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INDUCED SYMPLECTIC CONNECTIONON THE PHASE SPACEJerzy F. Pleba«skia, Maiej Przanowskia;band Franiso J. TurrubiatesaaDepartamento de FísiaCentro de Investigaión y de Estudios Avanzados del IPNApartado Postal 14-740, Méxio, D.F., 07000, MéxiobInstitute of Physis, Tehnial University of �ód¹Wólza«ska 219, 93-005, �ód¹, Polande-mail: pleban�fis.investav.mxe-mail: przan�fis.investav.mxe-mail: fturrub�fis.investav.mx(Reeived Marh 10, 2000; revised version reeived Otober 6, 2000)It is shown that the general theory of lifting the tensor �elds from aRiemannian manifoldM to its tangent bundle TM enables one to de�ne ina natural manner the unique sympleti onnetion on the phase spae T �Mwhih is indued by the Levi�Civita onnetion on M . This is exatly thesympleti onnetion given also by Bordemann, Neumaier and WaldmannCommun. Math. Phys. 198, 363 (1998); J. Geom. Phys. 29, 199 (1999).Relationship between the sympleti and Riemannian geometries on T �Mand M is onsidered.PACS numbers: 02.40.Ky 1. IntrodutionThe onept of deformation quantization was introdued in 1978 byBayen, Flato, Fronsdal, Lihnerowiz and Sternheimer [3℄. Brie�y speak-ing the aim of deformation quantization is to understand quantization as adeformation of the usual produt algebra of funtions on the phase spaeand a deformation of the Poisson braket algebra. The deformed produt isalled the �-produt and the deformed Poisson braket is usually alled theMoyal braket.De Wilde and Leomte [4℄ have shown that the �-produt exists for anysympleti manifold. Reently one observes a great interest in deformationquantization [5℄. This interest is evidently stimulated by outstanding works(3)



4 J.F. Pleba«ski, M. Przanowski, F.J. Turrubiatesby Omori, Maeda and Yoshioka [6℄, Fedosov [7,8℄ and Kontsevih [9℄ wherenew approahes to the onstrution of the �-produt are proposed. Espe-ially beautiful is Fedosov's approah where the �-produt for a sympletimanifold is de�ned in terms of the Weyl algebras bundle geometry and, onthe other hand, Kontsevih's approah where some ideas of string theoryenables one to onstrut the �-produt for any Poisson struture on Rn .(See also the work by Kathotia [10℄ devoted to the relationship betweenthe Kontsevih onstrution and the Campbell�Baker�Hausdor� formula).In our work we deal with Fedosov's onstrution. We onsider this on-strution in some details in the seond part of the work. Here will be enoughto observe that the essential point of the Fedosov �-produt is the symple-ti onnetion. It is known that any paraompat sympleti manifold anbe endowed with a sympleti onnetion [8,11,12℄. Then this onnetionde�nes the �-produt. Although two di�erent sympleti onnetions leadto equivalent (in the mathematial sense) quantizations [12℄ the physialontent of these quantizations is di�erent. In ontrast to the ase of Levi�Civita onnetion the sympleti onnetion is not uniquely de�ned and,in fat, the set of sympleti onnetions on a sympleti manifold is anin�nite-dimensional a�ne spae [11℄.Therefore, from the physial point of view, the ruial point is to �ndsome method whih enables one to de�ne the unique sympleti onnetionin a natural manner. In Ref. [13℄ suh a method has been proposed. Howeverit requires the de�nition of the preferred atlas on a sympleti manifold. An-other approah has been proposed by Bourgeois, Cahen, Gutt and Rawnsley[14,15℄. Roughly speaking, in this approah the sympleti onnetion omesfrom the variational priniples of the Yang�Mills type.Some time ago, Oziewiz [16℄ told us about the idea of lifting the geo-metrial objets from a manifold to its tangent or ontangent bundle andthat this idea ould help one to geometrize some equations of mathematialphysis. We have reognized very quikly that this idea ould also enableus to de�ne in a natural way the sympleti onnetion on a phase spae.Indeed, if the Lagrangian of a given system of partiles is a quadrati formof their veloities then it de�nes a Riemannian metri g on the on�gurationspae M . Then one an lift this metri to the tangent bundle TM over M .Now as the metri g on M de�nes a natural isomorphism between TM andthe otangent bundle (i.e., the phase spae) T �M over M we are able totransport the metri on TM to T �M . Thus T �M is not only endowed withthe naturally de�ned sympleti form ! but also with a Riemannian metri egof signature 0�+; :::;+| {z }n ;�; :::;�| {z }n 1A ; n =dim M . Finally, the metri eg de�nesthe Levi�Civita onnetion on T �M whih in turn de�nes the sympleti



