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NO-NONSENSE CASIMIR FORCEAndrzej HerdegenInstitute of Physis, Jagiellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: herdegen�th.if.uj.edu.pl(Reeived January 3, 2001)Two thin onduting, eletrially neutral, parallel plates forming anisolated system in vauum exert attrating fore on eah other, whose originis the quantum eletrodynamial interation. This theoretial hypothesis,known as Casimir e�et, has been also on�rmed experimentally. Despitelong history of the subjet, no ompletely onvining theoretial analysis ofthis e�et appears in the literature. Here we disuss the e�et (for the salar�eld) anew, on a revised physial and mathematial basis. Standard, butadvaned methods of relativisti quantum theory are used. No anomalousfeatures of the onventional approahes appear. The Casimir quantitativepredition for the fore is shown to onstitute the leading asymptoti term,for large separation of the plates, of the full, model-dependent expression.PACS numbers: 03.70.+k, 03.65.Bz, 11.10.�zOne of the signi�ant visualizations of a quantized �eld in the earlydevelopment of the relativisti quantum theory has been that of an ensembleof osillators (see e.g. [1℄). One found a lose mathematial relation betweena quantum �eld and an in�nite olletion of quantum harmoni osillators,eah haraterized by its harateristi frequeny !�, and taking on one ofthe energy values E�;n� = }!�(n� + 12). The olletion of the amplitudesof the osillators re�ets the strength of the �eld. The lowest energy stateof the �eld, the vauum state, is represented by all of the osillators beingin their respetive ground states. The mean value of the �eld vanishes inthis state, but the mean value of the �eld strength squared does not. Thisshows, one says, that vauum �utuates, the energy of these �utuationsbeing equal to (}=2)P� !� (the �zero-modes sum�, or �zero-point energy�,as it has been hristened). This sum is in�nite, but, as one is told, theenergy di�erenes is what ounts experimentally, not the absolute value.(55)



56 A. HerdegenThis early piture has been, of ourse, superseded by later developmentsin the Quantum Field Theory (QFT). In partiular, one of the earliest in-stanes of renormalization, normal ordering of operators, eliminated the in�-nite energy of the vauum state and renormalized it to zero. Flutuations ofthe �eld strength simply re�et the fat that vauum is not an eigenstate ofthe �eld (neither is any other state), but they are not dynamial, and annotbe a possible soure of extratable energy. However, it is an astonishing fatthat there does exist an isolated area, in whih the �zero-modes� ideologyhas been in use to date. In a 1948 paper [2℄ Casimir onsidered situation inwhih two thin onduting, eletrially neutral, parallel plates are plaed inthe vauum. The presene of these plates reates boundary onditions forthe eletromagneti �eld, whih hange the harateristi frequenies of �eldosillators to !�(a), depending on the separation of the plates a. The low-est state is now haraterized by the energy (}=2)P� !�(a). This is againin�nite, but Casimir regularized it so as to squeeze a �nite result out of it.Minus derivative of this expression is supposed to give the fore between theplates. His predition for the fore, as is well known, was �(�2=240)} a�4.The paper addressed an interesting and fundamental quantum phenomenon,and is deservedly regarded as a pioneering work. The method it used, how-ever, re�ets the relatively early stage of the development of QFT, and todayit should not be taken as a serious base of further researh in this �eld, as itstill very often is (see review artiles on the subjet [3℄; the Casimir reason-ing is even reported, virtually unhanged, by some respetable textbooks onmodern QFT, see e.g. Ref. [4℄). Other methods, based on the loal energyexpetation value, have been also used in the present ontext [3℄. However,these alulations ignore the algebrai di�ulty whih we are going to dis-uss below. We leave the disussion of loal aspets to a more extensivefuture publiation.Consider the system investigated by Casimir, a quantum �eld plus plates,where for simpliity we take salar �eld. Its most satisfatory desriptionwould be ahieved, as usually in physis, by onstruting a losed theoryof both elements in mutual interation. Here we leave this ambitious taskaside, we would like to understand �rst the reasonable approximate idealiza-tion in whih the plates are regarded in�nitely heavy (hene, in partiular,lassial). We want to show that even for that restrited purpose the usualnaive treatment of the onept of quantum �eld is not su�ient. Properare has to be taken with respet to the algebrai struture of the theory,inluding the sope of quantum variables under onsideration, their variousrepresentations, and the time evolution of the system. The algebrai aspetsof quantum theory, already stressed by Dira in his monograph on quantummehanis, has been growing in importane, espeially with the reation ofthe Haag�Kastler framework for loal algebras in quantum physis (see the



