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Using a microscopic phase-space model of the membrane system, the
boundary condition at a membrane is derived. According to the condition,
the substance flow across the membrane is proportional to the difference
of the substance concentrations at the opposite membrane surfaces. The
Green’s function of the diffusion equation is found for the derived boundary
condition and the exact solution of the equation is given.

PACS numbers: 82.65.Fr, 66.10.Cb

1. Introduction

The membrane systems play an important role in several fields of tech-
nology [1], where the membranes are used as filters, and biophysics [2], where
the membrane transport is crucial for the cell physiology. The diffusion in
the membrane system is also interesting by itself as a nontrivial stochastic
problem. The process is usually described by means of the diffusion equa-
tion. Since the equation is of the second order one needs two boundary
conditions at the membrane surfaces. One condition is provided by the con-
servation of diffusing substance but there is no obvious choice of the second
condition. Although several proposals can be found in the literature [3,4] a
systematic derivation of the boundary condition within a microscopic model
of the process is missing.
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While the problem of diffusion in a system with a partially permeable
wall (the membrane) is not well explored, there is a vast literature devoted
to the systems with (partially) reflecting or (partially) absorbing walls. Two
classes of microscopic approaches have been repeatedly used to derive the
boundary condition for these cases: the random walk on the discrete lattice,
see e.g. [5-7], and the diffusion in the (continuous) phase-space, see e.g. [8,9].
The first approach starts with the death—birth equation while the second one
usually utilizes the Fokker—Planck equation. The results for a membrane
system cannot be obtained by a simple modification of those discussed in the
literature in context of the (partially) reflecting or (partially) absorbing wall.
In these cases, the analysis is performed only for a half-space bounded by
the wall while the membrane system demands the full space considerations.
Even the half-space membrane subsystem has not much to do with that of
the reflecting or absorbing wall. From the microscopic point of view, the
most important difference is that the brownian particle once annihilated by
the absorbing wall never returns to the system while the particles can pass
through the membrane back and forth.

In this note we refer to a simple phase-space model of the membrane sys-
tem and, following [8,9], we derive, for the first time to our best knowledge,
the boundary condition for the diffusion equation. The condition appears
to be rather natural — the substance flow across the membrane is propor-
tional to the difference of the substance concentrations at the membrane. In
the second part of our paper we find the Green’s function of the diffusion
equation which satisfies the derived boundary condition. The exact solution
of the equation with a specific initial condition is also given. Finally, our
considerations are critically discussed.

2. Derivation of boundary condition

Let us consider a system where the substance diffuses across the mem-
brane which is assumed to be a zero width partially permeable wall. The
typical thickness of manufactured membrane varies from, say, 0.1 mm to
0.01 mm [1]; the biological membranes are even much thiner [2]|. Since, the
size of the whole system is usually of order of 1 cm, it is natural to treat,
at least as a first approximation, the membrane as infinitely thin. There
is also a technical reason for such a treatment. When the membrane is of
finite width, one needs to specify an initial substance concentration inside
the membrane to solve the diffusion equation. However, the concentration
is usually not experimentally accessible and consequently, the model with
the finite width membrane is, in practice, not much better than that with
the infinitely thin one.
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The membrane is located at z = 0. Since the concentration gradients
are assumed to be only along the z—direction the problem is effectively
one dimensional. One can imagine the membrane as a reflecting wall with
homogeneously distributed holes. Then, the substance particles are either
reflected by the wall or pass through it without change of their momenta.
We denote by a the ratio of the total surface of all holes to the membrane
surface. Then, the probability to pass through the membrane just equals «.
The limiting case o = 0 corresponds to the holeless, not permeable wall
while @ = 1 to the fully permeable wall or to lack of membrane at all.
The parameter « is, obviously, independent within our model of the particle
velocity.

The distribution function of the substance particles f(p,z,t), where p
and x are, respectively, the particle momentum and position at the time ¢,
satisfies the relations

f(_p70_7t) = (1 - a)f(p,O_,t) + af(_pa 0+7t) ) (1)
fp,0%,t) = (1—a)f(=p,0",t) +af(p,0,1). (2)

Defining the particle flow and the partial flows as

“+oo
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with m being the particle mass, one rewrites the relations (1), (2) as

§-(07,t) = (1= 0a)j+(0,1) +aj_(07,1), (5)
7+(0%,8) = (1= a)j—(07,1) + ajs (07 ,1). (6)
One observes that adding Egs. (5), (6) and wusing the formula

j(x,t) = jy(x,t) — j—_(z,t) we get the conservation of the substance flow
at the membrane 1i.e.