Indued Sympleti Connetion on the Phase Spae 5onnetion r(S) on T �M: The ruial point of the proposed proedure liesin the fat that eg;r(S) and the urvature of r(S) are de�ned by the Levi�Civita onnetion of M . Thus geometry of the phase spae is indued by thegeometry of the on�guration spae.In two distinguished papers Bordemann, Neumaier and Waldmann [1,2℄used the �Fedosov type proedure� to �nd some homogeneous �-produts onotangent bundles over on�guration spaes. Their onstrution required ahomogenous in momenta sympleti onnetion whih they have obtainedby using some lifting proedures.The aim of our paper is to give a geometrial interpretation of this liftedonnetion by showing that it �ts into the general framework of theory oflifts developed by Yano and Ishihara [17℄.Our paper is organized as follows. In Setion 2 the Riemannian metrion the otangent bundle T �M indued by the metri on TM is given. Thenthe Levi�Civita onnetion and the urvature tensor for this metri on T �Mis found. Finally, the sympleti onnetion on T �M indued by the Levi�Civita onnetion and the relationship between the sympleti geometryof T �M and the Riemannian geometry of T �M or M are onsidered inSetion 3. (Note that we deal only with lifts to TM or T �M: However,the general theory given by Yano and Ishihara [17℄ whih enables one tode�ne lifts from M to higher order tangent bundles T rM r � 1 has foundits appliation in self-dual gravity [18℄).2. Cotangent bundle as a Riemannian manifoldLetM be an n-dimensional smooth di�erentiable manifold and T �QM theotangent spae of M at a point Q 2 M: Let T �M = SQ2M T �QM be theotangent bundle over M and � : T �M ! M the bundle projetion. Let,fU; (q�)g be a oordinate neighborhood inM: (The Greek indies �; �; ::: runthrough 1; :::; n and the Latin ones i; j; ::: run through 1; :::; 2n). Then onean de�ne in a natural way the oordinate neighborhood ���1 (U) ; �eqi�	 ;i in T �M as follows: if Q is a point of U of the oordinates �q1; :::; qn� andp = p� (dq�)Q is a otangent vetor at Q then we assign the oordinates �eqi�to the point (Q; p) 2 ��1 (Q) aording to the ruleeq� := q� and eq�+n = p�; � = 1; :::; n : (2.1)Doing so for all points of U and all otangent vetors on U one gets theoordinate neighborhood ���1 (U) ; (q�; p�)	 in T �M whih is alled theoordinate neighborhood in T �M indued by fU; (q�)g :



6 J.F. Pleba«ski, M. Przanowski, F.J. TurrubiatesHaving de�ned the indued oordinates in T �M one an introdue thebasi 1-form � on T �M by� (T � (T �M)) 3 � := p�d(q� Æ�) (2.2)for every indued oordinates in T �M (� (:::) denotes the setion of therespetive bundle).Then the exterior di�erential of � gives the sympleti form ! on T �M� ��2T �M� 3 ! := d� = 12!ijdexi ^ dexj = dp� ^ d(q� Æ�); !ij = �!ji ;(2.3)where �exi� is a system of loal oordinates in T �M and �2T �M stands forthe bundle of 2-forms on T �M . From (2.3) one quikly �nds that in termsof indued oordinates in T �M(!ij) = � 0 �(Æ�� )(Æ�� ) 0 � : (2.4)Consequently, (T �M;!) is a 2n-dimensional sympleti manifold and theindued oordinates in T �M appear to be exatly the proper Darboux oor-dinates onsidered in [13℄.Assume now that the di�erential manifold M is endowed with a Rieman-nian metri g. This enables us to de�ne the natural bundle isomorphism� : TM ! T �M as follows��eeQ� :=  ��eeQ� ; �0�eeQ�g��eeQ�! 2 T �M (2.5)for every eeQ 2 TM . For loal indued oordinates we get� (q�; p�) = (q�; p�) ; p� = p�g��(q) : (2.6)With the use of the isomorphism � we an send the objets de�ned on TMinto the objets on T �M . Espeially we are interested in the pull-bak ofthe omplete lift gC of the metri g�gCij� = � (p�g��) (g��)(g��) 0 � (2.7)(see [17℄: Eq. (5.14), the propositions 5.9 and 5.10, and the metri II on thepage 138), and in the pull-bak of the metri G(Gij) = � (g�� + p�g��) (g��)(g��) 0 � (2.8)



