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ON THE ORIGIN OF THE VIOLATION OF HARA'STHEOREM FOR CONSERVED CURRENTP. �enzykowskiDepartment of Theoretial Physis, Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, Polande-mail: zenzyko�iblis.ifj.edu.pl(Reeived September 9, 2000)I elaborate on the argument that the violation of Hara's theorem foronserved urrent requires that the urrent is not su�iently well loalized.It is also stressed that whatever sign of asymmetry is measured in the�0 ! � deay, one of the following three statements must be inorret:(1) Hara's theorem is satis�ed, (2) vetor meson dominane is appliable toweak radiative hyperon deays, and (3) basi struture of our quark-modeldesription of nulear parity violation is orret.PACS numbers: 14.20.Jn, 11.40.Ha, 11.10.Lm1. IntrodutionIn 1964 Hara proved a theorem [1℄, aording to whih the parity-violating amplitude of the �+ ! p deay should vanish in the limit of ex-at SU(3) symmetry. The assumptions used in the proof were fundamental.Over the years, however, there appeared several theoretial, phenomenolog-ial and experimental indiations that, despite the proof, Hara's theoremmay be violated. Quark model alulations of Kamal and Riazuddin [2℄,VDM-presription [3℄ and experiment [4,5℄ provide suh hints. In partiularonly these models that violate Hara's theorem provide a reasonably good de-sription of the overall body of experimental data on weak radiative hyperondeays [5℄, as it stands now.Obviously, if Hara's theorem is violated in Nature it follows that atleast one of its fundamental assumptions is not true. This in turn meansthat some unorthodox and totally new physis must manifest itself in weakradiative hyperon deays (WRHD). Although in general any non-orthodoxphysis should be avoided as long as possible, the problem with WRHDis that we are on the verge of being fored to aept it. Namely, thereexists a lean experimental way of distinguishing between the orthodox and(85)



86 P. �enzykowskinonorthodox physis. The deisive measurable parameter is the asymmetryof the �0 ! � deay. Its absolute value is expeted to be large (of order0:7) independently of the type of physis involved. One may show that thesign of the asymmetry should be negative (positive) if physis is orthodox(unorthodox). Present experimental number is +0:43�0:44, almost 3� awayfrom the orthodox predition. Of ourse the relevant experiment may havebeen performed or analysed inorretly. However, this is just one (thoughthe most ruial) of the hints against Hara's theorem. Other hints, moretheoretial in nature, are provided by the alulations in the naive quarkmodel [2℄ and by the VDM approah [3,5℄ in whih VDM was ombined withour present knowledge on parity violating weak oupling of vetor mesonsto nuleons [6℄.There is a growing agreement that the alulation originally presentedby Kamal and Riazuddin (KR) is tehnially ompletely orret [7,8℄. (How-ever, there is no onsensus as to the meaning of the KR result [7, 8℄.) TheVDM approah is based on two pillars: VDM itself and the DDH paperon nulear parity violation [6℄, in whih parity violating weak ouplings ofmesons to nuleons are disussed. The DDH paper forms the foundation ofour present understanding of the whole subjet of nulear parity violation,with the basis of the paper hardly to be questioned [8℄. Similarly, VDM hasan extraordinary suess reord in low energy physis. If Hara theorem isorret at least one of the above two pillars of the VDM approah to WRHDmust be inorret. This would be an important disovery in itself.Given this situation, I think it is a timely problem to pinpoint preiselywhat it is that might lead to the violation of Hara's theorem. Some onje-tures in this onnetion were presented in [5℄ (and even earlier, see referenesited therein). These onjetures pointed at the assumption of loality. Infat, in a reent Comment [9℄ it was shown that one an obtain violation ofHara's theorem for onserved urrent provided the urrent is not su�ientlywell loalized. As proved in [9℄, the Hara's-theorem-violating ontributionomes from r =1. However, as the example of the Reply [10℄ to my Com-ment shows, the ontent and impliations of the Comment are not alwaysunderstood. Therefore, in this paper I will try to shed some additional lighton the problem.Before I disuss the question of the impliation of urrent (non)loalityon Hara's theorem I will show that the argument raised in [10℄ against thetehnial orretness of the KR alulation is logially inorret.After disposing of the argument against the tehnial orretness of theKR alulation I will present a simple example in whih urrent onserva-tion alone does not ensure that Hara's theorem holds, unless an additionalphysial assumption is made.Then, I will proeed to disuss the main relevant point made in Ref. [10℄.



