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MEMBRANE BOUNDARY CONDITIONTadeusz KosztoªowizInstitute of Physis, Pedagogial UniversityKonopnikiej 15, 25-406 Kiele, Polande-mail: tkoszt�pu.kiele.pland Stanisªaw Mrówzy«skiSoªtan Institute for Nulear StudiesHo»a 69, 00-681 Warsaw, PolandandInstitute of Physis, Pedagogial UniversityKonopnikiej 15, 25-406 Kiele, Polande-mail: mrow�fuw.edu.pl(Reeived November 3, 2000)Using a mirosopi phase-spae model of the membrane system, theboundary ondition at a membrane is derived. Aording to the ondition,the substane �ow aross the membrane is proportional to the di�ereneof the substane onentrations at the opposite membrane surfaes. TheGreen's funtion of the di�usion equation is found for the derived boundaryondition and the exat solution of the equation is given.PACS numbers: 82.65.Fr, 66.10.Cb1. IntrodutionThe membrane systems play an important role in several �elds of teh-nology [1℄, where the membranes are used as �lters, and biophysis [2℄, wherethe membrane transport is ruial for the ell physiology. The di�usion inthe membrane system is also interesting by itself as a nontrivial stohastiproblem. The proess is usually desribed by means of the di�usion equa-tion. Sine the equation is of the seond order one needs two boundaryonditions at the membrane surfaes. One ondition is provided by the on-servation of di�using substane but there is no obvious hoie of the seondondition. Although several proposals an be found in the literature [3,4℄ asystemati derivation of the boundary ondition within a mirosopi modelof the proess is missing. (217)



218 T. Kosztoªowiz, S. Mrówzy«skiWhile the problem of di�usion in a system with a partially permeablewall (the membrane) is not well explored, there is a vast literature devotedto the systems with (partially) re�eting or (partially) absorbing walls. Twolasses of mirosopi approahes have been repeatedly used to derive theboundary ondition for these ases: the random walk on the disrete lattie,see e.g. [5�7℄, and the di�usion in the (ontinuous) phase-spae, see e.g. [8,9℄.The �rst approah starts with the death�birth equation while the seond oneusually utilizes the Fokker�Plank equation. The results for a membranesystem annot be obtained by a simple modi�ation of those disussed in theliterature in ontext of the (partially) re�eting or (partially) absorbing wall.In these ases, the analysis is performed only for a half-spae bounded bythe wall while the membrane system demands the full spae onsiderations.Even the half-spae membrane subsystem has not muh to do with that ofthe re�eting or absorbing wall. From the mirosopi point of view, themost important di�erene is that the brownian partile one annihilated bythe absorbing wall never returns to the system while the partiles an passthrough the membrane bak and forth.In this note we refer to a simple phase-spae model of the membrane sys-tem and, following [8,9℄, we derive, for the �rst time to our best knowledge,the boundary ondition for the di�usion equation. The ondition appearsto be rather natural � the substane �ow aross the membrane is propor-tional to the di�erene of the substane onentrations at the membrane. Inthe seond part of our paper we �nd the Green's funtion of the di�usionequation whih satis�es the derived boundary ondition. The exat solutionof the equation with a spei� initial ondition is also given. Finally, ouronsiderations are ritially disussed.2. Derivation of boundary onditionLet us onsider a system where the substane di�uses aross the mem-brane whih is assumed to be a zero width partially permeable wall. Thetypial thikness of manufatured membrane varies from, say, 0.1 mm to0.01 mm [1℄; the biologial membranes are even muh thiner [2℄. Sine, thesize of the whole system is usually of order of 1 m, it is natural to treat,at least as a �rst approximation, the membrane as in�nitely thin. Thereis also a tehnial reason for suh a treatment. When the membrane is of�nite width, one needs to speify an initial substane onentration insidethe membrane to solve the di�usion equation. However, the onentrationis usually not experimentally aessible and onsequently, the model withthe �nite width membrane is, in pratie, not muh better than that withthe in�nitely thin one.



