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A CONCEPT OF STRONG NECESSARY CONDITIONIN NONLINEAR FIELD THEORYK. Sokalskia;b, T. Wiete
hab and Z. LisowskibaInstitute of Computer S
ien
e, Te
hni
al University of Cz�esto
howa, PolandbInstitute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived Mar
h 21, 2001; revised version re
eived July 9, 2001)Con
ept of the strong ne
essary 
ondition for existen
e of the extremumof fun
tional is dis
ussed as an alternative to the Euler equation. This
on
ept leads to �eld equations of the order lower than the order of the Eulerequation. They appear as duality equations: Bogomolny de
omposition orBä
klund transformations. The derived formalism is presented and testedon some examples: nonlinear �-model, nonlinear Klein-Gordon equations(both hyperboli
 and ellipti
) and nonlinear S
hrödinger equation.PACS numbers: 02.30.Wd, 02.60.Lj1. Introdu
tionTwo methods appli
able in nonlinear �eld theories: the Bogomolny de-
omposition [1�3℄ and the Bä
klund transformation [4�7℄ seem to have 
om-mon ba
kground resulting from the 
on
ept of invarian
e of the �eld equationwith respe
t to the gauge transformation of the a
tion fun
tional [8�10℄.Therefore, it should be possible to derive one formalism whi
h generatesboth the Bogomolny de
omposition and the Bä
klund transformation asparti
ular types of duality equations. How to unify derivation of both thesemethods? It is assumed that the �eld equation is the ne
essary 
onditionfor existen
e of an extremum of the a
tion fun
tional (Euler equation). Thegauge invarian
e of the �eld equations is equivalent to the invarian
e of thene
essary 
onditions. But if one formulates the variational problem in su
ha way that the gauge transformation of the a
tion fun
tional breaks the in-varian
e of the ne
essary 
ondition then this transformation 
an 
ontributeto the �eld equation. If this new variational problem guarantees that theset of solutions of new equation is in
luded in the solution set resultingfrom the Euler equation, then we derive a new tool for the nonlinear �eldtheory [11, 12℄. (2771)



2772 K. Sokalski, T. Wiete
ha, Z. LisowskiThe aim of this paper is to derive the �eld equations by applying a newne
essary 
ondition to the gauge transformed a
tion fun
tional. We repla
ethe Euler theorem by the strong ne
essary 
ondition. This 
on
ept togetherwith the gauge transformations lead to the Bogomolny de
omposition orto the Bä
klund transformation. Analyzing di�erent nonlinear �eld modelswith the aid of the strong ne
essary 
ondition we derive some 
on
lusions
on
erning similarities and di�eren
es between the Bogomolny de
omposi-tion and the Bä
klund transformation. On the basis of these 
on
lusions wedraw a hypothesis about existen
e of other types of �duality equations�.The paper is organized in the following way: in Se
. 2 we introdu
ea 
on
ept of strong ne
essary 
onditions in the problem of extremum ofa fun
tional. Se
. 3 
ontains the test of the derived formalism. We re-derivethe Bogomolny de
omposition for the two-dimensional �-model, the Bä
k-lund transformation for the two 
lasses of nonlinear Klein�Gordon equations(hyperboli
 and ellipti
) and for the nonlinear S
hrödinger equation. In thelast se
tion we dis
uss the existen
e of the higher types of the duality equa-tions.2. Strong ne
essary 
ondition for extremum of a fun
tionalWe will limit all 
onsiderations to the one type of extremum, the mini-mum. If ne
essary, all 
onsiderations of this se
tion 
an be easily extendedto the maximum. Let us 
onsider the fun
tional of the following form:�[y℄ = ZX F (x; y; y0)dx ; (1)where y 2 C1 and F 2 C2. The fun
tional �[y℄ rea
hes a lo
al minimum fory = y� if there exists a neighborhood of the point y�K(y�; ") = fy 2 C1; ky � y�k < "g; (2)in whi
h �[y℄ � �[y�℄ for all y 2 K(y�; "). We 
onsider fun
tionals �[y℄ ona set of di�erentiable fun
tions. These fun
tions belong to the spa
e C1,where the norm is de�ned by:kykC1 = maxx jy(x)j+maxx jy0(x)j : (3)A �eld equation derived from the least a
tion prin
iple for the �xed bound-aries has the form of Euler's equation:F;y � ddxF;y0 = 0 : (4)
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essary Condition in . . . 2773The idea of the Bogomolny de
omposition and the Bä
klund transformationis to derive simpler equations than (4) for the extremals of (1). The orders ofequations resulting from these 
on
epts are usually lower. The order of (4)is usually higher then the highest order of the derivative of y(x) appearingin (1). Therefore, in order to derive the Bogomolny de
