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VARIATIONAL APPROACH TO THEBÄCKLUND TRANSFORMATIONSK. SokalskiFaulty of Eletrial Engineering, Tehnial University of Cz�estohowaAl. Armii Krajowej 17, 42-200 Cz�stohowa, Polandand Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandT. Wieteha and Z. LisowskiInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived September 5, 2000; revised version reeived Deember 15, 2000)Variational approah to the Bäklund transformations is derived on thebasis of strong or semi-strong neessary ondition for extremum of a fun-tional. The obtained method is applied to the sine-Gordon and Korteweg�de Vries equations.PACS numbers: 02.30.Wd, 02.60.Lj1. IntrodutionThere are di�erent ways in whih the Bäklund transformations maybe ahieved [1�5℄. One of them, a variational approah [4℄ seems to bevery promising. A fair onnetion between the Bäklund transformationsfor some soliton equations and the alulus of variations has been shown toexist and applied to a lass of seond-order partial di�erential equations inm independent variables. This lass ontains the sine-Gordon equation asa speial ase for m = 2. Also the variational approah after ertain adap-tations of the tehnique was suessfully applied to the Korteweg�de Vriesequation together with its modi�ations. However, the Rund's approahleads to a partiular form of the Bäklund transformation. He assumes thata pair of the partial di�erential equationsE(u) = 0 ;D(v) = 0 ; (1)(17)



18 K. Sokalski, T. Wieteha, Z. Lisowskiorresponds to the Euler�Lagrange equations resulting from the variationalpriniples given by the Lagrangians L(u) and L(v), respetively. It is im-portant to say that Euler�Lagrange equations are the neessary onditionsfor the extremum of ation funtional to exist (neessary onditions). Ifthere exists a relation between the funtions u and v and their derivativeswhih are suh, as to imply that the di�erene L(u)� L(v) is a divergene,then E(v) = 0, whenever (1) is satis�ed, and onversely. Thus the relations:E(u) = 0 and E(v) = 0 possess the desired property for the Bäklund trans-formation. They are of a very partiular form beause there is no ouplingbetween u and v like in the original pair (1). It would be more fundamentalto start from the general form of the least ation priniple leading diretly toa general form of the Bäklund transformations of (1). This an be ahievedby extending the Rund's onstraint:L(u)� L(v) = divergene (2)to a more general one: Æ�� = 0, where�� = t2Zt1 ZX (L(u) + �0L(v))dtdx + I ; (3)and where I is a topologial invariant.Suh approah is more universal and may have a struture whih enablesone to redue the derivation of the Bäklund transformation to an algorithm.There is also a partiular question how to apply the alulus of variationsin order to derive the partial di�erential equations of the lower order thenthe order of the orresponding Euler�Lagrange equations? Moreover, theset of solutions of the looked for equations must satisfy the Euler�Lagrangeequation. It is obvious that (1) is invariant with respet to the saling ofits ation funtional �� by the topologial invariants. One an onsider thetopologial invariant in (3) as a onstraint for the extremum of the ationfuntional: I = onst. This onstraint is trivial and does not ontribute tothe �eld equation (1) being the neessary onditions. But if one formulatesvariational problem whih breaks invariane of neessary onditions withrespet to the gauge saling by I, than one derives new �eld equations. Ifthis new variational problem guarantees that the set of solutions of newequations is inluded in the solution set of (1) then one derive new methodfor the non-linear �eld theory. In order to realize this idea we introdue andapply the onept of strong neessary ondition. After some alulationsthe new equations of motion appear to be the Bäklund transformations.The paper is organized in the following way: In Chapter 2 we introduethe strong neessary ondition onept and we derive equations of motion.



