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A method which enables one to build up explicit least-action principles
in the non-projective twistor spaces is applied to the context of the theory
of complexified Maxwell fields. The freedom in the choices of spinor kernels
for the integrands of the universal contour integrals for interacting fields
gives rise to the possibility of constructing several Lagrangian densities for
the system being considered. It appears that the Lorenz-gauge condition is
intrinsically tied in with the inner structure of the twistor dynamics. The
configurations involving the kernels for the potential and current density
turn out to suggest a natural variational prescription for deriving the equa-
tions of motion for the potential. It is shown that the equations for the
fields can be derived directly from coupled statements which carry only
field quantities.

PACS numbers: 03.50.De

1. Introduction

A method has recently been proposed [1,2] which makes feasible the con-
struction of twistorial least-action principles for complexified spinless and
spinning fields. Loosely speaking, the twistor Lagrangian densities of inter-
est are built up by simply inserting into the expressions for the standard
densities the integrands of the universal contour integrals for interacting
fields [3] along with the usual two-twistor expression for the (holomorphic)
partial-derivative operator on Complex Minkowski space CM. In the spin-
ning case, the usefulness of the structures which result out of the completion
of this procedure rests essentially upon the freedom in the selection of spinor
kernels for the contour integrals that produce the fields. The dynamical
statements are all set upon bounded eight-real-dimensional domains con-
tained in the topological product of the non-projective twistor space T with
its dual T*. Upon actually working out the variations of the actions in either
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case, one holds fixed the arguments of the respective twistor functions and
assumes that the variation itself commutes with the derivatives which even-
tually occur in the expressions for the densities involved. Normally, the sets
of variations are constituted by arbitrary non-singular scalar functions that
are defined on the (compact) closures of the domains and likewise required
to vanish on the boundaries, the twistor fields as well as their derivatives
being supposedly continuous in the closures.

Indeed, the method was initially utilized [1] to describe the dynamics
of classical Klein—-Gordon fields, the corresponding twistor equations of mo-
tion having appeared as statements carrying the well-known Penrose wave
operators [4]. The adaptation of the techniques to spinning systems was
basically accomplished in connection with the presentation of a description
for Dirac fields [2]. A remarkable result arising in the latter work, which
apparently brings out a typical feature of spinning systems, is associated to
the dynamical admissibility of spinor variations. The arbitrariness borne by
the choice of spinor kernels thus produced the generation of many densities
that are related to one another through a simple set of interchange rules. It
was shown, in effect, that the relevant equations of motion not only coincide
with the statements which are obtained by transvecting the Dirac equations
with suitable kernels, but are also independent of which density is effectively
selected out.

In the present work, we apply the method to complexified Maxwell fields.
It will be seen that both the multiplicity of Lagrangian densities and the ad-
missibility of spinor variations will take place once again. We will show
that the Lorentz-gauge condition is intimately tied in with the structure of
the twistor dynamics. The traditional variational role of the electromag-
netic potential will be carried over to the situation allowed for at this stage.
Accordingly, the configurations involving the potential and current-density
kernels provide a naive prescription for carrying out the derivation of the
equations of motion for the potential in a natural way. A particular result
that emerges from the implementation of this prescription is the occurrence
of three equivalent wave equations which carry the Penrose operators to-
gether with appropriate twistor functions. It appears that the equations
of motion for the fields can be derived in a straightforward way from cou-
pled field statements which involve scalar variations. It turns out that the
twistorial representation of the theory agrees with the relations which arise
from trivially translating the CM-version of Maxwell’s equations. Notwith-
standing the fact that the key procedures can be carried through in much
the same way as for the spinning case referred to before, we will build up
a new set of integral devices which considerably facilitate working out the
pertinent least-action principle. For the sake of completeness, we will also
show the details of the product-space construction provided in Ref. [1].
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The only reason lying behind the elaboration of our work is related to
the belief that it would be worthwhile to look into the inner structure of
the electromagnetic system, thereby verifying whether such an investigation
might bring out dynamical features other than the ones exhibited hitherto.
We hope that the description to be presented here will fully justify our
motivation. The paper has been outlined as follows. Section 2 briefly reviews
the formulation of the theory as given in Ref. [5]. In Section 3, we recall
the contour integrals which are of immediate interest to us and exhibit the
main kernel structures. A symbolic form of the action is constructed in
Section 4, the equations of motion being derived afterwards in Section 5.
We make a few remarks on our representation in Section 6. The fields will
be considered as wave functions, and no attempt will be made herein to
provide a cohomological interpretation of the field dynamics. All the spinor
and twistor conventions adopted by Penrose and Rindler [3] will be taken
for granted from the beginning. The standard coordinates z® of an arbitrary
point of CM will be split up according to the prescription % = £*+in®, with
&% and n* being both components of real vectors. The covariant alternating
tensor for the canonical basis of CM will be denoted by egpeq-