No-Nonsense Casimir Fore 57monograph [5℄). Today the algebrai approah is the most general and �ex-ible framework for onsidering fundamental questions in quantum physis.We start our analysis by skething the theory of free salar �eld in the ini-tial onditions formulation, stressing the algebrai aspets. We use the unitswith } = 1,  = 1.Let L0 denote the real vetor spae formed by pairs of funtions on the3-spae (v(~x); vt(~x)), eah of whih is an element of the vetor spae DRof real, in�nitely di�erentiable funtions with ompat support (L0 is thediret sum DR � DR). The elements of L0 will be denoted by V � (v; vt),and the vetor arguments suppressed. L0 beomes a sympleti spae withthe introdution of the sympleti form�(V1; V2) = Z (v2(~x)v1t(~x)� v1(~x)v2t(~x)) d3x : (1)The real salar quantized �eld is a set of elements �(V ) generating an algebraby the relations�(V )� = �(V ) ; [�(V1); �(V2)℄ = i�(V1; V2) : (2)(More preise formulation expresses the above relations in terms of Weylelements W (V ) = exp i�(V ), in order to avoid domain problems.) The el-ement �((0; vt)) has the interpretation of the �eld operator �smeared� withthe test funtion vt(~x), and the element �((v; 0)) � the interpretation ofthe anonial momentum �smeared� with the test funtion v(~x); the ele-ments are loalized in the support of their test funtions. The free, masslessevolution of the quantum �eld is obtained by a simple �quantization� of thelassial linear evolution determined by the wave equation. Denote by h0the square root of the positive operator h20 � �� ating on L2(R3 ; d3x).Then the evolution of the initial onditions for this equation is given by thetransformation v0(t) = os(h0t) v + sin(h0t)h�10 vt ;v0t(t) = � sin(h0t)h0 v + os(h0t) vt (3)(implying v0(0) = v, v0t(0) = vt). Note that v0(t) and v0t(t) are in DR, soV0(t) � (v0(t); v0t(t)) 2 L0. The evolution is a sympleti transformationthat is, �(V10(t); V20(t)) = �(V1; V2) : (4)The quantum �eld evolves aording to the automorphi map of the algebra�0t �(V ) = �(V0(t)) : (5)



58 A. HerdegenThe next step is the onstrution of the vauum representation � theunique representation in whih the operator of energy has an eigenvetor,and its spetrum is bounded from below. This is ahieved, as is well known,by separating �positive frequenies� from �negative frequenies� in the evolu-tion law of the �eld and interpreting the oe�ients of this two parts as re-ation and annihilation operators respetively. More preisely, this amountsto the following. Take the Hilbert spae K � L2(R3 ; d3x) as the �one-partilespae�. By taking multiple diret produts of K, and then forming the di-ret sum of these produts, onstrut a standard Fok spae H. Denote by
0 the distinguished normalized vetor in H (�Fok vauum�), and by a(f),a�(f), for f 2 K, the usual annihilation and reation operators in H. Thereal-linear operator j0 : L0 7! K de�ned byj0(V ) = 2�1=2 �h1=20 v � ih�1=20 vt� (6)extrats the positive frequeny part of the evolution:j0(V0(t)) = eih0tj0(V ) ; (7)�note that j0 is well de�ned, as DR � D �h1=20 �\D �h�1=20 ��. The vauumrepresentation �0 (�(V )) � �0(V ) is now de�ned by�0(V ) = a(j0(V )) + a�(j0(V )) : (8)In this representation the evolution is implemented by the unitary operatorU0(t) = exp iH0t, with H0 having the interpretation of the �eld energyoperator, by U0(t)�0(V )U0(t)�1 = �0(V0(t)) : (9)If ffig1i=1 is any (orthonormal) basis of K in the domain of h1=20 , then H0may be represented byH0 = 1Xi=1 a� �h1=20 fi� a�h1=20 fi� : (10)Hene, in partiular, H0 is positive, and
0 is the physial vauum: H0
0=0.The theory is thus de�ned, but one should bear in mind three lev-els of speialization in the onstrution: Eqs. (1)�(2) de�ne the algebra,Eqs. (3)�(5) the free evolution, and Eqs. (6)�(10) the vauum representa-tion. One should also point out that the hoie of the basi vetor spae forthe anonial relations (L0 above) is to ertain extent �exible, as long as allonsisteny onditions are satis�ed as above.



