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HOW MUCH OF THE OUTGOING RADIATIONCAN BE INTERCEPTED BY SCHWARZSCHILDEANBLACK HOLES?Edward MaleM. Smoluhowski Institute of Physis, Jagellonian University30-059 Kraków, Reymonta 4, Poland(Reeived Deember 18, 2000)The Shwarzshild spaetime is for eletromagneti waves like a nonuni-form medium with a varying refration index. A fration of an outgoingradiation satters o� the urvature of the geometry and an be intereptedby a gravitational enter. The amount of the interepted energy is boundedabove by the baksattered energy of an initially outgoing pulse of ele-tromagneti radiation, whih in turn depends on the initial energy, theShwarzshild radius and the pulse loation. Its magnitude depends on thefrequeny spetrum: it beomes negligible in the short wave limit but anbe signi�ant in the long wave regime.PACS numbers: 04.30.Nk, 04.40.Nr, 95.30.SfBaksattering prevents waves from being transmitted exlusively alongnull ones. That aspet of waves propagation has been investigated sinethe beginning of XXth entury (see [1℄ and, in the ontext of general relativ-ity, [2�4℄). Eletromagneti waves and their baksattered tails have beenstudied from the early seventies [4℄. Muh attention has been put into theexplanation of various interferene phenomena of baksattering tails [4, 5℄.The energy loss in a single burst of radiation due to this e�et has beenassessed only reently in [6℄ and (for a salar �eld) in [7℄. It should bepointed out that there exist estimates that refer to a stationary radiation(e.g. Prie et al. in [3℄). It is lear, that in suh a ase the baksattered tailsadd to the radiation soure and the baksattering e�et is underestimated,in some ases quite signi�antly. This paper re�nes substantially the resultof [6℄ onerning the baksattered energy but the main fous is on the issueof the dependene of the e�et on the waves frequeny.Spherially symmetri geometry outside matter is given by a line element,ds2 = ��1� 2mR � dt2 + 11� 2mR dR2 +R2d
2 ; (1)(47)



48 E. Malewhere t is a time oordinate, R is a radial oordinate that oinides withthe areal radius and d
2 = d�2 + sin2 �d�2 is the line element on the unitsphere, 0 � � < 2� and 0 � � � �.The Maxwell equations read, using a multipole expansion of the eletro-magneti vetor potential [2℄(��20 + �2r�)	l = �1� 2mR � l(l + 1)R2 	l : (2)	 's should be two-index funtions, 	lM , (where M is the projetion of theangular momentum), but sine the evolution equation is � independent,the index M is suppressed. The variable r� � R + 2m ln( R2m � 1) is theRegge�Wheeler tortoise oordinate. The bakreation exerted by the ele-tromagneti �eld onto the metri has been negleted in the present analysis.That assumption is justi�ed for any gravitational soures other than blakholes while for blak holes this approximation holds true some distane awayfrom its horizon [7℄. In the rest of this paper only dipole radiation 	1 willbe onsidered. Consequently, all angular momentum related subsripts willbe omitted.It is onvenient to seek a solution 	(r�; t) in the form	 = ~	 + Æ ; (3)where Æ is an unknown funtion and~	(r�; t) = �r���g(r� + t)� f(r� � t)�+ g(r� + t) + f(r� � t)R : (4)Funtions f and g an be uniquely determined from initial data. One anhek that ~	 solves Eq. (2) in Minkowski spaetime. The f -related and theg-related parts represent an outgoing or an ingoing radiation, respetively.In what follows it will be assumed that g = 0, i.e., that the wave is initiallyoutgoing.Initially Æ = �0Æ = 0. Dipole-type initial data are given by~	(x(R)) = ��r�f(x(R)) + f(x(R))R(r�) ; (5)where f is C2-di�erentiable, has a support in the annulus (a; b � 1) andx(R) � r�(R)� r�(a). The initial energy density is ontinuous and vanisheson the boundary a.The assumption that initial data are (initially) purely outgoing is madeonly for the sake of onveniene. The propagation of eletromagneti wavesis a linear proess as far as the bakreation an be negleted. Therefore the