On the Origin of the Violation of Hara's Theorem. . . 87In fat, Ref. [10℄ agrees with my standpoint that any violation of Hara'stheorem must result from a new phenomenon. However, identi�ation ofthe origin of this phenomenon therein proposed is mathematially inorret.This shall be proved below in several ways.In the �nal remarks I will stress one again that the resolution of thewhole issue (in favour of Hara's theorem or against it) an be settled oneand forever by experiment, that is by a measurement of the asymmetry ofthe �0 ! � deay.2. Conservation of the nonrelativisti urrentIn Ref. [2℄ Kamal and Riazuddin obtain gauge-invariant urrent-onserving ovariant amplitude. Ref. [10℄ aepts orretness of their al-ulation up to this point. The laim of Ref. [10℄ is that the authors of [2℄inorretly perform nonrelativisti redution thereby violating urrent on-servation. Aording to Ref. [10℄ this may be seen from Eq. (13) of Ref. [2℄whih is of the form HPV / � �(�1 � �2). In this equation the urrent seemsto be of the form J = �1 � �2 (1)and is not transverse as it should have been for a onserved urrent.This laim is logially inorret. Eq. (13) of Ref. [2℄ is obtained after bothperforming the nonrelativisti redution and hoosing the Coulomb gauge� � q̂ = 0 (q̂ = q=jqj). The origin of the lak of transversity of the �urrent�J in Eq. (1) is not the nonrelativisti redution but the hoie of Coulombgauge � � q̂ = 0, i.e. the restrition to transverse degrees of freedom only.By hoosing the Coulomb gauge we restrit the allowed � to be transverseonly. It is then inorret to replae � by (longitudinal) q̂. In other wordsthe orret form of the urrent-photon interation insisted upon in Ref. [10℄,i.e. � � (�1 � �2 � q̂[(�1 � �2) � q̂℄) (2)after hoosing the Coulomb gauge � � q̂ = 0 redues to Eq. (13) of Ref. [2℄.Hene, from the form � � (�1 � �2) obtained in Ref. [2℄ after hoosing theCoulomb gauge one annot onlude that the urrent is J = �1 � �2 andtherefore that the nonrelativisti redution was performed inorretly.Having proved that the argument against the KR alulation presented inRef. [10℄ is logially inorret, we proeed to the issue of urrent (non)loality.



