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ON THE ORIGIN OF THE VIOLATION OF HARA'STHEOREM FOR CONSERVED CURRENTP. �en
zykowskiDepartment of Theoreti
al Physi
s, Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, Polande-mail: zen
zyko�iblis.ifj.edu.pl(Re
eived September 9, 2000)I elaborate on the argument that the violation of Hara's theorem for
onserved 
urrent requires that the 
urrent is not su�
iently well lo
alized.It is also stressed that whatever sign of asymmetry is measured in the�0 ! �
 de
ay, one of the following three statements must be in
orre
t:(1) Hara's theorem is satis�ed, (2) ve
tor meson dominan
e is appli
able toweak radiative hyperon de
ays, and (3) basi
 stru
ture of our quark-modeldes
ription of nu
lear parity violation is 
orre
t.PACS numbers: 14.20.Jn, 11.40.Ha, 11.10.Lm1. Introdu
tionIn 1964 Hara proved a theorem [1℄, a

ording to whi
h the parity-violating amplitude of the �+ ! p
 de
ay should vanish in the limit of ex-a
t SU(3) symmetry. The assumptions used in the proof were fundamental.Over the years, however, there appeared several theoreti
al, phenomenolog-i
al and experimental indi
ations that, despite the proof, Hara's theoremmay be violated. Quark model 
al
ulations of Kamal and Riazuddin [2℄,VDM-pres
ription [3℄ and experiment [4,5℄ provide su
h hints. In parti
ularonly these models that violate Hara's theorem provide a reasonably good de-s
ription of the overall body of experimental data on weak radiative hyperonde
ays [5℄, as it stands now.Obviously, if Hara's theorem is violated in Nature it follows that atleast one of its fundamental assumptions is not true. This in turn meansthat some unorthodox and totally new physi
s must manifest itself in weakradiative hyperon de
ays (WRHD). Although in general any non-orthodoxphysi
s should be avoided as long as possible, the problem with WRHDis that we are on the verge of being for
ed to a

ept it. Namely, thereexists a 
lean experimental way of distinguishing between the orthodox and(85)
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zykowskinonorthodox physi
s. The de
isive measurable parameter is the asymmetryof the �0 ! �
 de
ay. Its absolute value is expe
ted to be large (of order0:7) independently of the type of physi
s involved. One may show that thesign of the asymmetry should be negative (positive) if physi
s is orthodox(unorthodox). Present experimental number is +0:43�0:44, almost 3� awayfrom the orthodox predi
tion. Of 
ourse the relevant experiment may havebeen performed or analysed in
orre
tly. However, this is just one (thoughthe most 
ru
ial) of the hints against Hara's theorem. Other hints, moretheoreti
al in nature, are provided by the 
al
ulations in the naive quarkmodel [2℄ and by the VDM approa
h [3,5℄ in whi
h VDM was 
ombined withour present knowledge on parity violating weak 
oupling of ve
tor mesonsto nu
leons [6℄.There is a growing agreement that the 
al
ulation originally presentedby Kamal and Riazuddin (KR) is te
hni
ally 
ompletely 
orre
t [7,8℄. (How-ever, there is no 
onsensus as to the meaning of the KR result [7, 8℄.) TheVDM approa
h is based on two pillars: VDM itself and the DDH paperon nu
lear parity violation [6℄, in whi
h parity violating weak 
ouplings ofmesons to nu
leons are dis
ussed. The DDH paper forms the foundation ofour present understanding of the whole subje
t of nu
lear parity violation,with the basis of the paper hardly to be questioned [8℄. Similarly, VDM hasan extraordinary su

