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A TWISTORIAL DESCRIPTION OF THE DYNAMICSOF COMPLEXIFIED ELECTROMAGNETIC FIELDSJ.G. CardosoDepartment of MathematisCentre for Tehnologial Sienes-UDESCJoinville 89223-100 SC, Brazil(Reeived Otober 9, 2000)A method whih enables one to build up expliit least-ation priniplesin the non-projetive twistor spaes is applied to the ontext of the theoryof omplexi�ed Maxwell �elds. The freedom in the hoies of spinor kernelsfor the integrands of the universal ontour integrals for interating �eldsgives rise to the possibility of onstruting several Lagrangian densities forthe system being onsidered. It appears that the Lorenz-gauge ondition isintrinsially tied in with the inner struture of the twistor dynamis. Theon�gurations involving the kernels for the potential and urrent densityturn out to suggest a natural variational presription for deriving the equa-tions of motion for the potential. It is shown that the equations for the�elds an be derived diretly from oupled statements whih arry only�eld quantities.PACS numbers: 03.50.De 1. IntrodutionA method has reently been proposed [1,2℄ whih makes feasible the on-strution of twistorial least-ation priniples for omplexi�ed spinless andspinning �elds. Loosely speaking, the twistor Lagrangian densities of inter-est are built up by simply inserting into the expressions for the standarddensities the integrands of the universal ontour integrals for interating�elds [3℄ along with the usual two-twistor expression for the (holomorphi)partial-derivative operator on Complex Minkowski spae CM. In the spin-ning ase, the usefulness of the strutures whih result out of the ompletionof this proedure rests essentially upon the freedom in the seletion of spinorkernels for the ontour integrals that produe the �elds. The dynamialstatements are all set upon bounded eight-real-dimensional domains on-tained in the topologial produt of the non-projetive twistor spae T withits dual T�. Upon atually working out the variations of the ations in either(29)



30 J.G. Cardosoase, one holds �xed the arguments of the respetive twistor funtions andassumes that the variation itself ommutes with the derivatives whih even-tually our in the expressions for the densities involved. Normally, the setsof variations are onstituted by arbitrary non-singular salar funtions thatare de�ned on the (ompat) losures of the domains and likewise requiredto vanish on the boundaries, the twistor �elds as well as their derivativesbeing supposedly ontinuous in the losures.Indeed, the method was initially utilized [1℄ to desribe the dynamisof lassial Klein�Gordon �elds, the orresponding twistor equations of mo-tion having appeared as statements arrying the well-known Penrose waveoperators [4℄. The adaptation of the tehniques to spinning systems wasbasially aomplished in onnetion with the presentation of a desriptionfor Dira �elds [2℄. A remarkable result arising in the latter work, whihapparently brings out a typial feature of spinning systems, is assoiated tothe dynamial admissibility of spinor variations. The arbitrariness borne bythe hoie of spinor kernels thus produed the generation of many densitiesthat are related to one another through a simple set of interhange rules. Itwas shown, in e�et, that the relevant equations of motion not only oinidewith the statements whih are obtained by transveting the Dira equationswith suitable kernels, but are also independent of whih density is e�etivelyseleted out.In the present work, we apply the method to omplexi�ed Maxwell �elds.It will be seen that both the multipliity of Lagrangian densities and the ad-missibility of spinor variations will take plae one again. We will showthat the Lorentz-gauge ondition is intimately tied in with the struture ofthe twistor dynamis. The traditional variational role of the eletromag-neti potential will be arried over to the situation allowed for at this stage.Aordingly, the on�gurations involving the potential and urrent-densitykernels provide a naive presription for arrying out the derivation of theequations of motion for the potential in a natural way. A partiular resultthat emerges from the implementation of this presription is the ourreneof three equivalent wave equations whih arry the Penrose operators to-gether with appropriate twistor funtions. It appears that the equationsof motion for the �elds an be derived in a straightforward way from ou-pled �eld statements whih involve salar variations. It turns out that thetwistorial representation of the theory agrees with the relations whih arisefrom trivially translating the CM-version of Maxwell's equations. Notwith-standing the fat that the key proedures an be arried through in muhthe same way as for the spinning ase referred to before, we will build upa new set of integral devies whih onsiderably failitate working out thepertinent least-ation priniple. For the sake of ompleteness, we will alsoshow the details of the produt-spae onstrution provided in Ref. [1℄.