88 P. �enzykowski3. A simple exampleLet us onsider the well-known onept of partially onserved axial ur-rent (PCAC). Aording to this idea the axial urrent is approximately on-served, with its divergene proportional to the pion mass squared. The weakaxial urrent beomes divergeneless when the pion mass goes to zero, a sit-uation obtained in the quark model with massless quarks. Thus, one mayhave a nonvanishing oupling of a vetor boson to an axial onserved ur-rent and a nonvanishing transverse eletri dipole moment, i.e. violation ofHara's theorem.The prie one has to pay to ahieve this in the above example is theintrodution ofmassless pions. A massless pion orresponds to an interationof an in�nite range � the pion may propagate to spatial in�nity. Thus, vieversa, if one obtains a nonvanishing transverse eletri dipole moment ina gauge-invariant alulation (the KR ase) this suggests that the relevanturrent ontains a piee that does not vanish at in�nity su�iently fast butresembles the pion ontribution in the example above. In other words oneexpets that something happens at spatial in�nity.Of ourse, for Hara's theorem to be violated, the mehanism of providingthe neessary nonloality must be di�erent from the partiular one disussedabove. After all, no massless hadrons exist. Consequently, urrent nonloal-ity would have to onstitute an intrinsi feature of baryons. It might resultfrom baryon ompositeness: it is known that omposite quantum statesmay exhibit nonloal features. In this paper we will not pursue this line ofthought any further sine here we are primarily interested in proving beyondany doubt that nonloality is ruial, but not in disussing its deeper justi�-ation and impliations. Suh a disussion will appear timely and desirableif new experiments on�rm the positive sign of the �0 ! � asymmetry.Ref. [10℄ aepts that the urrent spei�ed in Ref. [9℄ is onserved andthat nonetheless it yields a nonzero value of the eletri dipole moment inquestion. However, it is alleged that this nonzero result originates from r = 0(and not from spatial in�nity). In view of the example given above this laimshould be suspeted as inorret. In fat its mathematial inorretness anbe proved. Let us therefore see where the arguments of Ref. [10℄ break down.4. The origin of the nonzero ontribution to the transverseeletri dipole momentIn Ref. [9℄ it is shown that for the urrent of the formJ "5(r) = [� � (� � r̂) r̂℄ Æ3" (r) + 12�r2 [� � 3(� � r̂) r̂℄ Æ"(r)� 14�r3 [� � 3(� � r̂) r̂℄ erf � r2p"� ; (3)



On the Origin of the Violation of Hara's Theorem. . . 89where erf(x) = 2p� xR0 e�t2 dt is the error funtion, r̂ = r=r, r = jrj and"! 0, the transverse eletri dipole moment is given byT el1M = lim"!0 iq2�p2 1Z0 dr erf � r2p"� j1(qr) Z d
r̂ � � r̂ Y1M (r̂) (4)and is nonzero. The question is where does this nonzero result omes from.Ref. [9℄ (Ref. [10℄) laim that the whole ontribution is from r =1 (respe-tively r = 0). We shall show that the laim of Ref. [10℄ is mathematiallyinorret.The Reply [10℄ is based on the (true) equality (Eqs. (3), (4) therein)� = lim�!0 q 1Z0 dr j1(qr) erf � r2p�� = �2q� 1Z0 dz j0(z) Æ�zq� (5)in whih the left-hand side (l.h.s.) is the original integral appearing in theexpression for the eletri dipole moment, from whih it was onluded inRef. [9℄ that violation of Hara's theorem originates from r =1.The Reply [10℄ further laims that as one has to perform the integral�rst, and only then take the limit �! 0, it an be seen from the right-handside of Eq. (5) that in the limit � ! 0 the integral on the left-hand sidereeives all its ontribution from the point r = 0.That this laim is mathematially inorret an be seen in many ways.We shall deal with the integral on the left-hand side diretly sine equalityof de�nite integrals does not mean that the integrands are idential. Inpartiular integration by parts used to arrive at the r.h.s. of Eq. (5) mayhange the region from whih the value of the integral omes as it should beobvious from the following example:1Z0 dx exp(�x) �(x� �)= � exp(�x) �(x� �)j10 + 1Z0 dx exp(�x) Æ(x� �)= 1Z0 dx exp(�x) Æ(x� �) : (6)



