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It is shown that the general theory of lifting the tensor fields from a
Riemannian manifold M to its tangent bundle 7'M enables one to define in
a natural manner the unique sympletic connection on the phase space T* M
which is induced by the Levi—Civita connection on M. This is exactly the
symplectic connection given also by Bordemann, Neumaier and Waldmann
Commun. Math. Phys. 198, 363 (1998); J. Geom. Phys. 29, 199 (1999).
Relationship between the symplectic and Riemannian geometries on 7™ M
and M is considered.

PACS numbers: 02.40.Ky

1. Introduction

The concept of deformation quantization was introduced in 1978 by
Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer [3]. Briefly speak-
ing the aim of deformation quantization is to understand quantization as a
deformation of the usual product algebra of functions on the phase space
and a deformation of the Poisson bracket algebra. The deformed product is
called the x-product and the deformed Poisson bracket is usually called the
Movyal bracket.

De Wilde and Lecomte [4] have shown that the *-product exists for any
symplectic manifold. Recently one observes a great interest in deformation
quantization [5]. This interest is evidently stimulated by outstanding works
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by Omori, Maeda and Yoshioka [6], Fedosov [7,8] and Kontsevich [9] where
new approaches to the construction of the *-product are proposed. Espe-
cially beautiful is Fedosov’s approach where the *-product for a symplectic
manifold is defined in terms of the Weyl algebras bundle geometry and, on
the other hand, Kontsevich’s approach where some ideas of string theory
enables one to construct the x-product for any Poisson structure on R™.

(See also the work by Kathotia [10] devoted to the relationship between
the Kontsevich construction and the Campbell-Baker-Hausdorff formula).

In our work we deal with Fedosov’s construction. We consider this con-
struction in some details in the second part of the work. Here will be enough
to observe that the essential point of the Fedosov *-product is the symplec-
tic connection. It is known that any paracompact symplectic manifold can
be endowed with a symplectic connection [8,11,12]. Then this connection
defines the x-product. Although two different symplectic connections lead
to equivalent (in the mathematical sense) quantizations [12] the physical
content of these quantizations is different. In contrast to the case of Levi—
Civita connection the symplectic connection is not uniquely defined and,
in fact, the set of symplectic connections on a symplectic manifold is an
infinite-dimensional affine space [11].

Therefore, from the physical point of view, the crucial point is to find
some method which enables one to define the unique symplectic connection
in a natural manner. In Ref. [13] such a method has been proposed. However
it requires the definition of the preferred atlas on a symplectic manifold. An-
other approach has been proposed by Bourgeois, Cahen, Gutt and Rawnsley
[14,15]. Roughly speaking, in this approach the symplectic connection comes
from the variational principles of the Yang-Mills type.

Some time ago, Oziewicz [16] told us about the idea of lifting the geo-
metrical objects from a manifold to its tangent or contangent bundle and
that this idea could help one to geometrize some equations of mathematical
physics. We have recognized very quickly that this idea could also enable
us to define in a natural way the symplectic connection on a phase space.
Indeed, if the Lagrangian of a given system of particles is a quadratic form
of their velocities then it defines a Riemannian metric g on the configuration
space M. Then one can lift this metric to the tangent bundle TM over M.
Now as the metric g on M defines a natural isomorphism between T'M and
the cotangent bundle (i.e., the phase space) T*M over M we are able to
transport the metric on TM to T*M. Thus T* M is not only endowed with
the naturally defined symplectic form w but also with a Riemannian metric g

of signature | +,...,+,—,...,— | , n =dim M. Finally, the metric g defines
—— ——

n n
the Levi—Civita connection on T*M which in turn defines the symplectic
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connection V) on T*M. The crucial point of the proposed procedure lies
in the fact that g, V) and the curvature of V) are defined by the Levi—
Civita connection of M. Thus geometry of the phase space is induced by the
geometry of the configuration space.

In two distinguished papers Bordemann, Neumaier and Waldmann [1,2]
used the “Fedosov type procedure” to find some homogeneous *-products on
cotangent bundles over configuration spaces. Their construction required a
homogenous in momenta symplectic connection which they have obtained
by using some lifting procedures.

The aim of our paper is to give a geometrical interpretation of this lifted
connection by showing that it fits into the general framework of theory of
lifts developed by Yano and Ishihara [17].

