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MEMBRANE BOUNDARY CONDITIONTadeusz Kosztoªowi
zInstitute of Physi
s, Pedagogi
al UniversityKonopni
kiej 15, 25-406 Kiel
e, Polande-mail: tkoszt�pu.kiel
e.pland Stanisªaw Mrów
zy«skiSoªtan Institute for Nu
lear StudiesHo»a 69, 00-681 Warsaw, PolandandInstitute of Physi
s, Pedagogi
al UniversityKonopni
kiej 15, 25-406 Kiel
e, Polande-mail: mrow�fuw.edu.pl(Re
eived November 3, 2000)Using a mi
ros
opi
 phase-spa
e model of the membrane system, theboundary 
ondition at a membrane is derived. A

ording to the 
ondition,the substan
e �ow a
ross the membrane is proportional to the di�eren
eof the substan
e 
on
entrations at the opposite membrane surfa
es. TheGreen's fun
tion of the di�usion equation is found for the derived boundary
ondition and the exa
t solution of the equation is given.PACS numbers: 82.65.Fr, 66.10.Cb1. Introdu
tionThe membrane systems play an important role in several �elds of te
h-nology [1℄, where the membranes are used as �lters, and biophysi
s [2℄, wherethe membrane transport is 
ru
ial for the 
ell physiology. The di�usion inthe membrane system is also interesting by itself as a nontrivial sto
hasti
problem. The pro
ess is usually des
ribed by means of the di�usion equa-tion. Sin
e the equation is of the se
ond order one needs two boundary
onditions at the membrane surfa
es. One 
ondition is provided by the 
on-servation of di�using substan
e but there is no obvious 
hoi
e of the se
ond
ondition. Although several proposals 
an be found in the literature [3,4℄ asystemati
 derivation of the boundary 
ondition within a mi
ros
opi
 modelof the pro
ess is missing. (217)
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z, S. Mrów
zy«skiWhile the problem of di�usion in a system with a partially permeablewall (the membrane) is not well explored, there is a vast literature devotedto the systems with (partially) re�e
ting or (partially) absorbing walls. Two
lasses of mi
ros
opi
 approa
hes have been repeatedly used to derive theboundary 
ondition for these 
ases: the random walk on the dis
rete latti
e,see e.g. [5�7℄, and the di�usion in the (
ontinuous) phase-spa
e, see e.g. [8,9℄.The �rst approa
h starts with the death�birth equation while the se
ond oneusually utilizes the Fokker�Plan
k equation. The results for a membranesystem 
annot be obtained by a simple modi�
ation of those dis
ussed in theliterature in 
ontext of the (partially) re�e
ting or (partially) absorbing wall.In these 
ases, the analysis is performed only for a half-spa
e bounded bythe wall while the membrane system demands the full spa
e 
onsiderations.Even the half-spa
e membrane subsystem has not mu
h to do with that ofthe re�e
ting or absorbing wall. From the mi
ros
opi
 point of view, themost important di�eren
e is that the brownian parti
le on
e annihilated bythe absorbing wall never returns to the system while the parti
les 
an passthrough the membrane ba
k and forth.In this note we refer to a simple phase-spa
e model of the membrane sys-tem and, following [8,9℄, we derive, for the �rst time to our best knowledge,the boundary 
ondition for the di�usion equation. The 
ondition appearsto be rather natural � the substan
e �ow a
ross the membrane is propor-tional to the di�eren
e of the substan
e 
on
entrations at the membrane. Inthe se
ond part of our paper we �nd the Green's fun
tion of the di�usionequation whi
h satis�es the derived boundary 
ondition. The exa
t solutionof the equation with a spe
i�
 initial 
ondition is also given. Finally, our
onsiderations are 
riti
ally dis
ussed.2. Derivation of boundary 
onditionLet us 
onsider a system where the substan
e di�uses a
ross the mem-brane whi
h is assumed to be a zero width partially permeable wall. Thetypi
al thi
kness of manufa
tured membrane varies from, say, 0.1 mm to0.01 mm [1℄; the biologi
al membranes are even mu
h thiner [2℄. Sin
e, thesize of the whole system is usually of order of 1 
m, it is natural to treat,at least as a �rst approximation, the membrane as in�nitely thin. Thereis also a te
hni
al reason for su
h a treatment. When the membrane is of�nite width, one needs to spe
ify an initial substan
e 
on
entration insidethe membrane to solve the di�usion equation. However, the 
on
entrationis usually not experimentally a

essible and 
onsequently, the model withthe �nite width membrane is, in pra
ti
e, not mu
h better than that withthe in�nitely thin one.