2. Formulation of the theory in CM
The Maxwell system is defined at 2 as the set

MS = {¢pap(z),Yap (), Paa(z), Jaar ()}, (2.1)

where, in particular, the quantities ¢p4p(z) and 94 g (z) are the electro-
magnetic fields. Such quantities are symmetric spinors and show up as
independent states of photons, being additionally looked upon as uncharged
massless fields of spin £1. Either of them thus describes locally the six
degrees of freedom of the system. The quantity @44/ (z) stands for the (vec-
tor) electromagnetic potential whereas J4s(x) denotes a (divergenceless)
current density which effectively plays the role of a source for the fields and
potential. Each entry of (2.1) can be regarded as a mapping on the tensor
product between adequate SL(2,C) ® SL(2, C)-fibers over z%. We have the
explicit field-potential relationships

!

bpap(z) = vA,(Aqﬁg‘)(g;) (2.2a)
and
¢A/Bl($) = VA(AI@g/)($), (22b)

which come directly from the defining expression for the Maxwell bivector

Faapp (z) =2V a0 Ppp(2), (2.3)
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where V44 = 9/ 9z and the square brackets denote skew-symmetrization
over the index pairs. We thus have the unambiguous splitting relation

Fanwpp (z) =capdap(x) +eaphap(x), (2.4)

with the ¢’s being the canonical “metric” spinors.
The skewness of Fyp(x) implies that the fields satisfy the Bianchi identity

VAdan(z) =VE pap(z). (2.5)

We often consider this identity as the first half of Maxwell’s equations, which
is deemed to be equivalent to Eqs. (2.2). The second half is the essentially
dynamical part of the theory, and arises out of the variational principle [5]

5/£MQ:0. (2.6)
i)

In (2.6), 2 defines an elementary eight-real-dimensional volume of a bounded
region {2 C CM through

0 = d'snd, (2.72)
where
1
A\ = i Cabead X" A\ AP A dX° A dXY, (2.7b)

with % € 2 and A denoting either £ or 1. The quantity Ly is the complete
CM-Lagrangian density for the system, which is written out explicitly as

L= o [$ap@)8 P @)+ @9V @)] + Ban@) I (@) (28)

Usually, @44/ () is taken as the variation that vanishes on the boundary
0 of 2. Combining (2.5) with the field equations that result from (2.6)
then yields the gauge-invariant statements

VAidan(z) =2rJan(z) = VE pap (@), (2.9)

which amount to the entire theory in 2.
The wave equations that control the propagation of the fields and po-
tential in 2 read [5]
Opap(z) = 47V atg)(2), (2.10a)
DQ/JA/B/ ((E) = 47TVA(A/ Jg,) (iE) ) (210b)
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O0pn(x) =4dndgn(z) + Vaa A(x), (2.11)
with
0 = Ve VOY = v, V¢ (2.12a)
and
A(z) = VO boei () (2.12b)

being the D’Alembertian operator and the Lorentz scalar. Evidently, the
divergencelessness of J44/(x) can be stated as either of the relations

VA'[AJE}], (.’L‘) = 0, VA[A’ ng(iﬁ) = 0, (213)

and, consequently, we can drop the symmetrization round brackets from
the right-hand sides of Egs. (2.10). In case the fields bear a specific energy
character, we may extend the domain of definition of the system by carrying
out an analytic continuation into CM.

