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A CONCEPT OF STRONG NECESSARY CONDITIONIN NONLINEAR FIELD THEORYK. Sokalskia;b, T. Wietehab and Z. LisowskibaInstitute of Computer Siene, Tehnial University of Cz�estohowa, PolandbInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived Marh 21, 2001; revised version reeived July 9, 2001)Conept of the strong neessary ondition for existene of the extremumof funtional is disussed as an alternative to the Euler equation. Thisonept leads to �eld equations of the order lower than the order of the Eulerequation. They appear as duality equations: Bogomolny deomposition orBäklund transformations. The derived formalism is presented and testedon some examples: nonlinear �-model, nonlinear Klein-Gordon equations(both hyperboli and ellipti) and nonlinear Shrödinger equation.PACS numbers: 02.30.Wd, 02.60.Lj1. IntrodutionTwo methods appliable in nonlinear �eld theories: the Bogomolny de-omposition [1�3℄ and the Bäklund transformation [4�7℄ seem to have om-mon bakground resulting from the onept of invariane of the �eld equationwith respet to the gauge transformation of the ation funtional [8�10℄.Therefore, it should be possible to derive one formalism whih generatesboth the Bogomolny deomposition and the Bäklund transformation aspartiular types of duality equations. How to unify derivation of both thesemethods? It is assumed that the �eld equation is the neessary onditionfor existene of an extremum of the ation funtional (Euler equation). Thegauge invariane of the �eld equations is equivalent to the invariane of theneessary onditions. But if one formulates the variational problem in suha way that the gauge transformation of the ation funtional breaks the in-variane of the neessary ondition then this transformation an ontributeto the �eld equation. If this new variational problem guarantees that theset of solutions of new equation is inluded in the solution set resultingfrom the Euler equation, then we derive a new tool for the nonlinear �eldtheory [11, 12℄. (2771)



2772 K. Sokalski, T. Wieteha, Z. LisowskiThe aim of this paper is to derive the �eld equations by applying a newneessary ondition to the gauge transformed ation funtional. We replaethe Euler theorem by the strong neessary ondition. This onept togetherwith the gauge transformations lead to the Bogomolny deomposition orto the Bäklund transformation. Analyzing di�erent nonlinear �eld modelswith the aid of the strong neessary ondition we derive some onlusionsonerning similarities and di�erenes between the Bogomolny deomposi-tion and the Bäklund transformation. On the basis of these onlusions wedraw a hypothesis about existene of other types of �duality equations�.The paper is organized in the following way: in Se. 2 we introduea onept of strong neessary onditions in the problem of extremum ofa funtional. Se. 3 ontains the test of the derived formalism. We re-derivethe Bogomolny deomposition for the two-dimensional �-model, the Bäk-lund transformation for the two lasses of nonlinear Klein�Gordon equations(hyperboli and ellipti) and for the nonlinear Shrödinger equation. In thelast setion we disuss the existene of the higher types of the duality equa-tions.2. Strong neessary ondition for extremum of a funtionalWe will limit all onsiderations to the one type of extremum, the mini-mum. If neessary, all onsiderations of this setion an be easily extendedto the maximum. Let us onsider the funtional of the following form:�[y℄ = ZX F (x; y; y0)dx ; (1)where y 2 C1 and F 2 C2. The funtional �[y℄ reahes a loal minimum fory = y� if there exists a neighborhood of the point y�K(y�; ") = fy 2 C1; ky � y�k < "g; (2)in whih �[y℄ � �[y�℄ for all y 2 K(y�; "). We onsider funtionals �[y℄ ona set of di�erentiable funtions. These funtions belong to the spae C1,where the norm is de�ned by:kykC1 = maxx jy(x)j+maxx jy0(x)j : (3)A �eld equation derived from the least ation priniple for the �xed bound-aries has the form of Euler's equation:F;y � ddxF;y0 = 0 : (4)



A Conept of Strong Neessary Condition in . . . 2773The idea of the Bogomolny deomposition and the Bäklund transformationis to derive simpler equations than (4) for the extremals of (1). The orders ofequations resulting from these onepts are usually lower. The order of (4)is usually higher then the highest order of the derivative of y(x) appearingin (1). Therefore, in order to derive the Bogomolny deomposition or theBäklund transformation from the least ation priniple one should not applythe Euler equation as the neessary ondition.Let us analyze the variation of �:Æ� = ZX �F;yh+ F;y0h0� dx ; (5)where h = Æy(x) is the inrement of the funtion y(x). In order to satisfy theneessary ondition Æ� = 0 in a di�erent way than (4) we set the followingondition: F;y0 = 0 ; (6)whih implies F;y = 0 : (7)We all (6) and (7) the strong neessary onditions. All solutions of (6) and(7) satisfy the Euler equation (4) but in most ases the set of solutions of (6)and (7) is trivial (y = 0) or empty. In order to extend this set to a nontrivialsubset of the solutions of (4) we use the gauge transformation of (1)�! �+ I (8)and instead of (4) we apply (6) and (7). For the variational problem (1) thegauge transformation is generated by the following funtional:I = ZX G(y)y0dx : (9)Eq. (9) is the topologial invariant with respet to the loal variation of y(x):ÆI � 0 ; (10)i.e. I[y℄ remains onstant while the �eld y(x) varies ontinuously preserv-ing its boundary onditions. Vanishing of ÆI under assumption about theloal variation of y(x) leads to the operational de�nition of the topologialinvariant expressed by its density G(y)y0 :�[G(y)y0 ℄�y � ddx �[G(y)y0 ℄�y0 � 0 : (11)Therefore, the Euler equations resulting from the extremum of � and theextremum of � + I are equivalent. However, (6) and (7) are not invariantwith respet to �! �+ I, i.e. the gauge transformation ontributes to the



