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A TWISTORIAL DESCRIPTION OF THE DYNAMICSOF COMPLEXIFIED ELECTROMAGNETIC FIELDSJ.G. CardosoDepartment of Mathemati
sCentre for Te
hnologi
al S
ien
es-UDESCJoinville 89223-100 SC, Brazil(Re
eived O
tober 9, 2000)A method whi
h enables one to build up expli
it least-a
tion prin
iplesin the non-proje
tive twistor spa
es is applied to the 
ontext of the theoryof 
omplexi�ed Maxwell �elds. The freedom in the 
hoi
es of spinor kernelsfor the integrands of the universal 
ontour integrals for intera
ting �eldsgives rise to the possibility of 
onstru
ting several Lagrangian densities forthe system being 
onsidered. It appears that the Lorenz-gauge 
ondition isintrinsi
ally tied in with the inner stru
ture of the twistor dynami
s. The
on�gurations involving the kernels for the potential and 
urrent densityturn out to suggest a natural variational pres
ription for deriving the equa-tions of motion for the potential. It is shown that the equations for the�elds 
an be derived dire
tly from 
oupled statements whi
h 
arry only�eld quantities.PACS numbers: 03.50.De 1. Introdu
tionA method has re
ently been proposed [1,2℄ whi
h makes feasible the 
on-stru
tion of twistorial least-a
tion prin
iples for 
omplexi�ed spinless andspinning �elds. Loosely speaking, the twistor Lagrangian densities of inter-est are built up by simply inserting into the expressions for the standarddensities the integrands of the universal 
ontour integrals for intera
ting�elds [3℄ along with the usual two-twistor expression for the (holomorphi
)partial-derivative operator on Complex Minkowski spa
e CM. In the spin-ning 
ase, the usefulness of the stru
tures whi
h result out of the 
ompletionof this pro
edure rests essentially upon the freedom in the sele
tion of spinorkernels for the 
ontour integrals that produ
e the �elds. The dynami
alstatements are all set upon bounded eight-real-dimensional domains 
on-tained in the topologi
al produ
t of the non-proje
tive twistor spa
e T withits dual T�. Upon a
tually working out the variations of the a
tions in either(29)
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ase, one holds �xed the arguments of the respe
tive twistor fun
tions andassumes that the variation itself 
ommutes with the derivatives whi
h even-tually o

ur in the expressions for the densities involved. Normally, the setsof variations are 
onstituted by arbitrary non-singular s
alar fun
tions thatare de�ned on the (
ompa
t) 
losures of the domains and likewise requiredto vanish on the boundaries, the twistor �elds as well as their derivativesbeing supposedly 
ontinuous in the 
losures.Indeed, the method was initially utilized [1℄ to des
ribe the dynami
sof 
lassi
al Klein�Gordon �elds, the 
orresponding twistor equations of mo-tion having appeared as statements 
arrying the well-known Penrose waveoperators [4℄. The adaptation of the te
hniques to spinning systems wasbasi
ally a

omplished in 
onne
tion with the presentation of a des
riptionfor Dira
 �elds [2℄. A remarkable result arising in the latter work, whi
happarently brings out a typi
al feature of spinning systems, is asso
iated tothe dynami
al admissibility of spinor variations. The arbitrariness borne bythe 
hoi
e of spinor kernels thus produ
ed the generation of many densitiesthat are related to one another through a simple set of inter
hange rules. Itwas shown, in e�e
t, that the relevant equations of motion not only 
oin
idewith the statements whi
h are obtained by transve
ting the Dira
 equationswith suitable kernels, but are also independent of whi
h density is e�e
tivelysele
ted out.In the present work, we apply the method to 
omplexi�ed Maxwell �elds.It will be seen that both the multipli
ity of Lagrangian densities and the ad-missibility of spinor variations will take pla
e on
e again. We will showthat the Lorentz-gauge 
ondition is intimately tied in with the stru
ture ofthe twistor dynami
s. The traditional variational role of the ele
tromag-neti
 potential will be 
arried over to the situation allowed for at this stage.A

ordingly, the 
on�gurations involving the potential and 
urrent-densitykernels provide a naive pres
ription for 
arrying out the derivation of theequations of motion for the potential in a natural way. A parti
ular resultthat emerges from the implementation of this pres
ription is the o

urren
eof three equivalent wave equations whi
h 
arry the Penrose operators to-gether with appropriate twistor fun
tions. It appears that the equationsof motion for the �elds 
an be derived in a straightforward way from 
ou-pled �eld statements whi
h involve s
alar variations. It turns out that thetwistorial representation of the theory agrees with the relations whi
h arisefrom trivially translating the CM-version of Maxwell's equations. Notwith-standing the fa
t that the key pro
edures 
an be 
arried through in mu
hthe same way as for the spinning 
ase referred to before, we will build upa new set of integral devi
es whi
h 
onsiderably fa
ilitate working out thepertinent least-a
tion prin
iple. For the sake of 
ompleteness, we will alsoshow the details of the produ
t-spa
e 
onstru
tion provided in Ref. [1℄.