No-Nonsense Casimir Fore 59Now we an return to our task of investigating Casimir e�et. In the �rststep one has to de�ne a one-parameter family of time evolutions of our �eldalgebra, enfored by the presene of the onduting plates at all possible(but �xed) distanes a (we plae one of them in the x-y plane (z = 0),and another parallel at z = a). This should amount to imitating the stepsembodied by Eqs. (3)�(5), with h0 replaed by the square root h of thepositive operator h2 in L2(R3 ; d3x) de�ned uniquely as �� with Dirihletonditions on the plates. Here, however, one enounters a serious di�ulty.The new lassial evolution law, Eq. (3) with h replaing h0, implies that vhas to lie in D(h), the domain of h. Now, all funtions in D(h) vanish onthe plates (D(h) is equal to the diret sum of the three Sobolev spaes H10for eah of the three losed regions into whih the whole spae is dividedby the plates [6℄). The new evolutions may not be de�ned on our algebra.Moreover, any other aeptable hoie of the sympleti spae will not solvethe problem: with varying separation a one sees that v would have to vanishin the whole region of interest, making the theory trivial. Physially thismeans that the idealization of sharp Dirihlet onditions at variable positionsis unphysial, at least in the approximation of heavy, lassial plates. Notraditional approah is able to larify the soure of this di�ulty. Trying toignore the di�ulty, one is bound to enounter in�nities of physial, and notonly tehnial, origin.The only possible solution is hoosing some other model for the intera-tion with the plates, some �softened� version of the Dirihlet ondition; this�softening� will a�et the dynamis in the z-diretion. Moreover, one shouldalso expet di�ulties oming from the in�nite extension of the plates (theywould not appear, e.g., for spherial shells). This is, however, not serious,as we are interested in quantities (e.g. fore) per unit area of the plates,so we an approximate by large, but �nite extension plates (taking limitat an appropriate point). What we propose, therefore, is the following.Put h2? = ��2x � �2y on L2((�Lx=2;+Lx=2) � (�Ly=2;+Ly=2); dx dy) withDirihlet onditions at x = �Lx=2, y = �Ly=2, with large, but �nite Lx,Ly; denote h20z = ��2z on L2(R; dz) and rede�ne h20 = h2?+h20z. Change themodel for plates by hanging the operator of z-motion from hz , whih en-sures strit Dirihlet ondition, to ~hz. For the moment we only assume that~hz � h0z is a bounded operator on L2(R; dz), ommuting with the omplexonjugation. Finally, set ~h2 = h2? + ~h2z.With this onstrutions the operators h�10 and ~h�1 are bounded, whereasthe domains of h0 and ~h are idential (the last statement follows fromthe equivalene of the norms on D(h0): �k k2 + kh0 k2�1=2 and (k k2 +k~h k2)1=2). We modify the hoie of the �eld algebra by replaing the orig-inal spae L0 byL = DR(h0)� L2R((�Lx=2;+Lx=2) � (�Ly=2;+Ly=2) � R; d3x);



60 A. Herdegenwhere the subsript R denotes the real part. The de�ning Eqs. (1),(2) re-main intat. It is now easy to show that both the free h0-evolution aswell as all new ~h-evolutions are orretly de�ned on our new algebra byEqs. (3)�(5) (for the ~h-evolutions obvious hanges of notation are to be un-derstood: h0 ! ~h, V0(t) ! ~V (t), �0t ! ~�t). The ~h-evolutions are inter-preted as the evolutions of the �eld under the external onditions reatedby the in�uene of the plates.The onstrution of the vauum representation of the modi�ed algebraremains unhanged, as outlined by Eqs. (6)�(10), exept that now K =L2((�Lx=2;+Lx=2)� (�Ly=2;+Ly=2)�R; d3x), and j0 : L 7! K in (6). Bysimilar method one onstruts �minimal energy state� representations withrespet to eah of the ~h-evolutions (�energy� means now the �eld energytogether with interation energy with �xed plates). The analog of Eq. (6)de�nes ~| (well de�ned, as D(A) � D(A1=2) for eah positive A), and theanalog of Eq. (7) shows its role. The new representations ~�(�(V )) � ~�(V )are onstruted in the same Fok spae, and with the use of the same reationand annihilation operators, but with j0 replaed by ~| in the analog of (8).The ~h-evolution is implemented in this representation as in (9) if we replaeV0(t) by ~V (t), �0 by ~� and U0(t) by ~U(t) = exp i ~Ht. ~H is given by (10),with h0 replaed by ~h, but only up to a multiple of the unit operator. Thisambiguity beomes nontrivial if one hanges the position of the plates (and,onsequently, ~h), and is the result of our not having the full interatingtheory at our disposal. The vetor state 