3(07,1) = j(07,2). (7)
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Now, we decompose the distribution function as

f(pamat):fO(p)+f1(p7I7t)’ (8)

where fo(p) is the distribution function of local equilibrium i.e.

n(z,t) P’
)= —2 2 -
fo(p, z,1) B T eXp[ 2kaT}

with T and kp denoting the temperature and Boltzmann constant, respec-
tively. In contrast to the equilibrium distribution function, which is even
(fo(=p) = fo(p)), the function f; is assumed to be odd (fi(—p,z,t) =
—f1(p,z,t)). The decomposition (8), which plays a crucial role in our con-
siderations, can be justified in two closely related ways. One can assume that
f(p,z,t) satisfies the Fokker-Planck equation. Then, the decomposition (8)
corresponds to the first two terms of the expansion of the distribution func-
tion in the large friction limit [9]. One can also refer here to a more general
scheme of Chapman—FEnskog expansion which is applicable not only to the
Fokker—Planck equation. However, the function f; is not obligatory odd in
this case. Nevertheless, this is the odd part of f; which really matters; the
even part does not contribute to the particle flow while its contribution to the
particle density can be neglected because fy > |f1]. At the end of our paper
we briefly discuss how our results would be modified if the decomposition
(8) is not limited to the two terms.

Substituting the distribution function of the form (8) into Egs. (3), (4)
and applying the Fick law

on(z,t)
or

where D is the diffusion constant, one finds

j(z,t) = =D

(9)

. | ksT T D on(z,t)
+ _ i -
. kT T D on(z,t)
= + ala S 2]

The relations (10), (11) allow one to convert Egs. (5), (6) to the form

kgT _ n _ 2—a_ On(z,t)
a,/%(n(o ) — n(0 ,t)) = D=2

a - on(x,t)
=D
+ 2 Ox

r=0"

: (12)

=01
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| kgT " _ _ 2—a_ On(z,t)
« —%m(n(o ,t) —n(0 ,t)) = + 5 D 9

a  On(z,t)
_Sp I
2 Oz

=01

(13)

=0~

As seen, Eqs. (12), (13) provide again the flow conservation (7) and the
desired boundary condition

§(0,8) = —r(n(0%,8) = n(0",)) . (14)

where
7(0,8) = j(0%,8) = (07, ¢),

and the membrane permeability coefficients x is defined as

o kBI1
\o—- 15
: 1—aV 2mm (15)

One observes that the boundary condition at a membrane (14) is analo-
gous to the Fick law with the permeability coefficient x (15) being an ana-
logue of the diffusion constant D. Within the elementary theory of transport
phenomena, see e.g. [11], one estimates D as vl with 7 = /3kpT/m being
the thermal velocity of the brownian particle and [ denoting its mean free
path. Then, the diffusion current approximately equals the concentration
difference at the mean free path multiplied by v. Analogously, the diffusive
current across the membrane (14) is proportional to the concentration differ-
ence at the membrane multiplied by v. The current across the membrane is
additionally modified, when compared to the usual diffusive one, by a factor
which is equal, within our mechanical membrane model, to the ratio of the
area of all the membrane holes to the area of the reflecting membrane sur-
face. This factor goes to infinity when the reflecting surface vanishes and the
membrane effectively disappears. In such a case, however, the concentration
difference at the membrane vanishes and the product remains finite.

3. Solving the diffusion equation
In this section we are going to solve the diffusion equation

on(z,t) D 0%n(z,t)
o dz?

with the boundary conditions (7), (14) and the initial one given as

n(z,0) = no(x).
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We introduce, as usually, the Green’s function G(z, ', t,t") which solves
the equation

2G(av 2t t) = Da—QG(:E 2’ t,t) (17)
at 9 1Yy axg 9 Y 9
with the initial condition
lim G(z,',t,t') = §(z — 2'), (18)

t—t’

and four boundary conditions: two, which are obtained from (7), (14) i.e.

%G(x,x',t,t') . = %G(x,x',t,t') . (19)
-D %G(m,x',t,t') . = —s[G(0T,t;2",¢) — G0, t; 2", )], (20)

and
mll)rinoo G(z, 2’ t,t') =0. (21)

Having the Green’s function, the solution of the equation (16) is given as
n(x,t) = /dx'no(x')G(x,x',t,O). (22)

Further, we always put ¢ = 0 and denote the Green’s function as G(z, 2, t).
We find the Green’s function applying the standard procedure [10] of the
Laplace transformation which gives

G(z, 2, s) o /dteStG(m,m',t).
0

Transforming Eq. (17) and the initial condition (18) we get the equation

d? -~ ~
D——G(z,a',s) — sG(z,a',s) = —6(z — ') . (23)
dz
One trivially finds the general solution of the homogenous equation (23)
while the inhomogenous equation is easily solved by means of the Fourier
transformation. In this way we get

~ 1 /
G(z,2',s) = ﬁe_’”m_x | + Ae? + Be™9
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where ¢? = s/D while the constants A and B are determined by the bound-
ary conditions (19), (20), (21). To calculate the constants one has to dis-
tinguish four cases related to the signs of z and z’'. We denote as G4 the
Green’s function which corresponds to > 0 and 2’ > 0; as G, _ that one
for the case of £ > 0 and 2’ < 0, etc. After inverting the Laplace transform
we get

G+_($,$I,t) = G_+(£E,£El,t)
K 2k(|lz — 2| + 2kt) |z — 2’| + 4kt
= — fc| ——— 24
Dexp< D erfc W , (24)
G++((L’,$I,t) = G__(iﬁ,ml,t)

= g o () e (50|

K <2/<(|I+:E'|+2/~at))erfc<|m+$’|+4/@t> (25)

——€eX
DFP D /Dt

with erfc(z) being the complementary error function i.e.

erfc(z) = 2 oodt et
=7 )
x

As an application of the Green’s functions (24), (25) we consider the
time evolution of the concentration of the substance which is initially ho-
mogeneously distributed in the left half-space i.e. the initial condition reads

n(z,0) = neO(—x).