Variational Approah to the Bäklund Transformations 19Chapter 3 presents derivation of the Bäklund transformation for the sine-Gordon equation. In Chapter 4 we introdue onept of the semi-strongneessary ondition and we present its appliation to the KdV equation. Inonlusions we disuss how to generalize the results of the present paper andsuggest new possible appliations of the strong and semi-strong neessaryonditions onepts.2. Equations of motion resulting from the strongneessary ondition oneptWe shall onsider a partial di�erential equation of motion resulting fromthe least ation priniple: Æ�[u℄ = 0, where:�[u℄ = ZE2 F (u; u;x; u;t)dxdt (4)and u(�; t) 2 C1 ;u(x; �) 2 C1 :Let us analyse a variationÆ�[u℄ = ZE2 (F;uÆu+ F;u;xÆu;x + F;u;tÆu;t)dxdt ; (5)where Æu is the inrement of u(x). The neessary ondition and the assump-tion for the �xed boundaries lead to the Euler�Lagrange equation:F;u �DxF;u;x �DtF;u;t = 0 : (6)The order of (6) is always higher then the highest order of derivative of u(x)appearing in (4). The reason for inreasing the orders are operators Dx andDt in (6). Therefore, in order to derive the Bäklund transformation fromthe least ation priniple we should not apply the Euler�Lagrange's equationas the neessary ondition. However, the only way to satisfy Æ� = 0 without(6) is to set up the following onditions:F;u;x = 0 ; (7)F;u;t = 0 ; (8)F;u = 0 : (9)All solutions of (7)�(9) satisfy the Euler�Lagrange equation (6) but in mostases the set of solutions of (7)�(9) is trivial (u = onst) or empty. In order



20 K. Sokalski, T. Wieteha, Z. Lisowskito extend this set we introdue integral onstraints for the extremum of �[u℄:I1 = 1; I2 = 2, where I1[u℄ = ZE2 W1(u; u;x)dxdt ; (10)I2[u℄ = ZE2 W2(u; u;t)dxdt ; (11)and where i are onstants. These onstraints should not hange the Euler-Lagrange equation, therefore Ii-s must be topologial invariants. Topologialinvariant means that Ii remains onstant while its argument u varies loally:ÆIi � 0. Applying the neessary ondition for a onditional extremum offuntional to exist we obtain:�0 ZE2 (F;uÆu+ F;u;xÆu;x + F;u;tÆu;t)dxdt�1 ZE2 (W1;uÆu+W1;u;xÆu;x +W1;u;tÆu;t)dxdt�2 ZE2 (W2;uÆu+W2;u;xÆu;x +W2;u;tÆu;t)dxdt = 0 : (12)The onept of strong neessary ondition applied to (12) leads to the fol-lowing equations of motion:�0F;u + �1W1;u + �2W2;u = 0 ; (13)�0F;ux + �1W1;ux + �2W2;ux = 0 ; (14)�0F;ut + �1W1;ut + �2W2;ut = 0 : (15)Contrary to the Euler�Lagrange equation now the topologial invariantsontribute to the �eld equation. For a salar �eld u(x; t) the Wi an behosen in the following way: W1 = DxG1(u) ;W2 = DtG2(u) : (16)Expressions (13)�(15) establish a simultaneous set of equations for u(x; t); G1,and G2. It must be stressed again that any solution of (13),(15) for u(x) sat-is�es the Euler�Lagrange equation. Relation between the Euler's theoremand the strong neessary onditions is presented on Fig.1 and Fig.2.
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Fig. 1. The invariane of the Euler�Lagrange's equation with respet to the gaugetransformation.
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Fig. 2. In�uene of the gauge transformation on the �eld equations resulting fromthe strong neessary ondition onept.