A Twistorial Desription of the Dynamis : : : 31The only reason lying behind the elaboration of our work is related tothe belief that it would be worthwhile to look into the inner struture ofthe eletromagneti system, thereby verifying whether suh an investigationmight bring out dynamial features other than the ones exhibited hitherto.We hope that the desription to be presented here will fully justify ourmotivation. The paper has been outlined as follows. Setion 2 brie�y reviewsthe formulation of the theory as given in Ref. [5℄. In Setion 3, we reallthe ontour integrals whih are of immediate interest to us and exhibit themain kernel strutures. A symboli form of the ation is onstruted inSetion 4, the equations of motion being derived afterwards in Setion 5.We make a few remarks on our representation in Setion 6. The �elds willbe onsidered as wave funtions, and no attempt will be made herein toprovide a ohomologial interpretation of the �eld dynamis. All the spinorand twistor onventions adopted by Penrose and Rindler [3℄ will be takenfor granted from the beginning. The standard oordinates xa of an arbitrarypoint of CM will be split up aording to the presription xa = �a+i�a, with�a and �a being both omponents of real vetors. The ovariant alternatingtensor for the anonial basis of CM will be denoted by eabd.2. Formulation of the theory in CMThe Maxwell system is de�ned at xa as the setMS = f�AB(x);  A0B0(x);�AA0(x); JAA0(x)g ; (2.1)where, in partiular, the quantities �AB(x) and  A0B0(x) are the eletro-magneti �elds. Suh quantities are symmetri spinors and show up asindependent states of photons, being additionally looked upon as unhargedmassless �elds of spin �1. Either of them thus desribes loally the sixdegrees of freedom of the system. The quantity �AA0(x) stands for the (ve-tor) eletromagneti potential whereas JAA0(x) denotes a (divergeneless)urrent density whih e�etively plays the role of a soure for the �elds andpotential. Eah entry of (2.1) an be regarded as a mapping on the tensorprodut between adequate SL(2; C) 
 SL(2; C)-�bers over xa. We have theexpliit �eld-potential relationships�AB(x) = rA0(A�A0B)(x) (2.2a)and  A0B0(x) = rA(A0�AB0)(x) ; (2.2b)whih ome diretly from the de�ning expression for the Maxwell bivetorFAA0BB0(x) = 2r[AA0�BB0℄(x) ; (2.3)



32 J.G. CardosowhererAA0 = �=�xAA0 and the square brakets denote skew-symmetrizationover the index pairs. We thus have the unambiguous splitting relationFAA0BB0(x) = "A0B0�AB(x) + "AB A0B0(x) ; (2.4)with the "'s being the anonial �metri� spinors.The skewness of Fab(x) implies that the �elds satisfy the Bianhi identityrBA0�AB(x) = rB0A  A0B0(x) : (2.5)We often onsider this identity as the �rst half of Maxwell's equations, whihis deemed to be equivalent to Eqs. (2.2). The seond half is the essentiallydynamial part of the theory, and arises out of the variational priniple [5℄Æ Z
 LM
� = 0 : (2.6)In (2.6), 
� de�nes an elementary eight-real-dimensional volume of a boundedregion 
 � CM through
� = d4� ^ d4� ; (2.7a)where d4� = 14!eabdd�a ^ d�b ^ d� ^ d�d ; (2.7b)with xa 2 
 and � denoting either � or �. The quantity LM is the ompleteCM-Lagrangian density for the system, whih is written out expliitly asLM = 18� h�AB(x)�AB(x) +  A0B0(x) A0B0(x)i+ �AA0(x)JAA0(x) : (2.8)Usually, Æ�AA0(x) is taken as the variation that vanishes on the boundary�
 of 
 . Combining (2.5) with the �eld equations that result from (2.6)then yields the gauge-invariant statementsrBA0�AB(x) = 2�JAA0(x) = rB0A  A0B0(x) ; (2.9)whih amount to the entire theory in 
 .The wave equations that ontrol the propagation of the �elds and po-tential in 
 read [5℄ ��AB(x) = 4�rA0(AJA0B)(x) ; (2.10a)� A0B0(x) = 4�rA(A0JAB0)(x) ; (2.10b)



