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NO-NONSENSE CASIMIR FORCEAndrzej HerdegenInstitute of Physi
s, Jagiellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: herdegen�th.if.uj.edu.pl(Re
eived January 3, 2001)Two thin 
ondu
ting, ele
tri
ally neutral, parallel plates forming anisolated system in va
uum exert attra
ting for
e on ea
h other, whose originis the quantum ele
trodynami
al intera
tion. This theoreti
al hypothesis,known as Casimir e�e
t, has been also 
on�rmed experimentally. Despitelong history of the subje
t, no 
ompletely 
onvin
ing theoreti
al analysis ofthis e�e
t appears in the literature. Here we dis
uss the e�e
t (for the s
alar�eld) anew, on a revised physi
al and mathemati
al basis. Standard, butadvan
ed methods of relativisti
 quantum theory are used. No anomalousfeatures of the 
onventional approa
hes appear. The Casimir quantitativepredi
tion for the for
e is shown to 
onstitute the leading asymptoti
 term,for large separation of the plates, of the full, model-dependent expression.PACS numbers: 03.70.+k, 03.65.Bz, 11.10.�zOne of the signi�
ant visualizations of a quantized �eld in the earlydevelopment of the relativisti
 quantum theory has been that of an ensembleof os
illators (see e.g. [1℄). One found a 
lose mathemati
al relation betweena quantum �eld and an in�nite 
olle
tion of quantum harmoni
 os
illators,ea
h 
hara
terized by its 
hara
teristi
 frequen
y !�, and taking on one ofthe energy values E�;n� = }!�(n� + 12). The 
olle
tion of the amplitudesof the os
illators re�e
ts the strength of the �eld. The lowest energy stateof the �eld, the va
uum state, is represented by all of the os
illators beingin their respe
tive ground states. The mean value of the �eld vanishes inthis state, but the mean value of the �eld strength squared does not. Thisshows, one says, that va
uum �u
tuates, the energy of these �u
tuationsbeing equal to (}=2)P� !� (the �zero-modes sum�, or �zero-point energy�,as it has been 
hristened). This sum is in�nite, but, as one is told, theenergy di�eren
es is what 
ounts experimentally, not the absolute value.(55)



56 A. HerdegenThis early pi
ture has been, of 
ourse, superseded by later developmentsin the Quantum Field Theory (QFT). In parti
ular, one of the earliest in-stan
es of renormalization, normal ordering of operators, eliminated the in�-nite energy of the va
uum state and renormalized it to zero. Flu
tuations ofthe �eld strength simply re�e
t the fa
t that va
uum is not an eigenstate ofthe �eld (neither is any other state), but they are not dynami
al, and 
annotbe a possible sour
e of extra
table energy. However, it is an astonishing fa
tthat there does exist an isolated area, in whi
h the �zero-modes� ideologyhas been in use to date. In a 1948 paper [2℄ Casimir 
onsidered situation inwhi
h two thin 
ondu
ting, ele
tri
ally neutral, parallel plates are pla
ed inthe va
uum. The presen
e of these plates 
reates boundary 
onditions forthe ele
tromagneti
 �eld, whi
h 
hange the 
hara
teristi
 frequen
ies of �eldos
illators to !�(a), depending on the separation of the plates a. The low-est state is now 
hara
terized by the energy (}=2)P� !�(a). This is againin�nite, but Casimir regularized it so as to squeeze a �nite result out of it.Minus derivative of this expression is supposed to give the for
e between theplates. His predi
tion for the for
e, as is well known, was �(�2=240)}
 a�4.The paper addressed an interesting and fundamental quantum phenomenon,and is deservedly regarded as a pioneering work. The method it used, how-ever, re�e
ts the relatively early stage of the development of QFT, and todayit should not be taken as a serious base of further resear
h in this �eld, as itstill very often is (see review arti
les on the subje
t [3℄; the Casimir reason-ing is even reported, virtually un
hanged, by some respe
table textbooks onmodern QFT, see e.g. Ref. [4℄). Other methods, based on the lo
al energyexpe
tation value, have been also used in the present 
ontext [3℄. However,these 
al
ulations ignore the algebrai
 di�
ulty whi
h we are going to dis-
uss below. We leave the dis
ussion of lo
al aspe
ts to a more extensivefuture publi
ation.Consider the system investigated by Casimir, a quantum �eld plus plates,where for simpli
ity we take s
alar �eld. Its most satisfa
tory des
riptionwould be a
hieved, as usually in physi
s, by 
onstru
ting a 
losed theoryof both elements in mutual intera
tion. Here we leave this ambitious taskaside, we would like to understand �rst the reasonable approximate idealiza-tion in whi
h the plates are regarded in�nitely heavy (hen
e, in parti
ular,
lassi
al). We want to show that even for that restri
ted purpose the usualnaive treatment of the 
on
ept of quantum �eld is not su�
ient. Proper
are has to be taken with respe
t to the algebrai
 stru
ture of the theory,in
luding the s
ope of quantum variables under 
onsideration, their variousrepresentations, and the time evolution of the system. The algebrai
 aspe
tsof quantum theory, already stressed by Dira
 in his monograph on quantumme
hani
s, has been growing in importan
e, espe
ially with the 
reation ofthe Haag�Kastler framework for lo
al algebras in quantum physi
s (see the