Our paper is organized as follows. In Section 2 the Riemannian metric
on the cotangent bundle T*M induced by the metric on T'M is given. Then
the Levi—-Civita connection and the curvature tensor for this metric on 7% M
is found. Finally, the symplectic connection on T*M induced by the Levi—
Civita connection and the relationship between the symplectic geometry
of T*M and the Riemannian geometry of T*M or M are considered in
Section 3. (Note that we deal only with lifts to TM or T*M. However,
the general theory given by Yano and Ishihara [17] which enables one to
define lifts from M to higher order tangent bundles T"M r > 1 has found
its application in self-dual gravity [18]).

2. Cotangent bundle as a Riemannian manifold

Let M be an n-dimensional smooth differentiable manifold and T5M the

cotangent space of M at a point @ € M. Let T*M = | TéM be the
eM

cotangent bundle over M and Il : T*M — M the bundleQ projection. Let,
{U, (¢®)} be a coordinate neighborhood in M. (The Greek indices a, f3, ... run
through 1,...,n and the Latin ones 4,7, ... run through 1,...,2n). Then one
can define in a natural way the coordinate neighborhood {H*I (U), ((}*)} ,
1 in T*M as follows: if ) is a point of U of the coordinates (ql, ey q”) and
P = pa (dq®) o is a cotangent vector at () then we assign the coordinates (@7)

to the point (Q,p) € II™! (Q) according to the rule

« ~a+n

=q¢% and gq =P, a=1,...,n. (2.1)

=3

Doing so for all points of U and all cotangent vectors on U one gets the
coordinate neighborhood {Hfl (U), (qo‘,pa)} in T*M which is called the
coordinate neighborhood in T*M induced by {U, (¢*)}.
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Having defined the induced coordinates in T* M one can introduce the
basic 1-form 6 on T*M by

L (T* (T*M)) 3 0 := pad(q® o IT) (2.2)

for every induced coordinates in T*M (I'(...) denotes the section of the
respective bundle).
Then the exterior differential of 8 gives the symplectic form w on T*M

r (AQT*M) Sw:=df = %wijdii A dZ = dpa A d(g® o IT), wij = —Wji ,

_ (2.3)
where (51) is a system of local coordinates in T*M and A?>T*M stands for
the bundle of 2-forms on T*M. From (2.3) one quickly finds that in terms
of induced coordinates in T* M

(wij):< (5%) —(gg) ) : (2.4)

Consequently, (T*M,w) is a 2n-dimensional symplectic manifold and the
induced coordinates in T* M appear to be exactly the proper Darboux coor-
dinates considered in [13].

Assume now that the differential manifold M is endowed with a Rieman-
nian metric g. This enables us to define the natural bundle isomorphism
p:TM — T*M as follows

(2) - ( (@)~ @J%(a)) s ey

for every QV € TM. For local induced coordinates we get

p(@* ") = (¢°pa),  DPa=1"gsa(q"). (2.6)

With the use of the isomorphism p we can send the objects defined on T'M
into the objects on T*M. FEspecially we are interested in the pull-back of
the complete lift g© of the metric g

_( (©070v9ap) (9as)
(g%)—( Yoy Y ) (2.7)

(see [17]: Eq. (5.14), the propositions 5.9 and 5.10, and the metric II on the
page 138), and in the pull-back of the metric G

(Gij) _ < (Qaﬂ 'f(’gl;;({)?'ygaﬂ) (9((1)/3) ) (2.8)
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(see [17]: the metric I+II on the page 138). From (2.7) and (2.6) one easily
finds that

N R T

where Fg,y are the components of the Levi—Civita connection (the Christoffel
symbols) of the metric g on M i.e.,

1
Tg, = 59" (9595, + 03955 — 05957 - (2.10)

It is evident that g € I" (T20 (T*M )) is a symmetric, nondegenerate tensor

field of the type (0,2) on T* M and the signature of gis | +,...,+, —, ..., —
N N —

n n
Thus one arrives at the following theorem

Theorem 2.1 Let (M,g) be an n-dimensional Riemannian manifold
with g being a metric on M of an arbitrary signature. Then (T*M,gq) is
a 2n-dimensional Riemannian manifold and the metric g on T*M has the

signature | +, ...+, —, .., — | . W
——

(This theorem corresponds to the proposition 5.9 in [17]).
The inverse metric to g reads

(97) = ! <5§> . (2.11)

() (72)

It is interesting to note that the tensor field (2.11) appears in a natural
manner when the problem of the operator ordering within the Weyl-Wigner—
Moyal formalism for the phase space R?" is extended to curved phase space
according to the Fedosov approach [1,2,13]|. In other words the metric g on
T* M enters also into the definition of the “order of operators” in deformation
quantization.