3. Contour integrals and spinor-kernel structures

Let {Z%,Wg} be a pair of non-null twistors through =, which are pre-
scribed by

7% = (wi(z),ma) = (i T, mar) € To, (3.1a)
Ws = an™ (@) = (A, —ia*20) € T, (3.1b)
with T4 and T? standing for the non-null slices of T and T*, respectively.
Such twistors effectively satisfy the incidence condition Z#W, = 0, and
thence can be viewed as two-complex-dimensional planes az and Sw lying

in CM whose intersection is a complex null geodesic Nzw that contains z°
(see, for instance, Ref. [4]). In a formal way, we have

az N PBw = Nzw 2 2°. (3.2)

It is useful to introduce the (Poincaré-invariant) non-projective differen-
tial forms

’Z = Y(1,,dZ" AdZ") = (1,,A"B")da A dp, (3.3a)
and

d*W = L(I°dW, AdW,) = (I’ E,F,)dr Adf, (3.3b)
where I, and 1?7 denote the ordinary infinity twistors [3,4], and

7t = aA* + pB*, W, =TE, +0F,, (3.3¢)
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with «, 8, 7, 8 being independent nowhere-vanishing complex parameters
and A*, B*, E,, F, standing for fixed auxiliary twistors through z%. We
notice that
d*7 = (I,,A"B")(ada) Adk, (3.4a)
&*W = (I E,F,)(rdr) AdC, (3.4b)

where k = f/a and ¢ = 0/7. We thus write the symbolic contour integrals
for the fields

bap(z) = (27” / Fapfr) (2% Wp)d*Z N d*W (3.5)
)
and
Q/JA'B'(IB):ﬁ / Gapg) (2% Ws)d*Z Nd*W (3.6)
To(g)

along with the formal expression for the potential

Byu(z) = 27” /PAA, (ZWs)d*Z N d*W (3.7)

Fripy

where {Fap, Garp', Paa} carries decomposable kernels to be determined.

In accordance with the conventional approach [3], the (two-variable)
twistor fields and potential {©(Z“, Wpg)} that enter into the integrands of
Egs. (3.5)—(3.7) are independent meromorphic functions on Ty x T%, each
of which being ultimately taken to be also homogeneous in both variables.
The contours {I'g} are four-real-dimensional compact contours having the
toroidal topology (S! x S') x (8! x S'). All of them have to be specified
in such a way that non-vanishing outcomes are produced when one actually
performs the integrals. We will make another point regarding this specifica-
tion in a moment.

The projective version of (3.5)-(3.7) can be immediately obtained by
performing integrals that carry simple one-forms [2|. We have the explicit
formulae

pap(z) = 2m / Fapfr) (2% Wg)oZ AW , (3.8)
V)
1 (6%
Yap () = W / QAIB:g(g)(Z JW3)OZ N W (3.9)

T9(9)
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and
Ban(r) = ﬁ / PPy (25 Wa)SZ AW, (3.10)
TPp)
with
67 = I,7"dZ" = (I, A" B")(a*dr), (3.11a)
SW = I""W,dW, = (I’ E,F,)(r*d() (3.11b)

and v9 ~ S x S'.

Each S'-piece is thought here of as an oriented circled loop which suitably
surrounds the singularities lying in the respective complex plane. It follows
that we can sort out a single overall contour for all the integrals of either type.
In the projective case, in particular, it is frequently convenient to take each of
the pieces borne by the common (S* x S!)-contour as a circle which intersects
the interior of the other, with a similar construction certainly applying to the
non-projective case as well. We should mention that projective structures of
this kind were utilized earlier in a work dealing with general techniques for
explicitly evaluating twistor diagrams in real Minkowski space [7]. Therefore,
using Eqgs. (2.2) and the scaling-invariant relation at z®

VAA’ = ’L.(7TAI7ATA—>\A5\AI), (312&)
where
J - 0
0 A 3.12b

we accordingly obtain the kernel prescriptions
Fap @ AaAB, 2A\ (AT gy, TAT B,
Gap @ TaTR, 27T(A'5\B'), g
Paar @ AATar, Tafta + Aadar, Tada

up to a Cauchy-theorem “gauge-freedom”. Hence, the relevant homogeneity
degrees are supplied by the schemes

zZz W
fi(ze, Wﬁ) = f(}‘) for Fap = Aalp: -2 —4
fa(Z2, W/@) = f(g.-) for Fap= 2)\(147?3) : -1 =3
f3(Z2, Wﬁ) = f(g.-) for Fup = TATB: 0 -2

zZ W
gl(ZUC,Wﬁ) = g(g) for gA/B/ = 7TA’7TBA’ : -4 -2
QQ(Za,Wg) = 96) for gA/B/ = 27T(A’>‘B’) : =3 -1

gg(Za,Wg) = g(g) for gA/B/ = S\AIS\BI : -2 0
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and
z W
Pl(Za,W/g) = P(p) for Paar = Agqmar: -3 -3
PQ(ZQ,W/B) :P(p) for PAAI :7TAI’7ATA+>\A>\A/ : =2 =2
Pg(Zo‘,Wﬁ) = P(p) for Paar = Tadra : -1 -1

whence each integral bears a scaling-invariant integrand. We observe that
the potential kernels are invariant under the simultaneous interchanges