A Twistorial Des
ription of the Dynami
s : : : 31The only reason lying behind the elaboration of our work is related tothe belief that it would be worthwhile to look into the inner stru
ture ofthe ele
tromagneti
 system, thereby verifying whether su
h an investigationmight bring out dynami
al features other than the ones exhibited hitherto.We hope that the des
ription to be presented here will fully justify ourmotivation. The paper has been outlined as follows. Se
tion 2 brie�y reviewsthe formulation of the theory as given in Ref. [5℄. In Se
tion 3, we re
allthe 
ontour integrals whi
h are of immediate interest to us and exhibit themain kernel stru
tures. A symboli
 form of the a
tion is 
onstru
ted inSe
tion 4, the equations of motion being derived afterwards in Se
tion 5.We make a few remarks on our representation in Se
tion 6. The �elds willbe 
onsidered as wave fun
tions, and no attempt will be made herein toprovide a 
ohomologi
al interpretation of the �eld dynami
s. All the spinorand twistor 
onventions adopted by Penrose and Rindler [3℄ will be takenfor granted from the beginning. The standard 
oordinates xa of an arbitrarypoint of CM will be split up a

ording to the pres
ription xa = �a+i�a, with�a and �a being both 
omponents of real ve
tors. The 
ovariant alternatingtensor for the 
anoni
al basis of CM will be denoted by eab
d.2. Formulation of the theory in CMThe Maxwell system is de�ned at xa as the setMS = f�AB(x);  A0B0(x);�AA0(x); JAA0(x)g ; (2.1)where, in parti
ular, the quantities �AB(x) and  A0B0(x) are the ele
tro-magneti
 �elds. Su
h quantities are symmetri
 spinors and show up asindependent states of photons, being additionally looked upon as un
hargedmassless �elds of spin �1. Either of them thus des
ribes lo
ally the sixdegrees of freedom of the system. The quantity �AA0(x) stands for the (ve
-tor) ele
tromagneti
 potential whereas JAA0(x) denotes a (divergen
eless)
urrent density whi
h e�e
tively plays the role of a sour
e for the �elds andpotential. Ea
h entry of (2.1) 
an be regarded as a mapping on the tensorprodu
t between adequate SL(2; C) 
 SL(2; C)-�bers over xa. We have theexpli
it �eld-potential relationships�AB(x) = rA0(A�A0B)(x) (2.2a)and  A0B0(x) = rA(A0�AB0)(x) ; (2.2b)whi
h 
ome dire
tly from the de�ning expression for the Maxwell bive
torFAA0BB0(x) = 2r[AA0�BB0℄(x) ; (2.3)



32 J.G. CardosowhererAA0 = �=�xAA0 and the square bra
kets denote skew-symmetrizationover the index pairs. We thus have the unambiguous splitting relationFAA0BB0(x) = "A0B0�AB(x) + "AB A0B0(x) ; (2.4)with the "'s being the 
anoni
al �metri
� spinors.The skewness of Fab(x) implies that the �elds satisfy the Bian
hi identityrBA0�AB(x) = rB0A  A0B0(x) : (2.5)We often 
onsider this identity as the �rst half of Maxwell's equations, whi
his deemed to be equivalent to Eqs. (2.2). The se
ond half is the essentiallydynami
al part of the theory, and arises out of the variational prin
iple [5℄Æ Z
 LM
� = 0 : (2.6)In (2.6), 
� de�nes an elementary eight-real-dimensional volume of a boundedregion 
 � CM through
� = d4� ^ d4� ; (2.7a)where d4� = 14!eab
dd�a ^ d�b ^ d�
 ^ d�d ; (2.7b)with xa 2 
 and � denoting either � or �. The quantity LM is the 
ompleteCM-Lagrangian density for the system, whi
h is written out expli
itly asLM = 18� h�AB(x)�AB(x) +  A0B0(x) A0B0(x)i+ �AA0(x)JAA0(x) : (2.8)Usually, Æ�AA0(x) is taken as the variation that vanishes on the boundary�
 of 
 . Combining (2.5) with the �eld equations that result from (2.6)then yields the gauge-invariant statementsrBA0�AB(x) = 2�JAA0(x) = rB0A  A0B0(x) ; (2.9)whi
h amount to the entire theory in 
 .The wave equations that 
ontrol the propagation of the �elds and po-tential in 
 read [5℄ ��AB(x) = 4�rA0(AJA0B)(x) ; (2.10a)� A0B0(x) = 4�rA(A0JAB0)(x) ; (2.10b)



