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The Schwarzschild spacetime is for electromagnetic waves like a nonuni-
form medium with a varying refraction index. A fraction of an outgoing
radiation scatters off the curvature of the geometry and can be intercepted
by a gravitational center. The amount of the intercepted energy is bounded
above by the backscattered energy of an initially outgoing pulse of elec-
tromagnetic radiation, which in turn depends on the initial energy, the
Schwarzschild radius and the pulse location. Its magnitude depends on the
frequency spectrum: it becomes negligible in the short wave limit but can
be significant in the long wave regime.

PACS numbers: 04.30.Nk, 04.40.Nr, 95.30.Sf

Backscattering prevents waves from being transmitted exclusively along
null cones. That aspect of waves propagation has been investigated since
the beginning of XXth century (see [1] and, in the context of general relativ-
ity, [2-4]). Electromagnetic waves and their backscattered tails have been
studied from the early seventies [4]. Much attention has been put into the
explanation of various interference phenomena of backscattering tails [4,5].

The energy loss in a single burst of radiation due to this effect has been
assessed only recently in [6] and (for a scalar field) in [7]. It should be
pointed out that there exist estimates that refer to a stationary radiation
(e.g. Price et al. in [3]). It is clear, that in such a case the backscattered tails
add to the radiation source and the backscattering effect is underestimated,
in some cases quite significantly. This paper refines substantially the result
of [6] concerning the backscattered energy but the main focus is on the issue
of the dependence of the effect on the waves frequency.

Spherically symmetric geometry outside matter is given by a line element,
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where ¢ is a time coordinate, R is a radial coordinate that coincides with
the areal radius and df2? = d#? + sin® @d¢? is the line element on the unit
sphere, 0 < ¢ < 2w and 0 < 0 < 7.

The Maxwell equations read, using a multipole expansion of the electro-
magnetic vector potential [2]

2m\ (I +1)
(=85 + 0 )0 = <1 - f) 77

7. (2)
¥’s should be two-index functions, ¥, (where M is the projection of the
angular momentum), but since the evolution equation is ¢ independent,
the index M is suppressed. The variable r* = R + 2m ln(% — 1) is the
Regge-Wheeler tortoise coordinate. The backreaction exerted by the elec-
tromagnetic field onto the metric has been neglected in the present analysis.
That assumption is justified for any gravitational sources other than black
holes while for black holes this approximation holds true some distance away
from its horizon [7]. In the rest of this paper only dipole radiation ¥; will
be considered. Consequently, all angular momentum related subscripts will
be omitted.
It is convenient to seek a solution ¥(r*,¢) in the form

=0+, (3)

where § is an unknown function and

(1) = By (—g(r* +1) = F(* — 1)) + g +4) ;f(r* =D

Functions f and g can be uniquely determined from initial data. One can
check that ¥ solves Eq. (2) in Minkowski spacetime. The f-related and the
g-related parts represent an outgoing or an ingoing radiation, respectively.
In what follows it will be assumed that g = 0, i.e., that the wave is initially
outgoing.

Initially 6 = 090 = 0. Dipole-type initial data are given by

f(z(R))

V(@(R)) = ~0r- J(2(R) + “5oi

(5)

where f is C?-differentiable, has a support in the annulus (a,b < 0o) and
2(R) = r*(R) — r*(a). The initial energy density is continuous and vanishes
on the boundary a.

The assumption that initial data are (initially) purely outgoing is made
only for the sake of convenience. The propagation of electromagnetic waves
is a linear process as far as the backreaction can be neglected. Therefore the
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propagation of the initially outgoing radiation (or even of selected modes
of the outgoing radiation) is independent of whether or not the ingoing
radiation (or any other mode) is present.

The evolution of ¢ is ruled by

2 6mf

Ry (12
(ao+ar*)a_<1 =

The energy Eg(t) of the electromagnetic field ¥ contained in the exterior of
a sphere of a radius R reads

Eg(t) = 27r/dr<§8fwi + <1 - 27m> (0,9)? + M) : (7)

r r?
R

E,(0) is the energy of the initial pulse. Let an outgoing null cone C, originate
from a point (a,0) of the initial hypersurface. In the Minkowski spacetime
the outgoing radiation contained outside C, does not leak inward and its
energy remains constant. In a curved spacetime some energy will be lost
from the main stream due to the diffusion of the radiation A_ through C,.
Most of the backscattered radiation will be intercepted by the gravitational
center.