A Twistorial Desription of the Dynamis : : : 33��AA0(x) = 4�JAA0(x) +rAA0�(x) ; (2.11)with � = rCC0rCC0 = rr (2.12a)and �(x) = rCC0�CC0(x) (2.12b)being the D'Alembertian operator and the Lorentz salar. Evidently, thedivergenelessness of JAA0(x) an be stated as either of the relationsrA0[AJA0B℄ (x) = 0;rA[A0JAB0℄(x) = 0 ; (2.13)and, onsequently, we an drop the symmetrization round brakets fromthe right-hand sides of Eqs. (2.10). In ase the �elds bear a spei� energyharater, we may extend the domain of de�nition of the system by arryingout an analyti ontinuation into CM.3. Contour integrals and spinor-kernel struturesLet fZ�;W�g be a pair of non-null twistors through xa, whih are pre-sribed by Z� = (!A(x); �A0) = (ixAA0�A0 ; �A0) 2 T� ; (3.1a)W� = (�A; �A0(x)) = (�A;�ixAA0�A) 2 T�� ; (3.1b)with T� and T�� standing for the non-null slies of T and T�, respetively.Suh twistors e�etively satisfy the inidene ondition Z�W� = 0, andthene an be viewed as two-omplex-dimensional planes �Z and �W lyingin CM whose intersetion is a omplex null geodesi NZW that ontains xa(see, for instane, Ref. [4℄). In a formal way, we have�Z \ �W = NZW 3 xa : (3.2)It is useful to introdue the (Poinaré-invariant) non-projetive di�eren-tial forms d2Z + 12 (I��dZ� ^ dZ�) = (I��A�B�)d� ^ d� ; (3.3a)and d2W + 12 (I��dW� ^ dW�) = (I��E�F�)d� ^ d� ; (3.3b)where I�� and I�� denote the ordinary in�nity twistors [3,4℄, andZ� = �A� + �B�;W� = �E� + �F� ; (3.3)



34 J.G. Cardosowith �; �; �; � being independent nowhere-vanishing omplex parametersand A�; B�; E�; F� standing for �xed auxiliary twistors through xa. Wenotie that d2Z = (I��A�B�)(�d�) ^ d� ; (3.4a)d2W = (I��E�F�)(�d�) ^ d� ; (3.4b)where � = �=� and � = �=� . We thus write the symboli ontour integralsfor the �elds�AB(x) = 1(2�i)4 Z�f(F) FABf(F)(Z�;W�)d2Z ^ d2W (3.5)and  A0B0(x) = 1(2�i)4 Z�g(G) GA0B0g(G)(Z�;W�)d2Z ^ d2W ; (3.6)along with the formal expression for the potential�AA0(x) = 1(2�i)4 Z�P(P) PAA0P(P)(Z�;W�)d2Z ^ d2W ; (3.7)where fFAB ; GA0B0 ; PAA0g arries deomposable kernels to be determined.In aordane with the onventional approah [3℄, the (two-variable)twistor �elds and potential f�(Z�;W�)g that enter into the integrands ofEqs. (3.5)�(3.7) are independent meromorphi funtions on T� � T��, eahof whih being ultimately taken to be also homogeneous in both variables.The ontours f��g are four-real-dimensional ompat ontours having thetoroidal topology (S1 � S1) � (S1 � S1). All of them have to be spei�edin suh a way that non-vanishing outomes are produed when one atuallyperforms the integrals. We will make another point regarding this spei�a-tion in a moment.The projetive version of (3.5)�(3.7) an be immediately obtained byperforming integrals that arry simple one-forms [2℄. We have the expliitformulae �AB(x) = 1(2�i)2 Zf(F) FABf(F)(Z�;W�)ÆZ ^ ÆW ; (3.8) A0B0(x) = 1(2�i)2 Zg(G) GA0B0g(G)(Z�;W�)ÆZ ^ ÆW (3.9)



