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HOW MUCH OF THE OUTGOING RADIATIONCAN BE INTERCEPTED BY SCHWARZSCHILDEANBLACK HOLES?Edward Male
M. Smolu
howski Institute of Physi
s, Jagellonian University30-059 Kraków, Reymonta 4, Poland(Re
eived De
ember 18, 2000)The S
hwarzs
hild spa
etime is for ele
tromagneti
 waves like a nonuni-form medium with a varying refra
tion index. A fra
tion of an outgoingradiation s
atters o� the 
urvature of the geometry and 
an be inter
eptedby a gravitational 
enter. The amount of the inter
epted energy is boundedabove by the ba
ks
attered energy of an initially outgoing pulse of ele
-tromagneti
 radiation, whi
h in turn depends on the initial energy, theS
hwarzs
hild radius and the pulse lo
ation. Its magnitude depends on thefrequen
y spe
trum: it be
omes negligible in the short wave limit but 
anbe signi�
ant in the long wave regime.PACS numbers: 04.30.Nk, 04.40.Nr, 95.30.SfBa
ks
attering prevents waves from being transmitted ex
lusively alongnull 
ones. That aspe
t of waves propagation has been investigated sin
ethe beginning of XXth 
entury (see [1℄ and, in the 
ontext of general relativ-ity, [2�4℄). Ele
tromagneti
 waves and their ba
ks
attered tails have beenstudied from the early seventies [4℄. Mu
h attention has been put into theexplanation of various interferen
e phenomena of ba
ks
attering tails [4, 5℄.The energy loss in a single burst of radiation due to this e�e
t has beenassessed only re
ently in [6℄ and (for a s
alar �eld) in [7℄. It should bepointed out that there exist estimates that refer to a stationary radiation(e.g. Pri
e et al. in [3℄). It is 
lear, that in su
h a 
ase the ba
ks
attered tailsadd to the radiation sour
e and the ba
ks
attering e�e
t is underestimated,in some 
ases quite signi�
antly. This paper re�nes substantially the resultof [6℄ 
on
erning the ba
ks
attered energy but the main fo
us is on the issueof the dependen
e of the e�e
t on the waves frequen
y.Spheri
ally symmetri
 geometry outside matter is given by a line element,ds2 = ��1� 2mR � dt2 + 11� 2mR dR2 +R2d
2 ; (1)(47)
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where t is a time 
oordinate, R is a radial 
oordinate that 
oin
ides withthe areal radius and d
2 = d�2 + sin2 �d�2 is the line element on the unitsphere, 0 � � < 2� and 0 � � � �.The Maxwell equations read, using a multipole expansion of the ele
tro-magneti
 ve
tor potential [2℄(��20 + �2r�)	l = �1� 2mR � l(l + 1)R2 	l : (2)	 's should be two-index fun
tions, 	lM , (where M is the proje
tion of theangular momentum), but sin
e the evolution equation is � independent,the index M is suppressed. The variable r� � R + 2m ln( R2m � 1) is theRegge�Wheeler tortoise 
oordinate. The ba
krea
tion exerted by the ele
-tromagneti
 �eld onto the metri
 has been negle
ted in the present analysis.That assumption is justi�ed for any gravitational sour
es other than bla
kholes while for bla
k holes this approximation holds true some distan
e awayfrom its horizon [7℄. In the rest of this paper only dipole radiation 	1 willbe 
onsidered. Consequently, all angular momentum related subs
ripts willbe omitted.It is 
onvenient to seek a solution 	(r�; t) in the form	 = ~	 + Æ ; (3)where Æ is an unknown fun
tion and~	(r�; t) = �r���g(r� + t)� f(r� � t)�+ g(r� + t) + f(r� � t)R : (4)Fun
tions f and g 
an be uniquely determined from initial data. One 
an
he
k that ~	 solves Eq. (2) in Minkowski spa
etime. The f -related and theg-related parts represent an outgoing or an ingoing radiation, respe