T =Aa, 4= Aa, (3.13)

with the kernel for P,(Z“,Wp) being also scaling invariant. The former
invariance property exhibits the “reality” of @ 44/(z). For simplicity, we will
no longer write the arguments of the twistor functions.

It is evident that the functional structures {SqarSs)} for Jaar(7) may
be specified by invoking (2.9) and operating with (3.12a) on either set of field
integrals. Equivalently, this specification can also be achieved by utilizing
a procedure which takes into account Eq. (2.11) along with the operator
compositions

~

| P (_2)Z o W :(—Q)W o Z =lwz (3.14)

and the definitions

. 0
. ~ A o
Z = )\Aﬂ' :IP [’LPW, (315&)
- oAl 0
. A
= 7 :I VZH . .1
W = mq) w2 (3.15b)

What results is, in effect, that the kernels {S44/} for the current density
coincide with the kernels for the potential. Because of the commutativity
property of the (scaling-invariant) compositions (3.14), we can unambigu-
ously denote as B either of the second-order derivative operators involved.
Such objects are the Penrose wave operators mentioned in Section 1.

The pattern of the operator (3.12a), which is clearly real in the sense of
(3.13), enables us to see easily that all the potential kernels yield A(z) = 0.
Hence, the Lorentz-gauge condition is deeply rooted into the spinor-kernel
structure of the system. The coincidence between the potential and current-
density kernels essentially enhances this striking feature of the system, as
can be seen at once by calling upon Eq. (2.13). Consequently, the vanishing
of the Lorentz scalar effectively entails the divergencelessness of JA4' ().
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Furthermore, the right-hand sides of (2.2) can now be rewritten in a some-
what simpler way as V 44 @5 (x) and V 4 ®4,(z). We thus have the field-
potential relations

ify = (-1)WP, (3.16a)
and
(—igr) = (-1)ZP, (3.16b)

with £ = 1,2,3. The identity (2.5) turns out to be expressed as
Z(ifr) = W (—igk) - (3.17)

We end this section by observing that, on the basis of the field and wave
equations of Section 2, one can derive a complete set of relationships in-
volving adequately the spinor—kernel schemes given above. However, some
of these structures will not play any crucial role in the development of Sec-
tions 4 and 5, whence they will not be spelt out here (see Ref. [6]).

4. The dynamical principle

Let 7F be a bounded open subset of T4 x T% whose entries are locally
defined by the real and imaginary parts of w”(z) and p? (z) according to
the elementary prescription

(Z2°,Z2Y) & w(z) = BA(z) +iC(z), (4.1a)
(Wo, W3) < p(z) = X4 (2) + iV (z). (4.1b)

The suitability of the prescription (4.1) is partly due to the fact that the
only twistor-derivative operators which actually enter into the V-expression
(3.12a) are the ones defined with respect to the conformallyinvariant parts
of the twistors which occur in Egs. (3.1). The adequacy of 77 is effectively
made up by imposing both smoothness on the boundary 077 of its closure
7+ and compactness on 7t. For the volume of 7%, we thus have the (real)
integral [5]

IrE] = / DBCXY, (4.2)

where ®BCXY is an eight-form on 7% given as the wedge product between
the forms

3[dBa(z) AdB*(z)], (4.32)
L[dCp(w) A dCP(x)], (4.3b)
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and
X(z) = HdXu(z) AdXY (z)], (4.3¢)

V(@) = LdYg (z) AdYE (2)]. (4.3d)

In setting up the dynamical principle, it appears to be necessary to
replace the individual pieces of the CM-Lagrangian density with the kernels
borne by the contour integrals of Section 2. This necessity stems from the
uselessness of the result that arises when the contour integrals themselves
are immediately coupled together. We thus arrive at the following set of
field contributions