A Twistorial Desription of the Dynamis : : : 35and �AA0(x) = 1(2�i)2 ZP(P) PAA0P(P)(Z�;W�)ÆZ ^ ÆW ; (3.10)with ÆZ + I��Z�dZ� = (I��A�B�)(�2d�) ; (3.11a)ÆW + I��W�dW� = (I��E�F�)(�2d�) (3.11b)and � ' S1 � S1.Eah S1-piee is thought here of as an oriented irled loop whih suitablysurrounds the singularities lying in the respetive omplex plane. It followsthat we an sort out a single overall ontour for all the integrals of either type.In the projetive ase, in partiular, it is frequently onvenient to take eah ofthe piees borne by the ommon (S1�S1)-ontour as a irle whih intersetsthe interior of the other, with a similar onstrution ertainly applying to thenon-projetive ase as well. We should mention that projetive strutures ofthis kind were utilized earlier in a work dealing with general tehniques forexpliitly evaluating twistor diagrams in real Minkowski spae [7℄. Therefore,using Eqs. (2.2) and the saling-invariant relation at xarAA0 = i(�A0 �̂A � �A�̂A0) ; (3.12a)where �̂A + ��!A ; �̂A0 + ���A0 ; (3.12b)we aordingly obtain the kernel presriptionsFAB : �A�B ; 2�(A�̂B); �̂A�̂B ;GA0B0 : �A0�B0 ; 2�(A0 �̂B0); �̂A0 �̂B0 ;PAA0 : �A�A0 ; �A0 �̂A + �A�̂A0 ; �̂A�̂A0 ;up to a Cauhy-theorem �gauge-freedom�. Hene, the relevant homogeneitydegrees are supplied by the shemes Z Wf1(Z�;W�) + f(F) for FAB = �A�B : �2 �4f2(Z�;W�) + f(F) for FAB = 2�(A�̂B) : �1 �3f3(Z�;W�) + f(F) for FAB = �̂A�̂B : 0 �2Z Wg1(Z�;W�) + g(G) for GA0B0 = �A0�B0 : �4 �2g2(Z�;W�) + g(G) for GA0B0 = 2�(A0 �̂B0) : �3 �1g3(Z�;W�) + g(G) for GA0B0 = �̂A0 �̂B0 : �2 0



36 J.G. Cardosoand Z WP1(Z�;W�) + P(P) for PAA0 = �A�A0 : �3 �3P2(Z�;W�) + P(P) for PAA0 = �A0 �̂A + �A�̂A0 : �2 �2P3(Z�;W�) + P(P) for PAA0 = �̂A�̂A0 : �1 �1whene eah integral bears a saling-invariant integrand. We observe thatthe potential kernels are invariant under the simultaneous interhanges�A0 
 �A ; �̂A 
 �̂A0 ; (3.13)with the kernel for P2(Z�;W�) being also saling invariant. The formerinvariane property exhibits the �reality� of �AA0(x). For simpliity, we willno longer write the arguments of the twistor funtions.It is evident that the funtional strutures fSAA0S(S)g for JAA0(x) maybe spei�ed by invoking (2.9) and operating with (3.12a) on either set of �eldintegrals. Equivalently, this spei�ation an also be ahieved by utilizinga proedure whih takes into aount Eq. (2.11) along with the operatorompositions �ZW = (�2)Ẑ Æ Ŵ =(�2)Ŵ Æ Ẑ =�WZ (3.14)and the de�nitions Ẑ + �A�̂A = I��W� ��Z� ; (3.15a)Ŵ + �A0 �̂A0 = I��Z� ��W� : (3.15b)What results is, in e�et, that the kernels fSAA0g for the urrent densityoinide with the kernels for the potential. Beause of the ommutativityproperty of the (saling-invariant) ompositions (3.14), we an unambigu-ously denote as � either of the seond-order derivative operators involved.Suh objets are the Penrose wave operators mentioned in Setion 1.The pattern of the operator (3.12a), whih is learly real in the sense of(3.13), enables us to see easily that all the potential kernels yield �(x) = 0.Hene, the Lorentz-gauge ondition is deeply rooted into the spinor-kernelstruture of the system. The oinidene between the potential and urrent-density kernels essentially enhanes this striking feature of the system, asan be seen at one by alling upon Eq. (2.13). Consequently, the vanishingof the Lorentz salar e�etively entails the divergenelessness of JAA0(x).