22 K. Sokalski, T. Wieteha, Z. Lisowski3. Bäklund transformations for the sine-Gordon equationLet us onsider the sine-Gordon equation in the light-one oordinatesystem: u;xt = sin(u) : (17)This model possesses poor topology, e.g. all on�gurations of the �eld u(x; t)satisfying the boundary onditions u(�E2) = onst are lassi�ed by the ele-ments of homotopy group �2(S1) whih is trivial. Nondivergene topologialinvariants appear to be degrees of elements of �n(Sn) or Hopf invariants of�2n�1(Sn) homotopy groups. Therefore, in order to onstrut them onehas to ombine an appropriate number of �elds u; v; :::, aordingly to thedimension of the independent variables spae. It is also neessary to as-sume the boundary onditions. In the sine-Gordon ase the dimension ofthe independent variables spae is equal two, therefore we have to onsidera model orresponding to the homotopy group �2(S2). Thus, we ombinetwo independent sine-Gordon equations:u;xt = sin(u) ;v;xt = sin(v) : (18)An ation funtional for the two omponent model (18) is of the followingform:�[u; v℄ = ZE2 �12u;xu;t � os(u) + �0�12v;xv;t � os(v)�� dxdt : (19)For the purpose of the strong extremum onept we suppose the onstraintsde�ned by the topologial invariants:I1 = ZE2 G1(u; v)(u;xv;t � u;tv; x)dxdt ; (20)I2 = ZE2 DxG2(u; v)dxdt ; (21)I3 = ZE2 DtG3(u; v)dxdt : (22)Expanding (21), (22) we get:�2I2 = ZE2 (f;uu;x + f;vv;x)dxdt ; (23)�3I3 = ZE2 (g;uu;t + g;vv;t)dxdt ; (24)



Variational Approah to the Bäklund Transformations 23where we introdue a new notation: �1G1 = G;�2G2 = f and �3G3 = g.Minimizing �� = � + �1I1 + �2I2 + �3I3 we derive the following set ofequations: sin(u) + G;u(u;xv;t � u;tv;x) + (f;uuu;x + f;uvv;x)+ (g;uuu;t + g;uvv;t) = 0 ; (25)�0 sin(v) + G;v(u;xv;t � u;tv;x) + (f;uvu;x + f;vvv;x)+ (g;uvu;t + g;vvv;t) = 0 ; (26)12u;t + Gv;t + f;u = 0 ; (27)12u;x � Gv;x + g;u = 0 ; (28)�02 v;t � Gu;t + f;v = 0 ; (29)�02 v;x + Gu;x + g;v = 0 : (30)It is easy to prove that any solution of (25)�(30) satis�es Euler's equations(18). Equations (25) and (26) an be expressed by divergenes:sin(u) +Dx(f;u +Gv;t) +Dt(g;u �Gv;x) = 0 ; (31)sin(u) +Dx(f;v +Gu;t) +Dt(g;v �Gu;x) = 0 : (32)Following (27)�(30) we express the arguments of Dx and Dt in (31) and (32)by u;x; u;t; v;x and v;t. Results are equations (18)2.All equations (25)�(30) must be self-onsistent. Formally we have sixsimultaneous equations for the �ve unknown funtions: u; v;G; f; g. Weredue the number of equations from six to four by making them linearlydependent. We ahieve this by the following Ansatz:�04 +G2 = 0 ; (33)2Gf;u + f;v = 0 ; (34)2Gg;u � g;v = 0 : (35)Condition (33) implies that G must be a onstant. For further alulationswe hoose �0 = �1 and G =+� 12 . Now we have to satisfy four equations(25)�(27) and (29). This we realize by identifying ((25),(26)) with ((27),(29)).The last one we solve using the following Ansatz for f and g:f = � os u+ v2 ;g = � os u� v2 :