$ap(z)p"P (z) -

A(Z° ), (<2)(Z2£)°, 2daf)FAZ 1),
pap (@)t ()

n(W’g), (-2)(Wg)?, 200 402)(3 Was),

with the pertinent conjugation, ¢, amounting to the combination of (3.13)
with the interchange rules

Z% < Wﬁa IMU & nga ka A (_igk)a (44)

where k stands for the same label as before. We point out that the above-
defined conjugation is still applicable to Eqgs. (3.16) and (3.17). Making use
of (2.2) and accounting for the Lorentz gauge, we obtain the alternative
structures

Vaa®h (2)Vea 887 (1) :

LWP)(ZMP), LMP), (:WP)('mp),

along with the ¢-conjugate ones for
Va8 (2)VE 87 P (@) = pap (2)p™ P (2). (4.5)

We can construct the blocks for the interacting piece of (2.8) by imple-
menting the identity Paa = Saar as well as the natural correspondence
P, — S; between the twistor functions for the potential and the ones for
the current density. In effect, we have the contributions

B ()] (2) -
(—1)(WP3)S1, (-D)[(WPR)(ZSs) + (ZP2)(WS2)],
(fAP) (7AW S3) + (A g Po) AV ZS3),  (7tad o P3) (AN S3)



A Twistorial Description of the Dynamics . .. 39

together with the structures which are obtained out of the ones just given
by interchanging the kernel letters P and S. It should be noticed that
such interchanges will leave the second and fourth @.J-blocks invariant if a
suitable commutation assumption is effectively taken up.

We have thus been led to two dynamical sets of basic Lagrangian densities
that carry the functional pieces for either

{paB(2),Yap(2), Pan(2), Jan (v)}

{Pan (@), Jaa ()}

It has become clear that the pieces of one density are related to the pieces
of any other density through a trivial set of interchanges. Hence, supposing

that the twistor functions and derivatives are all continuous in 7+, and
defining
Ly = LERER) 4 pIND) (4.6)
with E(TFI\I/} EE) and ﬁng ) denoting symbolically the free and interacting parts
of any dens1ty LM, we write the action
S[Lrm] = / (TR 4 cINYDBCXY (4.7)
e
along with the variational statement
AS[Lrv] =0 = A / cFRER) 4 pONIhSBexy . (4.8)

The A-variation of Eq. (4.8) is prescribed so as to bear linearity and
the Leibniz-rule property. Likewise, it preserves “reality” and does not in-
volve any deformation of d7%. In addition, it is required to commute with
the conformally invariant twistor-derivative operators (3.12b) and, conse-
quently, also with the Poincaré-invariant ones of (3.14) and (3.15) since Z¢
and Wp are both held fixed when the variational process is put into effect.
Presumably, the union of the singularity sets of the functional pieces car-
ried by all the densities possesses a void intersection with 7% U d7F, and
AS;, = 0 throughout 7F. We should emphasize that, in any case, the field
and potential variations must be taken as arbitrary non-singular quantities
on 7% U O7F which vanish on o77F.
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5. Equations of motion

The A-variation specified in the foregoing Section tells us that we have
effectively to perform actual integrations by parts upon working out the
statement (4.8). This fact implies that the Lagrangian blocks which involve
the operators (3.12b) explicitly will become useless in case only scalar vari-
ations are utilized. Roughly speaking, the point is that such contributions
will produce identically vanishing structures if they are brought into S[Ly]
together with scalar variations. At this stage, we will restrict ourselves to
using scalar variations. The situation concerning specifically the utilization
of spinor variations will be touched upon later in Section 6.

We thus consider the following operator splitting relations associated
with Egs. (3.15) and (4.1)

Z = Y(1W,B,) - il W,C,)] = LB —iC),  (5.1a)
W = %[(IMVZMXV) - i(IwZM?V)] = %(X - Zf’) , (5.1b)

which readily provide us with the auxiliary integral formulae

/(ZA@)S’DBC)Q/: /(A@)S(AAd79A)—/(A@)(ZS)@BCXJi, (5.2)

£ ort TE

/(WAQS)S@BCXJ/: /(A@)S(MCFTA’)—/(Aes)(v‘vg)@zscxy

Tt 0 T*

(5.3)
and

/(lA@)S@BCXy—Q /(A@)(ZS)(WA,d7TA')+2 /(WAQS)S(AAcF@A)