90 P. �enzykowskiClearly, the integral on the l.h.s. of Eq. (6) does not reeive all its ontribu-tion from the point x = � while the r.h.s. does. Let us therefore onentrateon the l.h.s of Eq. (5) sine it is the integrand on the l.h.s. whih has aphysial meaning.(a) Mathematial proofFor any �nite � the integrand on the l.h.s. of Eq. (5) vanishes for r = 0sine j1(0) = erf(0=(2p�)) = 0. Consequently, already the most naiveargument seems to show that the point r = 0 does not ontribute in thelimit �! 0 at all. Should one be onerned with the neighbourhood ofthe point r = 0, we notie that both funtions j1(qr) and erf(r=(2p�))are bounded for any q, r, � of interest. Consequently, the integrand onthe left-hand side of Eq. (5) is bounded bymax0�z�1 j1(z) �M <1.Hene, the ontribution from any interval [0;�℄, (0 � � � 1) isbounded by q R�0 dr M � q�M and vanishes when q� ! 0. Fromthe mathematial point of view the inorretness of Ref. [10℄ is thusproved.For further lari�ation, however, the following two points may be on-sulted. Point (b) below provides simple and intuitive visual demon-stration of what happens on the l.h.s. of Eq. (5) in the limit � ! 0 .In point () the integral is atually performed before taking the limit�! 0, the proedure onsidered in Ref. [10℄ to be orret.(b) Intuitive �proof�The integral on the left of Eq. (5) an be evaluated for any � (formula2.12.49.6 in Ref. [11℄) and one obtainsq 1Z0 dr j1(qr) erf � r2p�� = p�2q 1p� erf(qp�) (7)whih for small qp� is equal to1� q2�3 +O((q2�)2) : (8)This approah to 1 from below (when q2� ! 0) an be seen from aseries of plots shown in Fig. 1.In Fig. 1 one an see that for small qp� the integrand in Eq. (5) di�erssigni�antly from j1(qr) only for very small qr < q�, where the inte-grand is smaller than j1(qr). It is also seen that in the limit qp�! 0the ontribution from the region of small qr grows (thus the whole



On the Origin of the Violation of Hara's Theorem. . . 91Figure 1: The integrand j1(z) erf(z=(2qp�)) (solid line), close to z � qr = 0,for qp� = 1:25; 0:25; 0:05; 0:01 in plots (a), (b), (c), (d) respectively. Dashedline: j1(z).
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(a)pl= Plot[{f1[x],fun[x]},{x,.0001,2.5},PlotStyle->{{Dashing[{.02,.02}]},{Line}}];


0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

(b)pl= Plot[{f1[x],fun[x]},{x,.0001,0.5},PlotStyle->{{Dashing[{.02,.02}]},{Line}}];
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(c)pl= Plot[{f1[x],fun[x]},{x,.0001,0.1},PlotStyle->{{Dashing[{.02,.02}]},{Line}}];
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Graphics::gprim: Unknown Graphics primitive Line encountered.(d)Fig. 1. The integrand j1(z)erf(z=(2qp�)) (solid line), lose to z � qr = 0, forqp� = 1:25; 0:25; 0:05; 0:01 in plots (a), (b), (), (d) respetively. Dashed line:j1(z).



92 P. �enzykowskiintegral grows in agreement with Eq. (8)) but never exeeds the inte-gral R �0 q dr j1(qr). It is intuitively obvious that the latter integral issmaller than j1(q�) � q� and annot yield the value 1 in Eq. (8) for�! 0! For more details onsult point (2) below.() Doing integrals �rstShould one be not satis�ed for any reasons with the above two argu-ments, and insist that one has to perform the integral �rst, an appro-priate rigorous proof of mathematial inorretness of Ref. [10℄ follows.In this proof the integral is performed before taking the limit � ! 0,as argued in Ref. [10℄ to be the only orret proedure.Let us divide the integral on the left-hand side of Eq. (5) into twoontributions:lim�!024 �Z0 dr q j1(qr) erf � r2p��+ 1Z� dr q j1(qr) erf � r2p��35 ; (9)where � is �nite, but otherwise arbitrary: 0 < � <1.Aording to Ref. [10℄, the whole ontribution to the integral on theleft-hand side of Eq. (5) omes from the point r = 0 when the limit�! 0 is taken after evaluating the integral. Hene, the whole ontri-bution to the left-hand side of Eq. (5) should ome from the �rst termin Eq. (9), i.e. fromf[0;�℄(q; �) � �Z0 dr q j1(qr) erf � r2p�� (10)when the limit �! 0 is taken after evaluating the integral.(1) Let us therefore estimate the integral f[0;�℄(q; �). Integrating by partswe obtainf[0;�℄(q; �) = �1q j0(q�) 2p� �=(2p�)Z0 exp(�t2) dt+1q j0(q � 0) 2p� 0=(2p�)Z0 exp(�t2) dt