Indued Sympleti Connetion on the Phase Spae 7(see [17℄: the metri I+II on the page 138). From (2.7) and (2.6) one easily�nds that eg := ��1�gC =) (egij) = 0� ��2p� ��� �Æ����Æ��� 0 1A ; (2.9)where ��� are the omponents of the Levi�Civita onnetion (the Christo�elsymbols) of the metri g on M i.e.,��� = 12g�Æ (��gÆ + �gÆ� � �Æg�) : (2.10)It is evident that eg 2 � �T 02 (T �M)� is a symmetri, nondegenerate tensor�eld of the type (0; 2) on T �M and the signature of eg is0�+; :::;+| {z }n ;�; :::;�| {z }n 1A :Thus one arrives at the following theoremTheorem 2.1 Let (M; g) be an n-dimensional Riemannian manifoldwith g being a metri on M of an arbitrary signature. Then (T �M; eg) isa 2n-dimensional Riemannian manifold and the metri eg on T �M has thesignature 0�+; :::;+| {z }n ;�; :::;�| {z }n 1A : �(This theorem orresponds to the proposition 5.9 in [17℄).The inverse metri to eg reads�egij� = 0� 0 �Æ����Æ��� �2p� ��� 1A : (2.11)It is interesting to note that the tensor �eld (2.11) appears in a naturalmanner when the problem of the operator ordering within the Weyl�Wigner�Moyal formalism for the phase spae R2n is extended to urved phase spaeaording to the Fedosov approah [1,2,13℄. In other words the metri eg onT �M enters also into the de�nition of the �order of operators� in deformationquantization.Moreover, the metri eg has been introdued in the general theory of theRiemannian extensions of symmetri a�ne onnetions [17, 19℄. In fat,aording to this theory, the metri eg is the Riemann extension of the Levi�Civita onnetion on M to T �M . Observe that the metri (2.9) is alsode�ned for any M endowed with a symmetri a�ne onnetion.



8 J.F. Pleba«ski, M. Przanowski, F.J. TurrubiatesConsider now the pull-bak of G to T �M . From (2.8) and (2.6) we geteG := ��1�G =) � eGij� = 0� �g�� � 2p� ��� �Æ����Æ��� 0 1A : (2.12)It is obvious that eG 2 � �T 02 (T �M)� is a symmetri, nondegenerate tensor�eld of the type (0,2) on T �M . Consequently �T �M; eG� is a 2n-dimensionalRiemannian manifold.In the theory of Riemannian extensions eG is alled the general Riemannextension of the Levi�Civita onnetion on M to T �M .The inverse metri to eG has the form of� eGij� = 0� 0 �Æ����Æ��� �2p� �� � g��� 1A : (2.13)Now we are in a position to �nd the Levi�Civita onnetion er of the metrieg on T �M .Substituting (2.9) and (2.11) into the formulae� ijk = 12egil (�jeglk + �keglj � �legjk) (2.14)employing also (2.10) we get (see the formula (10.3) in [17℄)e��� = ��� ; e��� = 0; e��� = 0 ;e��� = pÆ ���� Æ� � �� Æ�� � ��� Æ� + 2� Æ��� ��� ;e��� = �� �� ; and e��� = 0 ; (2.15)where aording to our onvention � = �+ n; ::: et.(Remember also that e� ijk = e� ikj).Then the straightforward alulations show that, the Levi�Civita on-netion of the metri eG on T �M is the same as the Levi�Civita onnetionof eg:As we will see in the next setion this result is of a great importane whenthe problem of the �natural sympleti onnetion� on T �M is onsidered.Finally, the urvature tensor of er has the omponentseRijkl = �k e� ijl � �l e� ijk + e� imk e�mjl � e� iml e�mjk : (2.16)