2774 K. Sokalski, T. Wieteha, Z. Lisowskistrong neessary ondition. This ontribution an extend the subset of so-lutions to the nontrivial one. In this way we derive a simpler di�erentialequation for extremals of � whih solutions form a subset of the solutions ofthe Euler equation. Applying the neessary ondition: Æ� = 0 to the gaugetransformed funtional we obtain:�0 ZX hF;y �x; y; y0�h(x) + F;y0 �x; y; y0�h0(x)i dx+�1 ZX ��G(y)y0�;y h(x) + �G(y)y0�;y0 h0(x)� dx = 0 : (12)Applying the strong neessary ondition to (12) we derive the following �eldequations: �0F;y(x; y; y0) + �1G;y(y)y0 = 0 ;�0F;y0 (x; y; y0) + �1G(y) = 0 : (13)Formulas (13) establish a simultaneous set of equations for y(x) and G(y).It must be stressed again that any solution of (13) satis�es (4).2.1. Some generalizationsFor the purpose of realisti �eld theories we generalize our onsiderationsin two diretions:1. y depends on n independent variables: y = y(x1; x2; :::; xn).2. � depends on p independent funtions and their derivatives:� = �[y1; y1;x1 ; :::y1;xn ; y1;x1x1 ; y1;x1x2 ; :::; y2; y2;x1 ; :::; yp; yp;x1 ; :::℄ : (14)As an illustrative example we onsider a funtional of two arguments:�[u; v℄ = ZE2 F (u; u;x; u;t; u;xx; v; v;x; v;t; v;xx)dxdt ; (15)where u(�; t) 2 C2; u(x; �) 2 C1 ; (16)v(�; t) 2 C2; v(x; �) 2 C1:The gauge transformation of (15) is generated using the following topologialinvariants:



A Conept of Strong Neessary Condition in . . . 2775
I1 = ZE2 G1(u; v)(u;xv;t � u;tv;x) dxdt ; (17)I2 = ZE2 DxG2(u; v; u;x; v;x) dxdt ; (18)I3 = ZE2 DtG3(u; v) dxdt : (19)Sine the densities in (18) and (19) are total derivatives of G2 and G3, there-fore, we all them divergene terms. They an be onstruted for a smoothmap Mm1 !Mn2 for arbitrary dimensions m and n, where Mm1 and Mn2 areompat orientable manifolds. Non-divergene term (17) in the ase m = nis the degree of a smooth map (winding number, topologial harge). Thisquantity plays ruial role in the onstrution of topologially stable solu-tions. For the funtional (15) the list of invariants (17)�(19) may not besu�ient. In suh a ase one must extend dependene of G2 and G3 onthe higher derivatives of u and v. In the general ase the list of invariantsdepends on:(i) the number of independent variables,(ii) the number of dependent variables,(iii) the degrees of derivatives of the dependent variables present in (14).The strong neessary onditions for extremum of (15) are:F;u = 0 ; F;v = 0 ; F;u;x = 0 ; F;v;x = 0 ;F;u;t = 0 ; F;v;t = 0 ; F;u;xx = 0 ; F;v;xx = 0 : (20)In order to extend (20) to the nontrivial set of equations we apply the fol-lowing gauge transformation:�� = �+ I1 + I2 + I3 : (21)Applying the strong neessary ondition to �� we obtain:u : �0F;u +G1;u(u;xv;t � u;tv;x) +DxG2;u +DtG3;u = 0 ; (22)v : �0F;v +G1;v(u;xv;t � u;tv;x) +DxG2;v +DtG3;v = 0 ; (23)u;x : �0F;u;x +G1v;t + (G2;u +DxG2;u;x) = 0 ; (24)v;x : �0F;v;x �G1u;t + (G2;v +DxG2;v;x) = 0 ; (25)