Membrane Boundary Condition 219The membrane is loated at x = 0. Sine the onentration gradientsare assumed to be only along the x�diretion the problem is e�etivelyone dimensional. One an imagine the membrane as a re�eting wall withhomogeneously distributed holes. Then, the substane partiles are eitherre�eted by the wall or pass through it without hange of their momenta.We denote by � the ratio of the total surfae of all holes to the membranesurfae. Then, the probability to pass through the membrane just equals �.The limiting ase � = 0 orresponds to the holeless, not permeable wallwhile � = 1 to the fully permeable wall or to lak of membrane at all.The parameter � is, obviously, independent within our model of the partileveloity.The distribution funtion of the substane partiles f(p; x; t), where pand x are, respetively, the partile momentum and position at the time t,satis�es the relationsf(�p; 0�; t) = (1� �)f(p; 0�; t) + �f(�p; 0+; t) ; (1)f(p; 0+; t) = (1� �)f(�p; 0+; t) + �f(p; 0�; t) : (2)De�ning the partile �ow and the partial �ows asj(x; t) def= +1Z�1 dp pmf(p; x; t) ;j+(x; t) def= +1Z0 dp pmf(p; x; t) ; (3)j�(x; t) def= � 0Z�1 dp pmf(p; x; t) (4)with m being the partile mass, one rewrites the relations (1), (2) asj�(0�; t) = (1� �)j+(0�; t) + �j�(0+; t) ; (5)j+(0+; t) = (1� �)j�(0+; t) + �j+(0�; t) : (6)One observes that adding Eqs. (5), (6) and using the formulaj(x; t) = j+(x; t) � j�(x; t) we get the onservation of the substane �owat the membrane i.e. j(0�; t) = j(0+; t) : (7)



220 T. Kosztoªowiz, S. Mrówzy«skiNow, we deompose the distribution funtion asf(p; x; t) = f0(p) + f1(p; x; t) ; (8)where f0(p) is the distribution funtion of loal equilibrium i.e.f0(p; x; t) = n(x; t)p2�mkBT exp h� p22mkBT iwith T and kB denoting the temperature and Boltzmann onstant, respe-tively. In ontrast to the equilibrium distribution funtion, whih is even(f0(�p) = f0(p)), the funtion f1 is assumed to be odd (f1(�p; x; t) =�f1(p; x; t)). The deomposition (8), whih plays a ruial role in our on-siderations, an be justi�ed in two losely related ways. One an assume thatf(p; x; t) satis�es the Fokker�Plank equation. Then, the deomposition (8)orresponds to the �rst two terms of the expansion of the distribution fun-tion in the large frition limit [9℄. One an also refer here to a more generalsheme of Chapman�Enskog expansion whih is appliable not only to theFokker�Plank equation. However, the funtion f1 is not obligatory odd inthis ase. Nevertheless, this is the odd part of f1 whih really matters; theeven part does not ontribute to the partile �ow while its ontribution to thepartile density an be negleted beause f0 � jf1j. At the end of our paperwe brie�y disuss how our results would be modi�ed if the deomposition(8) is not limited to the two terms.Substituting the distribution funtion of the form (8) into Eqs. (3), (4)and applying the Fik law j(x; t) = �D�n(x; t)�x ; (9)where D is the di�usion onstant, one �ndsj+(0�; t) = r kBT2�mn(0�; t)� D2 �n(x; t)�x ����x=0� ; (10)j�(0�; t) = r kBT2�mn(0�; t) + D2 �n(x; t)�x ����x=0� : (11)The relations (10), (11) allow one to onvert Eqs. (5), (6) to the form�r kBT2�m�n(0�; t)� n(0+; t)� = �2� �2 D �n(x; t)�x ����x=0�+�2D �n(x; t)�x ����x=0+ ; (12)