A Twistorial Desription of the Dynamis : : : 37Furthermore, the right-hand sides of (2.2) an now be rewritten in a some-what simpler way as rA0A�A0B (x) and rAA0�AB0(x). We thus have the �eld-potential relations ifk = (�1)ŴPk (3.16a)and (�igk) = (�1)ẐPk ; (3.16b)with k = 1; 2; 3. The identity (2.5) turns out to be expressed asẐ(ifk) = Ŵ (�igk) : (3.17)We end this setion by observing that, on the basis of the �eld and waveequations of Setion 2, one an derive a omplete set of relationships in-volving adequately the spinor�kernel shemes given above. However, someof these strutures will not play any ruial role in the development of Se-tions 4 and 5, whene they will not be spelt out here (see Ref. [6℄).4. The dynamial prinipleLet �� be a bounded open subset of T� � T�� whose entries are loallyde�ned by the real and imaginary parts of !A(x) and �A0(x) aording tothe elementary presription(Z0; Z1) $ !A(x) = BA(x) + iCA(x) ; (4.1a)(W2;W3) $ �A0(x) = XA0(x) + iY A0(x) : (4.1b)The suitability of the presription (4.1) is partly due to the fat that theonly twistor-derivative operators whih atually enter into the r-expression(3.12a) are the ones de�ned with respet to the onformallyinvariant partsof the twistors whih our in Eqs. (3.1). The adequay of �� is e�etivelymade up by imposing both smoothness on the boundary ��� of its losure��� and ompatness on ���. For the volume of ��, we thus have the (real)integral [5℄ #[��℄ = Z�� DBCXY ; (4.2)where DBCXY is an eight-form on �� given as the wedge produt betweenthe forms B�(x) = 12 [dBA(x) ^ dBA(x)℄ ; (4.3a)C�(x) = 12 [dCB(x) ^ dCB(x)℄ ; (4.3b)



38 J.G. Cardosoand X� (x) = 12 [dXA0(x) ^ dXA0(x)℄ ; (4.3)Y� (x) = 12 [dYB0(x) ^ dY B0(x)℄ : (4.3d)In setting up the dynamial priniple, it appears to be neessary toreplae the individual piees of the CM-Lagrangian density with the kernelsborne by the ontour integrals of Setion 2. This neessity stems from theuselessness of the result that arises when the ontour integrals themselvesare immediately oupled together. We thus arrive at the following set of�eld ontributions�AB(x)�AB(x) :f1(Ẑ2f3) ; (�2)(Ẑf2)2 ; 2(�̂Af2)(�̂AẐf3) ; A0B0(x) A0B0(x) :g1(Ŵ 2g3) ; (�2)(Ŵ g2)2 ; 2(�̂A0 g2)(�̂A0Ŵ g3) ;with the pertinent onjugation, ̂, amounting to the ombination of (3.13)with the interhange rulesZ� $ W� ; I�� $ I�� ; ifk $ (�igk) ; (4.4)where k stands for the same label as before. We point out that the above-de�ned onjugation is still appliable to Eqs. (3.16) and (3.17). Making useof (2.2) and aounting for the Lorentz gauge, we obtain the alternativestrutures rA0A�A0B (x)rAB0�BB0(x) :12(ŴP1)(Ẑ�P3) ; 12 (�P2)2 ; (�̂AŴP2)(�̂A�P3) ;along with the ̂-onjugate ones forrAA0�AB0(x)rA0B �B0B(x) =  A0B0(x) A0B0(x) : (4.5)We an onstrut the bloks for the interating piee of (2.8) by imple-menting the identity PAA0 � SAA0 as well as the natural orrespondenePk ! Sk between the twistor funtions for the potential and the ones forthe urrent density. In e�et, we have the ontributions�AA0(x)JAA0(x) :(�12)(�P3)S1 ; (�1)[(ŴP2)(ẐS2) + (ẐP2)(ŴS2)℄ ;(�̂AP2)(�̂AŴS3) + (�̂A0P2)(�̂A0ẐS3) ; (�̂A�̂A0P3)(�̂A�̂A0S3) ;



A Twistorial Desription of the Dynamis : : : 39together with the strutures whih are obtained out of the ones just givenby interhanging the kernel letters P and S. It should be notied thatsuh interhanges will leave the seond and fourth �J -bloks invariant if asuitable ommutation assumption is e�etively taken up.We have thus been led to two dynamial sets of basi Lagrangian densitiesthat arry the funtional piees for eitherf�AB(x);  A0B0(x);�AA0(x); JAA0(x)gor f�AA0(x); JAA0(x)g:It has beome lear that the piees of one density are related to the pieesof any other density through a trivial set of interhanges. Hene, supposingthat the twistor funtions and derivatives are all ontinuous in ���, andde�ning LTM = L(FREE)TM + L(INT)TM ; (4.6)with L(FREE)TM and L(INT)TM denoting symbolially the free and interating partsof any density LTM, we write the ationS[LTM℄ = Z�� (L(FREE)TM + L(INT)TM )DBCXY ; (4.7)along with the variational statement�S[LTM℄ = 0 = � Z�� (L(FREE)TM + L(INT)TM )DBCXY : (4.8)The �-variation of Eq. (4.8) is presribed so as to bear linearity andthe Leibniz-rule property. Likewise, it preserves �reality� and does not in-volve any deformation of ���. In addition, it is required to ommute withthe onformally invariant twistor-derivative operators (3.12b) and, onse-quently, also with the Poinaré-invariant ones of (3.14) and (3.15) sine Z�and W� are both held �xed when the variational proess is put into e�et.Presumably, the union of the singularity sets of the funtional piees ar-ried by all the densities possesses a void intersetion with �� [ ���, and�Sk � 0 throughout ���. We should emphasize that, in any ase, the �eldand potential variations must be taken as arbitrary non-singular quantitieson �� [ ��� whih vanish on ���.