ess re
ord in low energy physi
s. If Hara theorem is
orre
t at least one of the above two pillars of the VDM approa
h to WRHDmust be in
orre
t. This would be an important dis
overy in itself.Given this situation, I think it is a timely problem to pinpoint pre
iselywhat it is that might lead to the violation of Hara's theorem. Some 
onje
-tures in this 
onne
tion were presented in [5℄ (and even earlier, see referen
es
ited therein). These 
onje
tures pointed at the assumption of lo
ality. Infa
t, in a re
ent Comment [9℄ it was shown that one 
an obtain violation ofHara's theorem for 
onserved 
urrent provided the 
urrent is not su�
ientlywell lo
alized. As proved in [9℄, the Hara's-theorem-violating 
ontribution
omes from r =1. However, as the example of the Reply [10℄ to my Com-ment shows, the 
ontent and impli
ations of the Comment are not alwaysunderstood. Therefore, in this paper I will try to shed some additional lighton the problem.Before I dis
uss the question of the impli
ation of 
urrent (non)lo
alityon Hara's theorem I will show that the argument raised in [10℄ against thete
hni
al 
orre
tness of the KR 
al
ulation is logi
ally in
orre
t.After disposing of the argument against the te
hni
al 
orre
tness of theKR 
al
ulation I will present a simple example in whi
h 
urrent 
onserva-tion alone does not ensure that Hara's theorem holds, unless an additionalphysi
al assumption is made.Then, I will pro
eed to dis
uss the main relevant point made in Ref. [10℄.



On the Origin of the Violation of Hara's Theorem. . . 87In fa
t, Ref. [10℄ agrees with my standpoint that any violation of Hara'stheorem must result from a new phenomenon. However, identi�
ation ofthe origin of this phenomenon therein proposed is mathemati
ally in
orre
t.This shall be proved below in several ways.In the �nal remarks I will stress on
e again that the resolution of thewhole issue (in favour of Hara's theorem or against it) 
an be settled on
eand forever by experiment, that is by a measurement of the asymmetry ofthe �0 ! �
 de
ay.2. Conservation of the nonrelativisti
 
urrentIn Ref. [2℄ Kamal and Riazuddin obtain gauge-invariant 
urrent-
onserving 
ovariant amplitude. Ref. [10℄ a

epts 
orre
tness of their 
al-
ulation up to this point. The 
laim of Ref. [10℄ is that the authors of [2℄in
orre
tly perform nonrelativisti
 redu
tion thereby violating 
urrent 
on-servation. A

ording to Ref. [10℄ this may be seen from Eq. (13) of Ref. [2℄whi
h is of the form HPV / � �(�1 � �2). In this equation the 
urrent seemsto be of the form J = �1 � �2 (1)and is not transverse as it should have been for a 
onserved 
urrent.This 
laim is logi
ally in
orre
t. Eq. (13) of Ref. [2℄ is obtained after bothperforming the nonrelativisti
 redu
tion and 
hoosing the Coulomb gauge� � q̂ = 0 (q̂ = q=jqj). The origin of the la
k of transversity of the �
urrent�J in Eq. (1) is not the nonrelativisti
 redu
tion but the 
hoi
e of Coulombgauge � � q̂ = 0, i.e. the restri
tion to transverse degrees of freedom only.By 
hoosing the Coulomb gauge we restri
t the allowed � to be transverseonly. It is then in
orre
t to repla
e � by (longitudinal) q̂. In other wordsthe 
orre
t form of the 
urrent-photon intera
tion insisted upon in Ref. [10℄,i.e. � � (�1 � �2 � q̂[(�1 � �2) � q̂℄) (2)after 
hoosing the Coulomb gauge � � q̂ = 0 redu
es to Eq. (13) of Ref. [2℄.Hen
e, from the form � � (�1 � �2) obtained in Ref. [2℄ after 
hoosing theCoulomb gauge one 
annot 
on
lude that the 
urrent is J = �1 � �2 andtherefore that the nonrelativisti
 redu
tion was performed in
orre
tly.Having proved that the argument against the KR 
al
ulation presented inRef. [10℄ is logi
ally in
orre
t, we pro
eed to the issue of 
urrent (non)lo
ality.
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zykowski3. A simple exampleLet us 
onsider the well-known 
on
ept of partially 
onserved axial 
ur-rent (PCAC). A