No-Nonsense Casimir For
e 57monograph [5℄). Today the algebrai
 approa
h is the most general and �ex-ible framework for 
onsidering fundamental questions in quantum physi
s.We start our analysis by sket
hing the theory of free s
alar �eld in the ini-tial 
onditions formulation, stressing the algebrai
 aspe
ts. We use the unitswith } = 1, 
 = 1.Let L0 denote the real ve
tor spa
e formed by pairs of fun
tions on the3-spa
e (v(~x); vt(~x)), ea
h of whi
h is an element of the ve
tor spa
e DRof real, in�nitely di�erentiable fun
tions with 
ompa
t support (L0 is thedire
t sum DR � DR). The elements of L0 will be denoted by V � (v; vt),and the ve
tor arguments suppressed. L0 be
omes a symple
ti
 spa
e withthe introdu
tion of the symple
ti
 form�(V1; V2) = Z (v2(~x)v1t(~x)� v1(~x)v2t(~x)) d3x : (1)The real s
alar quantized �eld is a set of elements �(V ) generating an algebraby the relations�(V )� = �(V ) ; [�(V1); �(V2)℄ = i�(V1; V2) : (2)(More pre
ise formulation expresses the above relations in terms of Weylelements W (V ) = exp i�(V ), in order to avoid domain problems.) The el-ement �((0; vt)) has the interpretation of the �eld operator �smeared� withthe test fun
tion vt(~x), and the element �((v; 0)) � the interpretation ofthe 
anoni
al momentum �smeared� with the test fun
tion v(~x); the ele-ments are lo
alized in the support of their test fun
tions. The free, masslessevolution of the quantum �eld is obtained by a simple �quantization� of the
lassi
al linear evolution determined by the wave equation. Denote by h0the square root of the positive operator h20 � �� a
ting on L2(R3 ; d3x).Then the evolution of the initial 
onditions for this equation is given by thetransformation v0(t) = 
os(h0t) v + sin(h0t)h�10 vt ;v0t(t) = � sin(h0t)h0 v + 
os(h0t) vt (3)(implying v0(0) = v, v0t(0) = vt). Note that v0(t) and v0t(t) are in DR, soV0(t) � (v0(t); v0t(t)) 2 L0. The evolution is a symple
ti
 transformationthat is, �(V10(t); V20(t)) = �(V1; V2) : (4)The quantum �eld evolves a

ording to the automorphi
 map of the algebra�0t �(V ) = �(V0(t)) : (5)



58 A. HerdegenThe next step is the 
onstru
tion of the va
uum representation � theunique representation in whi
h the operator of energy has an eigenve
tor,and its spe
trum is bounded from below. This is a
hieved, as is well known,by separating �positive frequen
ies� from �negative frequen
ies� in the evolu-tion law of the �eld and interpreting the 
oe�
ients of this two parts as 
re-ation and annihilation operators respe
tively. More pre
isely, this amountsto the following. Take the Hilbert spa
e K � L2(R3 ; d3x) as the �one-parti
lespa
e�. By taking multiple dire
t produ
ts of K, and then forming the di-re
t sum of these produ
ts, 
onstru
t a standard Fo
k spa
e H. Denote by
0 the distinguished normalized ve
tor in H (�Fo
k va
uum�), and by a(f),a�(f), for f 2 K, the usual annihilation and 
reation operators in H. Thereal-linear operator j0 : L0 7! K de�ned byj0(V ) = 2�1=2 �h1=20 v � ih�1=20 vt� (6)extra
ts the positive frequen
y part of the evolution:j0(V0(t)) = eih0tj0(V ) ; (7)�note that j0 is well de�ned, as DR � D �h1=20 �\D �h�1=20 ��. The va
uumrepresentation �0 (�(V )) � �0(V ) is now de�ned by�0(V ) = a(j0(V )) + a�(j0(V )) : (8)In this representation the evolution is implemented by the unitary operatorU0(t) = exp iH0t, with H0 having the interpretation of the �eld energyoperator, by U0(t)�0(V )U0(t)�1 = �0(V0(t)) : (9)If ffig1i=1 is any (orthonormal) basis of K in the domain of h1=20 , then H0may be represented byH0 = 1Xi=1 a� �h1=20 fi� a�h1=20 fi� : (10)Hen
e, in parti
ular, H0 is positive, and
0 is the physi
al va
uum: H0
0=0.The theory is thus de�ned, but one should bear in mind three lev-els of spe
ialization in the 
onstru
tion: Eqs. (1)�(2) de�ne the algebra,Eqs. (3)�(5) the free evolution, and Eqs. (6)�(10) the va
uum representa-tion. One should also point out that the 
hoi
e of the basi
 ve
tor spa
e forthe 
anoni
al relations (L0 above) is to 
ertain extent �exible, as long as all
onsisten
y 
onditions are satis�ed as above.



