)a
Wy = DiGa(u). (16)

Expressions (13)—(15) establish a simultaneous set of equations for u(z, t), Gy,
and G5. It must be stressed again that any solution of (13),(15) for u(z) sat-
isfies the Fuler-Lagrange equation. Relation between the Euler’s theorem
and the strong necessary conditions is presented on Fig.1 and Fig.2.
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gauge transformation

o D + 1
Euler’s Euler’s
theorem theorem

Euler-Lagrange’s
equation: (6)

Fig. 1. The invariance of the Euler-Lagrange’s equation with respect to the gauge
transformation.

gauge transformation

b D + |
strong necessary strong necessary
condition condition
trivial equations nontrivial equations
of lower order: of lower order:
(7),(8),(9) (13),(14),(15)

Fig. 2. Influence of the gauge transformation on the field equations resulting from
the strong necessary condition concept.
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3. Bicklund transformations for the sine-Gordon equation

Let us consider the sine-Gordon equation in the light-cone coordinate
system:
U gt = sin(u) . (17)
This model possesses poor topology, e.g. all configurations of the field u(z,t)
satisfying the boundary conditions u(0E?) = const are classified by the ele-
ments of homotopy group m3(S') which is trivial. Nondivergence topological
invariants appear to be degrees of elements of m,(S™) or Hopf invariants of
Ton—1(S™) homotopy groups. Therefore, in order to construct them one
has to combine an appropriate number of fields u, v, ..., accordingly to the
dimension of the independent variables space. It is also necessary to as-
sume the boundary conditions. In the sine-Gordon case the dimension of
the independent variables space is equal two, therefore we have to consider
a model corresponding to the homotopy group m3(S?). Thus, we combine
two independent sine-Gordon equations:

Uzt = sin(u) ,
Vgt = sin(v). (18)

An action functional for the two component model (18) is of the following
form:

1 1
Plu,v] = / [EumUt — cos(u) + Ao <§v7mv’t — cos(v))] dzdt . (19)
2

For the purpose of the strong extremum concept we suppose the constraints
defined by the topological invariants:

I, = /Gl(u,v)(uJQt—u7tv,m)d$dt, (20)

E2
I, = /DmGQ(U,U)d.’L‘dt, (21)

E2
I; = /DtGg(u,v)dxdt. (22)

E2

Expanding (21), (22) we get:
Nl = [ (atsa + fava)dads, (23)
E2

Asly = /(g,uu,t+g,vv,t)d$dta (24)

E‘2
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where we introduce a new notation: \{G; = G, A2Ge = f and A\3G3 = g.
Minimizing @* = @ + A\ I + Aaolo + A3l3 we derive the following set of
equations:

sin(u) + Gu(uave —upwe) + (fuutte + fuve)

+ (g,uuu,t + g,uv’U,t) = Oa (25)
Xosin(v) + Gu(ugvy —uvy) + (fuvtte + fov¥s)
+ (g,uvju,t + g,mJ'U,t) = 07 (26)
1
St + Gupt fu =0, (27)
1
e ~ Gug +9u=0, (28)
A
?01)7,5 - G’U,’t + fﬂ; = 0, (29)
A
2 4 G g = 0. (30)

It is easy to prove that any solution of (25)-(30) satisfies Euler’s equations
(18). Equations (25) and (26) can be expressed by divergences:

sin(u) + Dy (fu + Gvy) + Di(gu — Gvy) = 0, (31)
sin(u) + Dy (fo + Guy) + Di(gy — Guy) = 0. (32)

Following (27)-(30) we express the arguments of D, and Dy in (31) and (32)
by 4 4, u,v, and v, Results are equations (18)0.

All equations (25)-(30) must be self-consistent. Formally we have six
simultaneous equations for the five unknown functions: wu,v,G, f,g. We
reduce the number of equations from six to four by making them linearly
dependent. We achieve this by the following Ansatz:

e =0, (33)
2Gfu+ fo=0, (34)
2Gg.u — g =0. (35)

Condition (33) implies that G must be a constant. For further calculations

+
we choose Ao = —1 and G =— % Now we have to satisfy four equations

(25)-(27) and (29). This we realize by identifying ((25),(26)) with ((27),(29)).
The last one we solve using the following Ansatz for f and g:

S

u—2o

g = v Cos
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We derive from (25) and (26):

2+ 2 2 ' (36)
L U+v vug—v
sin — 3 ! 5 L (37)
and from (27)-(30):
u’t;U’t %smu—;v =0, (38)
u@—Qi—v,m_% U;U—O. (39)
(40)

We get consistency of (36)—(39) for uv = 4 or letting § = o and %

1
2 .
Finally, (36),(37) is equivalent to (38),(39) and forms the Bécklund tranoé
formation for the sine-Gordon system.

4. Semi-strong necessary condition concept and KdV equation

In order to make our formalism more universal we have to extend the
strong necessary condition concept to a semi-strong one. Let @ be a func-
tional on a set of differentiable functions. These functions can be regarded as
elements of the space C2. Let @ depend on the higher derivatives of u(z, )

to
://F(u,u7t,u7x,u7m)dxdt. (41)
t1 X

Accordingly, one can investigate the necessary condition for the extremum
of (41) to exist:

// 5ut+aaF 5u7m+88 O g )dzdt = 0.