40 J.G. Cardoso5. Equations of motionThe �-variation spei�ed in the foregoing Setion tells us that we havee�etively to perform atual integrations by parts upon working out thestatement (4.8). This fat implies that the Lagrangian bloks whih involvethe operators (3.12b) expliitly will beome useless in ase only salar vari-ations are utilized. Roughly speaking, the point is that suh ontributionswill produe identially vanishing strutures if they are brought into S[LTM℄together with salar variations. At this stage, we will restrit ourselves tousing salar variations. The situation onerning spei�ally the utilizationof spinor variations will be touhed upon later in Setion 6.We thus onsider the following operator splitting relations assoiatedwith Eqs. (3.15) and (4.1)Ẑ = 12 [(I��W�B̂�)� i(I��W�Ĉ�)℄ + 12(B̂ � iĈ) ; (5.1a)Ŵ = 12 [(I��Z�X̂�)� i(I��Z�Ŷ �)℄ + 12(X̂ � iŶ ) ; (5.1b)whih readily provide us with the auxiliary integral formulaeZ�� (Ẑ�G)FDBCXY = Z��� (�G)F(�Ad7�A)� Z�� (�G)(ẐF)DBCXY ; (5.2)Z�� (Ŵ�G)FDBCXY = Z��� (�G)F(�A0d7�A0)� Z�� (�G)(Ŵ F)DBCXY(5.3)andZ�� (��G)FDBCXY�2 Z��� (�G)(ẐF)(�A0d7�A0)+2 Z��� (Ŵ�G)F(�Ad7�A)= Z�� (�G)(�F)DBCXY ; (5.4)where F and G stand for any relevant funtions, andd7�A(x) = 12 ��dBA(x) ^ C�(x)� iB�(x) ^ dCA(x)� ^ X� (x) ^ Y� (x)� ;(5.5a)d7�A0(x) = 12 �B�(x) ^ C�(x) ^ �dXA0(x) ^ Y�(x)� iX� (x) ^ dY A0(x)�� ;(5.5b)



A Twistorial Desription of the Dynamis : : : 41de�ne two independent elements of seven-hypersurfae area of ���, with theintegrations having been performed from right to left. In passing, we observethat the alulations leading to Eqs. (5.2)�(5.4) inidently bring about theonjugation orrespondene[�Ad7�A(x)℄$ [�A0d7�A0(x)℄ : (5.6)Additionally, the expliit fator 1=2 of (5.5) should be implemented in plaeof the mistaken, but ultimately irrelevant, fator 1=4 whih is arried byEqs. (3.5) and (3.6) of Ref. [1℄.The patterns of the free and interating Lagrangian ontributions natu-rally suggest writing the variational set for the systemff�P1;�P3g; f�P2gg ; (5.7)with all the entries involved being independent of eah other. We thus havethe partiular densitiesL(1)TM = 116� [(ŴP1)Ẑ�P3 + (ẐP1)Ŵ�P3℄� 14[(�P3)S1 + P1�S3℄ (5.8)and L(2)TM = 18� (�P2)2 � [(ŴP2)ẐS2 + (ẐP2)ŴS2℄ ; (5.9)whose variations are given by�L(1)TM = 116� f[(Ŵ�P1)Ẑ�P3 + (ŴP1)Ẑ��P3℄ + ̂ �onjugateg�14[(��P3)S1 + (�P1)�S3℄ (5.10)and �L(2)TM = 14� (��P2)�P2 � [(Ŵ�P2)ẐS2 + ̂ �onjugate℄ : (5.11)It follows that, invoking (4.8) and taking �Pk = 0 on ���, after somemanipulations we obtain the equations of motion(��k � 4��k) = 0;�k = �Pk;�k = �Sk ; (5.12)where k runs over the same values as in Eqs. (3.16).A glane at Eqs. (3.16), (5.8) and (5.9) shows that, in ontradistintionto the CM-formulation [5℄, eah of the equations of motion for fifk; (�igk)g