2776 K. Sokalski, T. Wieteha, Z. Lisowskiu;t : �0F;u;t �G1v;x +G3;u = 0 ; (26)v;t : �0F;v;t +G1u;x +G3;v = 0 ; (27)u;xx : �0F;uxx +G2;u;x = 0 ; (28)v;xx : �0F;vxx +G2;v;x = 0 ; (29)where �0 is a Lagrange multiplier. In the simpli�ation proess of (22)�(29)the following ommutators have been used:� ��u;Dx� = 0 ; � ��v ;Dx� = 0 ;� ��u;x ;Dx� = ��u; � ��v;x ;Dx� = ��v ;� ��u;xx ;Dx� = ��u;x ; � ��v;xx ;Dx� = ��v;x :Equations (22)�(29) establish a set of simultaneous equations for u(x; t),v(x; t), G1; G2 and G3. 3. AppliationsThis setion is devoted to the two lasses of appliations of the derivedformalism: the Bogomolny deompositions and the Bäklund transforma-tions. In the �rst setion we present derivation of the �duality equations�for the �1(S1) and �2(S2) models. In the seond setion we give all the de-tails of derivations of the Bäklund transformations for the lass of nonlinearKlein�Gordon equations, both hyperboli and ellipti. Finally, we test ourformalism on the nonlinear Shrödinger equation.3.1. Bogomolny deompositionIn the study of some nonlinear models solutions an be obtained by on-sidering the �rst order di�erential equations (Bogomolny equations), insteadof more ompliated Euler�Lagrange equations [1, 13, 14℄. The traditionalmethod of deriving Bogomolny equations is based on transforming an ex-pression of the energy of a �eld on�guration to the positive determinedform whih the lower bound has topologial nature. In the study of topolog-ial solitons the Bogomolny equations play the speial role. In reent yearsthere have been numerous studies on the soliton solutions of Chern�Simonsgauge theories, Landau�Ginzburg model and the Maxwell�Chern�Simonstheory [1, 15, 16℄. Sine the Bogomolny method is based on the minimiza-tion of the energy the derived solutions are stati. Physially one an think ofthis property as re�eting the absene of stati fores between well-separated



A Conept of Strong Neessary Condition in . . . 2777single solitons. However, some time dependent solutions an be derived.De�ning the spae of stati soliton solutions of soliton number n (mod-uli spae Mn) the interating dynamis of several vorties has been on-struted [17℄. More powerful method then the traditional one is N = 2supersymmetri extension of the investigated model [18�20℄. In this formal-ism the energy of �eld on�guration is bounded below by the entral hargeof the supersymmetri algebra. The Bogomolny equations arise as algebrairesults from the following algorithm [21℄. Let us onsider a theory witha onserved topologial harge. (The entral harge for N = 2 supersym-metri version is equal to the topologial harge [22℄.) We shall onstruta supersymmetri extension of this theory. A topologial onservation law,if true in the original theory, will remain in the extended theory. The energyfuntional of extended theory should redue to that of the original theorywhen the extra physial �elds are eliminated. Conditions for suh a redu-tion appear to be the Bogomolny equations.In this setion we present derivation of the Bogomolny equations (Bogo-molny deomposition) resulting from the strong neessary ondition onept.In ontrast to the above mentioned approahes this derivation does not re-quire any bounds for the energy or ation funtional.3.1.1. Models assoiated with �1(S1) homotopy groupFollowing [1, 2℄ one an derive the above Bogomolny deomposition forthe one-dimensional salar �eld theory. We are looking for the lowest possi-ble stati energy in disonneted setors haraterized by the di�erent pos-sibilities for the asymptoti behavior of the �nite energy on�gurations. Letthe setors be lassi�ed by the elements of the homotopy group �1(S1) andlet the stati energy be of the following form:H[y℄ = ZX "12 �dy(x)dx �2 + U [y(x)℄# dx : (30)Then the ground state minimizing (30) must satisfy the assoiated Euler'sequation: y(x);xx = U;y[y(x)℄ : (31)Following the Bogomolny deomposition one splits H[y℄:H[y℄ = 12 ZX �dy(x)dx �p2(U [y℄� C)�2 dx+ I0 ; (32)where I0 = �ZX dy(x)dx p2(U [y℄� C)dx+ ZX Cdx (33)



2778 K. Sokalski, T. Wieteha, Z. Lisowskiis the topologial invariant. C is a onstant determinig the origin of theenergy sale and satisfying the following ondition:������ZX Cdx������ <1 : (34)It results from (32) that, y(x) is the minimum of (30) if and only if y(x)satis�es the �rst order di�erential equation:dy(x)dx �p2(U [y℄ �C) = 0 : (35)When (35) is derived by integration of the Euler equation then C playsthe role of integration onstants. Now we present derivation of (35) fromthe strong neessary ondition onept. Let us transform (30) to H�[y℄ =H[y℄ + I, where I and H are given by (9) and (30), respetively. Applying(13) we derive: U;y +G;yy;x = 0 ;y;x +G = 0 : (36)Eliminating G from (36) we obtain (35).3.1.2. Field equations assoiated with �2(S2) homotopy groupLess trivial problems orrespond to a mapping of the two-dimensionalspae of independent variables into a two-dimensional sphere. Let us assumethat all possible values of a ontinuous �eld establish a manifold isomor-phi to S2. This assumption is equivalent to the assumption of a onstantboundary onditions at in�nity. Therefore, any ontinuous �eld funtionsatisfying the boundary onditions an be lassi�ed by the homotopy lass.The set of all these lasses (and the rules of superposition) establish thehomotopy group �2(S2) [3, 23℄. This information is very important fromthe point of view of the strong neessary ondition onept. It determinesthe main topologial invariants used for the onstrution of the gauge trans-formation. There are several important �eld models lassi�ed by �2(S2):stati two-dimensional lassial Heisenberg model [24, 25℄, �eld models in(1+1)-dimensional spae generating soliton equations [26℄. In this setionwe present some results for the Heisenberg model (�-model). Belavin andPolyakov [24, 25℄ using the Bogomolny deomposition, found all topologialsolutions of the stati two-dimensional Heisenberg model. In this setionwe will re-derive their results by applying the strong neessary ondition