0, however, with no ambiguity isthe minimal ~H-energy state in this representation.In the next step towards our goal one has to answer the question, whethervarious onstruted representations are unitarily equivalent. If they are not,the situations to whih they refer are physially non-omparable, and noquantities referring to the hange of the distane between the plates maysensibly be determined. As the vauum representation �0(V ) de�nes theenergy of the �eld itself, we want to transform the other representations tothis one. We ask therefore, whether there does exist for eah ~h a unitaryoperator Q suh that Q ~�(V )Q� = �0(V ) for all V 2 L. To answer thequestion one uses standard methods. One an show that j0(L) = D(h1=20 )and ~|(L) = D(~h1=2). Denote by K the operator of omplex onjugation on Kand de�ne operators T = 2�1(j0~|�1�ij0~|�1i) = 2�1(h1=20 ~h�1=2+h�1=20 ~h1=2),S = 2�1(j0~|�1 + ij0~|�1i) = 2�1(h1=20 ~h�1=2 � h�1=20 ~h1=2)K transformingD(~h1=2) into D(h1=20 ). The morphism ~�(V ) 7! �0(V ) may be equivalentlyexpressed as a Bogoliubov transformation a(f) 7! b(f) � a(Tf) + a�(Sf),for all f 2 D(~h1=2). This transformation is unitarily implementable, b(f) =Qa(f)Q�, if, and only if, the operator S is a Hilbert�Shmidt operator [7℄,



No-Nonsense Casimir Fore 61i.e. the trae of S�S is �nite (hene, in partiular, T and S are bounded).When alulating this trae, one shows that the summation over the degreesof freedom parallel to the plates may be expliitly arried out, and for largedimensions of the plates (large Lx and Ly) one obtainsTrS�SLxLy ! �4 Tr (~hz � h0z)2 ; (11)where on the rhs. the operators and the trae are regarded as operationson L2(R; dz). Thus to satisfy our requirements we assume that ~hz � h0z isa Hilbert�Shmidt operator. We an desribe, then, all situations of inter-est to the Casimir e�et in the representation �0. In partiular, the stateminimizing the sum of �eld energy and the energy of interation with exter-nal onditions (the sum given by the operator ~H in the representation ~�),whih was desribed by the vetor 
0 in the representation ~�, is given nowby 
 = Q
0.Now we ome to the determination of the Casimir fore. In onordwith the usual treatments we assume that the states 
 (for varying po-sition of the plates) transform adiabatially into eah other. Contrary toimpliit assumptions of most of the usual treatments, however, we thinkthat for the purpose of alulating atual fore one should ompare the ex-petation value in these states of the energy of the �eld itself representedby the operator H0, without inluding the interation energy. We supportthis view by three arguments: (1) as pointed out above, H0 is the only un-ambiguous energy operator in the problem, (2) in losed eletrodynamisthe interation energy is absorbed by the pure (anonial) matter energy toform the full mehanial energy of the matter, (3) it is exatly the hangein the lassial analog of H0 whih is used for the alulation of the foreexerted on a ondutor in a lassial eletromagneti �eld [8℄. The quantityto be alulated is, therefore, (
;H0
) = (
0; Q�H0Q
0). Using (10) andQ� a(f)Q = a(T �f)� a�(S�f) one obtains(
;H0
) = 4�1Tr (~h� h0)~h�1(~h� h0):Summing the parallel degrees of freedom one gets for large Lx and Ly(
;H0
)LxLy ! 124� Tr (~hz � h0z)(~hz + 2h0z)(~hz � h0z) : (12)If this is �nite, the states 
 are energetially omparable, and the Casimirfore may by determined.