Indued Sympleti Connetion on the Phase Spae 9Substituting (2.15) into (2.16) one gets (see equation (10.6) in [17℄)eR��Æ = p� nR��Æ;� �R��Æ;� + 2� ��(�R��)Æ + 2� �� [R�Æ℄��o ;eR��Æ = RÆ��; eR��Æ = �R��Æ; eR��Æ = R��Æ ; (2.17)and all remaining independent omponents are zero. Here the symbol \; "denotes the ovariant derivative with respet to the Levi�Civita onnetion��� onM; R��Æ are the omponents of the Riemannian urvature tensor �eldon M; (�; �) and [�; �℄ stand for the symmetrization and anti-symmetrization,respetively i.e.A(�B�) := 12 (A�B� +A�B�) and A[�B�℄ := 12 (A�B� �A�B�) :From (2.17) one quikly �nds the Rii tensor �eld on T �M eRij := eRkikjto read eR�� = 2R�� ; eR�� = eR�� = eR�� = 0 ; (2.18)where R�� = R�� is the Rii tensor �eld on M .3. Sympleti onnetion on T �M induedby the Levi�Civita onnetion on MLet M 0 be a 2n-dimensional smooth di�erentiable manifold and ! alosed nondegenerate 2-form on M 0. Then the pair (M 0; !) is alled thesympleti manifold.From the famous Darboux theorem it is well known that for any pointP 2M 0 there exist loal oordinates �xi� on a neighborhood of P suh that! = 12!ijdxi ^ dxj; (!ij) = 0� 0 ��Æ����Æ��� 0 1A : (3.1)Any suh oordinates are alled the Darboux oordinates.In Fedosov's approah to the deformation quantization [7,8℄ the funda-mental role plays a sympleti onnetion. It is de�ned as follows:A sympleti onnetion on M 0 is a symmetri a�ne onnetion r(S)on M 0 suh that r(S)! = 0:Thus the sympleti onnetion is de�ned loally byr(S)k !ij = �k!ij � !ljlik � !illjk = 0; ijk = ikj; 8i; j; k 2 f1; :::; 2ng ;(3.2)where ijk are the loal omponents of r(S).



10 J.F. Pleba«ski, M. Przanowski, F.J. TurrubiatesIn Darboux oordinates we havejik � ijk = 0 ;ijk � ikj = 0 ; (3.3)where ijk := !illjk : (3.4)From (3.3) one easily infers that the following proposition holds true.Proposition 3.1 Let (M 0; !) be a sympleti manifold and r an a�neonnetion on M 0. Then r is a sympleti onnetion if and only if forevery Darboux oordinate system in M 0 the omponents ijk of r are totallysymmetri with respet to the indies (i; j; k) : �It is known that every paraompat sympleti manifold admits a sym-pleti onnetion but, in ontrary to the ase of the Levi�Civita onnetionon a Riemannian manifold, the sympleti onnetion is not uniquely de�ned[8,11,12℄.Indeed, from the proposition (3.1) it follows that if r(S) is a sympletionnetion on M 0 then r0(S) is also a sympleti onnetion on M 0 if andonly if r0(S) = r(S) + T; (3.5)where T 2 � �T 12M 0� and the tensor �eld of the type (0,3) on M 0 de�nedloally by Tijk := !ilT ljk (3.6)is totally symmetri.Let r be any symmetri a�ne onnetion on M 0 and � ijk = � ikj its loalomponents. Then one an quikly verify thatijk := � ijk � 13!il (rj!kl +rk!jl) (3.7)are the omponents of a sympleti onnetion [8℄.(As usually, !ij stand for the omponents of the tensor inverse to the2-form !; i.e., !il!lj = Æij .)Then ijk = �ijk � 13 (rj!ki +rk!ji)= 13 (�ijk + �kij + �jki)� 13 (�j!ki + �k!ji) ; (3.8)where, of ourse, ijk := !illjk and �ijk := !il� ljk:Hene, in any Darboux oordinate systemijk = 13 (�ijk + �kij + �jki) (3.9)