A Conept of Strong Neessary Condition in . . . 2779onept. In order to make diret use of the results from Se. 2 we iden-tify independent variables (x1; x2) with (x; t), respetively. We derive theirresults by the use of proedure (15)�(29). The model is governed by thefollowing di�erential equation:�w � 2w�(rw)21 + ww� = 0 ; (37)where w = (Sx + iSy)=(1 + Sz); Sx; Sy; Sz are omponents of the lassialHeisenberg spin, normalized to a onstant value: (Sx)2+(Sy)2+(Sz)2=onst.(37) results from the least �ation� priniple, where the �ation� is repre-sented by the integral of energy:H = ZE2 rwrw�(1 + ww�)2 dx1dx2 ; (38)where w is a omplex �eld on E2. It is su�ient to onsider only the invariantI1 from (17)�(19):I1 = ZE2 G1(w;w�)(w;x1w�;x2 � w;x2w�;x1) dx1dx2 : (39)We derive the following neessary onditions:w�;x1(1 + ww�)2 + w�;x2G1(w;w�) = 0 ; (40)w�;x2(1 + ww�)2 � w�;x1G1(w;w�) = 0 ; (41)�2w�rwrw�(1 + ww�)3 +G1;w(w;w�)(w;x1w�;x2 � w;x2w�;x1) = 0 ; (42)and ::Equations (40)�(42) and the omplex onjugated ones must be self onsis-tent. This requirement determines G1(w;w�) uniquely:G1(w;w�) = �i 1(1 + ww�)2 : (43)Substituting (43) into (41) and (42) we obtain the Belavin�Polyakov result:w�;x1 � iw�;x2 = 0 ;w;x1 + iw;x2 = 0 :



2780 K. Sokalski, T. Wieteha, Z. Lisowski3.2. The Bäklund transformationsBäklund transformation arose in the 19th entury and still remains theonly hope to onstrut su�iently ompliated exat solutions of nonlinearequations. The main idea of the Bäklund transformation is the following.Let S(u) = 0 and T (v) = 0 be two unoupled partial di�erential equations,in two independent variables x and t, for the two funtions u and v. LetRi = 0 be a pair of relations:Ri(u; v; u;x; v;x; u;t; v;t; ::::;x; t) = 0 (44)between the two funtions u and v, where i = 1; 2. Then Ri = 0 is a Bäk-lund transformation if it is integrable for v when S(u) = 0 and if resultingv is a solution of T (v) = 0, and vie versa. This approah to the solutionsof the equations S(u) = 0 and T (v) = 0 is useful if the relations (44) aresimpler then the original equations. The existene of the Bäklund trans-formations is usually taken as a riterion for omplete integrability. Thereare di�erent ways in whih the Bäklund transformations may be ahieved[4�7℄. The newest one is onneted with the zero urvature formulation[27, 28℄. For the large lass of equations admitting a zero urvature rep-resentation, the auto-Bäklund transformations an be reovered from theDarboux matrix onept. Very reently new variational approah to theBäklund transformations has been derived on the basis of the strong ne-essary ondition onept [12℄. This method is of the same struture as thevariational derivation of the Bogomolny deomposition desribed in Se. 3.1.Below we present some appliations of the strong neessary ondition toderivation of the Bäklund transformations.3.2.1. A lass of nonlinear Klein�Gordon equationsWe illustrate appliability of our method on the well known lass ofequations [7℄: u;xt = P (u) ; (45)where u satis�es (16) and 9 p : p;u = P (u). Eq. (45) possesses poor topology,i.e. all on�gurations of the �eld u(x; t) satisfying the boundary onditionsare lassi�ed by the elements of the homotopy group �2(S1), whih is trivial.In order to onstrut topologial invariant (17) we have to onsider a modelorresponding to the nontrivial homotopy group �2(S2). Thus we ombinetwo independent equations of (45) type:u;xt = P (u) ; v;xt = Q(v) ; (46)where u and v satisfy (16) and 9 p : p;u = P (u);9 q : q;v = Q(v). The non-linear Klein�Gordon system enables us to formulate the following problem:



A Conept of Strong Neessary Condition in . . . 2781What are the forms of P (u) and Q(v) for whih (46) possesses the Bäklundtransformation? We start from writing down the ation funtional:�[u; v℄ = ZE2 �12u;xu;t + p(u) + �0(12v;xv;t + q(v))� dxdt : (47)For the purpose of the strong neessary ondition onept we generate thegauge transformation with (17)�(19), where for simpliity we redue G2 tothe following form: G2 = G2(u; v). Applying the onept of the strongneessary ondition to the gauge transformed �� = �+I1+I2+I3 we derivethe following �eld equations:u : P (u)+G1;u(u;xv;t�u;tv;x)+G2;uuu;x+G2;uvv;x+G3;uuu;t+G3;uvv;t=0 ; (48)v : �0Q(v)+G1;v(u;xv;t�u;tv;x)+G2;uvu;x+G2;vvv;x+G3;vuu;t+G3;vvv;t=0 ; (49)u;x : 12u;t +G1v;t +G2;u = 0 ; (50)v;x : �02 v;t �G1u;t +G2;v = 0 ; (51)u;t : 12u;x �G1v;x +G3;u = 0 ; (52)v;t : �02 v;x +G1u;x +G3;v = 0 : (53)First of all (48)�(53) must be self onsistent. Formally, we have six simulta-neous equations for the �ve unknown funtions: u; v;G1; G2; G3. Therefore,in the �rst step we must derease the number of equations to four by making(48)�(53) linearly dependent. We ahieve this by the following onditions:�04 +G21 = 0 ; (54)2G1G2;u +G2;v = 0 ; (55)2G1G3;u �G3;v = 0 : (56)(54)�(56) imply that G1 must be onstant: G1 = �p��02 while �0 < 0 andG2 = G2� up��0 � v� ; (57)G3 = G3� up��0 + v� : (58)