tively.In what follows it will be assumed that g = 0, i.e., that the wave is initiallyoutgoing.Initially Æ = �0Æ = 0. Dipole-type initial data are given by~	(x(R)) = ��r�f(x(R)) + f(x(R))R(r�) ; (5)where f is C2-di�erentiable, has a support in the annulus (a; b � 1) andx(R) � r�(R)� r�(a). The initial energy density is 
ontinuous and vanisheson the boundary a.The assumption that initial data are (initially) purely outgoing is madeonly for the sake of 
onvenien
e. The propagation of ele
tromagneti
 wavesis a linear pro
ess as far as the ba
krea
tion 
an be negle
ted. Therefore the



How Mu
h of the Outgoing Radiation Can Be Inter
epted : : : 49propagation of the initially outgoing radiation (or even of sele
ted modesof the outgoing radiation) is independent of whether or not the ingoingradiation (or any other mode) is present.The evolution of Æ is ruled by(��20 + �2r�)Æ = �1� 2mR �" 2R2 Æ + 6mfR4 # : (6)The energy ER(t) of the ele
tromagneti
 �eld 	 
ontained in the exterior ofa sphere of a radius R readsER(t) = 2� 1ZR dr (�0	)21� 2mr +�1� 2mr � (�r	)2 + 2(	)2r2 ! : (7)Ea(0) is the energy of the initial pulse. Let an outgoing null 
one Ca originatefrom a point (a; 0) of the initial hypersurfa
e. In the Minkowski spa
etimethe outgoing radiation 
ontained outside Ca does not leak inward and itsenergy remains 
onstant. In a 
urved spa
etime some energy will be lostfrom the main stream due to the di�usion of the radiation h� through Ca.Most of the ba
ks
attered radiation will be inter
epted by the gravitational
enter.Theorem. Under the above assumptions, the fra
tion of the di�usedenergy ÆEa=Ea(0) satis�es the inequalityÆEaEa(0) � C �2ma �20�1 +q 2ma�2m�1� 2ma �3 1A2 �1� ab� ; (8)where C is a 
onstant depending on a;m and b. C de
reases with the in
reaseof a or the de
rease of (b � a)=a, and it is bounded � C < 102 (a stri
terestimate reads C < 12).Sket
h of the proof. De�ne the intensity of the ba
ks
attered radia-tion that is dire
ted inwardh�(R; t) = 11� 2mR (�0 + �r�)Æ : (9)The rate of the energy 
hange along Ca is given by(�0 + �r�)Ea = �2��1� 2mR �"�1� 2mR ��h� � fR2�2+ 2R2 � ~	 + Æ�2# :(10)
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The energy loss is equal to a line integral along Ca (where f = ~	 = 0),ÆEa � Ea �E1 = 2� 1Za dr ��1� 2mr �h2� + 2Æ2r2 � : (11)The proof of (8) requires the derivation of estimates on h� and Æ. Oneobtains����f(R; t = 0)R ���� = ����� RZa �r fr ����� = ������ RZa dr ~	(r � 2m + 2m RZa dr fr2(r � 2m) �����; (12)the S
hwarz inequality and the use of (7) imply����f(R; 0)R ���� �s aEa(0)4�(a� 2m) + 2m RZa dr jf jr2(r � 2m :De�neX � R Ra dr jf jr 1r(r�2m) ; noti
e thatX(a) = 0. The pre
eding boundof jf j 
an be written in terms of X as dXdR � pEa(0)=(4�)R(R�2m)(1�2m=a)pR� a +2mXR(R�2m) . The use of the method of di�erential inequalities yields X �2 1�2m=a1�2m=RpEa(0)=(4�h 1pa�2m � 1pR�2mi:Insertion of that into the former bound of f gives the bound,����f(R; 0)R ���� �pEa(0)=(4�)pR� a 1 +q 2ma�2m1� 2ma : (13)This bound of f is new but the next steps of the proof follow quite 
losely [6℄.(i) One obtains an energy estimate on Æ, using the energy method andequation (6).(ii) The integration of (9) and the use of (i) yield a bound of h�.(iii) (ii) and again (6) improve a bound on Æ.(iv) In bounding the energy loss due to Æ-related terms, one should useboth types (i) and (iii) of estimates on Æ; a variational type argumentyields then the best evaluation of the 
onstant C.