A Twistorial Des
ription of the Dynami
s : : : 33��AA0(x) = 4�JAA0(x) +rAA0�(x) ; (2.11)with � = rCC0rCC0 = r
r
 (2.12a)and �(x) = rCC0�CC0(x) (2.12b)being the D'Alembertian operator and the Lorentz s
alar. Evidently, thedivergen
elessness of JAA0(x) 
an be stated as either of the relationsrA0[AJA0B℄ (x) = 0;rA[A0JAB0℄(x) = 0 ; (2.13)and, 
onsequently, we 
an drop the symmetrization round bra
kets fromthe right-hand sides of Eqs. (2.10). In 
ase the �elds bear a spe
i�
 energy
hara
ter, we may extend the domain of de�nition of the system by 
arryingout an analyti
 
ontinuation into CM.3. Contour integrals and spinor-kernel stru
turesLet fZ�;W�g be a pair of non-null twistors through xa, whi
h are pre-s
ribed by Z� = (!A(x); �A0) = (ixAA0�A0 ; �A0) 2 T� ; (3.1a)W� = (�A; �A0(x)) = (�A;�ixAA0�A) 2 T�� ; (3.1b)with T� and T�� standing for the non-null sli
es of T and T�, respe
tively.Su
h twistors e�e
tively satisfy the in
iden
e 
ondition Z�W� = 0, andthen
e 
an be viewed as two-
omplex-dimensional planes �Z and �W lyingin CM whose interse
tion is a 
omplex null geodesi
 NZW that 
ontains xa(see, for instan
e, Ref. [4℄). In a formal way, we have�Z \ �W = NZW 3 xa : (3.2)It is useful to introdu
e the (Poin
aré-invariant) non-proje
tive di�eren-tial forms d2Z + 12 (I��dZ� ^ dZ�) = (I��A�B�)d� ^ d� ; (3.3a)and d2W + 12 (I��dW� ^ dW�) = (I��E�F�)d� ^ d� ; (3.3b)where I�� and I�� denote the ordinary in�nity twistors [3,4℄, andZ� = �A� + �B�;W� = �E� + �F� ; (3.3
)



34 J.G. Cardosowith �; �; �; � being independent nowhere-vanishing 
omplex parametersand A�; B�; E�; F� standing for �xed auxiliary twistors through xa. Wenoti
e that d2Z = (I��A�B�)(�d�) ^ d� ; (3.4a)d2W = (I��E�F�)(�d�) ^ d� ; (3.4b)where � = �=� and � = �=� . We thus write the symboli
 
ontour integralsfor the �elds�AB(x) = 1(2�i)4 Z�f(F) FABf(F)(Z�;W�)d2Z ^ d2W (3.5)and  A0B0(x) = 1(2�i)4 Z�g(G) GA0B0g(G)(Z�;W�)d2Z ^ d2W ; (3.6)along with the formal expression for the potential�AA0(x) = 1(2�i)4 Z�P(P) PAA0P(P)(Z�;W�)d2Z ^ d2W ; (3.7)where fFAB ; GA0B0 ; PAA0g 
arries de
omposable kernels to be determined.In a

ordan
e with the 
onventional approa
h [3℄, the (two-variable)twistor �elds and potential f�(Z�;W�)g that enter into the integrands ofEqs. (3.5)�(3.7) are independent meromorphi
 fun
tions on T� � T��, ea
hof whi
h being ultimately taken to be also homogeneous in both variables.The 
ontours f��g are four-real-dimensional 
ompa
t 
ontours having thetoroidal topology (S1 � S1) � (S1 � S1). All of them have to be spe
i�edin su
h a way that non-vanishing out
omes are produ
ed when one a
tuallyperforms the integrals. We will make another point regarding this spe
i�
a-tion in a moment.The proje
tive version of (3.5)�(3.7) 
an be immediately obtained byperforming integrals that 
arry simple one-forms [2℄. We have the expli
itformulae �AB(x) = 1(2�i)2 Z
f(F) FABf(F)(Z�;W�)ÆZ ^ ÆW ; (3.8) A0B0(x) = 1(2�i)2 Z
g(G) GA0B0g(G)(Z�;W�)ÆZ ^ ÆW (3.9)