No-Nonsense Casimir For
e 59Now we 
an return to our task of investigating Casimir e�e
t. In the �rststep one has to de�ne a one-parameter family of time evolutions of our �eldalgebra, enfor
ed by the presen
e of the 
ondu
ting plates at all possible(but �xed) distan
es a (we pla
e one of them in the x-y plane (z = 0),and another parallel at z = a). This should amount to imitating the stepsembodied by Eqs. (3)�(5), with h0 repla
ed by the square root h of thepositive operator h2 in L2(R3 ; d3x) de�ned uniquely as �� with Diri
hlet
onditions on the plates. Here, however, one en
ounters a serious di�
ulty.The new 
lassi
al evolution law, Eq. (3) with h repla
ing h0, implies that vhas to lie in D(h), the domain of h. Now, all fun
tions in D(h) vanish onthe plates (D(h) is equal to the dire
t sum of the three Sobolev spa
es H10for ea
h of the three 
losed regions into whi
h the whole spa
e is dividedby the plates [6℄). The new evolutions may not be de�ned on our algebra.Moreover, any other a

eptable 
hoi
e of the symple
ti
 spa
e will not solvethe problem: with varying separation a one sees that v would have to vanishin the whole region of interest, making the theory trivial. Physi
ally thismeans that the idealization of sharp Diri
hlet 
onditions at variable positionsis unphysi
al, at least in the approximation of heavy, 
lassi
al plates. Notraditional approa
h is able to 
larify the sour
e of this di�
ulty. Trying toignore the di�
ulty, one is bound to en
ounter in�nities of physi
al, and notonly te
hni
al, origin.The only possible solution is 
hoosing some other model for the intera
-tion with the plates, some �softened� version of the Diri
hlet 
ondition; this�softening� will a�e
t the dynami
s in the z-dire
tion. Moreover, one shouldalso expe
t di�
ulties 
oming from the in�nite extension of the plates (theywould not appear, e.g., for spheri
al shells). This is, however, not serious,as we are interested in quantities (e.g. for
e) per unit area of the plates,so we 
an approximate by large, but �nite extension plates (taking limitat an appropriate point). What we propose, therefore, is the following.Put h2? = ��2x � �2y on L2((�Lx=2;+Lx=2) � (�Ly=2;+Ly=2); dx dy) withDiri
hlet 
onditions at x = �Lx=2, y = �Ly=2, with large, but �nite Lx,Ly; denote h20z = ��2z on L2(R; dz) and rede�ne h20 = h2?+h20z. Change themodel for plates by 
hanging the operator of z-motion from hz , whi
h en-sures stri
t Diri
hlet 
ondition, to ~hz. For the moment we only assume that~hz � h0z is a bounded operator on L2(R; dz), 
ommuting with the 
omplex
onjugation. Finally, set ~h2 = h2? + ~h2z.With this 
onstru
tions the operators h�10 and ~h�1 are bounded, whereasthe domains of h0 and ~h are identi
al (the last statement follows fromthe equivalen
e of the norms on D(h0): �k k2 + kh0 k2�1=2 and (k k2 +k~h k2)1=2). We modify the 
hoi
e of the �eld algebra by repla
ing the orig-inal spa
e L0 byL = DR(h0)� L2R((�Lx=2;+Lx=2) � (�Ly=2;+Ly=2) � R; d3x);