Moreover, the metric g has been introduced in the general theory of the
Riemannian extensions of symmetric affine connections [17, 19]. In fact,
according to this theory, the metric g is the Riemann extension of the Levi—
Cwita connection on M to T*M. Observe that the metric (2.9) is also
defined for any M endowed with a symmetric affine connection.
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Consider now the pull-back of G to T*M. From (2.8) and (2.6) we get

Gi=p "G = (é]) = (gaﬂ (511;1?‘5) <6§> L (212)
5

It is obvious that G € I' (TQ0 (T*M )) is a symmetric, nondegenerate tensor

field of the type (0,2) on T* M. Consequently (T*M, é) is a 2n-dimensional
Riemannian manifold.

In the theory of Riemannian extensions G is called the general Riemann
extension of the Levi—Civita connection on M to T*M.
The inverse metric to G has the form of

o [0 ()
(GJ)_ (55) (2P7F15_9a/3> . (2.13)

Now we are in a position to find the Levi—Civita connection V of the metric
gonT*M .
Substituting (2.9) and (2.11) into the formula

~ 1., _ N
ik = 5?1"” (9gk + Okgij — Ok (2.14)
employing also (2.10) we get (see the formula (10.3) in [17])
fg, =15, =0 Ig=0.

I, = ps (0T, = 0,105 — 9sT3, +2T0,T5, )

(e}

I§y = -I])y,  and f%:o, (2.15)

where according to our convention @ = o + n, ... etc.

(Remember also that f;k = 1:,3])

Then the straightforward calculations show that, the Lewvi-Civita con-
nection of the metric G on T*M is the same as the Levi-Civita connection
of g.

As we will see in the next section this result is of a great importance when
the problem of the “natural symplectic connection” on T*M is considered.

Finally, the curvature tensor of V has the components

Ry = W — 0T jy + Do T3 — T T (2.16)
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Substituting (2.15) into (2.16) one gets (see equation (10.6) in [17])

ngi = Py {Rgvé;a — Rosp + QFTV(aRE)Wi + QFTV[WRE]Ba} ’

~— 5 ~ g
ngg = Ryga; R%wi - _Rfé’ws’ s = Ry (2.17)

and all remaining independent components are zero. Here the symbol “;”
denotes the covariant derivative with respect to the Levi—Civita connection
F/?v on M, R§‘7 5 are the components of the Riemannian curvature tensor field
on M,(-,-) and [-,-] stand for the symmetrization and anti-symmetrization,
respectively 1i.e.

A(aB,B) = % (AaBﬁ + AﬁBa) and A[aBB} = % (AaB5 - AﬁBa) .

From (2.17) one quickly finds the Ricci tensor field on T* M ﬁij = ﬁfk
to read

J

Rop=2Ras, Ry3=Rz,=R5=0, (2.18)

(e

where R,p = ngﬁ is the Ricci tensor field on M.

3. Symplectic connection on T*M induced
by the Levi—Civita connection on M

Let M' be a 2n-dimensional smooth differentiable manifold and w a
closed nondegenerate 2-form on M’'. Then the pair (M’ ,w) is called the
symplectic manifold.

From the famous Darboux theorem it is well known that for any point
P € M’ there exist local coordinates (mz) on a neighborhood of P such that

. 0 — (o)
w = twjdz’ Ada; (wij) = . (3.1)
(95) o
Any such coordinates are called the Darboux coordinates.
In Fedosov’s approach to the deformation quantization |7,8] the funda-
mental role plays a symplectic connection. It is defined as follows:
A symplectic connection on M' is a symmetric affine connection V&)

on M’ such that V& w = 0.
Thus the symplectic connection is defined locally by

S i i ..
V,(c Jwij = Opwij — wiYie —wivik =0, Yk = Ve Viid k€ {1, ---,27(} ,)
3.2
where 'y;- ;. are the local components of v,
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In Darboux coordinates we have

Yjik — Yijk = 0,
Yijk — Yikj = 0, (3.3)

where
Vijk = wil’)’é‘k . (3.4)
From (3.3) one easily infers that the following proposition holds true.

Proposition 3.1 Let (M' ,w) be a symplectic manifold and V an affine
connection on M'. Then V is a symplectic connection if and only if for
every Darboux coordinate system in M’ the components ;1 of V are totally
symmetric with respect to the indices (i,7,k). R

It is known that every paracompact symplectic manifold admits a sym-
plectic connection but, in contrary to the case of the Levi—Civita connection
on a Riemannian manifold, the symplectic connection is not uniquely defined
[8,11,12].