ording to this idea the axial 
urrent is approximately 
on-served, with its divergen
e proportional to the pion mass squared. The weakaxial 
urrent be
omes divergen
eless when the pion mass goes to zero, a sit-uation obtained in the quark model with massless quarks. Thus, one mayhave a nonvanishing 
oupling of a ve
tor boson to an axial 
onserved 
ur-rent and a nonvanishing transverse ele
tri
 dipole moment, i.e. violation ofHara's theorem.The pri
e one has to pay to a
hieve this in the above example is theintrodu
tion ofmassless pions. A massless pion 
orresponds to an intera
tionof an in�nite range � the pion may propagate to spatial in�nity. Thus, vi
eversa, if one obtains a nonvanishing transverse ele
tri
 dipole moment ina gauge-invariant 
al
ulation (the KR 
ase) this suggests that the relevant
urrent 
ontains a pie
e that does not vanish at in�nity su�
iently fast butresembles the pion 
ontribution in the example above. In other words oneexpe
ts that something happens at spatial in�nity.Of 
ourse, for Hara's theorem to be violated, the me
hanism of providingthe ne
essary nonlo
ality must be di�erent from the parti
ular one dis
ussedabove. After all, no massless hadrons exist. Consequently, 
urrent nonlo
al-ity would have to 
onstitute an intrinsi
 feature of baryons. It might resultfrom baryon 
ompositeness: it is known that 
omposite quantum statesmay exhibit nonlo
al features. In this paper we will not pursue this line ofthought any further sin
e here we are primarily interested in proving beyondany doubt that nonlo
ality is 
ru
ial, but not in dis
ussing its deeper justi�-
ation and impli
ations. Su
h a dis
ussion will appear timely and desirableif new experiments 
on�rm the positive sign of the �0 ! �
 asymmetry.Ref. [10℄ a

epts that the 
urrent spe
i�ed in Ref. [9℄ is 
onserved andthat nonetheless it yields a nonzero value of the ele
tri
 dipole moment inquestion. However, it is alleged that this nonzero result originates from r = 0(and not from spatial in�nity). In view of the example given above this 
laimshould be suspe
ted as in
orre
t. In fa
t its mathemati
al in
orre
tness 
anbe proved. Let us therefore see where the arguments of Ref. [10℄ break down.4. The origin of the nonzero 
ontribution to the transverseele
tri
 dipole momentIn Ref. [9℄ it is shown that for the 
urrent of the formJ "5(r) = [� � (� � r̂) r̂℄ Æ3" (r) + 12�r2 [� � 3(� � r̂) r̂℄ Æ"(r)� 14�r3 [� � 3(� � r̂) r̂℄ erf � r2p"� ; (3)