60 A. Herdegenwhere the subs
ript R denotes the real part. The de�ning Eqs. (1),(2) re-main inta
t. It is now easy to show that both the free h0-evolution aswell as all new ~h-evolutions are 
orre
tly de�ned on our new algebra byEqs. (3)�(5) (for the ~h-evolutions obvious 
hanges of notation are to be un-derstood: h0 ! ~h, V0(t) ! ~V (t), �0t ! ~�t). The ~h-evolutions are inter-preted as the evolutions of the �eld under the external 
onditions 
reatedby the in�uen
e of the plates.The 
onstru
tion of the va
uum representation of the modi�ed algebraremains un
hanged, as outlined by Eqs. (6)�(10), ex
ept that now K =L2((�Lx=2;+Lx=2)� (�Ly=2;+Ly=2)�R; d3x), and j0 : L 7! K in (6). Bysimilar method one 
onstru
ts �minimal energy state� representations withrespe
t to ea
h of the ~h-evolutions (�energy� means now the �eld energytogether with intera
tion energy with �xed plates). The analog of Eq. (6)de�nes ~| (well de�ned, as D(A) � D(A1=2) for ea
h positive A), and theanalog of Eq. (7) shows its role. The new representations ~�(�(V )) � ~�(V )are 
onstru
ted in the same Fo
k spa
e, and with the use of the same 
reationand annihilation operators, but with j0 repla
ed by ~| in the analog of (8).The ~h-evolution is implemented in this representation as in (9) if we repla
eV0(t) by ~V (t), �0 by ~� and U0(t) by ~U(t) = exp i ~Ht. ~H is given by (10),with h0 repla
ed by ~h, but only up to a multiple of the unit operator. Thisambiguity be
omes nontrivial if one 
hanges the position of the plates (and,
onsequently, ~h), and is the result of our not having the full intera
tingtheory at our disposal. The ve
tor state 
0, however, with no ambiguity isthe minimal ~H-energy state in this representation.In the next step towards our goal one has to answer the question, whethervarious 
onstru
ted representations are unitarily equivalent. If they are not,the situations to whi
h they refer are physi
ally non-
omparable, and noquantities referring to the 
hange of the distan
e between the plates maysensibly be determined. As the va
uum representation �0(V ) de�nes theenergy of the �eld itself, we want to transform the other representations tothis one. We ask therefore, whether there does exist for ea
h ~h a unitaryoperator Q su
h that Q ~�(V )Q� = �0(V ) for all V 2 L. To answer thequestion one uses standard methods. One 
an show that j0(L) = D(h1=20 )and ~|(L) = D(~h1=2). Denote by K the operator of 
omplex 
onjugation on Kand de�ne operators T = 2�1(j0~|�1�ij0~|�1i) = 2�1(h1=20 ~h�1=2+h�1=20 ~h1=2),S = 2�1(j0~|�1 + ij0~|�1i) = 2�1(h1=20 ~h�1=2 � h�1=20 ~h1=2)K transformingD(~h1=2) into D(h1=20 ). The morphism ~�(V ) 7! �0(V ) may be equivalentlyexpressed as a Bogoliubov transformation a(f) 7! b(f) � a(Tf) + a�(Sf),for all f 2 D(~h1=2). This transformation is unitarily implementable, b(f) =Qa(f)Q�, if, and only if, the operator S is a Hilbert�S
hmidt operator [7℄,