omposition or theBä
klund transformation from the least a
tion prin
iple one should not applythe Euler equation as the ne
essary 
ondition.Let us analyze the variation of �:Æ� = ZX �F;yh+ F;y0h0� dx ; (5)where h = Æy(x) is the in
rement of the fun
tion y(x). In order to satisfy thene
essary 
ondition Æ� = 0 in a di�erent way than (4) we set the following
ondition: F;y0 = 0 ; (6)whi
h implies F;y = 0 : (7)We 
all (6) and (7) the strong ne
essary 
onditions. All solutions of (6) and(7) satisfy the Euler equation (4) but in most 
ases the set of solutions of (6)and (7) is trivial (y = 0) or empty. In order to extend this set to a nontrivialsubset of the solutions of (4) we use the gauge transformation of (1)�! �+ I (8)and instead of (4) we apply (6) and (7). For the variational problem (1) thegauge transformation is generated by the following fun
tional:I = ZX G(y)y0dx : (9)Eq. (9) is the topologi
al invariant with respe
t to the lo
al variation of y(x):ÆI � 0 ; (10)i.e. I[y℄ remains 
onstant while the �eld y(x) varies 
ontinuously preserv-ing its boundary 
onditions. Vanishing of ÆI under assumption about thelo
al variation of y(x) leads to the operational de�nition of the topologi
alinvariant expressed by its density G(y)y0 :�[G(y)y0 ℄�y � ddx �[G(y)y0 ℄�y0 � 0 : (11)Therefore, the Euler equations resulting from the extremum of � and theextremum of � + I are equivalent. However, (6) and (7) are not invariantwith respe
t to �! �+ I, i.e. the gauge transformation 
ontributes to the
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ha, Z. Lisowskistrong ne
essary 
ondition. This 
ontribution 
an extend the subset of so-lutions to the nontrivial one. In this way we derive a simpler di�erentialequation for extremals of � whi
h solutions form a subset of the solutions ofthe Euler equation. Applying the ne
essary 
ondition: Æ� = 0 to the gaugetransformed fun
tional we obtain:�0 ZX hF;y �x; y; y0�h(x) + F;y0 �x; y; y0�h0(x)i dx+�1 ZX ��G(y)y0�;y h(x) + �G(y)y0�;y0 h0(x)� dx = 0 : (12)Applying the strong ne
essary 
ondition to (12) we derive the following �eldequations: �0F;y(x; y; y0) + �1G;y(y)y0 = 0 ;�0F;y0 (x; y; y0) + �1G(y) = 0 : (13)Formulas (13) establish a simultaneous set of equations for y(x) and G(y).It must be stressed again that any solution of (13) satis�es (4).2.1. Some generalizationsFor the purpose of realisti
 �eld theories we generalize our 
onsiderationsin two dire
tions:1. y depends on n independent variables: y = y(x1; x2; :::; xn).2. � depends on p independent fun
tions and their derivatives:� = �[y1; y1;x1 ; :::y1;xn ; y1;x1x1 ; y1;x1x2 ; :::; y2; y2;x1 ; :::; yp; yp;x1 ; :::℄ : (14)As an illustrative example we 
onsider a fun
tional of two arguments:�[u; v℄ = ZE2 F (u; u;x; u;t; u;xx; v; v;x; v;t; v;xx)dxdt ; (15)where u(�; t) 2 C2; u(x; �) 2 C1 ; (16)v(�; t) 2 C2; v(x; �) 2 C1:The gauge transformation of (15) is generated using the following topologi
alinvariants:
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I1 = ZE2 G1(u; v)(u;xv;t � u;tv;x) dxdt ; (17)I2 = ZE2 DxG2(u; v; u;x; v;x) dxdt ; (18)I3 = ZE2 DtG3(u; v) dxdt : (19)Sin
e the densities in (18) and (19) are total derivatives of G2 and G3, there-fore, we 
all them divergen
e terms. They 
an be 
onstru
ted for a smoothmap Mm1 !Mn2 for arbitrary dimensions m and n, where Mm1 and Mn2 are
ompa
t orientable manifolds. Non-divergen
e term (17) in the 
ase m = nis the degree of a smooth map (winding number, topologi
al 
harge). Thisquantity plays 
ru
ial role in the 
onstru
tion of topologi
ally stable solu-tions. For the fun
tional (15) the list of invariants (17)�(19) may not besu�
ient. In su
h a 
ase one must extend dependen
e of G2 and G3 onthe higher derivatives of u and v. In the general 
ase the list of invariantsdepends on:(i) the number of independent variables,(ii) the number of dependent variables,(iii) the degrees of derivatives of the dependent variables present in (14).The strong ne
essary 
onditions for extremum of (15) are:F;u = 0 ; F;v = 0 ; F;u;x = 0 ; F;v;x = 0 ;F;u;t = 0 ; F;v;t = 0 ; F;u;xx = 0 ; F;v;xx = 0 : (20)In order to extend (20) to the nontrivial set of equations we apply the fol-lowing gauge transformation:�� = �+ I1 + I2 + I3 : (21)Applying the strong ne
essary 
ondition to �� we obtain:u : �0F;u +G1;u(u;xv;t � u;tv;x) +DxG2;u +DtG3;u = 0 ; (22)v : �0F;v +G1;v(u;xv;t � u;tv;x) +DxG2;v +DtG3;v = 0 ; (23)u;x : �0F;u;x +G1v;t + (G2;u +DxG2;u;x) = 0 ; (24)v;x : �0F;v;x �G1u;t + (G2;v +DxG2;v;x) = 0 ; (25)