2782 K. Sokalski, T. Wieteha, Z. LisowskiFor further alulations we hoose �0 = �1 and G1 = 12 . Taking into aount(55) and (56) we redue (48)�(53) to the set of four equations:P (u) = �G2;uu(u;x � v;x)�G3;uu(u;t + v;t) ;Q(u) = �G2;uu(u;x � v;x) +G3;uu(u;t + v;t) ; (59)u;x � v;x = �2G3;u ;u;t + v;t = �2G2;u : (60)It will appear below that equations (60) establish the Bäklund transforma-tion for equations (46). Using (60) we eliminate from (59) the derivativeswith respet to x and t:14(P (u) +Q(v)) = G2;uuG3;u ; (61)14(P (u) �Q(v)) = G3;uuG2;u : (62)Taking into aount relations between the derivatives of the seond order:G2;uu = �G2;uv; G3;uu = G3;uv we derive from (61) and (62) the followingonditions for G2 and G3:12P (u) = ��u(G2;uG3;u) ; (63)�12Q(v) = ��v (G2;uG3;u) : (64)It results from (63) and (64) that:G2;uG3;u = 12 [p(u)� q(v)℄ + onst: (65)Aording to(57) and(58) we introdue the following notation: G2;u=f(u�v)and G3;u = g(u+ v). Then (65) beomes:f(u� v)g(u + v) = 12 [p(u)� q(v)℄ + onst: (66)In order to determine admissible set of solutions of (66) we remove p(u) andq(v) from (66) by di�erentiation with respet to u and v:f 00(�)f(�) = g00(�)g(�) = ! ; (67)where � = u� v; � = u+ v. The separation onstants ! labels the solutionsof the one parameter family onsisting of three disonneted sets (! > 0;! = 0; ! < 0) orresponding to di�erent forms of the right-hand sides of the



A Conept of Strong Neessary Condition in . . . 2783TABLE IDependene of type of the Bäklund transformation on the forms of the right-hand sidesof the initial equations (46).! f(�) and g(�) P (u) and Q(v) A;B;C;Df(�) = A expp!� P (u) = 4p! (AC exp 2p!u auto-Bä:! > 0 +B exp�p!� �BD exp�2p!u) C2 +D2 > 0g(�) = C expp!� Q(v) = 4p!(�BC exp 2p!v A = �B 6= 0+D exp�p!� +AD exp�2p!v) Bä: in other ases! = 0 f(�) = A� +B P (u) = 4ACu auto-Bä:g(�) = C� +D Q(v) = 4ACv 8A;C 2 Rf(�) = A osp�!� P (u) = 4p�![(BD �AC) sin 2p�!u auto-Bä:! < 0 +B sinp�!� +(AD +BC) os 2p�!u℄ A = B;C = Dg(�) = C osp�!� Q(v) = 4p�![(BD +AC) sin 2p�!v Bä: in other ases+D sinp�!� +(�AD +BC) os 2p�!v℄original equations. Depending on A;B;C and D parameters we obtain auto-Bäklund (auto-Bä) or Bäklund (Bä) transformation inside eah subset of! spae (Table I).Moreover, if we admit more general forms for P and Q in (46):u;xt = P (u; x; t) ; v;xt = Q(v; x; t) ;then the auto-Bäklund transformation exists if and only if P = Pis(x)r(t)and Q = Qis(x)r(t) ; where Pi and Qi are given in Table I and s(x), r(t)are arbitrary funtions of x and t belonging to the lass C1. Similar resultwas obtained by Byrnes in [30℄.3.2.2. The nonlinear inhomogeneous ellipti Klein�Gordon equationIn this setion we apply the strong neessary ondition to the elliptinonlinear inhomogeneous Klein�Gordon equation:u;xx + u;tt = (x; t; u) ; (68)where x; t are the independent variables, u is the dependent variable, whereas is a funtion of x; t and u. The Lagrangian density whih leads to equation(68) has the form: L = 12(u2;x + u2;t) + � (x; t; u) ; (69)