Theorem. Under the above assumptions, the fraction of the diffused
energy 0F,/E,(0) satisfies the inequality

2
5B, om\2 [ 1+ 1/ iom
co(m) (BEE) iy,

a

where C'is a constant depending on a, m and b. C decreases with the increase
of a or the decrease of (b — a)/a, and it is bounded — C < 102 (a stricter
estimate reads C' < 12).

Sketch of the proof. Define the intensity of the backscattered radia-
tion that is directed inward

1

(9o + Op+)d . (9)
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The rate of the energy change along C, is given by
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The energy loss is equal to a line integral along C, (where f =¥ = 0),
r 2 242
6EaEEa—Eoo:27r/dr[<1—Tm)h2 = ] (11)

The proof of (8) requires the derivation of estimates on h_ and §. One

obtains
',
= =] — 2 d
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a

the Schwarz inequality and the use of (7) imply

R
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Define X = f dr'td If\ G 12m); notice that X (a) = 0. The preceding bound

of |f| can be written in terms of X as %% < R gfn = 2m/a yVR—a +

MQRmf)Q(m). The use of the method of differential 1nequa11t1es yields X <

1—2m/ 1
21tV B0 O | b —
Insertion of that into the former bound of f gives the bound,

1+

a2m

~2m (13)

‘f (&, ‘ < VE.(0)/(47)VR —a
This bound of f is new but the next steps of the proof follow quite closely [6].

(i) One obtains an energy estimate on ¢, using the energy method and
equation (6).

(i) The integration of (9) and the use of (i) yield a bound of h_.
(#3i) (#1) and again (6) improve a bound on §.

(iv) In bounding the energy loss due to d-related terms, one should use
both types (i) and (7ii) of estimates on d; a variational type argument
yields then the best evaluation of the constant C.
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The above estimate is sharper than that of 6], especially in the regime
k =1—a/b~ 1, when the bound improves circa 300 times. Details will
appear elsewhere.

When the support of the initial radiation is very narrow, i.e., k < 1, then

2
‘””E“) < Cl< ) k, where C; is a constant. In the limit x — 0 the ratio

I,
E4(0)

pulses of electromagnetic energy becomes very narrow. And conversely, the
bound becomes bigger with the increase of the width of the radiation pulse.
The physical meaning of that can be deduced as follows. Let a(t) = a +

t+2mIn (% — 1) and b(t) = b+t+2m 1n< 0} 1) be radial components
of points lying on null cones (2,, {2, outgoing from (a,t = 0) or (b,t = 0),
respectively. Let ¢ > b; then b(t)/a(t) =~ 1. Then one can show that the
energy content between (a(t),b(t)) of the transmitted pulse reads

becomes 0; the backscattering is negligible when a support of initial

0
Eo(t) ~ dn / ar(32f (). (14)
ait

An auxiliary lemma is needed.
Lemma. Let f be a twice differentiable function, f(b(¢) = 0,
R € (a(t),b(t)) and a(t) =~ b(t). Then

)
f?

b(t
a(t) (t

b(t )
dr(0,f)?. (15)
)

Proof. Notice that |f/R| = | fb](i) droy(f/r)|; that is bounded above (apply-
1/2
ing the Schwarz inequality and integrating) by \/1/R(| fbl(%t) dr((?rf)2|) +
1/2
\/1/R<| fb?t) drfg/r2|) . Using this one obtains
2
; (16)
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which, taking into account Inb(t)/a(t) ~ 0, immediately proves the Lemma.
If t > b then terms 2m/r can be ignored and (7) becomes E,) ()
b(t)
of (14) plus terms of the form [ dr(aof?/r* + a1 for f/r3 + asf (9, f)%/r? +
a(t)
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azfO2f [r? + ay 02 f0, f /1), where a; are some constants. But, applying sev-
eral times the Lemma, one immediately shows that all these terms are much
smaller than Fg ) if ¢ > b and therefore (14) is a valid approximation of the
energy.