Indeed, from the proposition (3.1) it follows that if V(®) is a symplectic
connection on M’ then V') is also a symplectic connection on M’ if and
only if

v'® =v® 1, (3.5)

where T' € I' (T4 M') and the tensor field of the type (0,3) on M’ defined
locally by
T'ijk = wilT]l'k (36)

is totally symmetric. . .
Let V be any symmetric affine connection on M’ and F]?k =1y ¢ its local
components. Then one can quickly verify that

'Y;'k = F;k — %wil (ijkl + kaJ'Z) (3.7)

are the components of a symplectic connection [8].

(As usually, w" stand for the components of the tensor inverse to the
2-form w, i.e., w'w;; = d5-)

Then

Yijk = Tiji — 3 (Vjwii + Viwji)
= % (Fijk + Fkij + iji) — % (ajwki + akwji) s (3-8)

— l — l
where, of course, Vijk = Wiy, aI.1d Ly, = wilfjk.
Hence, in any Darboux coordinate system

Yijk = % (Tiji + Thij + Tji) (3.9)
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and we call this symplectic connection the symplectic connection on M’
induced by the symmetric affine connection V on M'.

The formula (3.9) can be interpreted as follows: Let (M’ ,w) be a sym-
plectic manifold and let M’ be endowed with a symmetric affine connection.
Then this connection defines in a natural manner the symplectic connection
on M’ given by (3.9).

Assume that M’ is the cotangent bundle T*M over M, where M is an
n-dimensional differentiable manifold endowed with a Riemannian metric g.
From the previous section we know that (7*M,w) with w defined by (2.3)
is a symplectic manifold, but also (T*M,g) with g defined by (2.9) is a
Riemannian manifold and the Levi—Civita connection of the metric g on
T*M is given by (2.15).

This connection induces the symplectic connection on T* M according to
(3.9). However, both the metric g (2.9) and the Levi-Civita connection of g
(2.15) are defined by the Levi-Civita connection of g on M. Consequently,
we conclude that in the present case the symplectic connection on T*M is
induced by the Levi—-Civita connection on M.

This is our fundamental result which shows how the symplectic geometry
of the phase space T*M 1is determined by the Riemannian geometry of the
configuration space M. Analogous point of view is presented in [1,2]. This
approach seems to have a spirit of the Einstein program of the geometrization
of physics. (Another approach to the problem of the “natural” symplectic
connection is presented in [13-15].)

From (2.15) and (3.9), employing also (2.3) and (2.4), one finds the
components 'y]i-k of the symplectic connection V) on T*M with respect to
the induced coordinates (i.e., the proper Darboux coordinates) in terms of
the Christoffel symbols I'g, of the metric g on M
’Yﬁ'y = YaBy = F[(ilfya ’y(gﬁ = Yapy = 07 ’7%7 = ’Yaﬁﬁ = 07

o

Y3y = ~YaBy
= —1ps(0alh, + 0,05 + 01, — 2T, T%,
1 1
—2I0 I — 2T05T75,). (3.10)

By the proposition 3.1 all remaining components can be obtained from the
components given by (3.10). Note that the symplectic connection (3.10) can
be also defined for any M endowed with symmetric affine connection I'g. as
it has been done within slightly another formalism by Bordemann, Neumaier
and Waldmann [1].

Observe also that the components 757’ 'y/% and 7%‘7 are exactly equal

to those proposed in [13]|, where they have been found from some different
considerations.



12 J.F. PLEBANSKI, M. PrzANOWSKI, F.J. TURRUBIATES

Now we are going to give some transparent geometric interpretation of
the symplectic connection defined by (3.10). Let (M,g) be, as before, a
Riemannian manifold and let ' : R — M be a smooth curve in M locally
given by ¢* = ¢®(t), t € R. We define the lift of F to T* (M) to be the
smooth curve F : R — T*M in T*M locally given as follows: ¢ = ¢ (t),

where ¢® = ¢® () and p, = Gap (g7 (1)) dqjt(t)'

The following theorem holds:

Theorem 3.1 Let (M,g) be a Riemannian manifold and (T*M,w) the
symplectic manifold defined as before. Then the symplectic connection VS
on T*M defined by (3.10) is the unique symplectic connection on T*M
satisfying the following conditions

(i) the projection on M of any geodesic in T* M with respect to the sym-
plectic connection is a geodesic in M with respect to the Levi—Civita
connection defined by the metric g and these two geodesics have the
same affine parameters;

(ii) the lift of any geodesic in M with respect to the Levi-Civita connection
of g to T*M is a geodesic in T*M with respect to the symplectic
connection.