A Twistorial Des
ription of the Dynami
s : : : 35and �AA0(x) = 1(2�i)2 Z
P(P) PAA0P(P)(Z�;W�)ÆZ ^ ÆW ; (3.10)with ÆZ + I��Z�dZ� = (I��A�B�)(�2d�) ; (3.11a)ÆW + I��W�dW� = (I��E�F�)(�2d�) (3.11b)and 
� ' S1 � S1.Ea
h S1-pie
e is thought here of as an oriented 
ir
led loop whi
h suitablysurrounds the singularities lying in the respe
tive 
omplex plane. It followsthat we 
an sort out a single overall 
ontour for all the integrals of either type.In the proje
tive 
ase, in parti
ular, it is frequently 
onvenient to take ea
h ofthe pie
es borne by the 
ommon (S1�S1)-
ontour as a 
ir
le whi
h interse
tsthe interior of the other, with a similar 
onstru
tion 
ertainly applying to thenon-proje
tive 
ase as well. We should mention that proje
tive stru
tures ofthis kind were utilized earlier in a work dealing with general te
hniques forexpli
itly evaluating twistor diagrams in real Minkowski spa
e [7℄. Therefore,using Eqs. (2.2) and the s
aling-invariant relation at xarAA0 = i(�A0 �̂A � �A�̂A0) ; (3.12a)where �̂A + ��!A ; �̂A0 + ���A0 ; (3.12b)we a

ordingly obtain the kernel pres
riptionsFAB : �A�B ; 2�(A�̂B); �̂A�̂B ;GA0B0 : �A0�B0 ; 2�(A0 �̂B0); �̂A0 �̂B0 ;PAA0 : �A�A0 ; �A0 �̂A + �A�̂A0 ; �̂A�̂A0 ;up to a Cau
hy-theorem �gauge-freedom�. Hen
e, the relevant homogeneitydegrees are supplied by the s
hemes Z Wf1(Z�;W�) + f(F) for FAB = �A�B : �2 �4f2(Z�;W�) + f(F) for FAB = 2�(A�̂B) : �1 �3f3(Z�;W�) + f(F) for FAB = �̂A�̂B : 0 �2Z Wg1(Z�;W�) + g(G) for GA0B0 = �A0�B0 : �4 �2g2(Z�;W�) + g(G) for GA0B0 = 2�(A0 �̂B0) : �3 �1g3(Z�;W�) + g(G) for GA0B0 = �̂A0 �̂B0 : �2 0



36 J.G. Cardosoand Z WP1(Z�;W�) + P(P) for PAA0 = �A�A0 : �3 �3P2(Z�;W�) + P(P) for PAA0 = �A0 �̂A + �A�̂A0 : �2 �2P3(Z�;W�) + P(P) for PAA0 = �̂A�̂A0 : �1 �1when
e ea
h integral bears a s
aling-invariant integrand. We observe thatthe potential kernels are invariant under the simultaneous inter
hanges�A0 
 �A ; �̂A 
 �̂A0 ; (3.13)with the kernel for P2(Z�;W�) being also s
aling invariant. The formerinvarian
e property exhibits the �reality� of �AA0(x). For simpli
ity, we willno longer write the arguments of the twistor fun
tions.It is evident that the fun
tional stru
tures fSAA0S(S)g for JAA0(x) maybe spe
i�ed by invoking (2.9) and operating with (3.12a) on either set of �eldintegrals. Equivalently, this spe
i�
ation 
an also be a
hieved by utilizinga pro
edure whi
h takes into a

ount Eq. (2.11) along with the operator
ompositions �ZW = (�2)Ẑ Æ Ŵ =(�2)Ŵ Æ Ẑ =�WZ (3.14)and the de�nitions Ẑ + �A�̂A = I��W� ��Z� ; (3.15a)Ŵ + �A0 �̂A0 = I��Z� ��W� : (3.15b)What results is, in e�e
t, that the kernels fSAA0g for the 
urrent density
oin
ide with the kernels for the potential. Be
ause of the 
ommutativityproperty of the (s
aling-invariant) 
ompositions (3.14), we 
an unambigu-ously denote as � either of the se
ond-order derivative operators involved.Su
h obje
ts are the Penrose wave operators mentioned in Se
tion 1.The pattern of the operator (3.12a), whi
h is 
learly real in the sense of(3.13), enables us to see easily that all the potential kernels yield �(x) = 0.Hen
e, the Lorentz-gauge 
ondition is deeply rooted into the spinor-kernelstru
ture of the system. The 
oin
iden
e between the potential and 
urrent-density kernels essentially enhan
es this striking feature of the system, as
an be seen at on
e by 
alling upon Eq. (2.13). Consequently, the vanishingof the Lorentz s
alar e�e
tively entails the divergen
elessness of JAA0(x).