How Mu
h of the Outgoing Radiation Can Be Inter
epted : : : 51The above estimate is sharper than that of [6℄, espe
ially in the regime� � 1 � a=b � 1, when the bound improves 
ir
a 300 times. Details willappear elsewhere.When the support of the initial radiation is very narrow, i.e., �� 1, thenÆEaEa(0) � C1�2ma �2�, where C1 is a 
onstant. In the limit � ! 0 the ratioÆEaEa(0) be
omes 0; the ba
ks
attering is negligible when a support of initialpulses of ele
tromagneti
 energy be
omes very narrow. And 
onversely, thebound be
omes bigger with the in
rease of the width of the radiation pulse.The physi
al meaning of that 
an be dedu
ed as follows. Let a(t) = a+t+2m ln�a(t)2m � 1� and b(t) = b+ t+2m ln� b(t)2m � 1� be radial 
omponentsof points lying on null 
ones 
a; 
b outgoing from (a; t = 0) or (b; t = 0),respe
tively. Let t � b; then b(t)=a(t) � 1. Then one 
an show that theenergy 
ontent between (a(t); b(t)) of the transmitted pulse readsEa(t)(t) � 4� b(t)Za(t) dr��2rf(r)�2 : (14)An auxiliary lemma is needed.Lemma. Let f be a twi
e di�erentiable fun
tion, f(b(t) = 0,R 2 (a(t); b(t)) and a(t) � b(t). Thenb(t)Za(t) drf2r2 � b(t)Za(t) dr(�rf)2 : (15)Proof. Noti
e that jf=Rj = j R Rb(t) dr�r(f=r)j; that is bounded above (apply-ing the S
hwarz inequality and integrating) byp1=R�j R Rb(t) dr(�rf)2j�1=2+p1=R�j R Rb(t) drf2=r2j�1=2. Using this one obtainsb(t)Za(t) drf2r2 � 2 ln b(t)a(t) ����� b(t)Za(t) dr(�rf)2�����+ ����� b(t)Za(t) drf2r2 �����! ; (16)whi
h, taking into a

ount ln b(t)=a(t) � 0, immediately proves the Lemma.If t � b then terms 2m=r 
an be ignored and (7) be
omes Ea(t)(t)of (14) plus terms of the form b(t)Ra(t) dr(a0f2=r4+ a1f�rf=r3+ a2f(�rf)2=r2+
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a3f�2rf=r2 + a4�2rf�rf=r), where ai are some 
onstants. But, applying sev-eral times the Lemma, one immediately shows that all these terms are mu
hsmaller than Ea(t) if t� b and therefore (14) is a valid approximation of theenergy.From the Parseval identity followsEa(t)(t) = 4� 1Z�1) dkk4jf̂(k)j2 ; (17)here f̂(k) is the Fourier transform of f(r). The similarity theorem of theFourier transform theory [8℄ states that 
ompression of the support of a fun
-tion 
orresponds to expansion of the frequen
y s
ale. In expli
it terms, ifa(t)N � b(t)�(b(t)�a(t))=N then the Fourier transform of f(r)N � f(b(t)�N(b(t) � r)), f̂N (k) satis�es jf̂N (k)j = jf̂(k=N)j=N . The energy 
arried bythe res
aled �eld in modes ! � 
0 is E(
0)(N) � 4�N3 R 
0=N�
0=N) dkk4jf̂(k)j2while the total energy Ea(t)(t)(N) is given by 4�N3 R1�1) dkk4jf̂(k)j2 =N3Ea(t)(t).The ratio of the two energiesÆN (
0) � E(
0)(N)Ea(t)(t)(N) = 4� 
0=NR�
0=N dkk4jf̂(k)j2Ea(t)(t) (18)vanishes in the limit N ! 1. Thus if a support of initial data is madenarrow, then the wavelengths s
ale of the pulse extends in the dire
tion ofshort lengths, in the sense that most of the radiation 
omes in the high fre-quen
y band. That implies, in 
onjun
tion with the Theorem, that the highfrequen
y radiation is essentially unhindered by the e�e
t of ba
ks
atteringwhile long waves 
an be ba
ks
attered.It is of interest to determine !