Proof. Assume that V) is a symplectic connection on T M satisfying
(1) and (u1), and ?;k are the local components of V(3. From (i) we have

E§ | i d@ dit a2q> a dg® dg¥ o
TtV = 0= G + I G = 0, where I'g are the com-
ponents of the Levi—Civita connection of g on M. Hence one quickly infers

that: 75, = I'g., 7§ = 0 = '75—' Consequently, (7i) leads to the implica-
. 2 o B — daB . .
tion % + Fgﬁydgt % =0= 3 (gag =+ ) + Vg, gt % = 0, which gives
Voy = V5

Therefore one arrives at the conclusion that if V() satisfies (i) and
(i) then V) = V), But V) satisfies (i) and (4i). Thus the proof is
complete. B

Then, straightforward but tedious calculations lead to the following com-
ponents sz i, for the curvature tensor of the symplectic connection v given
by (3.10)

Kg’)/é = _%pl/ {R;»yé;a + R(Vyyé;ﬂ - GF:(aRE)'yé + 4R(Taﬁ)h]—'(ﬁT} = —Kaﬁfy(g s
_ 2Rl _ . .
K§ 5 = R(as, = —K,5.5 = Kfs = Ry5 = Kapys - (3.11)

All remaining independent components vanish (compare with [1]).
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A symplectic manifold endowed with symplectic connections is called the
Fedosov manifold [11]. Therefore, the triple (T*M,w,V(S)), where w and

V() are defined by (2.3) and (3.10), respectively, is the Fedosov manifold. Tt
is well known that the components Kjjz; := wimKJ’-’}cl of the curvature tensor
of the symplectic connection for any Fedosov manifold satisfy the following
conditions [11]

Kijr = —Kiji, Kijrr + Kije + Kigj =0, Kijr = Kjiga - (3.12)
These conditions imply
Kiji + Kiiji + Kiiij + Kjgii = 0. (3.13)

Employing (3.12) one quickly gets

Ksapy = Kanps = Kapys -
Kopys = Boyps — Kogpy
Kess = Ko — K uss- (3.14)

From the first relation of (3.14), written in terms of the induced coordinates
we obtain

5 _ _
Kopy = —Ks‘ﬂg + ngg- (3.15)
This formula leads to the last implication in (3.11).
The symplectic Ricci tensor is defined by
Kij =Kk . (3.16)
From (3.12) one easily infers that
Kpii=0 (3.17)
and
Kij = Kji . (318)
Substituting (3.11) into (3.16) we get
Kas = 2Rug, K=Kz, =Kz=0 (3.19)
or employing (2.18)
Kij = 3Rij. (3.20)

Thus one arrives at the following propositions:

Proposition 3.2 Fedosov manifold (T*M,w,V(S)) 18 symplectic Ricci
flat (i.e.,K;; = 0) if and only if the Riemannian manifold (M,g) is Ricci
flat (i.e., Rop =0).
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Proposition 3.3 (T*M,w,V(S),g) 15 a symplectic Einstein manifold
(i.e.,K;j = A\gij) if and only if the Riemannian manifold (T*M,q) is an

Einstein manifold (z e. RZJ )\’g”>

By straightforward but rather long calculations we find the covariant
derivative V( )K]Zkl :

S _ pa S) & (S) 2
VEA )Kﬂ'wi - RBVM’VL)Kﬂ R(aﬁ)v Vit K/W? - _§R?a|75\;5)’
S _ 2 v T
VK s = =500 (Rluns80 — 3 ma R0 — TiuBiaios)
—2I7, Rl(aﬁ)lfﬂ +RawR<w> + Rp5 R0y,
_ 2
SR sy Blsmyu + 3R (ap)s Blyry) (3.21)

with all remaining independent components being zero. From (3.21) one
quickly infers that
Vi Kas = §Ras (3.22)
and remaining components of V,(CS)KZ-J' are zero.
Recently Bourgeois, Cahen, Gutt and Rawnsley [14,15], using the varia-
tional principle for a symplectic connection on symplectic manifold (M', w),
dim M' = 2n,

wh

have found that both A = uKinij and A = uKijleijkl lead to the same
system of differential equations

(S) _
Vi Ky = 0. (3.24)
Any symplectic connection satisfying (3.24) is called a preferred symplectic
connection. Comparing (3.22) and (3.24) we conclude that in our case, the
symplectic connection on T*M defined by (3.10) is preferred if and only if
the Levi-Civita connection on M fulfills the following equations

Riapy) =0. (3.25)

(This result has been also found in [1].) For example this is so when (M, g)
is an Einstein manifold i.e., Ryg = Agag-
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