On the Origin of the Violation of Hara's Theorem. . . 93+ 2p� 12p� 1q �Z0 dr j0(qr) exp��r24� � : (11)Sine we take the limit � ! 0 only after evaluating the integral, theseond term above vanishes. Thusf[0;�℄(q; �) = 1q 2p� �=(2p�)Z0 dt exp(�t2) (j0(q � 2p�t)� j0(q�)) : (12)Consequentlyjf[0;�℄(q; �)j � 1q 2p� �=(2p�)Z0 dt exp(�t2) jj0(q � 2p�t)� j0(q�)j : (13)We are ultimately interested in the limit q ! 0. Hene, let us takeq�� 1. This may be assumed for any �nite �. Sine 0 � 2p�t � �,and the funtion j0(z) is monotonially dereasing for z � 1 it followsthat jj0(q2p�t)� j0(q�)j � jj0(0) � j0(q�)j : (14)Hene, for q � 1=� we havejf[0;�℄(q; �)j � 1q 2p� �=(2p�)Z0 dt exp(�t2)jj0(0) � j0(q�)j� 1q 2p� 1Z0 dt exp(�t2)jj0(0)� j0(q�)j= � ����j0(q�)� j0(0)q� ���� : (15)For �nite �, in the limit q ! 0, the fator under the sign of modulusis the de�nition of the derivative of j0 at 0, i.e.limq!0 jf[0;�℄(q; �)j � �jj1(0)j : (16)Sine j1(0) = 0 we onlude that for any �nite � one has limq!0jf[0;�℄(q; �)j = 0, and that this ours for any �nite �. We now takethe limit �! 0 and obviously obtain lim�!0(limq!0 jf[0;�℄(q; �)j) = 0.



94 P. �enzykowskiThis diretly ontradits the laim of Ref. [10℄. It is also seen that onlyfor � =1 the above proof does not go through beause then q� is1for any �nite q, and jj0(0) � j0(q�)j = jj0(0) � j0(1)j = jj0(0)j = 1.Thus, sine for any �nite � the ontribution to the �rst term in Eq. (9)is 0 in the limit of q ! 0, the whole ontribution must ome from theseond term in Eq. (9). Sine � is arbitrary, the ontribution omesfrom r =1. This an be heked by a diret evaluation of the seondterm in Eq. (9) for any �nite �.(2) Should someone be not onvined by the proedure of bounding theintegrand in Eq. (13), one an perform the integral in Eq. (10) diretly.Denoting Æ = q�, �0 = qp� we havef[0;�℄(q; �) = ÆZ0 dz j1(z) erf � z2�0�= �j0(Æ)erf � Æ2�0�+ ÆZ0 dz j0(z) � 2p� exp�� z24�02� 12�0 :(17)For small �0 the seond term on the r.h.s. above reeives ontributionsfrom small z only. Therefore we may expand j0(z) around z = 0:j0(z) � 1� 16z2 + ::: (18)and perform the integrations. We obtain2p� � 12�0 ÆZ0 dz 1� z26 exp��z24�02 �= 2p� Æ=(2�0)Z0 dt exp(�t2)� 16 � 2p� (2�0)2 Æ=(2�0)Z0 dt t2 exp(�t2) :(19)The integral in the seond term in Eq. (19) may be evaluated as2p� 264� dd� Æ=(2�0)Z0 dt exp(��t2)375�=1