 � a frequen
y that is 
riti
al in thesense that waves with ! � !
 may be strongly ba
ks
attered while thosewith ! > !
 
an be only weakly ba
ks
attered. As this vague de�nitionsuggests, !
 will be determined only up to an order of magnitude. Thebound given in the Theorem shows that there exists a 
riti
al width; if b�aof an initial pulse is of the order of the distan
e a from the gravitational
enter, then strong ba
ks
attering is not ex
luded, provided in addition thata is not mu
h greater that the gravitational radius RS = 2m. Thus, in theimpre
ise sense of the former de�nition, the 
riti
al width is b�a � 2m. Thesought 
riti
al frequen
y 
an be de�ned as the fundamental frequen
y!
 = �=RS. One 
an show, for any pulse that is smoothly distributed within



How Mu
h of the Outgoing Radiation Can Be Inter
epted : : : 53an annulus (a; b), that most (� 80%) of its energy 
omes with frequen
ies! � !1=2 = �=(b � a); thus !
 is in fa
t 
riti
al in the sense de�ned above.In order to exemplify the above statements, re
all estimates of [6℄. As-sume the same lo
ation a = 4RS, of two radiative dipoles and (i) � = 1=8(i.e., the fundamental wavelength RS is simultaneously 
riti
al) for a pulse I;(ii) � = 1=128 (i.e., the fundamental wavelength RS=8 is mu
h smaller thanthe 
riti
al one) for the pulse II. Then in the 
ase I one obtains ÆEaEa(0) < 0:37,while in the 
ase II (of shorter waves, sub
riti
al 
ase) one gets ÆEaEa(0) < 0:001.If the dipole radiation II is lo
ated at a = 4m then ÆEaEa(0) � 0:77, whi
hdemonstrates how sensitive the bound (and presumably the e�e
t itself) ison the distan
e. This dependen
e of the ba
ks
attering on the wave lengthhas been observed in the numeri
al investigation of the propagation of pulsesof s
alar massless �elds [9℄.The ba
ks
attering e�e
t be
omes negligible at distan
es mu
h biggerthan the S
hwarzs
hild radius of a 
entral mass. That rules out most starsas obje
ts that 
an indu
e observable ba
ks
attering e�e
ts. For a star of asolar type and � � RS, for instan
e, the ratio ÆEaEa(0) 
an be at most 10�20. Inthe 
ase of white dwarves and � � RS the above bound gives ÆEaEa(0) < 10�8.For long-wave radiation the bound is bigger � for white dwarves it be
omesÆEaEa(0) � 10�5 � but a sharper estimate would still lower that signi�
antly.Two astrophysi
al 
ompa
t obje
ts, neutron stars and bla
k holes, 
anbe of interest. They 
an inter
ept the ba
ks
attered radiation, whi
h wouldpossibly lead to the suppression of the total luminosity produ
ed in a

retiondisks that exist in their vi
inities. This e�e
t would be probably weak sin
ethe most luminous regions of the disks are lo
ated at a distan
e of (at least)several S
hwarzs
hild radii. More interesting 
an be �e
hoes� � aftermathsof �ashy eruptions, produ
ed by a radiation re�e
ted from the 
lose vi
inityof a horizon of a bla
k hole. Numeri
al 
al
ulations done in the masslesss
alar �elds propagation suggest that the amplitude of the re�e
ted long-wave radiation 
an 
onstitute up to 20 % of the in
ident one.The above results 
an be generalized into the 
ase of higher order ele
-tromagneti
 multipoles. An analysis similar to that of the present paper
an be repeated also in the 
ase of a weak gravitational radiation produ
edaround S
hwarzs
hildean bla
k holes.This work has been supported in part by the Polish State Committeefor S
ienti�
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