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ha, Z. Lisowskiu;t : �0F;u;t �G1v;x +G3;u = 0 ; (26)v;t : �0F;v;t +G1u;x +G3;v = 0 ; (27)u;xx : �0F;uxx +G2;u;x = 0 ; (28)v;xx : �0F;vxx +G2;v;x = 0 ; (29)where �0 is a Lagrange multiplier. In the simpli�
ation pro
ess of (22)�(29)the following 
ommutators have been used:� ��u;Dx� = 0 ; � ��v ;Dx� = 0 ;� ��u;x ;Dx� = ��u; � ��v;x ;Dx� = ��v ;� ��u;xx ;Dx� = ��u;x ; � ��v;xx ;Dx� = ��v;x :Equations (22)�(29) establish a set of simultaneous equations for u(x; t),v(x; t), G1; G2 and G3. 3. Appli
ationsThis se
tion is devoted to the two 
lasses of appli
ations of the derivedformalism: the Bogomolny de
ompositions and the Bä
klund transforma-tions. In the �rst se
tion we present derivation of the �duality equations�for the �1(S1) and �2(S2) models. In the se
ond se
tion we give all the de-tails of derivations of the Bä
klund transformations for the 
lass of nonlinearKlein�Gordon equations, both hyperboli
 and ellipti
. Finally, we test ourformalism on the nonlinear S
hrödinger equation.3.1. Bogomolny de
ompositionIn the study of some nonlinear models solutions 
an be obtained by 
on-sidering the �rst order di�erential equations (Bogomolny equations), insteadof more 
ompli
ated Euler�Lagrange equations [1, 13, 14℄. The traditionalmethod of deriving Bogomolny equations is based on transforming an ex-pression of the energy of a �eld 
on�guration to the positive determinedform whi
h the lower bound has topologi
al nature. In the study of topolog-i
al solitons the Bogomolny equations play the spe
ial role. In re
ent yearsthere have been numerous studies on the soliton solutions of Chern�Simonsgauge theories, Landau�Ginzburg model and the Maxwell�Chern�Simonstheory [1, 15, 16℄. Sin
e the Bogomolny method is based on the minimiza-tion of the energy the derived solutions are stati
. Physi
ally one 
an think ofthis property as re�e
ting the absen
e of stati
 for
es between well-separated
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ept of Strong Ne
essary Condition in . . . 2777single solitons. However, some time dependent solutions 
an be derived.De�ning the spa
e of stati
 soliton solutions of soliton number n (mod-uli spa
e Mn) the intera
ting dynami
s of several vorti
es has been 
on-stru
ted [17℄. More powerful method then the traditional one is N = 2supersymmetri
 extension of the investigated model [18�20℄. In this formal-ism the energy of �eld 
on�guration is bounded below by the 
entral 
hargeof the supersymmetri
 algebra. The Bogomolny equations arise as algebrai
results from the following algorithm [21℄. Let us 
onsider a theory witha 
onserved topologi
al 
harge. (The 
entral 
harge for N = 2 supersym-metri
 version is equal to the topologi
al 
harge [22℄.) We shall 
onstru
ta supersymmetri
 extension of this theory. A topologi
al 
onservation law,if true in the original theory, will remain in the extended theory. The energyfun
tional of extended theory should redu
e to that of the original theorywhen the extra physi
al �elds are eliminated. Conditions for su
h a redu
-tion appear to be the Bogomolny equations.In this se
tion we present derivation of the Bogomolny equations (Bogo-molny de
omposition) resulting from the strong ne
essary 
ondition 
on
ept.In 
ontrast to the above mentioned approa
hes this derivation does not re-quire any bounds for the energy or a
tion fun
tional.3.1.1. Models asso
iated with �1(S1) homotopy groupFollowing [1, 2℄ one 
an derive the above Bogomolny de
omposition forthe one-dimensional s
alar �eld theory. We are looking for the lowest possi-ble stati
 energy in dis
onne
ted se
tors 
hara
terized by the di�erent pos-sibilities for the asymptoti
 behavior of the �nite energy 
on�gurations. Letthe se
tors be 
lassi�ed by the elements of the homotopy group �1(S1) andlet the stati
 energy be of the following form:H[y℄ = ZX "12 �dy(x)dx �2 + U [y(x)℄# dx : (30)Then the ground state minimizing (30) must satisfy the asso
iated Euler'sequation: y(x);xx = U;y[y(x)℄ : (31)Following the Bogomolny de
omposition one splits H[y℄:H[y℄ = 12 ZX �dy(x)dx �p2(U [y℄� C)�2 dx+ I0 ; (32)where I0 = �ZX dy(x)dx p2(U [y℄� C)dx+ ZX Cdx (33)
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al invariant. C is a 
onstant determinig the origin of theenergy s
ale and satisfying the following 
ondition:������ZX Cdx������ <1 : (34)It results from (32) that, y(x) is the minimum of (30) if and only if y(x)satis�es the �rst order di�erential equation:dy(x)dx �p2(U [y℄ �C) = 0 : (35)When (35) is derived by integration of the Euler equation then C playsthe role of integration 