How Muh of the Outgoing Radiation Can Be Interepted : : : 49propagation of the initially outgoing radiation (or even of seleted modesof the outgoing radiation) is independent of whether or not the ingoingradiation (or any other mode) is present.The evolution of Æ is ruled by(��20 + �2r�)Æ = �1� 2mR �" 2R2 Æ + 6mfR4 # : (6)The energy ER(t) of the eletromagneti �eld 	 ontained in the exterior ofa sphere of a radius R readsER(t) = 2� 1ZR dr (�0	)21� 2mr +�1� 2mr � (�r	)2 + 2(	)2r2 ! : (7)Ea(0) is the energy of the initial pulse. Let an outgoing null one Ca originatefrom a point (a; 0) of the initial hypersurfae. In the Minkowski spaetimethe outgoing radiation ontained outside Ca does not leak inward and itsenergy remains onstant. In a urved spaetime some energy will be lostfrom the main stream due to the di�usion of the radiation h� through Ca.Most of the baksattered radiation will be interepted by the gravitationalenter.Theorem. Under the above assumptions, the fration of the di�usedenergy ÆEa=Ea(0) satis�es the inequalityÆEaEa(0) � C �2ma �20�1 +q 2ma�2m�1� 2ma �3 1A2 �1� ab� ; (8)where C is a onstant depending on a;m and b. C dereases with the inreaseof a or the derease of (b � a)=a, and it is bounded � C < 102 (a striterestimate reads C < 12).Sketh of the proof. De�ne the intensity of the baksattered radia-tion that is direted inwardh�(R; t) = 11� 2mR (�0 + �r�)Æ : (9)The rate of the energy hange along Ca is given by(�0 + �r�)Ea = �2��1� 2mR �"�1� 2mR ��h� � fR2�2+ 2R2 � ~	 + Æ�2# :(10)



50 E. MaleThe energy loss is equal to a line integral along Ca (where f = ~	 = 0),ÆEa � Ea �E1 = 2� 1Za dr ��1� 2mr �h2� + 2Æ2r2 � : (11)The proof of (8) requires the derivation of estimates on h� and Æ. Oneobtains����f(R; t = 0)R ���� = ����� RZa �r fr ����� = ������ RZa dr ~	(r � 2m + 2m RZa dr fr2(r � 2m) �����; (12)the Shwarz inequality and the use of (7) imply����f(R; 0)R ���� �s aEa(0)4�(a� 2m) + 2m RZa dr jf jr2(r � 2m :De�neX � R Ra dr jf jr 1r(r�2m) ; notie thatX(a) = 0. The preeding boundof jf j an be written in terms of X as dXdR � pEa(0)=(4�)R(R�2m)(1�2m=a)pR� a +2mXR(R�2m) . The use of the method of di�erential inequalities yields X �2 1�2m=a1�2m=RpEa(0)=(4�h 1pa�2m � 1pR�2mi:Insertion of that into the former bound of f gives the bound,����f(R; 0)R ���� �pEa(0)=(4�)pR� a 1 +q 2ma�2m1� 2ma : (13)This bound of f is new but the next steps of the proof follow quite losely [6℄.(i) One obtains an energy estimate on Æ, using the energy method andequation (6).(ii) The integration of (9) and the use of (i) yield a bound of h�.(iii) (ii) and again (6) improve a bound on Æ.(iv) In bounding the energy loss due to Æ-related terms, one should useboth types (i) and (iii) of estimates on Æ; a variational type argumentyields then the best evaluation of the onstant C.



How Muh of the Outgoing Radiation Can Be Interepted : : : 51The above estimate is sharper than that of [6℄, espeially in the regime� � 1 � a=b � 1, when the bound improves ira 300 times. Details willappear elsewhere.When the support of the initial radiation is very narrow, i.e., �� 1, thenÆEaEa(0) � C1�2ma �2�, where C1 is a onstant. In the limit � ! 0 the ratioÆEaEa(0) beomes 0; the baksattering is negligible when a support of initialpulses of eletromagneti energy beomes very narrow. And onversely, thebound beomes bigger with the inrease of the width of the radiation pulse.The physial meaning of that an be dedued as follows. Let a(t) = a+t+2m ln�a(t)2m � 1� and b(t) = b+ t+2m ln� b(t)2m � 1� be radial omponentsof points lying on null ones 
a; 
b outgoing from (a; t = 0) or (b; t = 0),respetively. Let t � b; then b(t)=a(t) � 1. Then one an show that theenergy ontent between (a(t); b(t)) of the transmitted pulse readsEa(t)(t) � 4� b(t)Za(t) dr��2rf(r)�2 : (14)An auxiliary lemma is needed.Lemma. Let f be a twie di�erentiable funtion, f(b(t) = 0,R 2 (a(t); b(t)) and a(t) � b(t). Thenb(t)Za(t) drf2r2 � b(t)Za(t) dr(�rf)2 : (15)Proof. Notie that jf=Rj = j R Rb(t) dr�r(f=r)j; that is bounded above (apply-ing the Shwarz inequality and integrating) byp1=R�j R Rb(t) dr(�rf)2j�1=2+p1=R�j R Rb(t) drf2=r2j�1=2. Using this one obtainsb(t)Za(t) drf2r2 � 2 ln b(t)a(t) ����� b(t)Za(t) dr(�rf)2�����+ ����� b(t)Za(t) drf2r2 �����! ; (16)whih, taking into aount ln b(t)=a(t) � 0, immediately proves the Lemma.If t � b then terms 2m=r an be ignored and (7) beomes Ea(t)(t)of (14) plus terms of the form b(t)Ra(t) dr(a0f2=r4+ a1f�rf=r3+ a2f(�rf)2=r2+