A Twistorial Des
ription of the Dynami
s : : : 37Furthermore, the right-hand sides of (2.2) 
an now be rewritten in a some-what simpler way as rA0A�A0B (x) and rAA0�AB0(x). We thus have the �eld-potential relations ifk = (�1)ŴPk (3.16a)and (�igk) = (�1)ẐPk ; (3.16b)with k = 1; 2; 3. The identity (2.5) turns out to be expressed asẐ(ifk) = Ŵ (�igk) : (3.17)We end this se
tion by observing that, on the basis of the �eld and waveequations of Se
tion 2, one 
an derive a 
omplete set of relationships in-volving adequately the spinor�kernel s
hemes given above. However, someof these stru
tures will not play any 
ru
ial role in the development of Se
-tions 4 and 5, when
e they will not be spelt out here (see Ref. [6℄).4. The dynami
al prin
ipleLet �� be a bounded open subset of T� � T�� whose entries are lo
allyde�ned by the real and imaginary parts of !A(x) and �A0(x) a

ording tothe elementary pres
ription(Z0; Z1) $ !A(x) = BA(x) + iCA(x) ; (4.1a)(W2;W3) $ �A0(x) = XA0(x) + iY A0(x) : (4.1b)The suitability of the pres
ription (4.1) is partly due to the fa
t that theonly twistor-derivative operators whi
h a
tually enter into the r-expression(3.12a) are the ones de�ned with respe
t to the 
onformallyinvariant partsof the twistors whi
h o

ur in Eqs. (3.1). The adequa
y of �� is e�e
tivelymade up by imposing both smoothness on the boundary ��� of its 
losure��� and 
ompa
tness on ���. For the volume of ��, we thus have the (real)integral [5℄ #[��℄ = Z�� DBCXY ; (4.2)where DBCXY is an eight-form on �� given as the wedge produ
t betweenthe forms B�(x) = 12 [dBA(x) ^ dBA(x)℄ ; (4.3a)C�(x) = 12 [dCB(x) ^ dCB(x)℄ ; (4.3b)



38 J.G. Cardosoand X� (x) = 12 [dXA0(x) ^ dXA0(x)℄ ; (4.3
)Y� (x) = 12 [dYB0(x) ^ dY B0(x)℄ : (4.3d)In setting up the dynami
al prin
iple, it appears to be ne
essary torepla
e the individual pie
es of the CM-Lagrangian density with the kernelsborne by the 
ontour integrals of Se
tion 2. This ne
essity stems from theuselessness of the result that arises when the 
ontour integrals themselvesare immediately 
oupled together. We thus arrive at the following set of�eld 
ontributions�AB(x)�AB(x) :f1(Ẑ2f3) ; (�2)(Ẑf2)2 ; 2(�̂Af2)(�̂AẐf3) ; A0B0(x) A0B0(x) :g1(Ŵ 2g3) ; (�2)(Ŵ g2)2 ; 2(�̂A0 g2)(�̂A0Ŵ g3) ;with the pertinent 
onjugation, 
̂, amounting to the 
ombination of (3.13)with the inter
hange rulesZ� $ W� ; I�� $ I�� ; ifk $ (�igk) ; (4.4)where k stands for the same label as before. We point out that the above-de�ned 
onjugation is still appli
able to Eqs. (3.16) and (3.17). Making useof (2.2) and a

ounting for the Lorentz gauge, we obtain the alternativestru
tures rA0A�A0B (x)rAB0�BB0(x) :12(ŴP1)(Ẑ�P3) ; 12 (�P2)2 ; (�̂AŴP2)(�̂A�P3) ;along with the 
̂-
onjugate ones forrAA0�AB0(x)rA0B �B0B(x) =  A0B0(x) A0B0(x) : (4.5)We 
an 
onstru
t the blo
ks for the intera
ting pie
e of (2.8) by imple-menting the identity PAA0 � SAA0 as well as the natural 
orresponden
ePk ! Sk between the twistor fun
tions for the potential and the ones forthe 
urrent density. In e�e
t, we have the 
ontributions�AA0(x)JAA0(x) :(�12)(�P3)S1 ; (�1)[(ŴP2)(ẐS2) + (ẐP2)(ŴS2)℄ ;(�̂AP2)(�̂AŴS3) + (�̂A0P2)(�̂A0ẐS3) ; (�̂A�̂A0P3)(�̂A�̂A0S3) ;