T* ort ort

_ /(A@)(IS)QBCXJJ, (5.4)

T

where § and & stand for any relevant functions, and

~ ~ ~

d"0Mz) = % { [dBA(x) AC(x) —iB(w) A ch(I)] A X(z) A y(x)} (5.5a)

4T (z) =

NO|—

{ B(w) AC(x) A [dXA' (2) A () =i X(z) A dy (I)] } ,
(5.5b)
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define two independent elements of seven-hypersurface area of 97+, with the
integrations having been performed from right to left. In passing, we observe
that the calculations leading to Eqgs. (5.2)-(5.4) incidently bring about the
conjugation correspondence

Aad” 04(2)] < [mard” T (2)]. (5.6)

Additionally, the explicit factor 1/2 of (5.5) should be implemented in place
of the mistaken, but ultimately irrelevant, factor 1/4 which is carried by
Egs. (3.5) and (3.6) of Ref. [1].

The patterns of the free and interacting Lagrangian contributions natu-
rally suggest writing the variational set for the system

{{APIaAP?)}a{AP?}}a (57)

with all the entries involved being independent of each other. We thus have
the particular densities

I s ; Qs 1

Lol = To- (WD) ZEP; + (ZP)WRP] — < [(MP;)S + PIlS;] (5.8)
and .

L3 = o= (WP — [(WP)ZS, + (ZP)WS,). (5.9)

whose variations are given by

Ar 1 [(WAP,)ZRP; + (W P,) ZBAP;] + é —conjugate}

™ — 167
1
—[(MAP;)S, + (AP MS;] (5.10)
and
1 - .
Aﬁ%z/[ = E(.AP2).P2 — [(WAPy)ZS5 + ¢ —conjugate] . (5.11)

It follows that, invoking (4.8) and taking AP, = 0 on O7%F, after some
manipulations we obtain the equations of motion

(WII, — 47 %)) = 0, IT, = WPy, 5, = WS}, , (5.12)

where & runs over the same values as in Egs. (3.16).
A glance at Egs. (3.16), (5.8) and (5.9) shows that, in contradistinction
to the CM-formulation [5], each of the equations of motion for {ify, (—igk)}
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can be derived from a manifestly field structure by suitably changing the
choice of variations. In effect, for the case of (5.9), we have

ALY, = AZAGR)Z(]) + WA~ ig2)|W( — ign))
—i—{[A(’LfQ)]ZSQ + [A(—’iQQ)]WSQ}, (5.13)

with {A(if2), A(—1ig2)} thus taking over the dynamical role of AP,. Hence,
making use of the integration techniques that give rise to (5.12), we derive
the equation

2 [%Z(zﬁ) _ 52] LW [%W(—igg) _ Sl =0, (5.4

which obviously represents the second half of the theory. Now, combining
Egs. (5.14) and (3.17) for k£ = 2, we conclude that
(Z + W)[Z(ifs) —27S2] = 0= (Z + W)[W (—igz) — 21S5].  (5.15)

The density (5.8) can be similarly worked out by adopting the variational
set {AP;, AF3, AG3}, whose entries particularly involve the quantities

Fy = Z(if3) = W(—ig3) = Gs. (5.16)
We thus obtain the field equations
Z(if1) =278, = W(—ig1), (5.17a)
along with
W[ Z(if3) — 27S3] = 0 (5.17b)
and
Z[W (—ig3) — 2mS3] = 0. (5.17¢c)

In order to represent the complete theory, it suffices to take

WP, = 475} (5.18a)
and
Z(ify) = 218, = W(—igy) . (5.18b)

It is clear that Eqs. (5.18) are identical to the relations which emerge from
contracting (2.11) and (2.9) with adequate kernels. As the formulation of
(4.8) automatically balances the weights of any allowable scaling factors, the
spinning character of the fields turns out to be reflected by the homogeneity
degrees of the respective twistor functions.
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6. Concluding remarks and outlook