2784 K. Sokalski, T. Wieteha, Z. Lisowskiwhere �� (x; t; u)�u = (x; t; u) : (70)In order to derive the Bäklund transformation from the strong neessaryondition onept we de�ne the following gauge transformed funtional:��[u; v℄ = ZE2 ��12 (u2;x+u2;t) + �1(x; t; u)�+�0 �12(v2;x+v2;t)+�2(x; t; v)�	 dxdt+I1 + I2 + I3 ; (71)where I1; I2; I3 are the topologial invariants taken as:I1 = ZE2 G1(u; v)(u;xv;t � u;tv;x)dxdt ; (72)I2 = ZE2 DxG2(x; t; u; v)dxdt ; (73)I3 = ZE2 DtG3(x; t; u; v)dxdt : (74)In formulas (72)�(74) G1, G2 and G3 are arbitrary funtions of the givenarguments. Following the strong neessary ondition onept we obtain theset of equations:u : 1(x; t; u)+G1;u(u;xv;t�u;tv;x)+(G2;xu+G2;uuu;x+G2;uvv;x)+(G3;tu +G3;uuu;t +G3;uvv;t) = 0 ; (75)v : �02(x; t; v)+G1;v(u;xv;t�u;tv;x)+(G2;xv+G2;uvu;x+G2;vvv;x)+(G3;tv +G3;uvu;t +G3;vvv;t) = 0 ; (76)u;x : u;x +G1v;t +G2;u = 0 ; (77)v;x : G1u;x + �0v;t +G3;v = 0 ; (78)u;t : u;t �G1v;x +G3;u = 0 ; (79)v;t : �G1u;t + �0v;x +G2;v = 0 : (80)We perform the redution proedure for equations (77)�(80). AssumingG1=1; �0 = 1 and G3;u = �G2;v ; (81)G3;v = G2;u ; (82)



A Conept of Strong Neessary Condition in . . . 2785we obtain two equations: u;x + v;t = �G2;u ; (83)u;t � v;x = G2;v : (84)Introduing omplex variables: z = x + it, �z = x � it as the independentvariables and the new dependent variables: � = 12(u+ iv), � = 12(u� iv) weexpress (83) and (84) in the form:�;z = �14G2;� ; (85)�;�z = �14G2;� : (86)Equations (75) and (76) in those independent and dependent variables are:1(z; �z; �+ �) + (G2;z� +G2;�z�)� 14(G2;��G2;� +G2;��G2;�) = 0 ; (87)2(z; �z; �� �i ) + i(G2;z� �G2;�z�)� 14 i (G2;��G2;� �G2;��G2;�) = 0 : (88)In derivation of equations (87) and (88) we have used the fat that G2;�� = 0,whih results from (81) and (82). Following that property the funtion G2may be presented in the form:G2(z; �z; �; �) = A(z; �z; �) +B(z; �z; �) : (89)Substituting (89) into (87) and (88) we obtain:1(z; �z; �+ �) + (A;z� +B;�z�)� 14(A;��B;� +B;��A;�) = 0 ; (90)2(z; �z; �� �i ) + i(A;z� �B;�z�)� 14 i (A;��B;� �B;��A;�) = 0 : (91)Di�erentiating equation (90) with respet to � and �, and subtrating theobtained equations from eah other we have:A;z�� � 14A;���B;� = B;�z�� � 14A;�B;��� : (92)Equation (92) may be separated if we assume that: A;z = 0; B;�z = 0. There-fore, A;� = a1(�z) ep�� + a2(�z) e�p�� ; (93)B;� = b1(z) ep�� + b2(z) e�p�� ; (94)



2786 K. Sokalski, T. Wieteha, Z. Lisowskiwhere a1; a2; b1; b2 are arbitrary funtions of the given arguments. Repeatingthe desribed above proedure for equation (91) we obtain the same solutionsfor A;� and B;�. Substituting (93) and (94) into (90) and (91) we obtain:1(z; �z; �+ �) = p�2 ha1(�z)b1(z) ep�(�+�) � a2(�z)b2(z) e�p�(�+�)i ; (95)2(z; �z; �� �i ) = ip�2 ha1(�z)b2(z) ep�(���) � a2(�z)b1(z) e�p�(���)i : (96)Thus, we have obtained that the Bäklund transformation exists if the fun-tions 1 and 2 are given by (95) and (96). Following (85) and (86) theBäklund transformation has the form:�;z = �14 hb1(z) ep�� + b2(z) e�p��)i ; (97)�;�z = �14 ha1(�z) ep�� + a2(�z) e�p��)i : (98)In the speial ase if �=�1, a1(�z)=�a2(�z)=�ia(�z) and b1(z) = �b2(z) =�ib(z) we obtain: �;z = �b(z)2 sin� ; (99)�;�z = �a(�z)2 sin� : (100)Formulas (95) and (96) take the form:1(z; �z; � + �) = a(�z)b(z) sin(�+ �) ; (101)2(z; �z; �� �i ) = a(�z)b(z) sinh(�� �i ) : (102)It results from the general form given by (97) and (98) that equation (68)admits the Bäklund transformation if the right-hand side depends on inde-pendent variables in a speial manner and the funtion of u has the form ofexponential, trigonometri sine and osine, and hyperboli sine and osinefuntions. The obtained result orresponds to those onsidered in [31�35℄for the ase if 1(x; t; u) = sinu and 2(x; t; u) = sinhu.