From the Parseval identity follows

o0

B (t) = dr / dkk (k) (17)

—0)

here f(k) is the Fourier transform of f(r). The similarity theorem of the
Fourier transform theory [8] states that compression of the support of a func-
tion corresponds to expansion of the frequency scale. In explicit terms, if
a(t)y = b(t)—(b(t)—a(t))/N then the Fourier transform of f(r)n = f(b(t)—
N(b(t) — 7)), fn(k) satisfies |fx (k)| = |f(k/N)|/N. The energy carried by
the rescaled field in modes w < (2 is E(£2)™) = 4r N3 f”O/N dkk*|f (k)[2

while the total energy Eg (t)(N) is given by 4w N3 [ " /d]\;{ik4|f( E)? =
N3E,)(1).
The ratio of the two energies
2N
() = E(2)™) ) 47779{/]\7 dkkY| f ()| s
Eqpy (t)V) Eq(t)

vanishes in the limit N — oo. Thus if a support of initial data is made
narrow, then the wavelengths scale of the pulse extends in the direction of
short lengths, in the sense that most of the radiation comes in the high fre-
quency band. That implies, in conjunction with the Theorem, that the high
frequency radiation is essentially unhindered by the effect of backscattering
while long waves can be backscattered.

It is of interest to determine w. — a frequency that is critical in the
sense that waves with w < w, may be strongly backscattered while those
with w > w can be only weakly backscattered. As this vague definition
suggests, w. will be determined only up to an order of magnitude. The
bound given in the Theorem shows that there exists a critical width; if b—a
of an initial pulse is of the order of the distance a from the gravitational
center, then strong backscattering is not excluded, provided in addition that
a is not much greater that the gravitational radius Rg = 2m. Thus, in the
imprecise sense of the former definition, the critical width is b—a ~ 2m. The
sought critical frequency can be defined as the fundamental frequency
we = m/Rg. One can show, for any pulse that is smoothly distributed within
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an annulus (a,b), that most (> 80%) of its energy comes with frequencies
w > w1/2=m/(b— a); thus w, is in fact critical in the sense defined above.

In order to exemplify the above statements, recall estimates of [6]. As-
sume the same location a = 4Rg, of two radiative dipoles and (i) k = 1/8
(i.e., the fundamental wavelength Rg is simultaneously critical) for a pulse I;
(1) k = 1/128 (i.e., the fundamental wavelength Rg/8 is much smaller than
the critical one) for the pulse II. Then in the case I one obtains ‘mza) < 0.37,

while in the case II (of shorter waves, subcritical case) one gets 51«%) < 0.001.

If the dipole radiation II is located at a = 4m then m ~ 0.77, which

demonstrates how sensitive the bound (and presumably the effect itself) is
on the distance. This dependence of the backscattering on the wave length
has been observed in the numerical investigation of the propagation of pulses
of scalar massless fields [9].

The backscattering effect becomes negligible at distances much bigger
than the Schwarzschild radius of a central mass. That rules out most stars
as objects that can induce observable backscattermg effects. For a star of a
solar type and A ~ Rg, for instance, the ratio E ( y can be at most 10720, In

the case of white dwarves and A ~ Rg the above bound gives ésﬁ%) <1078,

For long-wave radiation the bound is bigger — for white dwarves it becomes
gaL(ao) ~ 1075 — but a sharper estimate would still lower that significantly.

Two astrophysical compact objects, neutron stars and black holes, can
be of interest. They can intercept the backscattered radiation, which would
possibly lead to the suppression of the total luminosity produced in accretion
disks that exist in their vicinities. This effect would be probably weak since
the most luminous regions of the disks are located at a distance of (at least)
several Schwarzschild radii. More interesting can be “echoes” — aftermaths
of flashy eruptions, produced by a radiation reflected from the close vicinity
of a horizon of a black hole. Numerical calculations done in the massless
scalar fields propagation suggest that the amplitude of the reflected long-
wave radiation can constitute up to 20 % of the incident one.

The above results can be generalized into the case of higher order elec-
tromagnetic multipoles. An analysis similar to that of the present paper
can be repeated also in the case of a weak gravitational radiation produced
around Schwarzschildean black holes.
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