One might claim that, in the first instance, inserting the contour integrals
into the former field equations would not immediately yield a system of
differential relations insofar as the contours involved are generally taken to
be distinct from one another. In fact, this situation has been rectified in
Section 3 by implementing a parametric form of the integrands which allows
the definition of a single contour for the sets of integrals (3.5)-(3.10). The
same parametrization procedure was used in Ref. [2], and has indeed been
considered as a somewhat important part of our method. When utilized
in conjunction with the product-space prescription given in Ref. [8], it may
give rise to the construction of formal Green-function solutions to twistor
wave equations. Moreover, it actually accounts for the eventual occurrence
of the inner product Z#W,, in the denominators of the integrands, whence its
combination with the techniques of Ref. [7] would enable one to write down
an integral form of the theory in terms of twistor diagrams [9-16]. That it is
consistent with the degrees of the standard differential forms can be rapidly
established by considering the equivalent scaling-invariant relations

/F(alzﬁ)a(alz) = /F(Zﬁ)éz

Yz Yz

i
/F(axﬂ)é(aX) = /F(Xﬂ)ax,

X X

with a being any (fixed) non-vanishing complex number and Z? = aX?.
One of the most notable results we have obtained above is related to the
possibility of deriving directly from (4.8) the wave equations

W(ify) = (—4m)WS,,,
B(—ign) = (—4m)Z Sy,

which represent the (gauge-invariant) CM-equation
OFu(z) = 87V Jy(z)

with m taking the values 2 and 3. The pertinent procedure for m = 3, for
instance, consists first in re-expressing (5.8) as (see Egs. (3.16))

=1
167
—%{[ZA(ifg) + W (—igs)]S1 + PMSs},

L0 = L (ZP)W(ifs) + (W P)B(—igs)]
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and then picking up the piece of the statement (4.8) that carries AP;. Hence,
it seems to be of some interest to find out whether the wave equations for
{if1,( —ig1)} may be achieved in a similar fashion. In the event that ex-
plicit spinor relations involving the kernels for the current density have to be
effectively required, the introduction of the pertinent contour integrals shall
be based upon the charge-conservation law V 4 4 JA4' (z) = 0, which accord-
ingly will enter into the picture as a formal “field equation” for JA4' (x). Of
course, the Lorentz-gauge feature of the twistor formulation would demand
the implementation of the famous Gupta—Bleuler procedure if a quantum
version of the theory were taken into consideration at the outset.

With regard to the choices of variations for the system, we must stress
that our representation makes it viable to utilize spinor variations along with
the Lagrangian densities which carry the pieces

(FAWR,) (7 BP3), (A ZPo) AV EP)

2 !

(TAP) (7AW S3) + (A y Po) (MY ZS3),
(FAWPs) (7452) + A\ ZP3) (A 4/ Sa)
and . o
(7T ad g P3) (742 S3).

In some particular cases, these configurations yield a set of spinor equations
of motion which involve twistor functions bearing different values of the
label k, but their utilization does not provide any additional insights into
the dynamical framework. A genuinely useful example is afforded by the
density

£y = [(ﬁAWPz)(frAng) + (O ZP) (N Ep)

€
8w

1 “ . A S SAl A PR AR AL
5 [FaP) FWS3) + (g Po) O Z85) + (7ad g o) (757 85)
with the “mixed” prescription

{A(7aPy), A\ g Py), AP3},

in which case we obtain the wave equation for P3. It now becomes evident
that the number of entries of each set of basic densities will get considerably
reduced if only scalar variations are put into practice. We can therefore state
that the exclusion of the densities which bear the potential functions

{P27P3}a {PQa 53}7 {P3a SQ}a {PSa 53}7
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would bring forward a non-trivial character of the whole representation with-
out spoiling the completeness of the description.
Worthy of special consideration is the occurrence of the é-conjugation

property

/ (AB)(23) (WA,dWA’) - / (WAB)F (Aad” 64)

ort ort
— /(Aes)(v‘vg) (Aad"04) — /(ZA@)S <7TA,d7TA’) ,
ort art

which takes place when the reality of the B-operator is incorporated into the
construction of the device (5.4). Had the integrations by parts of Section 5
been performed from left to right the same volume integrals would have been
obtained, but the overall signs of the boundary integrals of Eqs. (5.2)-(5.4)
would have to be readjusted. It is obvious that the twistors {B?,C?, X,,Y,}
involved in Eqgs. (5.1) have been introduced to define the real and imaginary
parts of the operators (3.15). Nevertheless, it has not been strictly necessary
to ascribe to them any group-theoretic meaning at all.

The work presented here was supported financially by the Brazilian
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