A Twistorial Des
ription of the Dynami
s : : : 39together with the stru
tures whi
h are obtained out of the ones just givenby inter
hanging the kernel letters P and S. It should be noti
ed thatsu
h inter
hanges will leave the se
ond and fourth �J -blo
ks invariant if asuitable 
ommutation assumption is e�e
tively taken up.We have thus been led to two dynami
al sets of basi
 Lagrangian densitiesthat 
arry the fun
tional pie
es for eitherf�AB(x);  A0B0(x);�AA0(x); JAA0(x)gor f�AA0(x); JAA0(x)g:It has be
ome 
lear that the pie
es of one density are related to the pie
esof any other density through a trivial set of inter
hanges. Hen
e, supposingthat the twistor fun
tions and derivatives are all 
ontinuous in ���, andde�ning LTM = L(FREE)TM + L(INT)TM ; (4.6)with L(FREE)TM and L(INT)TM denoting symboli
ally the free and intera
ting partsof any density LTM, we write the a
tionS[LTM℄ = Z�� (L(FREE)TM + L(INT)TM )DBCXY ; (4.7)along with the variational statement�S[LTM℄ = 0 = � Z�� (L(FREE)TM + L(INT)TM )DBCXY : (4.8)The �-variation of Eq. (4.8) is pres
ribed so as to bear linearity andthe Leibniz-rule property. Likewise, it preserves �reality� and does not in-volve any deformation of ���. In addition, it is required to 
ommute withthe 
onformally invariant twistor-derivative operators (3.12b) and, 
onse-quently, also with the Poin
aré-invariant ones of (3.14) and (3.15) sin
e Z�and W� are both held �xed when the variational pro
ess is put into e�e
t.Presumably, the union of the singularity sets of the fun
tional pie
es 
ar-ried by all the densities possesses a void interse
tion with �� [ ���, and�Sk � 0 throughout ���. We should emphasize that, in any 
ase, the �eldand potential variations must be taken as arbitrary non-singular quantitieson �� [ ��� whi
h vanish on ���.