A Conept of Strong Neessary Condition in . . . 27873.2.3. The nonlinear Shrödinger equationWe onsider the Nonlinear Shrödinger Equation (NLS) in the anonialform: iu;t + u;xx + 2u j u j2= 0 ; (103)where u(x; t) is a omplex valued funtion. Eq. (103) results from the leastation priniple for the following Lagrangian density:L[u℄ = �u�;xu;x � i2(u�;tu� u�u;t)+ j u�u j2 : (104)The �eld funtions take values in the one-dimensional Complex Projetivespae CP1. The homotopy group �2(CP1) is equivalent to �2(S2) and inpriniple it is possible to perform the Bogomolny deomposition. In orderto derive the Bäklund transformation we have to ombine two independentNLS equations: iu;t + u;xx + 2u j u j2= 0 ; (105)iv;t + v;xx + 2v j v j2= 0 ; (106)where all values of u(x; t) and v(x; t) ompose CP2 manifold. The identityof (105) and (106) limits our onsiderations to the auto-Bäklund transfor-mation. The ation funtional for (105) and (106) has the following form:�[u; v℄ = ZE2 (L[u℄ + �0L[v℄)dxdt ; (107)where �0 is a Lagrange multiplier. In order to reate the topologial invariantwe assume that CP2 possesses the struture of the Kähler manifold [36℄.Then the gauge transformation for (107) is generated by the following set ofthe topologial invariants:J1 = iZE2 �1(u+ v; u� + v�)hu;xu�;t � u�;xu;t + v;xv�;t � v�;xv;t+u;xv�;t � u�;xv;t + v;xu�;t � v�;xu;tidxdt ; (108)J2 = ZE2 Dx�2(u; v; u�; v�; u;x; v;x; u�;x; v�;x)dxdt ; (109)J3 = ZE2 Dt�3(u; v; u�; v�)dxdt ; (110)



2788 K. Sokalski, T. Wieteha, Z. Lisowskiwhere �1(�; z�) 2 C1, �1(z; �)2C1 and �1 : (z; z�)! �1(z; z�)2R . �2 and�3 are the mappings of the C2 lass with respet to all their arguments.(For onveniene we introdue the imaginary units on the front of the integralin (108).) The gauge transformation�� = �� I (111)is de�ned by I = J1 + J2 + J3. Applying the strong neessary onditions to(111) we obtain the following �eld equations:u;t : i2u� = �i�1(u�;x + v�;x) + �3;u : (112)u�;t : � i2u = i�1(u;x + v;x) + �3;u� : (113)v;t : �0 i2v� = �i�1(v�;x + u�;x) + �3;v : (114)v�;t : ��0 i2v = i�1(u;x + v;x) + �3;v� : (115)u;x : u�;x = �i�1(u�;t + v�;t)� �2;u : (116)u�;x : u;x = i�1(u;t + v;t)� �2;u� : (117)v;x : ��0v�;x = i�1(v�;t + u�;t) + �2;v : (118)v�;x : �0v;x = i�1(u;t + v;t)� �2;v� : (119)u : � i2u�;t + 2u(u�)2 = Dt�3;u +Dx�2;u + i�1�1
 : (120)u� : i2u;t + 2u�u2 = Dt�3;u� +Dx�2;u� + i�2�1
 : (121)v : ��0 i2v�;t + 2�0v(v�)2 = Dt�3;v +Dx�2;v + i�1�1
 : (122)v� : �0 i2v;t + 2�0v�v2 = Dt�3;v� +Dx�2;v� + i�2�1
 ; (123)where 
 = (u + v);x(u + v)�;t � (u + v)�;x(u + v);t. The symbols preedingolons indiate the arguments of formal di�erentiations leading to the re-spetive equation. Eqs. (112)�(123) establish the simultaneous system ofequations for the nine unknown funtions: u; v; u�; v�; �1; �2; � �2 ; �3; � �3 .The fundamental problem is to onstitute (112)�(123) to be self onsistentand then to redue them to the two relations of the two omplex funtionsu and v. Let us assume that � �3;u = �3;u� , � �3;v = �3;v� and �0 = �1. Then,(112) and (114) are the omplex onjugated to (113) and (115), respetively.Additionally we assume that:�3(u; v; u�; v�) = i2(uv� � vu�) ; (124)



A Conept of Strong Neessary Condition in . . . 2789whih is onsistent with the earlier assumptions for �3. This form �nallyredues (112)�(115) to one equation:u� v = �2�1(u+ v);x : (125)We are able to assume the following form for �1:�1 = �12 ��2 � (u+ v)(u� + v�)��1=2 ; (126)where � is real and j u + v j is onstrained by � �1 = �1. (125) takes thefollowing �nal form:(u+ v);x = (u� v) ��2 � (u+ v)(u� + v�)�1=2 : (127)In the next step we form the onsisteny between the remaining equations(116)�(119). In order to redue this set we assume the following onstraintsfor �2: � �2;u = �2;u� and � �2;v = �2;v� . Then (116)�(119) are redued to:u;x = i�1(u+ v);t � �2;u� ; (128)v;x = �i�1(u+ v);t + �2;v� ; (129)where �1 is de�ned by (126).In order to obtain the onsisteny between (128) and (129) we put:�2;u� = �u;x + 12(u;x � v;x) + 14(u+ v)2(u+ v)�	�1=2+14(u+ v) j u;x + v;x j2 	�3=2 ; (130)where 	 = �2 � (u + v)(u� + v�). Integrating (130) with respet to u� weobtain:�2 = 12 (u;x + v;x)(v� � u�)� 12 	1=2h23�2 + 13(u+ v)(u� + v�)i+12 	�1=2 j u;x + v;x j2 +�(u; v; u;x; v;x) ; (131)where �(u; v; u;x; v;x) is an arbitrary funtion of lass C2. The forms of termsappearing in (131) enable us to determine � in the following form:� = 12(v�;x + u�;x)(v � u) : (132)Substituting (132) into (131) we satisfy the onstraints for �2. Inserting(131) into (128) and (129) we reeive two idential equations of the followingform:(u+v);t = i (u;x�v;x)	1=2+ i2(u+v)h j u+v j2+(u+v);x(u�+v�);x 	�1i: (133)