onstants. Now we present derivation of (35) fromthe strong ne
essary 
ondition 
on
ept. Let us transform (30) to H�[y℄ =H[y℄ + I, where I and H are given by (9) and (30), respe
tively. Applying(13) we derive: U;y +G;yy;x = 0 ;y;x +G = 0 : (36)Eliminating G from (36) we obtain (35).3.1.2. Field equations asso
iated with �2(S2) homotopy groupLess trivial problems 
orrespond to a mapping of the two-dimensionalspa
e of independent variables into a two-dimensional sphere. Let us assumethat all possible values of a 
ontinuous �eld establish a manifold isomor-phi
 to S2. This assumption is equivalent to the assumption of a 
onstantboundary 
onditions at in�nity. Therefore, any 
ontinuous �eld fun
tionsatisfying the boundary 
onditions 
an be 
lassi�ed by the homotopy 
lass.The set of all these 
lasses (and the rules of superposition) establish thehomotopy group �2(S2) [3, 23℄. This information is very important fromthe point of view of the strong ne
essary 
ondition 
on
ept. It determinesthe main topologi
al invariants used for the 
onstru
tion of the gauge trans-formation. There are several important �eld models 
lassi�ed by �2(S2):stati
 two-dimensional 
lassi
al Heisenberg model [24, 25℄, �eld models in(1+1)-dimensional spa
e generating soliton equations [26℄. In this se
tionwe present some results for the Heisenberg model (�-model). Belavin andPolyakov [24, 25℄ using the Bogomolny de
omposition, found all topologi
alsolutions of the stati
 two-dimensional Heisenberg model. In this se
tionwe will re-derive their results by applying the strong ne
essary 
ondition
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on
ept. In order to make dire
t use of the results from Se
. 2 we iden-tify independent variables (x1; x2) with (x; t), respe
tively. We derive theirresults by the use of pro
edure (15)�(29). The model is governed by thefollowing di�erential equation:�w � 2w�(rw)21 + ww� = 0 ; (37)where w = (Sx + iSy)=(1 + Sz); Sx; Sy; Sz are 
omponents of the 
lassi
alHeisenberg spin, normalized to a 
onstant value: (Sx)2+(Sy)2+(Sz)2=
onst.(37) results from the least �a
tion� prin
iple, where the �a
tion� is repre-sented by the integral of energy:H = ZE2 rwrw�(1 + ww�)2 dx1dx2 ; (38)where w is a 
omplex �eld on E2. It is su�
ient to 
onsider only the invariantI1 from (17)�(19):I1 = ZE2 G1(w;w�)(w;x1w�;x2 � w;x2w�;x1) dx1dx2 : (39)We derive the following ne
essary 
onditions:w�;x1(1 + ww�)2 + w�;x2G1(w;w�) = 0 ; (40)w�;x2(1 + ww�)2 � w�;x1G1(w;w�) = 0 ; (41)�2w�rwrw�(1 + ww�)3 +G1;w(w;w�)(w;x1w�;x2 � w;x2w�;x1) = 0 ; (42)and 
:
:Equations (40)�(42) and the 
omplex 
onjugated ones must be self 
onsis-tent. This requirement determines G1(w;w�) uniquely:G1(w;w�) = �i 1(1 + ww�)2 : (43)Substituting (43) into (41) and (42) we obtain the Belavin�Polyakov result:w�;x1 � iw�;x2 = 0 ;w;x1 + iw;x2 = 0 :
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klund transformationsBä
klund transformation arose in the 19th 
entury and still remains theonly hope to 
onstru
t su�
iently 
ompli
ated exa
t solutions of nonlinearequations. The main idea of the Bä
klund transformation is the following.Let S(u) = 0 and T (v) = 0 be two un
oupled partial di�erential equations,in two independent variables x and t, for the two fun
tions u and v. LetRi = 0 be a pair of relations:Ri(u; v; u;x; v;x; u;t; v;t; ::::;x; t) = 0 (44)between the two fun
tions u and v, where i = 1; 2. Then Ri = 0 is a Bä
k-lund transformation if it is integrable for v when S(u) = 0 and if resultingv is a solution of T (v) = 0, and vi
e versa. This approa
h to the solutionsof the equations S(u) = 0 and T (v) = 0 is useful if the relations (44) aresimpler then the original equations. The existen
e of the Bä
klund trans-formations is usually taken as a 
riterion for 
omplete integrability. Thereare di�erent ways in whi
h the Bä
klund transformations may be a
hieved[4�7℄. The newest one is 
onne
ted with the zero 
urvature formulation[27, 28℄. For the large 
lass of equations admitting a zero 
urvature rep-resentation, the auto-Bä
klund transformations 
an be re
overed from theDarboux matrix 
on
ept. Very re
ently new variational approa
h to theBä
klund transformations has been derived on the basis of the strong ne
-essary 
ondition 
on
ept [12℄. This method is of the same stru
ture as thevariational derivation of the Bogomolny de
omposition des
ribed in Se
. 3.1.Below we present some appli
ations of the strong ne
essary 
ondition toderivation of the Bä
klund transformations.3.2.1. A 