42 J.G. Cardosoan be derived from a manifestly �eld struture by suitably hanging thehoie of variations. In e�et, for the ase of (5.9), we have�L(3)TM = 12�f[Ẑ�(if2)℄Ẑ(if2) + [Ŵ�(� ig2)℄Ŵ (� ig2)g+f[�(if2)℄ẐS2 + [�(�ig2)℄ŴS2g ; (5.13)with f�(if2);�(�ig2)g thus taking over the dynamial role of �P2. Hene,making use of the integration tehniques that give rise to (5.12), we derivethe equationẐ � 12� Ẑ(if2)� S2�+ Ŵ � 12�Ŵ (�ig2)� S2� = 0 ; (5.14)whih obviously represents the seond half of the theory. Now, ombiningEqs. (5.14) and (3.17) for k = 2, we onlude that(Ẑ + Ŵ )[Ẑ(if2)� 2�S2℄ = 0 = (Ẑ + Ŵ )[Ŵ (�ig2)� 2�S2℄ : (5.15)The density (5.8) an be similarly worked out by adopting the variationalset f�P1;�F3;�G3g, whose entries partiularly involve the quantitiesF3 + Ẑ(if3) = Ŵ (�ig3) + G3 : (5.16)We thus obtain the �eld equationsẐ(if1) = 2�S1 = Ŵ (�ig1) ; (5.17a)along with Ŵ [Ẑ(if3)� 2�S3℄ = 0 (5.17b)and Ẑ[Ŵ (�ig3)� 2�S3℄ = 0 : (5.17)In order to represent the omplete theory, it su�es to take�Pk = 4�Sk (5.18a)and Ẑ(ifk) = 2�Sk = Ŵ (�igk) : (5.18b)It is lear that Eqs. (5.18) are idential to the relations whih emerge fromontrating (2.11) and (2.9) with adequate kernels. As the formulation of(4.8) automatially balanes the weights of any allowable saling fators, thespinning harater of the �elds turns out to be re�eted by the homogeneitydegrees of the respetive twistor funtions.



A Twistorial Desription of the Dynamis : : : 436. Conluding remarks and outlookOne might laim that, in the �rst instane, inserting the ontour integralsinto the former �eld equations would not immediately yield a system ofdi�erential relations insofar as the ontours involved are generally taken tobe distint from one another. In fat, this situation has been reti�ed inSetion 3 by implementing a parametri form of the integrands whih allowsthe de�nition of a single ontour for the sets of integrals (3.5)�(3.10). Thesame parametrization proedure was used in Ref. [2℄, and has indeed beenonsidered as a somewhat important part of our method. When utilizedin onjuntion with the produt-spae presription given in Ref. [8℄, it maygive rise to the onstrution of formal Green-funtion solutions to twistorwave equations. Moreover, it atually aounts for the eventual ourreneof the inner produt Z�W� in the denominators of the integrands, whene itsombination with the tehniques of Ref. [7℄ would enable one to write downan integral form of the theory in terms of twistor diagrams [9�16℄. That it isonsistent with the degrees of the standard di�erential forms an be rapidlyestablished by onsidering the equivalent saling-invariant relationsZZ F (a�1Z�)Æ(a�1Z) = ZZ F (Z�)ÆZmZX F (aX�)Æ(aX) = ZX F (X�)ÆX;with a being any (�xed) non-vanishing omplex number and Z� = aX�.One of the most notable results we have obtained above is related to thepossibility of deriving diretly from (4.8) the wave equations�(ifm) = (�4�)ŴSm ;�(�igm) = (�4�)ẐSm ;whih represent the (gauge-invariant) CM-equation�Fab(x) = 8�r[aJb℄(x) ;with m taking the values 2 and 3. The pertinent proedure for m = 3, forinstane, onsists �rst in re-expressing (5.8) as (see Eqs. (3.16))L(4)TM = (�1)16� [(ẐP1)�(if3) + (ŴP1)�(�ig3)℄�14f[Ẑ(if3) + Ŵ (�ig3)℄S1 + P1�S3g ;