Membrane Boundary Condition 221�r kBT2�m�n(0+; t)� n(0�; t)� = +2� �2 D �n(x; t)�x ����x=0+��2D �n(x; t)�x ����x=0� : (13)As seen, Eqs. (12), (13) provide again the �ow onservation (7) and thedesired boundary onditionj(0; t) = ���n(0+; t)� n(0�; t)� ; (14)where j(0; t) = j(0+; t) = j(0�; t) ;and the membrane permeability oe�ients � is de�ned as� � �1� �r kBT2�m : (15)One observes that the boundary ondition at a membrane (14) is analo-gous to the Fik law with the permeability oe�ient � (15) being an ana-logue of the di�usion onstant D. Within the elementary theory of transportphenomena, see e.g. [11℄, one estimates D as vl with v = p3kBT=m beingthe thermal veloity of the brownian partile and l denoting its mean freepath. Then, the di�usion urrent approximately equals the onentrationdi�erene at the mean free path multiplied by v. Analogously, the di�usiveurrent aross the membrane (14) is proportional to the onentration di�er-ene at the membrane multiplied by v. The urrent aross the membrane isadditionally modi�ed, when ompared to the usual di�usive one, by a fatorwhih is equal, within our mehanial membrane model, to the ratio of thearea of all the membrane holes to the area of the re�eting membrane sur-fae. This fator goes to in�nity when the re�eting surfae vanishes and themembrane e�etively disappears. In suh a ase, however, the onentrationdi�erene at the membrane vanishes and the produt remains �nite.3. Solving the di�usion equationIn this setion we are going to solve the di�usion equation�n(x; t)�t = D�2n(x; t)�x2 ; (16)with the boundary onditions (7), (14) and the initial one given asn(x; 0) = n0(x) :



222 T. Kosztoªowiz, S. Mrówzy«skiWe introdue, as usually, the Green's funtion G(x; x0; t; t0) whih solvesthe equation ��tG(x; x0; t; t0) = D �2�x2G(x; x0; t; t0) ; (17)with the initial onditionlimt!t0G(x; x0; t; t0) = Æ(x� x0) ; (18)and four boundary onditions: two, whih are obtained from (7), (14) i.e.��xG(x; x0; t; t0)����x=0� = ��xG(x; x0; t; t0)����x=0� (19)�D ��xG(x; x0; t; t0)����x=0� = ��[G(0+; t;x0; t0)�G(0�; t;x0; t0)℄ ; (20)and limx!�1G(x; x0; t; t0) = 0 : (21)Having the Green's funtion, the solution of the equation (16) is given asn(x; t) = Z dx0n0(x0)G(x; x0; t; 0) : (22)Further, we always put t0 = 0 and denote the Green's funtion as G(x; x0; t).We �nd the Green's funtion applying the standard proedure [10℄ of theLaplae transformation whih giveseG(x; x0; s) def= 1Z0 dte�stG(x; x0; t) :Transforming Eq. (17) and the initial ondition (18) we get the equationD d2dx2 eG(x; x0; s)� s eG(x; x0; s) = �Æ(x� x0) : (23)One trivially �nds the general solution of the homogenous equation (23)while the inhomogenous equation is easily solved by means of the Fouriertransformation. In this way we geteG(x; x0; s) = 12Dq e�qjx�x0j +Aeqx +Be�qx ;



Membrane Boundary Condition 223where q2 � s=D while the onstants A and B are determined by the bound-ary onditions (19), (20), (21). To alulate the onstants one has to dis-tinguish four ases related to the signs of x and x0. We denote as G++ theGreen's funtion whih orresponds to x > 0 and x0 > 0; as G+� that onefor the ase of x > 0 and x0 < 0, et. After inverting the Laplae transformwe getG+�(x; x0; t) = G�+(x; x0; t)= �D exp�2�(jx � x0j+ 2�t)D � erf� jx� x0j+ 4�t2pDt � ; (24)G++(x; x0; t) = G��(x; x0; t)= 12p�Dt �exp��(x� x0)24Dt �+ exp��(x+ x0)24Dt ��� �D exp�2�(jx + x0j+ 2�t)D � erf� jx+ x0j+ 4�t2pDt �;(25)with erf(x) being the omplementary error funtion i.e.erf(x) = 2p� 1Zx dt e�t2 :As an appliation of the Green's funtions (24), (25) we onsider thetime evolution of the onentration of the substane whih is initially ho-mogeneously distributed in the left half-spae i.e. the initial ondition readsn(x; 0) = n0�(�x) :Then, Eq. (22) providesn+(x; t) = n0 0Z�1 dx0G+�(x; x0; t)= n02 �erf� x2pDt�� exp�2�(x+ 2�t)D � erf�x+ 4�t2pDt �� ; (26)n�(x; t) = n0 0Z�1 dx0G��(x; x0; t)= n02 �2� erf� �x2pDt�+ exp�2�(�x+ 2�t)D � erf��x+ 4�t2pDt �� ;(27)where n+(x; t) � n(x; t) for x > 0 and n�(x; t) � n(x; t) for x < 0.