Membrane Boundary Condition 219The membrane is lo
ated at x = 0. Sin
e the 
on
entration gradientsare assumed to be only along the x�dire
tion the problem is e�e
tivelyone dimensional. One 
an imagine the membrane as a re�e
ting wall withhomogeneously distributed holes. Then, the substan
e parti
les are eitherre�e
ted by the wall or pass through it without 
hange of their momenta.We denote by � the ratio of the total surfa
e of all holes to the membranesurfa
e. Then, the probability to pass through the membrane just equals �.The limiting 
ase � = 0 
orresponds to the holeless, not permeable wallwhile � = 1 to the fully permeable wall or to la
k of membrane at all.The parameter � is, obviously, independent within our model of the parti
levelo
ity.The distribution fun
tion of the substan
e parti
les f(p; x; t), where pand x are, respe
tively, the parti
le momentum and position at the time t,satis�es the relationsf(�p; 0�; t) = (1� �)f(p; 0�; t) + �f(�p; 0+; t) ; (1)f(p; 0+; t) = (1� �)f(�p; 0+; t) + �f(p; 0�; t) : (2)De�ning the parti
le �ow and the partial �ows asj(x; t) def= +1Z�1 dp pmf(p; x; t) ;j+(x; t) def= +1Z0 dp pmf(p; x; t) ; (3)j�(x; t) def= � 0Z�1 dp pmf(p; x; t) (4)with m being the parti
le mass, one rewrites the relations (1), (2) asj�(0�; t) = (1� �)j+(0�; t) + �j�(0+; t) ; (5)j+(0+; t) = (1� �)j�(0+; t) + �j+(0�; t) : (6)One observes that adding Eqs. (5), (6) and using the formulaj(x; t) = j+(x; t) � j�(x; t) we get the 
onservation of the substan
e �owat the membrane i.e. j(0�; t) = j(0+; t) : (7)
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z, S. Mrów
zy«skiNow, we de
ompose the distribution fun
tion asf(p; x; t) = f0(p) + f1(p; x; t) ; (8)where f0(p) is the distribution fun
tion of lo
al equilibrium i.e.f0(p; x; t) = n(x; t)p2�mkBT exp h� p22mkBT iwith T and kB denoting the temperature and Boltzmann 
onstant, respe
-tively. In 
ontrast to the equilibrium distribution fun
tion, whi
h is even(f0(�p) = f0(p)), the fun
tion f1 is assumed to be odd (f1(�p; x; t) =�f1(p; x; t)). The de
omposition (8), whi
h plays a 
ru
ial role in our 
on-siderations, 
an be justi�ed in two 
losely related ways. One 
an assume thatf(p; x; t) satis�es the Fokker�Plan
k equation. Then, the de
omposition (8)
orresponds to the �rst two terms of the expansion of the distribution fun
-tion in the large fri
tion limit [9℄. One 
an also refer here to a more generals
heme of Chapman�Enskog expansion whi
h is appli
able not only to theFokker�Plan
k equation. However, the fun
tion f1 is not obligatory odd inthis 
ase. Nevertheless, this is the odd part of f1 whi
h really matters; theeven part does not 
ontribute to the parti
le �ow while its 
ontribution to theparti
le density 
an be negle
ted be
ause f0 � jf1j. At the end of our paperwe brie�y dis
uss how our results would be modi�ed if the de
omposition(8) is not limited to the two terms.Substituting the distribution fun
tion of the form (8) into Eqs. (3), (4)and applying the Fi
k law j(x; t) = �D�n(x; t)�x ; (9)where D is the di�usion 
onstant, one �ndsj+(0�; t) = r kBT2�mn(0�; t)� D2 �n(x; t)�x ����x=0� ; (10)j�(0�; t) = r kBT2�mn(0�; t) + D2 �n(x; t)�x ����x=0� : (11)The relations (10), (11) allow one to 
onvert Eqs. (5), (6) to the form�r kBT2�m�n(0�; t)� n(0+; t)� = �2� �2 D �n(x; t)�x ����x=0�+�2D �n(x; t)�x ����x=0+ ; (12)