40 J.G. Cardoso5. Equations of motionThe �-variation spe
i�ed in the foregoing Se
tion tells us that we havee�e
tively to perform a
tual integrations by parts upon working out thestatement (4.8). This fa
t implies that the Lagrangian blo
ks whi
h involvethe operators (3.12b) expli
itly will be
ome useless in 
ase only s
alar vari-ations are utilized. Roughly speaking, the point is that su
h 
ontributionswill produ
e identi
ally vanishing stru
tures if they are brought into S[LTM℄together with s
alar variations. At this stage, we will restri
t ourselves tousing s
alar variations. The situation 
on
erning spe
i�
ally the utilizationof spinor variations will be tou
hed upon later in Se
tion 6.We thus 
onsider the following operator splitting relations asso
iatedwith Eqs. (3.15) and (4.1)Ẑ = 12 [(I��W�B̂�)� i(I��W�Ĉ�)℄ + 12(B̂ � iĈ) ; (5.1a)Ŵ = 12 [(I��Z�X̂�)� i(I��Z�Ŷ �)℄ + 12(X̂ � iŶ ) ; (5.1b)whi
h readily provide us with the auxiliary integral formulaeZ�� (Ẑ�G)FDBCXY = Z��� (�G)F(�Ad7�A)� Z�� (�G)(ẐF)DBCXY ; (5.2)Z�� (Ŵ�G)FDBCXY = Z��� (�G)F(�A0d7�A0)� Z�� (�G)(Ŵ F)DBCXY(5.3)andZ�� (��G)FDBCXY�2 Z��� (�G)(ẐF)(�A0d7�A0)+2 Z��� (Ŵ�G)F(�Ad7�A)= Z�� (�G)(�F)DBCXY ; (5.4)where F and G stand for any relevant fun
tions, andd7�A(x) = 12 ��dBA(x) ^ C�(x)� iB�(x) ^ dCA(x)� ^ X� (x) ^ Y� (x)� ;(5.5a)d7�A0(x) = 12 �B�(x) ^ C�(x) ^ �dXA0(x) ^ Y�(x)� iX� (x) ^ dY A0(x)�� ;(5.5b)
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s : : : 41de�ne two independent elements of seven-hypersurfa
e area of ���, with theintegrations having been performed from right to left. In passing, we observethat the 
al
ulations leading to Eqs. (5.2)�(5.4) in
idently bring about the
onjugation 
orresponden
e[�Ad7�A(x)℄$ [�A0d7�A0(x)℄ : (5.6)Additionally, the expli
it fa
tor 1=2 of (5.5) should be implemented in pla
eof the mistaken, but ultimately irrelevant, fa
tor 1=4 whi
h is 
arried byEqs. (3.5) and (3.6) of Ref. [1℄.The patterns of the free and intera
ting Lagrangian 
ontributions natu-rally suggest writing the variational set for the systemff�P1;�P3g; f�P2gg ; (5.7)with all the entries involved being independent of ea
h other. We thus havethe parti
ular densitiesL(1)TM = 116� [(ŴP1)Ẑ�P3 + (ẐP1)Ŵ�P3℄� 14[(�P3)S1 + P1�S3℄ (5.8)and L(2)TM = 18� (�P2)2 � [(ŴP2)ẐS2 + (ẐP2)ŴS2℄ ; (5.9)whose variations are given by�L(1)TM = 116� f[(Ŵ�P1)Ẑ�P3 + (ŴP1)Ẑ��P3℄ + 
̂ �
onjugateg�14[(��P3)S1 + (�P1)�S3℄ (5.10)and �L(2)TM = 14� (��P2)�P2 � [(Ŵ�P2)ẐS2 + 
̂ �
onjugate℄ : (5.11)It follows that, invoking (4.8) and taking �Pk = 0 on ���, after somemanipulations we obtain the equations of motion(��k � 4��k) = 0;�k = �Pk;�k = �Sk ; (5.12)where k runs over the same values as in Eqs. (3.16).A glan
e at Eqs. (3.16), (5.8) and (5.9) shows that, in 
ontradistin
tionto the CM-formulation [5℄, ea
h of the equations of motion for fifk; (�igk)g
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an be derived from a manifestly �eld stru
ture by suitably 
hanging the
hoi
e of variations. In e�e
t, for the 
ase of (5.9), we have�L(3)TM = 12�f[Ẑ�(if2)℄Ẑ(if2) + [Ŵ�(� ig2)℄Ŵ (� ig2)g+f[�(if2)℄ẐS2 + [�(�ig2)℄ŴS2g ; (5.13)with f�(if2);�(�ig2)g thus taking over the dynami
al role of �P2. Hen
e,making use of the integration te
hniques that give rise to (5.12), we derivethe equationẐ � 12� Ẑ(if2)� S2�+ Ŵ � 12�Ŵ (�ig2)� S2� = 0 ; (5.14)whi
h obviously represents the se
ond half of the theory. Now, 
ombiningEqs. (5.14) and (3.17) for k = 2, we 
on
lude that(Ẑ + Ŵ )[Ẑ(if2)� 2�S2℄ = 0 = (Ẑ + Ŵ )[Ŵ (�ig2)� 2�S2℄ : (5.15)The density (5.8) 
an be similarly worked out by adopting the variationalset f�P1;�F3;�G3g, whose entries parti
ularly involve the quantitiesF3 + Ẑ(if3) = Ŵ (�ig3) + G3 : (5.16)We thus obtain the �eld equationsẐ(if1) = 2�S1 = Ŵ (�ig1) ; (5.17a)along with Ŵ [Ẑ(if3)� 2�S3℄ = 0 (5.17b)and Ẑ[Ŵ (�ig3)� 2�S3℄ = 0 : (5.17
)In order to represent the 
omplete theory, it su�
es to take�Pk = 4�Sk (5.18a)and Ẑ(ifk) = 2�Sk = Ŵ (�igk) : (5.18b)It is 
lear that Eqs. (5.18) are identi
al to the relations whi
h emerge from
ontra
ting (2.11) and (2.9) with adequate kernels. As the formulation of(4.8) automati
ally balan
es the weights of any allowable s
aling fa
tors, thespinning 
hara
ter of the �elds turns out to be re�e
ted by the homogeneitydegrees of the respe
tive twistor fun
tions.
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luding remarks and outlookOne might 
laim that, in the �rst instan
e, inserting the 
ontour integralsinto the former �eld equations would not immediately yield a system ofdi�erential relations insofar as the 
ontours involved are generally taken tobe distin
t from one another. In fa
t, this situation has been re
ti�ed inSe
tion 3 by implementing a parametri
 form of the integrands whi
h allowsthe de�nition of a single 
ontour for the sets of integrals (3.5)�(3.10). Thesame parametrization pro
edure was used in Ref. [2℄, and has indeed been
onsidered as a somewhat important part of our method. When utilizedin 
onjun
tion with the produ
t-spa
e pres
ription given in Ref. [8℄, it maygive rise to the 
onstru
tion of formal Green-fun
tion solutions to twistorwave equations. Moreover, it a
tually a