2790 K. Sokalski, T. Wieteha, Z. LisowskiUsing (124), (126), (131) and (132) we redue (120), (121), (122) and (123)to the following single equation:i(u+ v);t + (u+ v);xx + 2(u j u j2 +v j v j2) = 0 : (134)Lemma. The following equations: (134), (127) and (133) are dependent.Proof. Di�erentiating (127) with respet to x and eliminating u;x + v;x andu�;x + v�;x by the use of (127) and its omplex onjugated one, we obtain:(u+v);xx=(u�v);x 	1=2� 12 �(u�v)2(u�+v�)+(u�v)(u+v)(u��v�)� : (135)Substituting (135) to (134) and performing some evaluations we derive:(u+ v);t = i(u� v);x 	1=2 + i2(u+ v)(2uu� + 2vv�) : (136)The diret alulations show that2uu� + 2vv� =j u+ v j2 +(u+ v);x(u� + v�);x 	�1 : (137)Therefore, the remaining independent relations: (127) and (133) establishthe desired auto-Bäklund transformation of the nonlinear Shrödinger equa-tion. If one ompares (127) and (133) with the well known form of theBäklund transformation [37℄ then (127) is to be substituted into (133):(u+ v);t = i (u;x � v;x)	1=2 + i2(u+ v) �j u+ v j2 + j u� v j2� : (138)Finally, (127) and (138) represent the Bäklund transformation in the anon-ial form. 4. ConlusionsThe introdued onept of the strong neessary ondition leads to the du-ality equation assoiated with the Euler equation. The highest order of theduality equations is lower then the order of the Euler equation. On prini-ple eah solution of the duality equation satis�es the Euler one, therefore,OD � OE, where OD and OE are sets of solutions of the duality and theEuler equations, respetively. This an be easily proved by transforming theduality equations into the Euler one by applying a di�erentiation. It wouldbe a great advantage to extend the above relation to OD � OE. In thegeneral ase this is not possible. In the worst ase OD ontains only a triv-ial solution or OD = ;. In order to extend OD to the nontrivial subset ofOE we apply two methods: gauge transformation of the ation funtionaland/or softening of the strong neessary ondition [12℄. If one sueeds to



A Conept of Strong Neessary Condition in . . . 2791eliminate all Gi (or in the ase of omplex �elds all �i) funtions from theduality equations without any di�erentiation proess and without any on-straint for the �eld funtions then the �nal equations establish one of thefollowing forms: the Bogomolny deomposition, the Bäklund transforma-tion or a duality equation of the higher type. Duality equations orrespondto the Bogomolny deomposition if they govern only the �eld funtion ap-pearing in the onsidered di�erential equation (45), whereas they orrespondto the Bäklund transformation if they govern two independent �eld fun-tions being unknowns of the two independent di�erential equations (46). Inthe general ase the higher type duality equations govern more then twoindependent �eld funtions. When does eah of these types appear? Theneessary ondition to perform the Bogomolny deomposition of the ationfuntional is a nontrivial homotopy group assoiated with the onsideredmodel (see Se. 3.1.1, 3.1.2 and [29℄). In the ase of the trivial homotopygroup we ombine two (or more) independent models in suh a way that theresulting homotopy group is nontrivial. As it was already mentioned above,suh a proedure leads to the Bäklund transformation or to the higher typesof the duality equations (Se. 3.2.1, 3.2.2, 3.2.3 and [12℄).REFERENCES[1℄ E.B. Bogomolny, Sov. J. Nul. Phys. 24, 861 (1976).[2℄ B. Felsager, Geometry, Partiles and Fields, Odense University Press 1981,p. 140.[3℄ A.S. Shwarz, Quantum Field Theory and Topology (in Russian), Nauka,Mosow 1989, se. II.[4℄ A.V. Bäklund, Einiges über Curven und Flähentransformationen, Lund Uni-versitets Arsskrift 10, (1875).[5℄ C. Rogers, Soliton Theory: A Survey of Results, Ed. A.P. Fordy, ManhesterUniversity Press 1990, p. 97.[6℄ B.K. Harrison, in Leture Notes in Physis 226, Non-Linear Equations inClassial and Quantum Field Theory, Ed. N. Sanhez, Springer Verlag, Berlin�Heidelberg�New York�Tokyo 1985, p. 45.[7℄ H. Rund, in Leture Notes in Mathematis 515, Bäklund Transformations, theInverse Sattering Method, Solitons, and their Appliations, Ed. R.M. Miura,Springer Verlag, Berlin�Heidelberg�New York 1976, p. 199.[8℄ K. Sokalski, Ata Phys. Pol. A56, 571 (1979).[9℄ K. Sokalski, Phys. Lett. A81, 102 (1981).[10℄ P.T. Johym, K. Sokalski, J. Phys. A26, 3837 (1993).[11℄ K. Sokalski, Ata Phys. Pol. A60, 3 (1981).[12℄ K. Sokalski, T. Wieteha, Z. Lisowski, Ata Phys. Pol. B32, 17 (2001).
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