T U rx

(42)

Now, there are more then one possibilities to satisfy (42) without Euler—
Lagrange’s equation. One of them is a semi-strong necessary condition

F, =0, (43)
F,u,t =0, (44)
F:“,z _DmF,u,m = 0. (45)



Variational Approach to the Bédcklund Transformations 25

If (41) depends on the higher derivatives of u(z,t) up to u(z,t) x, then (45)
takes the following extended form:
+D2F

U,zz U, zzx T+ U, zzre
> > ,

F,,-D,F —-D3F +...+(—1)k*1D’;*1Eu’km =0, (46)

where u 1, means the derivative of the order k.

Semi-strong necessary condition concept supplies a helpful tool for the
theory of non-linear partial differential equations. We present its application
to the Korteweg—de Vries equation.

The topology associated with the KdV equation is similar to that associ-
ated with the sine-Gordon equation. Therefore, we have to consider two
independent fields u and v governed by KdV equations:

Uy — 6111271; * Ugry = 0,
By — 6004+ D gpe = 0. (47)

It is easy to see that the Lagrangian density

F(U, v, u,ma U,Ia U,t, U,ta u,xwa U,mr;)

1
1 3 1,2 1 3 2
= Ul — Uy — U g + A(EU,IU;t A §U,zz) (48)

generates (47) as the corresponding FEuler-Lagrange equations, where
@ = uy and U = vy, [6]. We attach three topological invariants with the
following functional densities:

Wi = Gi(u,v)(ugvy —upvg),
WQ = DtGQ (ua U) ’
W; = DzGi’x (Ua VU g, Vg, UgyyVgr, U zre, U,mmm) . (49)

Effective action functional including the topological constraints defined by
(49) takes the following form:

*
7 [’LL, ’U] = /(F(’U,, V,Ugz,Vg,Ut,Vit, Uz, 'U,mc) + Wl (U, V,Ugz,Vq,Ut, U,t)
E2
+W2 (Ua v, u,ta v,t) + W3 (U, v, U,z; v,za u,zz; v,zz; U,zzz; v,zzz; U,zzzza v,zzzz))dxdt .
(50)

Applying to (50) the concept of the semi-strong condition we derive the
following set equations of motion:
Gl,u (U,mv,t - U,t'U,z) + (GQ,U),t + (G?x,u),:r = Oa
Gl,v (u,mv,t - U,tv,m) + (G2,v),t + (G3,v),m =0, (51)
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%U,m -~ Gz +Goy =0,
%v,m +Giugz + Gy =0, (52)
1 2
§u’t — 3u7x + U g +Grvg+ Gz =0,
A(%v,t —30% + U gaa) — Gruy + Gs, = 0. (53)

Performance of partial derivatives with respect to z (1,2 and 3 degrees) gen-
erates a lot of complicated terms. (51),(52) and (53) have the final reduced
form obtained with the aid of the following theorem.
If W3 is a divergence of an arbitrary order n:

W3 = D,G3 (Ua Vy U,y Vs Ugzy Vyzxy -y Una, U,na:) s (54)

then the semi-strong necessary condition:

F';;,m B DmF:L,zz + Dngz,zzz +o Tt (_1)n71Dgfn71)Fﬁ;,nz = 0’
F:;,I - DI‘F‘:T),zz + DgF;(/,zzz +ot (_1)n_1D£‘n_1)F:(’l(/,nz = 0’ (55)

can be reduced to (53), where F* = F + Wy + Wy + W3. The proof can
be done by induction starting from n = 2: G3(u, v, U 4,0 4, U gz, U z2). (51)—
(53) establish a system of six simultaneous equations for the five unknown
functions: u,v,G1,Gs,G3. In order to make them consistent we have to
substitute G; = %, A= -1 and

— 1 3
G2 - 12(U’ U) +7(U’ U)’

3 1
G3(Uy Vs oy U ggg s Vgg) = —g(u%ﬂ + vi) + §(u,mm + U g22) | (u—0),

(56)

where v is an arbitrary real constant. In consequence two equations (52)
reduce to one equation:

(u+v) g =27+ %(u —v)? (57)
and (53) to the following one:
(u—v)— 3(u72x — U,Qm) + (U —0) gz =0. (58)
Finally, using (57) we reduce (51) to
(=) [(u =) = 3% —02) + (=) aza] =0, (50)

(57)-(59) establish the Bécklund transformation for the Korteweg—de Vries
equation.
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5. Concluding remarks

Application of minimization procedure with the topological constraints
has been developed since twenty years [7-10| and applied to non-linear mod-
els associated with non-trivial homotopy groups 7,(S™) and map,_1(S™). In
all these cases the derived equations were equivalent to the Bogomolny de-
composition [11, 12]. However, the models connected to trivial homotopy
groups generate a new quality. For instance, the sine-Gordon or Korteweg—
de Vries equations are associated with the trivial homotopy group ma(S').
In order to generate a topological invariant different than a divergence we
had to attach a second independent field model associated with identical
homotopy group (18), (47). In this way we obtained the models connected
to m2(S?). Then, applying the strong necessary condition concept to such
complex models we derived the Bicklund transformations. One can imag-
ine a lot of new possibilities in application of this procedure. First, (18) or
(47) need not to consist of identical equations. For instance, instead of two
KdV equations one can consider two independent equations from the KdV-
hierarchy, or a combination of KdV and modified KdV ones. Second, one can
combine two or more different topologies leading to the nontrivial homotopy
group. Both ways lead to a new class of associated equations of the lower
degree than the original equation of motion. The Bogomolny decomposition
and the Béicklund transformations establish the first two classes.
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