Membrane Boundary Condition 221�r kBT2�m�n(0+; t)� n(0�; t)� = +2� �2 D �n(x; t)�x ����x=0+��2D �n(x; t)�x ����x=0� : (13)As seen, Eqs. (12), (13) provide again the �ow 
onservation (7) and thedesired boundary 
onditionj(0; t) = ���n(0+; t)� n(0�; t)� ; (14)where j(0; t) = j(0+; t) = j(0�; t) ;and the membrane permeability 
oe�
ients � is de�ned as� � �1� �r kBT2�m : (15)One observes that the boundary 
ondition at a membrane (14) is analo-gous to the Fi
k law with the permeability 
oe�
ient � (15) being an ana-logue of the di�usion 
onstant D. Within the elementary theory of transportphenomena, see e.g. [11℄, one estimates D as vl with v = p3kBT=m beingthe thermal velo
ity of the brownian parti
le and l denoting its mean freepath. Then, the di�usion 
urrent approximately equals the 
on
entrationdi�eren
e at the mean free path multiplied by v. Analogously, the di�usive
urrent a
ross the membrane (14) is proportional to the 
on
entration di�er-en
e at the membrane multiplied by v. The 
urrent a
ross the membrane isadditionally modi�ed, when 
ompared to the usual di�usive one, by a fa
torwhi
h is equal, within our me
hani
al membrane model, to the ratio of thearea of all the membrane holes to the area of the re�e
ting membrane sur-fa
e. This fa
tor goes to in�nity when the re�e
ting surfa
e vanishes and themembrane e�e
tively disappears. In su
h a 
ase, however, the 
on
entrationdi�eren
e at the membrane vanishes and the produ
t remains �nite.3. Solving the di�usion equationIn this se
tion we are going to solve the di�usion equation�n(x; t)�t = D�2n(x; t)�x2 ; (16)with the boundary 
onditions (7), (14) and the initial one given asn(x; 0) = n0(x) :



222 T. Kosztoªowi
z, S. Mrów
zy«skiWe introdu
e, as usually, the Green's fun
tion G(x; x0; t; t0) whi
h solvesthe equation ��tG(x; x0; t; t0) = D �2�x2G(x; x0; t; t0) ; (17)with the initial 
onditionlimt!t0G(x; x0; t; t0) = Æ(x� x0) ; (18)and four boundary 
onditions: two, whi
h are obtained from (7), (14) i.e.��xG(x; x0; t; t0)����x=0� = ��xG(x; x0; t; t0)����x=0� (19)�D ��xG(x; x0; t; t0)����x=0� = ��[G(0+; t;x0; t0)�G(0�; t;x0; t0)℄ ; (20)and limx!�1G(x; x0; t; t0) = 0 : (21)Having the Green's fun
tion, the solution of the equation (16) is given asn(x; t) = Z dx0n0(x0)G(x; x0; t; 0) : (22)Further, we always put t0 = 0 and denote the Green's fun
tion as G(x; x0; t).We �nd the Green's fun
tion applying the standard pro
edure [10℄ of theLapla
e transformation whi
h giveseG(x; x0; s) def= 1Z0 dte�stG(x; x0; t) :Transforming Eq. (17) and the initial 
ondition (18) we get the equationD d2dx2 eG(x; x0; s)� s eG(x; x0; s) = �Æ(x� x0) : (23)One trivially �nds the general solution of the homogenous equation (23)while the inhomogenous equation is easily solved by means of the Fouriertransformation. In this way we geteG(x; x0; s) = 12Dq e�qjx�x0j +Aeqx +Be�qx ;