62 A. HerdegenFinally, we speify the �softened Dirihlet ondition�. We guess that forthe appearane of some universality in the Casimir e�et, as inorporatedby Casimir's original predition, the behaviour of ~hz � h0z at the lowerend of the spetrum of both hz and h0z is deisive. We put, therefore~hz � h0z = f(hz) � f(h0z), where f is a real smooth funtion on R+ , withf(u) = u for small u, 0 � f(u) � u for all u, and vanishing at least as u�2for u ! 1. This ensures �niteness of both (11) and (12). The resulting~h will not guarantee the relativisti ausality of the evolution, but for thequasi-stati idealization this is not a serious objetion. Denote the Casimirenergy (12) for this model by E(a), and introdue the abbreviation�(�; p) = �2(�2 � p2)�2(f(�)� f(p))2(3p� f(p) + f(�)):Then E(a) = 16�3 1Xk=1 �a 1Z0 dp��k�a ; p��1 + (�1)k+1 os ap�+ 16�3 1Z0 d� 1Z0 dp� (�; p) : (13)A rather lengthy analysis of this expression shows thatE(a) = E(1)� �21440 a�3 + o(a�3) ; (14)�dEda (a) = � �2480 a�4 + o(a�4) : (15)One reognizes in these expressions the familiar Casimir terms � the lead-ing asymptoti term in the fore and the seond leading term in the en-ergy (whih are one half of the orresponding terms for the eletromagnetiCasimir quantities). They are here determined ompletely by the behaviourof the funtion f in the neighborhood of zero (in fat, the property f 0(0) = 1is all one needs). However, their meaning here is di�erent, the fore obeysthis simple law only for su�iently large separations of the plates. For every�nite separation other (f -dependent) terms will dominate for f approahingidentity. It beomes evident from (13) that reahing this limit is both phys-ially and mathematially meaningless � the energy beomes in�nite andthe fore indeterminate. Observe, also that here the energy E(a) is alwayspositive, as it should be. The physial interpretation of the f -dependentlimit E(1) is the following: it equals twie the work whih the externalfores have to perform to reate the on�guration of the �eld surrounding a



No-Nonsense Casimir Fore 63single plate (in this limit the plates and the on�gurations around them maybe regarded as independent). One heks the onsisteny of this interpreta-tion by repeating the alulation for the on�guration with only one platepresent in the whole spae, and �nding that the resulting energy is indeedone half of E(1).The alulation of the e�et as performed here used a lass of modelsdetermined by the funtion f . However, as mentioned above, the leadingterm in the fore omes from the spetral area where ~hz = hz, so it isprobably more universal. At the same time Eq. (12) gives the method forthe onstrution of other models, and orretions to the leading terms.Lessons to be drawn for experimental veri�ation of the Casimir e�etare as follows: �rst, the universality is to be searhed for at large separationof the plates, and seond, for smaller separations model-dependent aspetstake over.I am grateful to D. Buhholz for helpful disussions.REFERENCES[1℄ G. Wentzel, in The Physiist's Coneption of Nature, edited by J. Mehra, Rei-del, Dordreht 1973.[2℄ H.G.B. Casimir, Pro. K. Ned. Akad. Wet. 51, 793 (1948).[3℄ G. Plunien, B. Müller, W. Greiner, Phys. Rep. 134, 87 (1986); E. Elizalde,A. Romeo, Am. J. Phys. 59, 711 (1991); W. Milonni, The Quantum Va-uum: An Introdution to Quantum Eletrodynamis, Aademi, San Diego1994; K.A. Milton, hep-th/9901011.[4℄ C. Itzykson, J.-B. Zuber, Quantum Field Theory, MGraw�Hill, New York1980, Vol. 1.[5℄ R. Haag, Loal Quantum Physis, Springer, Berlin, 1992.[6℄ M.E. Taylor, Partial Di�erential Equations, Springer, New York 1997, Vol. 2.[7℄ O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistial Me-hanis, Springer, Berlin 1996, Vol. 2.[8℄ J.D. Jakson, Classial Eletrodynamis, Wiley, New York 1975.