lass of nonlinear Klein�Gordon equationsWe illustrate appli
ability of our method on the well known 
lass ofequations [7℄: u;xt = P (u) ; (45)where u satis�es (16) and 9 p : p;u = P (u). Eq. (45) possesses poor topology,i.e. all 
on�gurations of the �eld u(x; t) satisfying the boundary 
onditionsare 
lassi�ed by the elements of the homotopy group �2(S1), whi
h is trivial.In order to 
onstru
t topologi
al invariant (17) we have to 
onsider a model
orresponding to the nontrivial homotopy group �2(S2). Thus we 
ombinetwo independent equations of (45) type:u;xt = P (u) ; v;xt = Q(v) ; (46)where u and v satisfy (16) and 9 p : p;u = P (u);9 q : q;v = Q(v). The non-linear Klein�Gordon system enables us to formulate the following problem:
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ept of Strong Ne
essary Condition in . . . 2781What are the forms of P (u) and Q(v) for whi
h (46) possesses the Bä
klundtransformation? We start from writing down the a
tion fun
tional:�[u; v℄ = ZE2 �12u;xu;t + p(u) + �0(12v;xv;t + q(v))� dxdt : (47)For the purpose of the strong ne
essary 
ondition 
on
ept we generate thegauge transformation with (17)�(19), where for simpli
ity we redu
e G2 tothe following form: G2 = G2(u; v). Applying the 
on
ept of the strongne
essary 
ondition to the gauge transformed �� = �+I1+I2+I3 we derivethe following �eld equations:u : P (u)+G1;u(u;xv;t�u;tv;x)+G2;uuu;x+G2;uvv;x+G3;uuu;t+G3;uvv;t=0 ; (48)v : �0Q(v)+G1;v(u;xv;t�u;tv;x)+G2;uvu;x+G2;vvv;x+G3;vuu;t+G3;vvv;t=0 ; (49)u;x : 12u;t +G1v;t +G2;u = 0 ; (50)v;x : �02 v;t �G1u;t +G2;v = 0 ; (51)u;t : 12u;x �G1v;x +G3;u = 0 ; (52)v;t : �02 v;x +G1u;x +G3;v = 0 : (53)First of all (48)�(53) must be self 
onsistent. Formally, we have six simulta-neous equations for the �ve unknown fun
tions: u; v;G1; G2; G3. Therefore,in the �rst step we must de
rease the number of equations to four by making(48)�(53) linearly dependent. We a
hieve this by the following 
onditions:�04 +G21 = 0 ; (54)2G1G2;u +G2;v = 0 ; (55)2G1G3;u �G3;v = 0 : (56)(54)�(56) imply that G1 must be 
onstant: G1 = �p��02 while �0 < 0 andG2 = G2� up��0 � v� ; (57)G3 = G3� up��0 + v� : (58)
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ha, Z. LisowskiFor further 
al
ulations we 
hoose �0 = �1 and G1 = 12 . Taking into a

ount(55) and (56) we redu
e (48)�(53) to the set of four equations:P (u) = �G2;uu(u;x � v;x)�G3;uu(u;t + v;t) ;Q(u) = �G2;uu(u;x � v;x) +G3;uu(u;t + v;t) ; (59)u;x � v;x = �2G3;u ;u;t + v;t = �2G2;u : (60)It will appear below that equations (60) establish the Bä
klund transforma-tion for equations (46). Using (60) we eliminate from (59) the derivativeswith respe
t to x and t:14(P (u) +Q(v)) = G2;uuG3;u ; (61)14(P (u) �Q(v)) = G3;uuG2;u : (62)Taking into a

ount relations between the derivatives of the se
ond order:G2;uu = �G2;uv; G3;uu = G3;uv we derive from (61) and (62) the following
onditions for G2 and G3:12P (u) = ��u(G2;uG3;u) ; (63)�12Q(v) = ��v (G2;uG3;u) : (64)It results from (63) and (64) that:G2;uG3;u = 12 [p(u)� q(v)℄ + 
onst: (65)A

ording to(57) and(58) we introdu
e the following notation: G2;u=f(u�v)and G3;u = g(u+ v). Then (65) be
omes:f(u� v)g(u + v) = 12 [p(u)� q(v)℄ + 
onst: (66)In order to determine admissible set of solutions of (66) we remove p(u) andq(v) from (66) by di�erentiation with respe
t to u and v:f 00(�)f(�) = g00(�)g(�) = ! ; (67)where � = u� v; � = u+ v. The separation 
onstants ! labels the solutionsof the one parameter family 
onsisting of three dis
onne
ted sets (! > 0;! = 0; ! < 0) 
orresponding to di�erent forms of the right-hand sides of the
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e of type of the Bä
klund transformation on the forms of the right-hand sidesof the initial equations (46).! f(�) and g(�) P (u) and Q(v) A;B;C;Df(�) = A expp!� P (u) = 4p! (AC exp 2p!u auto-Bä:! > 0 +B exp�p!� �BD exp�2p!u) C2 +D2 > 0g(�) = C expp!� Q(v) = 4p!(�BC exp 2p!v A = �B 6= 0+D exp�p!� +AD exp�2p!v) Bä: in other 
ases! = 0 f(�) = A� +B P (u) = 4ACu auto-Bä:g(�) = C� +D Q(v) = 4ACv 8A;C 2 Rf(�) = A 
osp�!� P (u) = 4p�![(BD �AC) sin 2p�!u auto-Bä:! < 0 +B sinp�!� +(AD +BC) 
os 2p�!u℄ A = B;C = Dg(�) = C 
osp�!� Q(v) = 4p�![(BD +AC) sin 2p�!v Bä: in other 
ases+D sinp�!� +(�AD +BC) 
os 2p�!v℄original equations. Depending on A;B;C and D parameters we obtain auto-Bä
klund (auto-Bä) or Bä
klund (Bä) transformation inside ea
h subset of! spa
e (Table I).Moreover, if we admit more general forms for P and Q in (46):u;xt = P (u; x; t) ; v;xt = Q(v; x; t) ;then the auto-Bä