Membrane Boundary Condition 223where q2 � s=D while the 
onstants A and B are determined by the bound-ary 
onditions (19), (20), (21). To 
al
ulate the 
onstants one has to dis-tinguish four 
ases related to the signs of x and x0. We denote as G++ theGreen's fun
tion whi
h 
orresponds to x > 0 and x0 > 0; as G+� that onefor the 
ase of x > 0 and x0 < 0, et
. After inverting the Lapla
e transformwe getG+�(x; x0; t) = G�+(x; x0; t)= �D exp�2�(jx � x0j+ 2�t)D � erf
� jx� x0j+ 4�t2pDt � ; (24)G++(x; x0; t) = G��(x; x0; t)= 12p�Dt �exp��(x� x0)24Dt �+ exp��(x+ x0)24Dt ��� �D exp�2�(jx + x0j+ 2�t)D � erf
� jx+ x0j+ 4�t2pDt �;(25)with erf
(x) being the 
omplementary error fun
tion i.e.erf
(x) = 2p� 1Zx dt e�t2 :As an appli
ation of the Green's fun
tions (24), (25) we 
onsider thetime evolution of the 
on
entration of the substan
e whi
h is initially ho-mogeneously distributed in the left half-spa
e i.e. the initial 
ondition readsn(x; 0) = n0�(�x) :Then, Eq. (22) providesn+(x; t) = n0 0Z�1 dx0G+�(x; x0; t)= n02 �erf
� x2pDt�� exp�2�(x+ 2�t)D � erf
�x+ 4�t2pDt �� ; (26)n�(x; t) = n0 0Z�1 dx0G��(x; x0; t)= n02 �2� erf
� �x2pDt�+ exp�2�(�x+ 2�t)D � erf
��x+ 4�t2pDt �� ;(27)where n+(x; t) � n(x; t) for x > 0 and n�(x; t) � n(x; t) for x < 0.
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z, S. Mrów
zy«skiLet us brie�y dis
uss the solution (26), (27). One observes that when� = 0, whi
h 
orresponds to the fully re�e
ting wall, we get from (26), (27)an expe
ted result i.e. n+(x; t) = 0 and n�(x; t) = n0. In the opposite limit�!1 
orresponding to the la
k of any membrane, we �nd the well knownformulas: n+(x; t) = n02 erf
� x2pDt� ;n�(x; t) = n02 �2� erf
� �x2pDt�� :Finally, one observes that for pDt � jxj and �t � jxj the solution (26),(27) provides n�(x; t) �= n02 "1� 12�r�Dt # :Thus, n�(x; t) = n0=2 for t!1.4. Dis
ussionThe de
omposition (8), whi
h, as already mentioned, plays a key rolein the boundary 
ondition derivation, in
ludes only two terms. Sin
e thesolution of the Fokker�Plan
k equation 
an be systemati
ally expanded inthe powers of the inverse fri
tion 
oe�
ient, one 
an easily supplement,following [9℄, the de
omposition (8) by a next order term. Assuming thatthe Fi
k law (9) still holds, we again get the 
urrent 
onservation (7) whilethe equation analogous to (14) reads:j(0; t) + �1� � D4p�
� �2n(x; t)�x2 ����x=0+ � �2n(x; t)�x2 ����x=0� �= ���n(0+; t)� n(0�; t)� ; (28)where 
 is the fri
tion 
oe�
ient from the Fokker�Plan
k equation. If, fol-lowing [8℄, one treats LHS of Eq. (28) as �rst two terms of the Taylor ex-pansion of the 
urrent at a �nite x, the boundary 
ondition (28) 
an bemanipulated to the form(1� k)j� � x01� k ; t�+ kj�x0k ; t� = ���n(0+; t)� n(0�; t)� ; (29)where k is an arbitrary number while x0 denotes the thi
kness of the kineti
near membrane layer equal x0 = �4p�(1� �)
 :



Membrane Boundary Condition 225Unfortunately, we 
an not see a way to remove the arbitrarness of k whi
happears when, due to Eq. (7), we express j(0; t) as (1�k)j(0+; t)+kj(0�; t).Su
h a problem is absent in the formula analogous to (29) for the 
aseof absorbing wall [8℄. The results (28), (29) are interesting by themselvesbut they do not seem to be very useful as membrane boundary 
onditions.As well known, the di�usion equation provides a reliable des
ription if theChapman�Enskog expansion 
onverges fast. Then, the third term is notneeded in the de
omposition (8) and one should use the boundary 
ondition(14). However, the distribution fun
tion 
an signi�
antly deviate from theequilibrium form in the near membrane layer as it happens in the vi
inityof the absorbing wall [12℄. Then, the boundary 
ondition (29) seems to benatural but the di�usion equation should be 
ombined with the Fokker�Plan
k for a 
orre
t des
ription of the kineti
 layer and the whole approa
happears to be very 
umbersome.The formula of the membrane permeability 
oe�
ient (15) suggests thatthe permeability grows proportionally to pT . However, one should remem-ber that this dependen
e has been obtained within a highly simpli�ed me-
hani
al model of the membrane whi
h is treated as an in�nitely thin re-�e
ting wall with homogeneously distributed holes. Then, the substan
eparti
les are either re�e
ted by the wall or pass through it without 
hangeof their momenta. In reality, the membrane stru
ture is mu
h more 
ompli-
ated and the parameter � should be treated as an e�e
tive probability topass through the membrane. Consequently, � might be temperature depen-dent and then � is no longer proportional to pT .In the series of papers of one of us [4℄, the boundary 
ondition di�erentthan (14) has been advo
ated. Namely, using the symmetry arguments ofthe Green's fun
tion, there has been found instead of (14) the relation:j(0; t) = (1� Æ)j0(0; t) ; (30)where Æ is a dimensionless membrane permeability 
oe�
ient and j0 is thesubstan
e �ow in the system with the removed membrane. As dis
ussedin [4℄, there is a transparent probabilisti
 interpretation of the relation (30).The solution of the di�usion equation, whi
h satis�es the 
ondition (30) [4℄,is qualitatively di�erent than that found here. A

ording to the solution,there is a �nite �ow a
ross the membrane at in�nite time while Eqs. (26),(27) give the vanishing �ow in this limit.We hope that an experiment will help to 
hose a right boundary 
ondi-tion and we plan to perform su
h an analysis in 
ollaboration with experi-mentalists. However, one should remember that there is a whole variety ofthe me
hanisms of the substan
e transport a
ross the membrane [1℄. If theboundary 
ondition depends on the a
tual me
hanism the problem does nothave a unique solution.
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