Indued Sympleti Connetion on the Phase Spae 11and we all this sympleti onnetion the sympleti onnetion on M 0indued by the symmetri a�ne onnetion r on M 0.The formula (3.9) an be interpreted as follows: Let (M 0; !) be a sym-pleti manifold and let M 0 be endowed with a symmetri a�ne onnetion.Then this onnetion de�nes in a natural manner the sympleti onnetionon M 0 given by (3.9).Assume that M 0 is the otangent bundle T �M over M , where M is ann-dimensional di�erentiable manifold endowed with a Riemannian metri g.From the previous setion we know that (T �M;!) with ! de�ned by (2.3)is a sympleti manifold, but also (T �M; eg) with eg de�ned by (2.9) is aRiemannian manifold and the Levi�Civita onnetion of the metri eg onT �M is given by (2.15).This onnetion indues the sympleti onnetion on T �M aording to(3.9). However, both the metri eg (2.9) and the Levi�Civita onnetion of eg(2.15) are de�ned by the Levi�Civita onnetion of g on M . Consequently,we onlude that in the present ase the sympleti onnetion on T �M isindued by the Levi�Civita onnetion on M .This is our fundamental result whih shows how the sympleti geometryof the phase spae T �M is determined by the Riemannian geometry of theon�guration spae M . Analogous point of view is presented in [1,2℄. Thisapproah seems to have a spirit of the Einstein program of the geometrizationof physis. (Another approah to the problem of the �natural� sympletionnetion is presented in [13�15℄.)From (2.15) and (3.9), employing also (2.3) and (2.4), one �nds theomponents ijk of the sympleti onnetion r(S) on T �M with respet tothe indued oordinates (i.e., the proper Darboux oordinates) in terms ofthe Christo�el symbols ��� of the metri g on M�� = �� = ��� ; �� = �� = 0; �� = �� = 0 ;�� = ���= �13pÆ(��� Æ� + �� Æ�� + ��� Æ� � 2� Æ��� ���2� Æ�� ��� � 2� Æ��� ��) : (3.10)By the proposition 3.1 all remaining omponents an be obtained from theomponents given by (3.10). Note that the sympleti onnetion (3.10) anbe also de�ned for any M endowed with symmetri a�ne onnetion ��� asit has been done within slightly another formalism by Bordemann, Neumaierand Waldmann [1℄.Observe also that the omponents �� ; �� and �� are exatly equalto those proposed in [13℄, where they have been found from some di�erentonsiderations.



12 J.F. Pleba«ski, M. Przanowski, F.J. TurrubiatesNow we are going to give some transparent geometri interpretation ofthe sympleti onnetion de�ned by (3.10). Let (M; g) be, as before, aRiemannian manifold and let F : R ! M be a smooth urve in M loallygiven by q� = q� (t) ; t 2 R: We de�ne the lift of F to T � (M) to be thesmooth urve eF : R ! T �M in T �M loally given as follows: eqi = eqi (t),where q� = q� (t) and p� = g�� (q (t)) dq�(t)dt :The following theorem holds:Theorem 3.1 Let (M; g) be a Riemannian manifold and (T �M;!) thesympleti manifold de�ned as before. Then the sympleti onnetion r(S)on T �M de�ned by (3.10) is the unique sympleti onnetion on T �Msatisfying the following onditions(i) the projetion on M of any geodesi in T �M with respet to the sym-pleti onnetion is a geodesi in M with respet to the Levi�Civitaonnetion de�ned by the metri g and these two geodesis have thesame a�ne parameters;(ii) the lift of any geodesi in M with respet to the Levi�Civita onnetionof g to T �M is a geodesi in T �M with respet to the sympletionnetion.Proof. Assume that er(S) is a sympleti onnetion on T �M satisfying(i) and (ii), and eijk are the loal omponents of er(S). From (i) we haved2eqidt2 + eijk deqjdt deqkdt = 0 =) d2q�dt2 + ��� dq�dt dqdt = 0, where ��� are the om-ponents of the Levi�Civita onnetion of g on M . Hene one quikly infersthat: e�� = ��� ; e�� = 0 = e�� . Consequently, (ii) leads to the implia-tion d2q�dt2 + ��� dq�dt dqdt = 0 =) ddt �g�� dq�dt � + e�� dq�dt dqdt = 0; whih givese�� = �� :Therefore one arrives at the onlusion that if er(S) satis�es (i) and(ii) then er(S) = r(S): But er(S) satis�es (i) and (ii). Thus the proof isomplete. �Then, straightforward but tedious alulations lead to the following om-ponentsKijkl for the urvature tensor of the sympleti onnetion er(S) givenby (3.10)K��Æ = �13p� nR��Æ;� +R��Æ;� � 6� ��(�R��)Æ + 4R�(��)[� �Æ℄�o = �K��Æ ;K��Æ = 23RÆ(��) = �K��Æ =) K��Æ = R��Æ = K��Æ : (3.11)All remaining independent omponents vanish (ompare with [1℄).