Then, Eq. (22) provides
0

ny(z,t) = ng / de'Gy (z,7',t)

—0o0

o) () (5] o

0
n_(z,t) = ng / de'G__(z,7',t)

—0o0

=2 [2 — erfe <%> + exp <w> erle (%)] ’
(o)

where n (z,t) = n(z,t) for x > 0 and n_(z,t) = n(x,t) for z < 0.
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Let us briefly discuss the solution (26), (27). One observes that when
k = 0, which corresponds to the fully reflecting wall, we get from (26), (27)
an expected result i.e. ny (z,t) = 0 and n_(z,t) = ng. In the opposite limit
Kk — oo corresponding to the lack of any membrane, we find the well known
formulas:

o

ni(et) = Serfc <2Lm) :
n_(z,t) = % [Z—erfc <%)] .

Finally, one observes that for v Dt > |z| and kt > |z| the solution (26),

(27) provides
N 1 wD
el — /2
n:l:(xa ) 2 [ + 2% P

Thus, n4(z,t) = ny/2 for t — oo.

4. Discussion

The decomposition (8), which, as already mentioned, plays a key role
in the boundary condition derivation, includes only two terms. Since the
solution of the Fokker—Planck equation can be systematically expanded in
the powers of the inverse friction coefficient, one can easily supplement,
following [9], the decomposition (8) by a next order term. Assuming that
the Fick law (9) still holds, we again get the current conservation (7) while
the equation analogous to (14) reads:

z=0" )

L@ D 0%n(w,t)
1 — ady/my 0z?

- —ﬁ(n(oﬁ #) —n(0™, t)) , (28)

where +y is the friction coefficient from the Fokker—Planck equation. If, fol-

lowing [8], one treats LHS of Eq. (28) as first two terms of the Taylor ex-

pansion of the current at a finite x, the boundary condition (28) can be
manipulated to the form

B 0?n(z,t)

=01 Oz

7(0,1)

(1- k)j( - 15”_—0“) + kj(%,t) - —ﬁ(n(0+,t) - n(oit)) . (29)
where k is an arbitrary number while xy denotes the thickness of the kinetic
near membrane layer equal

(0%

dym(l —a)y’

g =
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Unfortunately, we can not see a way to remove the arbitrarness of k which
appears when, due to Eq. (7), we express 5(0,t) as (1—k)j(07,¢)+kj5(0, ).
Such a problem is absent in the formula analogous to (29) for the case
of absorbing wall [8]. The results (28), (29) are interesting by themselves
but they do not seem to be very useful as membrane boundary conditions.
As well known, the diffusion equation provides a reliable description if the
Chapman-Enskog expansion converges fast. Then, the third term is not
needed in the decomposition (8) and one should use the boundary condition
(14). However, the distribution function can significantly deviate from the
equilibrium form in the near membrane layer as it happens in the vicinity
of the absorbing wall [12]. Then, the boundary condition (29) seems to be
natural but the diffusion equation should be combined with the Fokker—
Planck for a correct description of the kinetic layer and the whole approach
appears to be very cumbersome.

The formula of the membrane permeability coefficient (15) suggests that
the permeability grows proportionally to v/T. However, one should remem-
ber that this dependence has been obtained within a highly simplified me-
chanical model of the membrane which is treated as an infinitely thin re-
flecting wall with homogeneously distributed holes. Then, the substance
particles are either reflected by the wall or pass through it without change
of their momenta. In reality, the membrane structure is much more compli-
cated and the parameter a should be treated as an effective probability to
pass through the membrane. Consequently, a might be temperature depen-
dent and then & is no longer proportional to v/T.

In the series of papers of one of us [4], the boundary condition different
than (14) has been advocated. Namely, using the symmetry arguments of
the Green’s function, there has been found instead of (14) the relation:

3(07 t) = (1 - 5).70 (Oa t) ’ (30)

where 0 is a dimensionless membrane permeability coefficient and jq is the
substance flow in the system with the removed membrane. As discussed
in [4], there is a transparent probabilistic interpretation of the relation (30).
The solution of the diffusion equation, which satisfies the condition (30) [4],
is qualitatively different than that found here. According to the solution,
there is a finite flow across the membrane at infinite time while Egs. (26),
(27) give the vanishing flow in this limit.

We hope that an experiment will help to chose a right boundary condi-
tion and we plan to perform such an analysis in collaboration with experi-
mentalists. However, one should remember that there is a whole variety of
the mechanisms of the substance transport across the membrane [1]. If the
boundary condition depends on the actual mechanism the problem does not
have a unique solution.
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