52 E. Malea3f�2rf=r2 + a4�2rf�rf=r), where ai are some onstants. But, applying sev-eral times the Lemma, one immediately shows that all these terms are muhsmaller than Ea(t) if t� b and therefore (14) is a valid approximation of theenergy.From the Parseval identity followsEa(t)(t) = 4� 1Z�1) dkk4jf̂(k)j2 ; (17)here f̂(k) is the Fourier transform of f(r). The similarity theorem of theFourier transform theory [8℄ states that ompression of the support of a fun-tion orresponds to expansion of the frequeny sale. In expliit terms, ifa(t)N � b(t)�(b(t)�a(t))=N then the Fourier transform of f(r)N � f(b(t)�N(b(t) � r)), f̂N (k) satis�es jf̂N (k)j = jf̂(k=N)j=N . The energy arried bythe resaled �eld in modes ! � 
0 is E(
0)(N) � 4�N3 R 
0=N�
0=N) dkk4jf̂(k)j2while the total energy Ea(t)(t)(N) is given by 4�N3 R1�1) dkk4jf̂(k)j2 =N3Ea(t)(t).The ratio of the two energiesÆN (
0) � E(
0)(N)Ea(t)(t)(N) = 4� 
0=NR�
0=N dkk4jf̂(k)j2Ea(t)(t) (18)vanishes in the limit N ! 1. Thus if a support of initial data is madenarrow, then the wavelengths sale of the pulse extends in the diretion ofshort lengths, in the sense that most of the radiation omes in the high fre-queny band. That implies, in onjuntion with the Theorem, that the highfrequeny radiation is essentially unhindered by the e�et of baksatteringwhile long waves an be baksattered.It is of interest to determine ! � a frequeny that is ritial in thesense that waves with ! � ! may be strongly baksattered while thosewith ! > ! an be only weakly baksattered. As this vague de�nitionsuggests, ! will be determined only up to an order of magnitude. Thebound given in the Theorem shows that there exists a ritial width; if b�aof an initial pulse is of the order of the distane a from the gravitationalenter, then strong baksattering is not exluded, provided in addition thata is not muh greater that the gravitational radius RS = 2m. Thus, in theimpreise sense of the former de�nition, the ritial width is b�a � 2m. Thesought ritial frequeny an be de�ned as the fundamental frequeny! = �=RS. One an show, for any pulse that is smoothly distributed within



How Muh of the Outgoing Radiation Can Be Interepted : : : 53an annulus (a; b), that most (� 80%) of its energy omes with frequenies! � !1=2 = �=(b � a); thus ! is in fat ritial in the sense de�ned above.In order to exemplify the above statements, reall estimates of [6℄. As-sume the same loation a = 4RS, of two radiative dipoles and (i) � = 1=8(i.e., the fundamental wavelength RS is simultaneously ritial) for a pulse I;(ii) � = 1=128 (i.e., the fundamental wavelength RS=8 is muh smaller thanthe ritial one) for the pulse II. Then in the ase I one obtains ÆEaEa(0) < 0:37,while in the ase II (of shorter waves, subritial ase) one gets ÆEaEa(0) < 0:001.If the dipole radiation II is loated at a = 4m then ÆEaEa(0) � 0:77, whihdemonstrates how sensitive the bound (and presumably the e�et itself) ison the distane. This dependene of the baksattering on the wave lengthhas been observed in the numerial investigation of the propagation of pulsesof salar massless �elds [9℄.The baksattering e�et beomes negligible at distanes muh biggerthan the Shwarzshild radius of a entral mass. That rules out most starsas objets that an indue observable baksattering e�ets. For a star of asolar type and � � RS, for instane, the ratio ÆEaEa(0) an be at most 10�20. Inthe ase of white dwarves and � � RS the above bound gives ÆEaEa(0) < 10�8.For long-wave radiation the bound is bigger � for white dwarves it beomesÆEaEa(0) � 10�5 � but a sharper estimate would still lower that signi�antly.Two astrophysial ompat objets, neutron stars and blak holes, anbe of interest. They an interept the baksattered radiation, whih wouldpossibly lead to the suppression of the total luminosity produed in aretiondisks that exist in their viinities. This e�et would be probably weak sinethe most luminous regions of the disks are loated at a distane of (at least)several Shwarzshild radii. More interesting an be �ehoes� � aftermathsof �ashy eruptions, produed by a radiation re�eted from the lose viinityof a horizon of a blak hole. Numerial alulations done in the masslesssalar �elds propagation suggest that the amplitude of the re�eted long-wave radiation an onstitute up to 20 % of the inident one.The above results an be generalized into the ase of higher order ele-tromagneti multipoles. An analysis similar to that of the present paperan be repeated also in the ase of a weak gravitational radiation produedaround Shwarzshildean blak holes.This work has been supported in part by the Polish State Committeefor Sienti� Researh (KBN) grant 2 PO3B 010 16. The author is gratefulto Niall O' Murhadha for many disussions and valuable omments andto Irene Horne for reading the manusript. Thanks are due to members ofthe Physis Department, University College, Cork, Ireland for their warmhospitality during my visit in the aademi year 1999/2000.
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