Indued Sympleti Connetion on the Phase Spae 13A sympleti manifold endowed with sympleti onnetions is alled theFedosov manifold [11℄. Therefore, the triple �T �M;!;r(S)� ; where ! andr(S) are de�ned by (2.3) and (3.10), respetively, is the Fedosov manifold. Itis well known that the omponents Kijkl := !imKmjkl of the urvature tensorof the sympleti onnetion for any Fedosov manifold satisfy the followingonditions [11℄Kijkl = �Kijlk; Kijkl +Kiljk +Kiklj = 0; Kijkl = Kjikl : (3.12)These onditions implyKijkl +Klijk +Kklij +Kjkli = 0 : (3.13)Employing (3.12) one quikly getsKÆ�� = K��Æ �K��Æ ;K��Æ = K��Æ �K�Æ� ;K��Æ = KÆ�� �K�Æ� : (3.14)From the �rst relation of (3.14), written in terms of the indued oordinateswe obtain KÆ�� = �K��Æ +K��Æ : (3.15)This formula leads to the last impliation in (3.11).The sympleti Rii tensor is de�ned byKij := Kkikj : (3.16)From (3.12) one easily infers thatKkkij = 0 (3.17)and Kij = Kji : (3.18)Substituting (3.11) into (3.16) we getK�� = 23R�� ; K�� = K�� = K�� = 0 (3.19)or employing (2.18) Kij = 13 eRij : (3.20)Thus one arrives at the following propositions:Proposition 3.2 Fedosov manifold �T �M;!;r(S)� is sympleti Rii�at (i :e:;Kij = 0) if and only if the Riemannian manifold (M; g) is Rii�at (i :e:; R�� = 0) :



14 J.F. Pleba«ski, M. Przanowski, F.J. TurrubiatesProposition 3.3 �T �M;!;r(S); eg� is a sympleti Einstein manifold(i :e:;Kij = �egij) if and only if the Riemannian manifold (T �M; eg) is anEinstein manifold �i :e:; eRij = �0egij� :By straightforward but rather long alulations we �nd the ovariantderivative r(S)m Kijkl :r(S)� K��Æ = R��Æ;�;r(S)� K��Æ = 23RÆ(��);�r(S)� K��Æ = �23R�(�jÆj;�) ;r(S)� K��Æ = �23p�(R�(�jÆj;�)� � 3� ��(�R��)Æ;� � � ���R�(�jÆj;�)�2� �� [R�j(��)jÆ℄;� +R��ÆR�(��)� +R��ÆR�(��)��23R�(��)R�(Æ�)� + 23R�(��)ÆR�(�)�) (3.21)with all remaining independent omponents being zero. From (3.21) onequikly infers that r(S)� K�� = 23R��;� (3.22)and remaining omponents of r(S)k Kij are zero.Reently Bourgeois, Cahen, Gutt and Rawnsley [14,15℄, using the varia-tional priniple for a sympleti onnetion on sympleti manifold (M 0; !) ;dim M 0 = 2n; Æ Z A!nn! = 0 (3.23)have found that both A = �KijKij and A = �KijklKijkl lead to the samesystem of di�erential equationsr(S)(i Kjk) = 0 : (3.24)Any sympleti onnetion satisfying (3.24) is alled a preferred sympletionnetion. Comparing (3.22) and (3.24) we onlude that in our ase, thesympleti onnetion on T �M de�ned by (3.10) is preferred if and only ifthe Levi�Civita onnetion on M ful�lls the following equationsR(��;) = 0 : (3.25)(This result has been also found in [1℄.) For example this is so when (M; g)is an Einstein manifold i.e., R�� = �g�� :
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