On the Origin of the Violation of Hara's Theorem. . . 89where erf(x) = 2p� xR0 e�t2 dt is the error fun
tion, r̂ = r=r, r = jrj and"! 0, the transverse ele
tri
 dipole moment is given byT el1M = lim"!0 iq2�p2 1Z0 dr erf � r2p"� j1(qr) Z d
r̂ � � r̂ Y1M (r̂) (4)and is nonzero. The question is where does this nonzero result 
omes from.Ref. [9℄ (Ref. [10℄) 
laim that the whole 
ontribution is from r =1 (respe
-tively r = 0). We shall show that the 
laim of Ref. [10℄ is mathemati
allyin
orre
t.The Reply [10℄ is based on the (true) equality (Eqs. (3), (4) therein)� = lim�!0 q 1Z0 dr j1(qr) erf � r2p�� = �2q� 1Z0 dz j0(z) Æ�zq� (5)in whi
h the left-hand side (l.h.s.) is the original integral appearing in theexpression for the ele
tri
 dipole moment, from whi
h it was 
on
luded inRef. [9℄ that violation of Hara's theorem originates from r =1.The Reply [10℄ further 
laims that as one has to perform the integral�rst, and only then take the limit �! 0, it 
an be seen from the right-handside of Eq. (5) that in the limit � ! 0 the integral on the left-hand sidere
eives all its 
ontribution from the point r = 0.That this 
laim is mathemati
ally in
orre
t 
an be seen in many ways.We shall deal with the integral on the left-hand side dire
tly sin
e equalityof de�nite integrals does not mean that the integrands are identi
al. Inparti
ular integration by parts used to arrive at the r.h.s. of Eq. (5) may
hange the region from whi
h the value of the integral 
omes as it should beobvious from the following example:1Z0 dx exp(�x) �(x� �)= � exp(�x) �(x� �)j10 + 1Z0 dx exp(�x) Æ(x� �)= 1Z0 dx exp(�x) Æ(x� �) : (6)
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zykowskiClearly, the integral on the l.h.s. of Eq. (6) does not re
eive all its 
ontribu-tion from the point x = � while the r.h.s. does. Let us therefore 
on
entrateon the l.h.s of Eq. (5) sin
e it is the integrand on the l.h.s. whi
h has aphysi
al meaning.(a) Mathemati
al proofFor any �nite � the integrand on the l.h.s. of Eq. (5) vanishes for r = 0sin
e j1(0) = erf(0=(2p�)) = 0. Consequently, already the most naiveargument seems to show that the point r = 0 does not 
ontribute in thelimit �! 0 at all. Should one be 
on
erned with the neighbourhood ofthe point r = 0, we noti
e that both fun
tions j1(qr) and erf(r=(2p�))are bounded for any q, r, � of interest. Consequently, the integrand onthe left-hand side of Eq. (5) is bounded bymax0�z�1 j1(z) �M <1.Hen
e, the 
ontribution from any interval [0;�℄, (0 � � � 1) isbounded by q R�0 dr M � q�M and vanishes when q� ! 0. Fromthe mathemati
al point of view the in
orre
tness of Ref. [10℄ is thusproved.For further 
lari�
ation, however, the following two points may be 
on-sulted. Point (b) below provides simple and intuitive visual demon-stration of what happens on the l.h.s. of Eq. (5) in the limit � ! 0 .In point (
) the integral is a
tually performed before taking the limit�! 0, the pro
edure 
onsidered in Ref. [10℄ to be 
orre
t.(b) Intuitive �proof�The integral on the left of Eq. (5) 
an be evaluated for any � (formula2.12.49.6 in Ref. [11℄) and one obtainsq 1Z0 dr j1(qr) erf � r2p�� = p�2q 1p� erf(qp�) (7)whi
h for small qp� is equal to1� q2�3 +O((q2�)2) : (8)This approa
h to 1 from below (when q2� ! 0) 
an be seen from aseries of plots shown in Fig. 1.In Fig. 1 one 
an see that for small qp� the integrand in Eq. (5) di�erssigni�
antly from j1(qr) only for very small qr < q�, where the inte-grand is smaller than j1(qr). It is also seen that in the limit qp�! 0the 
ontribution from the region of small qr grows (thus the whole



On the Origin of the Violation of Hara's Theorem. . . 91Figure 1: The integrand j1(z) erf(z=(2qp�)) (solid line), close to z � qr = 0,for qp� = 1:25; 0:25; 0:05; 0:01 in plots (a), (b), (c), (d) respectively. Dashedline: j1(z).
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Graphics::gprim: Unknown Graphics primitive Line encountered.(d)Fig. 1. The integrand j1(z)erf(z=(2qp�)) (solid line), 
lose to z � qr = 0, forqp� = 1:25; 0:25; 0:05; 0:01 in plots (a), (b), (
), (d) respe
tively. Dashed line:j1(z).
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zykowskiintegral grows in agreement with Eq. (8)) but never ex
eeds the inte-gral R �0 q dr j1(qr). It is intuitively obvious that the latter integral issmaller than j1(q�) � q� and 
annot yield the value 1 in Eq. (8) for�! 0! For more details 
onsult point (
2) below.(
) Doing integrals �rstShould one be not satis�ed for any reasons with the above two argu-ments, and insist that one has to perform the integral �rst, an appro-priate rigorous proof of mathemati
al in
orre
tness of Ref. [10℄ follows.In this proof the integral is performed before taking the limit � ! 0,as argued in Ref. [10℄ to be the only 
orre
t pro
edure.Let us divide the integral on the left-hand side of Eq. (5) into two
ontributions:lim�!024 �Z0 dr q j1(qr) erf � r2p��+ 1Z� dr q j1(qr) erf � r2p��35 ; (9)where � is �nite, but otherwise arbitrary: 0 < � <1.A

ording to Ref. [10℄, the whole 
ontribution to the integral on theleft-hand side of Eq. (5) 
omes from the point r = 0 when the limit�! 0 is taken after evaluating the integral. Hen
e, the whole 
ontri-bution to the left-hand side of Eq. (5) should 
ome from the �rst termin Eq. (9), i.e. fromf[0;�℄(q; �) � �Z0 dr q j1(qr) erf � r2p�� (10)when the limit �! 0 is taken after evaluating the integral.(
1) Let us therefore estimate the integral f[0;�℄(q; �). Integrating by partswe obtainf[0;�℄(q; �) = �1q j0(q�) 2p� �=(2p�)Z0 exp(�t2) dt+1q j0(q � 0) 2p� 0=(2p�)Z0 exp(�t2) dt