24 K. Sokalski, T. Wieteha, Z. LisowskiWe derive from (25) and (26):sin u� v2 = �2 u;x + v;x2 ; (36)sin u+ v2 = �2 u;t � v;t2 ; (37)and from (27)�(30): u;t � v;t2 � �2 sin u+ v2 = 0 ; (38)u;x + v;x2 � �2 sin u� v2 = 0 : (39)(40)We get onsisteny of (36)�(39) for �� = 4 or letting �2 = � and �2 = 1� .Finally, (36),(37) is equivalent to (38),(39) and forms the Bäklund trans-formation for the sine-Gordon system.4. Semi-strong neessary ondition onept and KdV equationIn order to make our formalism more universal we have to extend thestrong neessary ondition onept to a semi-strong one. Let � be a fun-tional on a set of di�erentiable funtions. These funtions an be regarded aselements of the spae C2. Let � depend on the higher derivatives of u(x; t):�[u℄ = t2Zt1 ZX F (u; u;t; u;x; u;xx)dxdt : (41)Aordingly, one an investigate the neessary ondition for the extremumof (41) to exist:t2Zt1 ZX (�F�u Æu+ �F�u;t Æu;t + �F�u;x Æu;x + �F�u;xx Æu;xx)dxdt = 0 : (42)Now, there are more then one possibilities to satisfy (42) without Euler�Lagrange's equation. One of them is a semi-strong neessary ondition:F;u = 0 ; (43)F;u;t = 0 ; (44)F;u;x �DxF;u;xx = 0 : (45)



Variational Approah to the Bäklund Transformations 25If (41) depends on the higher derivatives of u(x; t) up to u(x; t);kx then (45)takes the following extended form:F;u;x�DxF;u;xx+D2xF;u;xxx�D3xF;u;xxxx+:::+(�1)k�1Dk�1x F;u;kx = 0 ; (46)where u;kx means the derivative of the order k.Semi-strong neessary ondition onept supplies a helpful tool for thetheory of non-linear partial di�erential equations. We present its appliationto the Korteweg�de Vries equation.The topology assoiated with the KdV equation is similar to that assoi-ated with the sine-Gordon equation. Therefore, we have to onsider twoindependent �elds �u and �v governed by KdV equations:�u;t � 6�u�u;x + �u;xxx = 0 ;�v;t � 6�v�v;x + �v;xxx = 0 : (47)It is easy to see that the Lagrangian densityF (u; v; u;x; v;x; u;t; v;t; u;xx; v;xx)= 12u;xu;t � u3;x � 12u2;xx + �(12v;xv;t � v3;x � 12v2;xx) (48)generates (47) as the orresponding Euler�Lagrange equations, where�u = u;x and �v = v;x, [6℄. We attah three topologial invariants with thefollowing funtional densities:W1 = G1(u; v)(u;xv;t � u;tv;x) ;W2 = DtG2(u; v) ;W3 = DxG3(u; v; u;x; v;x; u;xx; v;xx; u;xxx; v;xxx) : (49)E�etive ation funtional inluding the topologial onstraints de�ned by(49) takes the following form:��[u; v℄ = ZE2 (F (u; v; u;x; v;x; u;t; v;t; u;xx; v;xx) +W1(u; v; u;x; v;x; u;t; v;t)+W2(u; v; u;t; v;t) +W3(u; v; u;x; v;x; u;xx; v;xx; u;xxx; v;xxx; u;xxxx; v;xxxx))dxdt :(50)Applying to (50) the onept of the semi-strong ondition we derive thefollowing set equations of motion:G1;u(u;xv;t � u;tv;x) + (G2;u);t + (G3;u);x = 0 ;G1;v(u;xv;t � u;tv;x) + (G2;v);t + (G3;v);x = 0 ; (51)