On the Origin of the Violation of Hara's Theorem. . . 95= � dd� "��1=2erf  Æ�1=22�0 !#�=1= �12erf � Æ2�0�+ 2p� Æ4�0 exp��Æ24�02 � : (20)Putting together Eqs. (13)�(20) one obtainsf[0;�℄(q; �) = �1� j0(Æ)� �023 � erf � Æ2�0�+ �023 2p� Æ2�0 exp��Æ24�02 � :(21)We now reall that Æ=�0 = �=p� and that we are interested in thelimit �! 0 for any �nite �. For very large (but �nite) Æ and small �0we have j0(Æ) � 0, erf(Æ=(2�0)) � 1, andÆ2�0 exp� �Æ4�02� � 0 : (22)Eq. (21) redues then to f[0;�℄(q; �) � 1� �023 (23)approahing 1 from below in agreement with Eq. (8) and Fig. 1.For �! 0 and �xed � one obtains from Eq. (21)lim�!0 f[0;�℄(q; �) = 1� j0(q�) : (24)Clearly, the ontribution to the integral in Eq. (5) oming from theinterval [0;�℄ is small and goes to zero when q� ! 0. Thus, for any�nite �, in the limit q ! 0 the ontribution to the integral in Eq. (5)omes entirely from the seond term in Eq. (5). Sine � is arbitrary,the ontribution omes from r =1.5. Final remarksIn summary, violation of Hara's theorem may our for onserved ur-rent as shown in Ref. [9℄. One has to pay a prie, though: the prie is thelak of su�ient loalizability of the urrent. This onnetion to the physialissue of loality has been already suggested in [5℄. Thus, violation of Hara'stheorem would require a highly non-orthodox resolution. Whether this isa physially reasonable option onstitutes a ompletely separate question.



96 P. �enzykowskiHowever, one should remember that what is �physially reasonable� is de-termined by experiment and not by our preoneived ideas about what theworld looks like. After all, all our fundamental ideas are abstrated from ex-periment. They do not live their own independent life and must be modi�edif experiment proves their de�ienies.In general, we should try to avoid non-orthodox physis as long as we an.The problem is, however, that there are various theoretial, phenomenolog-ial, experimental and even philosophial hints that, despite expetationsbased on standard views, Hara's theorem may be violated. It is thereforeimportant to ask and answer the question whether one an provide a sin-gle and learut test, the results of whih would unambiguously resolve theissue.In fat, as already mentioned in the introdution, suh a test has beenpointed out in [5℄ (see also [12, 13℄). It was shown there that the issue anbe experimentally settled by measuring the asymmetry of the �0 ! �deay. The sign of this asymmetry is strongly orrelated with the answerto the question of the violation of Hara's theorem in �+ ! p. In Hara's-theorem-satisfying models this asymmetry is negative and around �0:7. Onthe ontrary, in Hara's-theorem-violating models this asymmetry is positiveand of the same absolute size, (i.e. it is around +0:7). Present data is+0:43�0:44. The KTeV experiment at Fermilab has 1000 events of �0 ! �[14℄. These data are being analysed. Thus, the question of the violation ofHara's theorem should be experimentally settled soon.If the results of the KTeV experiment (and those of an even higher statis-tis experiment being performed by the NA48 ollaboration at CERN [15℄)on�rm large positive asymmetry for the �0 ! � deay, one should startto disuss the possible deeper physial meaning of the violation of Hara'stheorem. I tried to refrain from suh a disussion so far.On the other hand, if the asymmetry in the �0 ! � deay is negative,one must onlude that Hara's theorem holds in Nature. In this ase, how-ever, it follows that either vetor meson dominane is inappliable to weakradiative hyperon deays or our present understanding of nulear parity vi-olation (Ref. [6℄) is inorret.In onlusion, whatever sign of asymmetry is measured in the �0 ! �deay, something well aepted will have to be disarded.I would like to thank A. Horzela for providing referene [11℄ and J. Lahand A. Horzela for disussions regarding the presentation of the argument.Comments on the presentation of the material of this paper, reeived fromV. Dmitrasinovi prior to paper's dissemination, are also gratefully aknowl-edged.
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