On the Origin of the Violation of Hara's Theorem. . . 93+ 2p� 12p� 1q �Z0 dr j0(qr) exp��r24� � : (11)Sin
e we take the limit � ! 0 only after evaluating the integral, these
ond term above vanishes. Thusf[0;�℄(q; �) = 1q 2p� �=(2p�)Z0 dt exp(�t2) (j0(q � 2p�t)� j0(q�)) : (12)Consequentlyjf[0;�℄(q; �)j � 1q 2p� �=(2p�)Z0 dt exp(�t2) jj0(q � 2p�t)� j0(q�)j : (13)We are ultimately interested in the limit q ! 0. Hen
e, let us takeq�� 1. This may be assumed for any �nite �. Sin
e 0 � 2p�t � �,and the fun
tion j0(z) is monotoni
ally de
reasing for z � 1 it followsthat jj0(q2p�t)� j0(q�)j � jj0(0) � j0(q�)j : (14)Hen
e, for q � 1=� we havejf[0;�℄(q; �)j � 1q 2p� �=(2p�)Z0 dt exp(�t2)jj0(0) � j0(q�)j� 1q 2p� 1Z0 dt exp(�t2)jj0(0)� j0(q�)j= � ����j0(q�)� j0(0)q� ���� : (15)For �nite �, in the limit q ! 0, the fa
tor under the sign of modulusis the de�nition of the derivative of j0 at 0, i.e.limq!0 jf[0;�℄(q; �)j � �jj1(0)j : (16)Sin
e j1(0) = 0 we 
on
lude that for any �nite � one has limq!0jf[0;�℄(q; �)j = 0, and that this o

urs for any �nite �. We now takethe limit �! 0 and obviously obtain lim�!0(limq!0 jf[0;�℄(q; �)j) = 0.
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zykowskiThis dire
tly 
ontradi
ts the 
laim of Ref. [10℄. It is also seen that onlyfor � =1 the above proof does not go through be
ause then q� is1for any �nite q, and jj0(0) � j0(q�)j = jj0(0) � j0(1)j = jj0(0)j = 1.Thus, sin
e for any �nite � the 
ontribution to the �rst term in Eq. (9)is 0 in the limit of q ! 0, the whole 
ontribution must 
ome from these
ond term in Eq. (9). Sin
e � is arbitrary, the 
ontribution 
omesfrom r =1. This 
an be 
he
ked by a dire
t evaluation of the se
ondterm in Eq. (9) for any �nite �.(
2) Should someone be not 
onvin
ed by the pro
edure of bounding theintegrand in Eq. (13), one 
an perform the integral in Eq. (10) dire
tly.Denoting Æ = q�, �0 = qp� we havef[0;�℄(q; �) = ÆZ0 dz j1(z) erf � z2�0�= �j0(Æ)erf � Æ2�0�+ ÆZ0 dz j0(z) � 2p� exp�� z24�02� 12�0 :(17)For small �0 the se
ond term on the r.h.s. above re
eives 
ontributionsfrom small z only. Therefore we may expand j0(z) around z = 0:j0(z) � 1� 16z2 + ::: (18)and perform the integrations. We obtain2p� � 12�0 ÆZ0 dz 1� z26 exp��z24�02 �= 2p� Æ=(2�0)Z0 dt exp(�t2)� 16 � 2p� (2�0)2 Æ=(2�0)Z0 dt t2 exp(�t2) :(19)The integral in the se
ond term in Eq. (19) may be evaluated as2p� 264� dd� Æ=(2�0)Z0 dt exp(��t2)375�=1