No-Nonsense Casimir For
e 61i.e. the tra
e of S�S is �nite (hen
e, in parti
ular, T and S are bounded).When 
al
ulating this tra
e, one shows that the summation over the degreesof freedom parallel to the plates may be expli
itly 
arried out, and for largedimensions of the plates (large Lx and Ly) one obtainsTrS�SLxLy ! �4 Tr (~hz � h0z)2 ; (11)where on the rhs. the operators and the tra
e are regarded as operationson L2(R; dz). Thus to satisfy our requirements we assume that ~hz � h0z isa Hilbert�S
hmidt operator. We 
an des
ribe, then, all situations of inter-est to the Casimir e�e
t in the representation �0. In parti
ular, the stateminimizing the sum of �eld energy and the energy of intera
tion with exter-nal 
onditions (the sum given by the operator ~H in the representation ~�),whi
h was des
ribed by the ve
tor 
0 in the representation ~�, is given nowby 
 = Q
0.Now we 
ome to the determination of the Casimir for
e. In 
on
ordwith the usual treatments we assume that the states 
 (for varying po-sition of the plates) transform adiabati
ally into ea
h other. Contrary toimpli
it assumptions of most of the usual treatments, however, we thinkthat for the purpose of 
al
ulating a
tual for
e one should 
ompare the ex-pe
tation value in these states of the energy of the �eld itself representedby the operator H0, without in
luding the intera
tion energy. We supportthis view by three arguments: (1) as pointed out above, H0 is the only un-ambiguous energy operator in the problem, (2) in 
losed ele
trodynami
sthe intera
tion energy is absorbed by the pure (
anoni
al) matter energy toform the full me
hani
al energy of the matter, (3) it is exa
tly the 
hangein the 
lassi
al analog of H0 whi
h is used for the 
al
ulation of the for
eexerted on a 
ondu
tor in a 
lassi
al ele
tromagneti
 �eld [8℄. The quantityto be 
al
ulated is, therefore, (
;H0
) = (
0; Q�H0Q
0). Using (10) andQ� a(f)Q = a(T �f)� a�(S�f) one obtains(
;H0
) = 4�1Tr (~h� h0)~h�1(~h� h0):Summing the parallel degrees of freedom one gets for large Lx and Ly(
;H0
)LxLy ! 124� Tr (~hz � h0z)(~hz + 2h0z)(~hz � h0z) : (12)If this is �nite, the states 
 are energeti
ally 
omparable, and the Casimirfor
e may by determined.



62 A. HerdegenFinally, we spe
ify the �softened Diri
hlet 
ondition�. We guess that forthe appearan
e of some universality in the Casimir e�e
t, as in
orporatedby Casimir's original predi
tion, the behaviour of ~hz � h0z at the lowerend of the spe
trum of both hz and h0z is de
isive. We put, therefore~hz � h0z = f(hz) � f(h0z), where f is a real smooth fun
tion on R+ , withf(u) = u for small u, 0 � f(u) � u for all u, and vanishing at least as u�2for u ! 1. This ensures �niteness of both (11) and (12). The resulting~h will not guarantee the relativisti
 
ausality of the evolution, but for thequasi-stati
 idealization this is not a serious obje
tion. Denote the Casimirenergy (12) for this model by E(a), and introdu
e the abbreviation�(�; p) = �2(�2 � p2)�2(f(�)� f(p))2(3p� f(p) + f(�)):Then E(a) = 16�3 1Xk=1 �a 1Z0 dp��k�a ; p��1 + (�1)k+1 
os ap�+ 16�3 1Z0 d� 1Z0 dp� (�; p) : (13)A rather lengthy analysis of this expression shows thatE(a) = E(1)� �21440 a�3 + o(a�3) ; (14)�dEda (a) = � �2480 a�4 + o(a�4) : (15)One re
ognizes in these expressions the familiar Casimir terms � the lead-ing asymptoti
 term in the for
e and the se
ond leading term in the en-ergy (whi
h are one half of the 
orresponding terms for the ele
tromagneti
Casimir quantities). They are here determined 
ompletely by the behaviourof the fun
tion f in the neighborhood of zero (in fa
t, the property f 0(0) = 1is all one needs). However, their meaning here is di�erent, the for
e obeysthis simple law only for su�
iently large separations of the plates. For every�nite separation other (f -dependent) terms will dominate for f approa
hingidentity. It be
omes evident from (13) that rea
hing this limit is both phys-i
ally and mathemati
ally meaningless � the energy be
omes in�nite andthe for
e indeterminate. Observe, also that here the energy E(a) is alwayspositive, as it should be. The physi
al interpretation of the f -dependentlimit E(1) is the following: it equals twi
e the work whi
h the externalfor
es have to perform to 
reate the 
on�guration of the �eld surrounding a



No-Nonsense Casimir For
e 63single plate (in this limit the plates and the 
on�gurations around them maybe regarded as independent). One 
he
ks the 
onsisten
y of this interpreta-tion by repeating the 
al
ulation for the 
on�guration with only one platepresent in the whole spa
e, and �nding that the resulting energy is indeedone half of E(1).The 
al
ulation of the e�e
t as performed here used a 
lass of modelsdetermined by the fun
tion f . However, as mentioned above, the leadingterm in the for
e 
omes from the spe
tral area where ~hz = hz, so it isprobably more universal. At the same time Eq. (12) gives the method forthe 
onstru
tion of other models, and 
orre
tions to the leading terms.Lessons to be drawn for experimental veri�
ation of the Casimir e�e
tare as follows: �rst, the universality is to be sear
hed for at large separationof the plates, and se
ond, for smaller separations model-dependent aspe
tstake over.I am grateful to D. Bu
hholz for helpful dis
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