klund transformation exists if and only if P = Pis(x)r(t)and Q = Qis(x)r(t) ; where Pi and Qi are given in Table I and s(x), r(t)are arbitrary fun
tions of x and t belonging to the 
lass C1. Similar resultwas obtained by Byrnes in [30℄.3.2.2. The nonlinear inhomogeneous ellipti
 Klein�Gordon equationIn this se
tion we apply the strong ne
essary 
ondition to the ellipti
nonlinear inhomogeneous Klein�Gordon equation:u;xx + u;tt = 
(x; t; u) ; (68)where x; t are the independent variables, u is the dependent variable, whereas
 is a fun
tion of x; t and u. The Lagrangian density whi
h leads to equation(68) has the form: L = 12(u2;x + u2;t) + � (x; t; u) ; (69)
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ha, Z. Lisowskiwhere �� (x; t; u)�u = 
(x; t; u) : (70)In order to derive the Bä
klund transformation from the strong ne
essary
ondition 
on
ept we de�ne the following gauge transformed fun
tional:��[u; v℄ = ZE2 ��12 (u2;x+u2;t) + �1(x; t; u)�+�0 �12(v2;x+v2;t)+�2(x; t; v)�	 dxdt+I1 + I2 + I3 ; (71)where I1; I2; I3 are the topologi
al invariants taken as:I1 = ZE2 G1(u; v)(u;xv;t � u;tv;x)dxdt ; (72)I2 = ZE2 DxG2(x; t; u; v)dxdt ; (73)I3 = ZE2 DtG3(x; t; u; v)dxdt : (74)In formulas (72)�(74) G1, G2 and G3 are arbitrary fun
tions of the givenarguments. Following the strong ne
essary 
ondition 
on
ept we obtain theset of equations:u : 
1(x; t; u)+G1;u(u;xv;t�u;tv;x)+(G2;xu+G2;uuu;x+G2;uvv;x)+(G3;tu +G3;uuu;t +G3;uvv;t) = 0 ; (75)v : �0
2(x; t; v)+G1;v(u;xv;t�u;tv;x)+(G2;xv+G2;uvu;x+G2;vvv;x)+(G3;tv +G3;uvu;t +G3;vvv;t) = 0 ; (76)u;x : u;x +G1v;t +G2;u = 0 ; (77)v;x : G1u;x + �0v;t +G3;v = 0 ; (78)u;t : u;t �G1v;x +G3;u = 0 ; (79)v;t : �G1u;t + �0v;x +G2;v = 0 : (80)We perform the redu
tion pro
edure for equations (77)�(80). AssumingG1=1; �0 = 1 and G3;u = �G2;v ; (81)G3;v = G2;u ; (82)



A Con
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essary Condition in . . . 2785we obtain two equations: u;x + v;t = �G2;u ; (83)u;t � v;x = G2;v : (84)Introdu
ing 
omplex variables: z = x + it, �z = x � it as the independentvariables and the new dependent variables: � = 12(u+ iv), � = 12(u� iv) weexpress (83) and (84) in the form:�;z = �14G2;� ; (85)�;�z = �14G2;� : (86)Equations (75) and (76) in those independent and dependent variables are:
1(z; �z; �+ �) + (G2;z� +G2;�z�)� 14(G2;��G2;� +G2;��G2;�) = 0 ; (87)
2(z; �z; �� �i ) + i(G2;z� �G2;�z�)� 14 i (G2;��G2;� �G2;��G2;�) = 0 : (88)In derivation of equations (87) and (88) we have used the fa
t that G2;�� = 0,whi
h results from (81) and (82). Following that property the fun
tion G2may be presented in the form:G2(z; �z; �; �) = A(z; �z; �) +B(z; �z; �) : (89)Substituting (89) into (87) and (88) we obtain:
1(z; �z; �+ �) + (A;z� +B;�z�)� 14(A;��B;� +B;��A;�) = 0 ; (90)
2(z; �z; �� �i ) + i(A;z� �B;�z�)� 14 i (A;��B;� �B;��A;�) = 0 : (91)Di�erentiating equation (90) with respe
t to � and �, and subtra
ting theobtained equations from ea
h other we have:A;z�� � 14A;���B;� = B;�z�� � 14A;�B;��� : (92)Equation (92) may be separated if we assume that: A;z = 0; B;�z = 0. There-fore, A;� = a1(�z) ep�� + a2(�z) e�p�� ; (93)B;� = b1(z) ep�� + b2(z) e�p�� ; (94)
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ha, Z. Lisowskiwhere a1; a2; b1; b2 are arbitrary fun
tions of the given arguments. Repeatingthe des
ribed above pro
edure for equation (91) we obtain the same solutionsfor A;� and B;�. Substituting (93) and (94) into (90) and (91) we obtain:
1(z; �z; �+ �) = p�2 ha1(�z)b1(z) ep�(�+�) � a2(�z)b2(z) e�p�(�+�)i ; (95)
2(z; �z; �� �i ) = ip�2 ha1(�z)b2(z) ep�(���) � a2(�z)b1(z) e�p�(���)i : (96)Thus, we have obtained that the Bä
klund transformation exists if the fun
-tions 
1 and 
2 are given by (95) and (96). Following (85) and (86) theBä
klund transformation has the form:�;z = �14 hb1(z) ep�� + b2(z) e�p��)i ; (97)�;�z = �14 ha1(�z) ep�� + a2(�z) e�p��)i : (98)In the spe
ial 
ase if �=�1, a1(�z)=�a2(�z)=�ia(�z) and b1(z) = �b2(z) =�ib(z) we obtain: �;z = �b(z)2 sin� ; (99)�;�z = �a(�z)2 sin� : (100)Formulas (95) and (96) take the form:
1(z; �z; � + �) = a(�z)b(z) sin(�+ �) ; (101)
2(z; �z; �� �i ) = a(�z)b(z) sinh(�� �i ) : (102)It results from the general form given by (97) and (98) that equation (68)admits the Bä
klund transformation if the right-hand side depends on inde-pendent variables in a spe
ial manner and the fun
tion of u has the form ofexponential, trigonometri
 sine and 
osine, and hyperboli
 sine and 
osinefun
tions. The obtained result 
orresponds to those 
onsidered in [31�35℄for the 
ase if 
1(x; t; u) = sinu and 
2(x; t; u) = sinhu.