On the Origin of the Violation of Hara's Theorem. . . 95= � dd� "��1=2erf  Æ�1=22�0 !#�=1= �12erf � Æ2�0�+ 2p� Æ4�0 exp��Æ24�02 � : (20)Putting together Eqs. (13)�(20) one obtainsf[0;�℄(q; �) = �1� j0(Æ)� �023 � erf � Æ2�0�+ �023 2p� Æ2�0 exp��Æ24�02 � :(21)We now re
all that Æ=�0 = �=p� and that we are interested in thelimit �! 0 for any �nite �. For very large (but �nite) Æ and small �0we have j0(Æ) � 0, erf(Æ=(2�0)) � 1, andÆ2�0 exp� �Æ4�02� � 0 : (22)Eq. (21) redu
es then to f[0;�℄(q; �) � 1� �023 (23)approa
hing 1 from below in agreement with Eq. (8) and Fig. 1.For �! 0 and �xed � one obtains from Eq. (21)lim�!0 f[0;�℄(q; �) = 1� j0(q�) : (24)Clearly, the 
ontribution to the integral in Eq. (5) 
oming from theinterval [0;�℄ is small and goes to zero when q� ! 0. Thus, for any�nite �, in the limit q ! 0 the 
ontribution to the integral in Eq. (5)
omes entirely from the se
ond term in Eq. (5). Sin
e � is arbitrary,the 
ontribution 
omes from r =1.5. Final remarksIn summary, violation of Hara's theorem may o

ur for 
onserved 
ur-rent as shown in Ref. [9℄. One has to pay a pri
e, though: the pri
e is thela
k of su�
ient lo
alizability of the 
urrent. This 
onne
tion to the physi
alissue of lo
ality has been already suggested in [5℄. Thus, violation of Hara'stheorem would require a highly non-orthodox resolution. Whether this isa physi
ally reasonable option 
onstitutes a 
ompletely separate question.
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zykowskiHowever, one should remember that what is �physi
ally reasonable� is de-termined by experiment and not by our pre
on
eived ideas about what theworld looks like. After all, all our fundamental ideas are abstra
ted from ex-periment. They do not live their own independent life and must be modi�edif experiment proves their de�
ien
ies.In general, we should try to avoid non-orthodox physi
s as long as we 
an.The problem is, however, that there are various theoreti
al, phenomenolog-i
al, experimental and even philosophi
al hints that, despite expe
tationsbased on standard views, Hara's theorem may be violated. It is thereforeimportant to ask and answer the question whether one 
an provide a sin-gle and 
lear
ut test, the results of whi
h would unambiguously resolve theissue.In fa
t, as already mentioned in the introdu
tion, su
h a test has beenpointed out in [5℄ (see also [12, 13℄). It was shown there that the issue 
anbe experimentally settled by measuring the asymmetry of the �0 ! �
de
ay. The sign of this asymmetry is strongly 
orrelated with the answerto the question of the violation of Hara's theorem in �+ ! p
. In Hara's-theorem-satisfying models this asymmetry is negative and around �0:7. Onthe 
ontrary, in Hara's-theorem-violating models this asymmetry is positiveand of the same absolute size, (i.e. it is around +0:7). Present data is+0:43�0:44. The KTeV experiment at Fermilab has 1000 events of �0 ! �
[14℄. These data are being analysed. Thus, the question of the violation ofHara's theorem should be experimentally settled soon.If the results of the KTeV experiment (and those of an even higher statis-ti
s experiment being performed by the NA48 
ollaboration at CERN [15℄)
on�rm large positive asymmetry for the �0 ! �
 de
ay, one should startto dis
uss the possible deeper physi
al meaning of the violation of Hara'stheorem. I tried to refrain from su
h a dis
ussion so far.On the other hand, if the asymmetry in the �0 ! �
 de
ay is negative,one must 
on
lude that Hara's theorem holds in Nature. In this 
ase, how-ever, it follows that either ve
tor meson dominan
e is inappli
able to weakradiative hyperon de
ays or our present understanding of nu
lear parity vi-olation (Ref. [6℄) is in
orre
t.In 
on
lusion, whatever sign of asymmetry is measured in the �0 ! �
de
ay, something well a

epted will have to be dis
arded.I would like to thank A. Horzela for providing referen
e [11℄ and J. La
hand A. Horzela for dis
ussions regarding the presentation of the argument.Comments on the presentation of the material of this paper, re
eived fromV. Dmitrasinovi
 prior to paper's dissemination, are also gratefully a
knowl-edged.
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