224 T. Kosztoªowiz, S. Mrówzy«skiLet us brie�y disuss the solution (26), (27). One observes that when� = 0, whih orresponds to the fully re�eting wall, we get from (26), (27)an expeted result i.e. n+(x; t) = 0 and n�(x; t) = n0. In the opposite limit�!1 orresponding to the lak of any membrane, we �nd the well knownformulas: n+(x; t) = n02 erf� x2pDt� ;n�(x; t) = n02 �2� erf� �x2pDt�� :Finally, one observes that for pDt � jxj and �t � jxj the solution (26),(27) provides n�(x; t) �= n02 "1� 12�r�Dt # :Thus, n�(x; t) = n0=2 for t!1.4. DisussionThe deomposition (8), whih, as already mentioned, plays a key rolein the boundary ondition derivation, inludes only two terms. Sine thesolution of the Fokker�Plank equation an be systematially expanded inthe powers of the inverse frition oe�ient, one an easily supplement,following [9℄, the deomposition (8) by a next order term. Assuming thatthe Fik law (9) still holds, we again get the urrent onservation (7) whilethe equation analogous to (14) reads:j(0; t) + �1� � D4p�� �2n(x; t)�x2 ����x=0+ � �2n(x; t)�x2 ����x=0� �= ���n(0+; t)� n(0�; t)� ; (28)where  is the frition oe�ient from the Fokker�Plank equation. If, fol-lowing [8℄, one treats LHS of Eq. (28) as �rst two terms of the Taylor ex-pansion of the urrent at a �nite x, the boundary ondition (28) an bemanipulated to the form(1� k)j� � x01� k ; t�+ kj�x0k ; t� = ���n(0+; t)� n(0�; t)� ; (29)where k is an arbitrary number while x0 denotes the thikness of the kinetinear membrane layer equal x0 = �4p�(1� �) :



Membrane Boundary Condition 225Unfortunately, we an not see a way to remove the arbitrarness of k whihappears when, due to Eq. (7), we express j(0; t) as (1�k)j(0+; t)+kj(0�; t).Suh a problem is absent in the formula analogous to (29) for the aseof absorbing wall [8℄. The results (28), (29) are interesting by themselvesbut they do not seem to be very useful as membrane boundary onditions.As well known, the di�usion equation provides a reliable desription if theChapman�Enskog expansion onverges fast. Then, the third term is notneeded in the deomposition (8) and one should use the boundary ondition(14). However, the distribution funtion an signi�antly deviate from theequilibrium form in the near membrane layer as it happens in the viinityof the absorbing wall [12℄. Then, the boundary ondition (29) seems to benatural but the di�usion equation should be ombined with the Fokker�Plank for a orret desription of the kineti layer and the whole approahappears to be very umbersome.The formula of the membrane permeability oe�ient (15) suggests thatthe permeability grows proportionally to pT . However, one should remem-ber that this dependene has been obtained within a highly simpli�ed me-hanial model of the membrane whih is treated as an in�nitely thin re-�eting wall with homogeneously distributed holes. Then, the substanepartiles are either re�eted by the wall or pass through it without hangeof their momenta. In reality, the membrane struture is muh more ompli-ated and the parameter � should be treated as an e�etive probability topass through the membrane. Consequently, � might be temperature depen-dent and then � is no longer proportional to pT .In the series of papers of one of us [4℄, the boundary ondition di�erentthan (14) has been advoated. Namely, using the symmetry arguments ofthe Green's funtion, there has been found instead of (14) the relation:j(0; t) = (1� Æ)j0(0; t) ; (30)where Æ is a dimensionless membrane permeability oe�ient and j0 is thesubstane �ow in the system with the removed membrane. As disussedin [4℄, there is a transparent probabilisti interpretation of the relation (30).The solution of the di�usion equation, whih satis�es the ondition (30) [4℄,is qualitatively di�erent than that found here. Aording to the solution,there is a �nite �ow aross the membrane at in�nite time while Eqs. (26),(27) give the vanishing �ow in this limit.We hope that an experiment will help to hose a right boundary ondi-tion and we plan to perform suh an analysis in ollaboration with experi-mentalists. However, one should remember that there is a whole variety ofthe mehanisms of the substane transport aross the membrane [1℄. If theboundary ondition depends on the atual mehanism the problem does nothave a unique solution.
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