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hrödinger equationWe 
onsider the Nonlinear S
hrödinger Equation (NLS) in the 
anoni
alform: iu;t + u;xx + 2u j u j2= 0 ; (103)where u(x; t) is a 
omplex valued fun
tion. Eq. (103) results from the leasta
tion prin
iple for the following Lagrangian density:L[u℄ = �u�;xu;x � i2(u�;tu� u�u;t)+ j u�u j2 : (104)The �eld fun
tions take values in the one-dimensional Complex Proje
tivespa
e CP1. The homotopy group �2(CP1) is equivalent to �2(S2) and inprin
iple it is possible to perform the Bogomolny de
omposition. In orderto derive the Bä
klund transformation we have to 
ombine two independentNLS equations: iu;t + u;xx + 2u j u j2= 0 ; (105)iv;t + v;xx + 2v j v j2= 0 ; (106)where all values of u(x; t) and v(x; t) 
ompose CP2 manifold. The identityof (105) and (106) limits our 
onsiderations to the auto-Bä
klund transfor-mation. The a
tion fun
tional for (105) and (106) has the following form:�[u; v℄ = ZE2 (L[u℄ + �0L[v℄)dxdt ; (107)where �0 is a Lagrange multiplier. In order to 
reate the topologi
al invariantwe assume that CP2 possesses the stru
ture of the Kähler manifold [36℄.Then the gauge transformation for (107) is generated by the following set ofthe topologi
al invariants:J1 = iZE2 �1(u+ v; u� + v�)hu;xu�;t � u�;xu;t + v;xv�;t � v�;xv;t+u;xv�;t � u�;xv;t + v;xu�;t � v�;xu;tidxdt ; (108)J2 = ZE2 Dx�2(u; v; u�; v�; u;x; v;x; u�;x; v�;x)dxdt ; (109)J3 = ZE2 Dt�3(u; v; u�; v�)dxdt ; (110)
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ha, Z. Lisowskiwhere �1(�; z�) 2 C1, �1(z; �)2C1 and �1 : (z; z�)! �1(z; z�)2R . �2 and�3 are the mappings of the C2 
lass with respe
t to all their arguments.(For 
onvenien
e we introdu
e the imaginary units on the front of the integralin (108).) The gauge transformation�� = �� I (111)is de�ned by I = J1 + J2 + J3. Applying the strong ne
essary 
onditions to(111) we obtain the following �eld equations:u;t : i2u� = �i�1(u�;x + v�;x) + �3;u : (112)u�;t : � i2u = i�1(u;x + v;x) + �3;u� : (113)v;t : �0 i2v� = �i�1(v�;x + u�;x) + �3;v : (114)v�;t : ��0 i2v = i�1(u;x + v;x) + �3;v� : (115)u;x : u�;x = �i�1(u�;t + v�;t)� �2;u : (116)u�;x : u;x = i�1(u;t + v;t)� �2;u� : (117)v;x : ��0v�;x = i�1(v�;t + u�;t) + �2;v : (118)v�;x : �0v;x = i�1(u;t + v;t)� �2;v� : (119)u : � i2u�;t + 2u(u�)2 = Dt�3;u +Dx�2;u + i�1�1
 : (120)u� : i2u;t + 2u�u2 = Dt�3;u� +Dx�2;u� + i�2�1
 : (121)v : ��0 i2v�;t + 2�0v(v�)2 = Dt�3;v +Dx�2;v + i�1�1
 : (122)v� : �0 i2v;t + 2�0v�v2 = Dt�3;v� +Dx�2;v� + i�2�1
 ; (123)where 
 = (u + v);x(u + v)�;t � (u + v)�;x(u + v);t. The symbols pre
eding
olons indi
ate the arguments of formal di�erentiations leading to the re-spe
tive equation. Eqs. (112)�(123) establish the simultaneous system ofequations for the nine unknown fun
tions: u; v; u�; v�; �1; �2; � �2 ; �3; � �3 .The fundamental problem is to 
onstitute (112)�(123) to be self 
onsistentand then to redu
e them to the two relations of the two 
omplex fun
tionsu and v. Let us assume that � �3;u = �3;u� , � �3;v = �3;v� and �0 = �1. Then,(112) and (114) are the 
omplex 
onjugated to (113) and (115), respe
tively.Additionally we assume that:�3(u; v; u�; v�) = i2(uv� � vu�) ; (124)



A Con
ept of Strong Ne
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h is 
onsistent with the earlier assumptions for �3. This form �nallyredu
es (112)�(115) to one equation:u� v = �2�1(u+ v);x : (125)We are able to assume the following form for �1:�1 = �12 ��2 � (u+ v)(u� + v�)��1=2 ; (126)where � is real and j u + v j is 
onstrained by � �1 = �1. (125) takes thefollowing �nal form:(u+ v);x = (u� v) ��2 � (u+ v)(u� + v�)�1=2 : (127)In the next step we form the 
onsisten
y between the remaining equations(116)�(119). In order to redu
e this set we assume the following 
onstraintsfor �2: � �2;u = �2;u� and � �2;v = �2;v� . Then (116)�(119) are redu
ed to:u;x = i�1(u+ v);t � �2;u� ; (128)v;x = �i�1(u+ v);t + �2;v� ; (129)where �1 is de�ned by (126).In order to obtain the 
onsisten
y between (128) and (129) we put:�2;u� = �u;x + 12(u;x � v;x) + 14(u+ v)2(u+ v)�	�1=2+14(u+ v) j u;x + v;x j2 	�3=2 ; (130)where 	 = �2 � (u + v)(u� + v�). Integrating (130) with respe