ounts for the eventual o

urren
eof the inner produ
t Z�W� in the denominators of the integrands, when
e its
ombination with the te
hniques of Ref. [7℄ would enable one to write downan integral form of the theory in terms of twistor diagrams [9�16℄. That it is
onsistent with the degrees of the standard di�erential forms 
an be rapidlyestablished by 
onsidering the equivalent s
aling-invariant relationsZ
Z F (a�1Z�)Æ(a�1Z) = Z
Z F (Z�)ÆZmZ
X F (aX�)Æ(aX) = Z
X F (X�)ÆX;with a being any (�xed) non-vanishing 
omplex number and Z� = aX�.One of the most notable results we have obtained above is related to thepossibility of deriving dire
tly from (4.8) the wave equations�(ifm) = (�4�)ŴSm ;�(�igm) = (�4�)ẐSm ;whi
h represent the (gauge-invariant) CM-equation�Fab(x) = 8�r[aJb℄(x) ;with m taking the values 2 and 3. The pertinent pro
edure for m = 3, forinstan
e, 
onsists �rst in re-expressing (5.8) as (see Eqs. (3.16))L(4)TM = (�1)16� [(ẐP1)�(if3) + (ŴP1)�(�ig3)℄�14f[Ẑ(if3) + Ŵ (�ig3)℄S1 + P1�S3g ;
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king up the pie
e of the statement (4.8) that 
arries�P1. Hen
e,it seems to be of some interest to �nd out whether the wave equations forfif1; ( � ig1)g may be a
hieved in a similar fashion. In the event that ex-pli
it spinor relations involving the kernels for the 
urrent density have to bee�e
tively required, the introdu
tion of the pertinent 
ontour integrals shallbe based upon the 
harge-
onservation law rAA0JAA0(x) = 0, whi
h a

ord-ingly will enter into the pi
ture as a formal ��eld equation� for JAA0(x). Of
ourse, the Lorentz-gauge feature of the twistor formulation would demandthe implementation of the famous Gupta�Bleuler pro
edure if a quantumversion of the theory were taken into 
onsideration at the outset.With regard to the 
hoi
es of variations for the system, we must stressthat our representation makes it viable to utilize spinor variations along withthe Lagrangian densities whi
h 
arry the pie
es(�̂AŴP2)(�̂A�P3); (�̂A0 ẐP2)(�̂A0�P3) ;(�̂AP2)(�̂AŴS3) + (�̂A0P2)(�̂A0ẐS3) ;(�̂AŴP3)(�̂AS2) + (�̂A0ẐP3)(�̂A0S2) ;and (�̂A�̂A0P3)(�̂A�̂A0S3) :In some parti
ular 
ases, these 
on�gurations yield a set of spinor equationsof motion whi
h involve twistor fun
tions bearing di�erent values of thelabel k, but their utilization does not provide any additional insights intothe dynami
al framework. A genuinely useful example is a�orded by thedensityL(5)TM = 18� h(�̂AŴP2)(�̂A�P3) + (�̂A0 ẐP2)(�̂A0�P3)i+12 h(�̂AP2)(�̂AŴS3) + (�̂A0P2)(�̂A0ẐS3) + (�̂A�̂A0P3)(�̂A�̂A0S3)iwith the �mixed� pres
riptionf�(�̂AP2);�(�̂A0P2);�P3g ;in whi
h 
ase we obtain the wave equation for P3. It now be
omes evidentthat the number of entries of ea
h set of basi
 densities will get 
onsiderablyredu
ed if only s
alar variations are put into pra
ti
e. We 
an therefore statethat the ex
lusion of the densities whi
h bear the potential fun
tionsfP2; P3g; fP2; S3g; fP3; S2g; fP3; S3g ;
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s : : : 45would bring forward a non-trivial 
hara
ter of the whole representation with-out spoiling the 
ompleteness of the des
ription.Worthy of spe
ial 
onsideration is the o

urren
e of the 
̂-
onjugationproperty Z��� (�G)(ẐF)��A0d7�A0�� Z��� (Ŵ�G)F ��Ad7�A�= Z��� (�G)(Ŵ F) ��Ad7�A�� Z��� (Ẑ�G)F��A0d7�A0� ;whi
h takes pla
e when the reality of the �-operator is in
orporated into the
onstru
tion of the devi
e (5.4). Had the integrations by parts of Se
tion 5been performed from left to right the same volume integrals would have beenobtained, but the overall signs of the boundary integrals of Eqs. (5.2)�(5.4)would have to be readjusted. It is obvious that the twistors fB�; C�;X� ; Y�ginvolved in Eqs. (5.1) have been introdu
ed to de�ne the real and imaginaryparts of the operators (3.15). Nevertheless, it has not been stri
tly ne
essaryto as
ribe to them any group-theoreti
 meaning at all.The work presented here was supported �nan
ially by the Brazilianagen
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