44 J.G. Cardosoand then piking up the piee of the statement (4.8) that arries�P1. Hene,it seems to be of some interest to �nd out whether the wave equations forfif1; ( � ig1)g may be ahieved in a similar fashion. In the event that ex-pliit spinor relations involving the kernels for the urrent density have to bee�etively required, the introdution of the pertinent ontour integrals shallbe based upon the harge-onservation law rAA0JAA0(x) = 0, whih aord-ingly will enter into the piture as a formal ��eld equation� for JAA0(x). Ofourse, the Lorentz-gauge feature of the twistor formulation would demandthe implementation of the famous Gupta�Bleuler proedure if a quantumversion of the theory were taken into onsideration at the outset.With regard to the hoies of variations for the system, we must stressthat our representation makes it viable to utilize spinor variations along withthe Lagrangian densities whih arry the piees(�̂AŴP2)(�̂A�P3); (�̂A0 ẐP2)(�̂A0�P3) ;(�̂AP2)(�̂AŴS3) + (�̂A0P2)(�̂A0ẐS3) ;(�̂AŴP3)(�̂AS2) + (�̂A0ẐP3)(�̂A0S2) ;and (�̂A�̂A0P3)(�̂A�̂A0S3) :In some partiular ases, these on�gurations yield a set of spinor equationsof motion whih involve twistor funtions bearing di�erent values of thelabel k, but their utilization does not provide any additional insights intothe dynamial framework. A genuinely useful example is a�orded by thedensityL(5)TM = 18� h(�̂AŴP2)(�̂A�P3) + (�̂A0 ẐP2)(�̂A0�P3)i+12 h(�̂AP2)(�̂AŴS3) + (�̂A0P2)(�̂A0ẐS3) + (�̂A�̂A0P3)(�̂A�̂A0S3)iwith the �mixed� presriptionf�(�̂AP2);�(�̂A0P2);�P3g ;in whih ase we obtain the wave equation for P3. It now beomes evidentthat the number of entries of eah set of basi densities will get onsiderablyredued if only salar variations are put into pratie. We an therefore statethat the exlusion of the densities whih bear the potential funtionsfP2; P3g; fP2; S3g; fP3; S2g; fP3; S3g ;



A Twistorial Desription of the Dynamis : : : 45would bring forward a non-trivial harater of the whole representation with-out spoiling the ompleteness of the desription.Worthy of speial onsideration is the ourrene of the ̂-onjugationproperty Z��� (�G)(ẐF)��A0d7�A0�� Z��� (Ŵ�G)F ��Ad7�A�= Z��� (�G)(Ŵ F) ��Ad7�A�� Z��� (Ẑ�G)F��A0d7�A0� ;whih takes plae when the reality of the �-operator is inorporated into theonstrution of the devie (5.4). Had the integrations by parts of Setion 5been performed from left to right the same volume integrals would have beenobtained, but the overall signs of the boundary integrals of Eqs. (5.2)�(5.4)would have to be readjusted. It is obvious that the twistors fB�; C�;X� ; Y�ginvolved in Eqs. (5.1) have been introdued to de�ne the real and imaginaryparts of the operators (3.15). Nevertheless, it has not been stritly neessaryto asribe to them any group-theoreti meaning at all.The work presented here was supported �nanially by the Brazilianageny CNPq. REFERENCES[1℄ J.G. Cardoso, Czeh J. Phys. 47, 747 (1997).[2℄ J.G. Cardoso, Czeh J. Phys. 49, 439 (1999).[3℄ R. Penrose, W. Rindler, Spinors and Spae-Time, Vol. 2, Cambridge Univer-sity Press, Cambridge 1986.[4℄ R. Penrose, in Quantum Gravity: An Oxford Symposium, eds. C.J. Isham,R. Penrose and D.W. Siama, Oxford University Press, Oxford 1975.[5℄ J.G. Cardoso, Ann. Phys. 221, 341 (1933).[6℄ J.G. Cardoso, Expliit Twistor-Funtion Relations for Complexi�ed MaxwellFields, in preparation.[7℄ J.G. Cardoso, Int. J. Theor. Phys. 37, 1855 (1998).[8℄ J.G. Cardoso, J. Math. Phys. 33, 2169 (1992).[9℄ A. Qadir, Ph. D. thesis, Birkbek College, London 1971.[10℄ R. Penrose, M.A. H. MaCallum, Phys. Rep. 6, 241 (1972).[11℄ A. Qadir, Phys. Rep. 39, 167 (1978).[12℄ A. Hodges, Pro. R. So. London A385, 207 (1983a).
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