26 K. Sokalski, T. Wieteha, Z. Lisowski12u;x �G1v;x +G2;u = 0 ;�2 v;x +G1u;x +G2;v = 0 ; (52)12u;t � 3u2;x + u;xxx +G1v;t +G3;u = 0 ;�(12v;t � 3v2;x + v;xxx)�G1u;t +G3;v = 0 : (53)Performane of partial derivatives with respet to x (1,2 and 3 degrees) gen-erates a lot of ompliated terms. (51),(52) and (53) have the �nal reduedform obtained with the aid of the following theorem.If W3 is a divergene of an arbitrary order n:W3 = DxG3(u; v; u;x; v;x; u;xx; v;xx; :::; u;nx; v;nx) ; (54)then the semi-strong neessary ondition:F �;u;x �DxF �;u;xx +D2xF �;u;xxx + :::+ (�1)n�1D(n�1)x F �;u;nx = 0 ;F �;v;x �DxF �;v;xx +D2xF �;v;xxx + :::+ (�1)n�1D(n�1)x F �;v;nx = 0 ; (55)an be redued to (53), where F � = F + W1 + W2 + W3. The proof anbe done by indution starting from n = 2: G3(u; v; u;x; v;x; u;xx; v;xx). (51)�(53) establish a system of six simultaneous equations for the �ve unknownfuntions: u; v;G1; G2; G3. In order to make them onsistent we have tosubstitute G1 = 12 , � = �1 andG2 = 112(u� v)3 + (u� v) ;G3(u; v; :::; u;xxx; v;xxx) = ��32(u2;x + v2;x) + 12(u;xxx + v;xxx)� (u� v) ;(56)where  is an arbitrary real onstant. In onsequene two equations (52)redue to one equation: (u+ v);x = 2 + 12(u� v)2 (57)and (53) to the following one:(u� v);t � 3(u2;x � v2;x) + (u� v);xxx = 0 : (58)Finally, using (57) we redue (51) to(u� v) �(u� v);t � 3(u2;x � v2;x) + (u� v);xxx� = 0 : (59)(57)�(59) establish the Bäklund transformation for the Korteweg�de Vriesequation.



Variational Approah to the Bäklund Transformations 275. Conluding remarksAppliation of minimization proedure with the topologial onstraintshas been developed sine twenty years [7�10℄ and applied to non-linear mod-els assoiated with non-trivial homotopy groups �n(Sn) and �2n�1(Sn). Inall these ases the derived equations were equivalent to the Bogomolny de-omposition [11, 12℄. However, the models onneted to trivial homotopygroups generate a new quality. For instane, the sine-Gordon or Korteweg�de Vries equations are assoiated with the trivial homotopy group �2(S1).In order to generate a topologial invariant di�erent than a divergene wehad to attah a seond independent �eld model assoiated with identialhomotopy group (18), (47). In this way we obtained the models onnetedto �2(S2). Then, applying the strong neessary ondition onept to suhomplex models we derived the Bäklund transformations. One an imag-ine a lot of new possibilities in appliation of this proedure. First, (18) or(47) need not to onsist of idential equations. For instane, instead of twoKdV equations one an onsider two independent equations from the KdV-hierarhy, or a ombination of KdV and modi�ed KdV ones. Seond, one anombine two or more di�erent topologies leading to the nontrivial homotopygroup. Both ways lead to a new lass of assoiated equations of the lowerdegree than the original equation of motion. The Bogomolny deompositionand the Bäklund transformations establish the �rst two lasses.REFERENCES[1℄ A.V. Bäklund, Einiges uber Curven und Flahentransformationen, Lund Uni-versitets Arsskrift 10 (1875).[2℄ C. Rogers, in Soliton Theory: A Survey of Results ed. by A.P. Fordy, Manh-ester University Press, 1990, p. 97.[3℄ B.K. Harrison, in Leture Notes in Physis, 226, Non-Linear Equations inClassial and Quantum Field Theory, ed. by N. Sanhez, Springer-Verlag,Berlin-Heidelberg-New York-Tokyo 1985, p. 45.[4℄ H. Rund, in Letures Notes in Mathematis, 515, Bäklund Transforma-tions, the Inverse Sattering Method, Solitons, and Their Appliations, ed. byR.M. Miura, Springer-Verlag, Berlin -Heidelberg-New York 1976, p. 199.[5℄ I. Cherednik, in Advaned Series in Mathematial Physis, 25, Basi Methodsof Soliton Theory, World Sienti�, Singapore, New Jersey, London, HongKong 1996, p.113.[6℄ P.G. Drazin, R.S. Johnson, Cambridge Text in Applied Mathematis, Solitons:an Introdution, Cambridge University Press, Cambridge, New York, NewRohelle, Melbourne, Sydney 1989, p. 96.[7℄ K. Sokalski, Ata Phys. Pol. A56, 571 (1979).
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