t to u� weobtain:�2 = 12 (u;x + v;x)(v� � u�)� 12 	1=2h23�2 + 13(u+ v)(u� + v�)i+12 	�1=2 j u;x + v;x j2 +�(u; v; u;x; v;x) ; (131)where �(u; v; u;x; v;x) is an arbitrary fun
tion of 
lass C2. The forms of termsappearing in (131) enable us to determine � in the following form:� = 12(v�;x + u�;x)(v � u) : (132)Substituting (132) into (131) we satisfy the 
onstraints for �2. Inserting(131) into (128) and (129) we re
eive two identi
al equations of the followingform:(u+v);t = i (u;x�v;x)	1=2+ i2(u+v)h j u+v j2+(u+v);x(u�+v�);x 	�1i: (133)
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ha, Z. LisowskiUsing (124), (126), (131) and (132) we redu
e (120), (121), (122) and (123)to the following single equation:i(u+ v);t + (u+ v);xx + 2(u j u j2 +v j v j2) = 0 : (134)Lemma. The following equations: (134), (127) and (133) are dependent.Proof. Di�erentiating (127) with respe
t to x and eliminating u;x + v;x andu�;x + v�;x by the use of (127) and its 
omplex 
onjugated one, we obtain:(u+v);xx=(u�v);x 	1=2� 12 �(u�v)2(u�+v�)+(u�v)(u+v)(u��v�)� : (135)Substituting (135) to (134) and performing some evaluations we derive:(u+ v);t = i(u� v);x 	1=2 + i2(u+ v)(2uu� + 2vv�) : (136)The dire
t 
al
ulations show that2uu� + 2vv� =j u+ v j2 +(u+ v);x(u� + v�);x 	�1 : (137)Therefore, the remaining independent relations: (127) and (133) establishthe desired auto-Bä
klund transformation of the nonlinear S
hrödinger equa-tion. If one 
ompares (127) and (133) with the well known form of theBä
klund transformation [37℄ then (127) is to be substituted into (133):(u+ v);t = i (u;x � v;x)	1=2 + i2(u+ v) �j u+ v j2 + j u� v j2� : (138)Finally, (127) and (138) represent the Bä
klund transformation in the 
anon-i
al form. 4. Con
lusionsThe introdu
ed 
on
ept of the strong ne
essary 
ondition leads to the du-ality equation asso
iated with the Euler equation. The highest order of theduality equations is lower then the order of the Euler equation. On prin
i-ple ea
h solution of the duality equation satis�es the Euler one, therefore,OD � OE, where OD and OE are sets of solutions of the duality and theEuler equations, respe
tively. This 
an be easily proved by transforming theduality equations into the Euler one by applying a di�erentiation. It wouldbe a great advantage to extend the above relation to OD � OE. In thegeneral 
ase this is not possible. In the worst 
ase OD 
ontains only a triv-ial solution or OD = ;. In order to extend OD to the nontrivial subset ofOE we apply two methods: gauge transformation of the a
tion fun
tionaland/or softening of the strong ne
essary 
ondition [12℄. If one su

eeds to
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essary Condition in . . . 2791eliminate all Gi (or in the 
ase of 
omplex �elds all �i) fun
tions from theduality equations without any di�erentiation pro
ess and without any 
on-straint for the �eld fun
tions then the �nal equations establish one of thefollowing forms: the Bogomolny de
omposition, the Bä
klund transforma-tion or a duality equation of the higher type. Duality equations 
orrespondto the Bogomolny de
omposition if they govern only the �eld fun
tion ap-pearing in the 
onsidered di�erential equation (45), whereas they 
orrespondto the Bä
klund transformation if they govern two independent �eld fun
-tions being unknowns of the two independent di�erential equations (46). Inthe general 
ase the higher type duality equations govern more then twoindependent �eld fun
tions. When does ea
h of these types appear? Thene
essary 
ondition to perform the Bogomolny de
omposition of the a
tionfun
tional is a nontrivial homotopy group asso
iated with the 
onsideredmodel (see Se
. 3.1.1, 3.1.2 and [29℄). In the 
ase of the trivial homotopygroup we 
ombine two (or more) independent models in su
h a way that theresulting homotopy group is nontrivial. As it was already mentioned above,su
h a pro
edure leads to the Bä
klund transformation or to the higher typesof the duality equations (Se
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