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Concept of the strong necessary condition for existence of the extremum
of functional is discussed as an alternative to the Euler equation. This
concept leads to field equations of the order lower than the order of the Euler
equation. They appear as duality equations: Bogomolny decomposition or
Bécklund transformations. The derived formalism is presented and tested
on some examples: nonlinear o-model, nonlinear Klein-Gordon equations
(both hyperbolic and elliptic) and nonlinear Schrédinger equation.

PACS numbers: 02.30.Wd, 02.60.Lj

1. Introduction

Two methods applicable in nonlinear field theories: the Bogomolny de-
composition [1-3] and the Bécklund transformation [4-7] seem to have com-
mon background resulting from the concept of invariance of the field equation
with respect to the gauge transformation of the action functional [8-10].
Therefore, it should be possible to derive one formalism which generates
both the Bogomolny decomposition and the Bécklund transformation as
particular types of duality equations. How to unify derivation of both these
methods? It is assumed that the field equation is the necessary condition
for existence of an extremum of the action functional (Euler equation). The
gauge invariance of the field equations is equivalent to the invariance of the
necessary conditions. But if one formulates the variational problem in such
a way that the gauge transformation of the action functional breaks the in-
variance of the necessary condition then this transformation can contribute
to the field equation. If this new variational problem guarantees that the
set of solutions of new equation is included in the solution set resulting
from the Euler equation, then we derive a new tool for the nonlinear field
theory [11,12].
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The aim of this paper is to derive the field equations by applying a new
necessary condition to the gauge transformed action functional. We replace
the Euler theorem by the strong necessary condition. This concept together
with the gauge transformations lead to the Bogomolny decomposition or
to the Bécklund transformation. Analyzing different nonlinear field models
with the aid of the strong necessary condition we derive some conclusions
concerning similarities and differences between the Bogomolny decomposi-
tion and the Bécklund transformation. On the basis of these conclusions we
draw a hypothesis about existence of other types of “duality equations”.

The paper is organized in the following way: in Sec. 2 we introduce
a concept of strong necessary conditions in the problem of extremum of
a functional. Sec. 3 contains the test of the derived formalism. We re-derive
the Bogomolny decomposition for the two-dimensional o-model, the Béck-
lund transformation for the two classes of nonlinear Klein—-Gordon equations
(hyperbolic and elliptic) and for the nonlinear Schrodinger equation. In the
last section we discuss the existence of the higher types of the duality equa-
tions.

2. Strong necessary condition for extremum of a functional

We will limit all considerations to the one type of extremum, the mini-
mum. If necessary, all considerations of this section can be easily extended
to the maximum. Let us consider the functional of the following form:

o) = [ Flo.p)do. 0

X

where y € C! and F € C2%. The functional ®[y] reaches a local minimum for
y = y* if there exists a neighborhood of the point y*

K(y,e)={yeC', |ly—y*ll <e}, (2)

in which @[y] > P[y*] for all y € K(y*, ). We consider functionals ®[y] on
a set of differentiable functions. These functions belong to the space C',
where the norm is defined by:

Iyller = max|y(e)| + max]y ()] 3)

A field equation derived from the least action principle for the fixed bound-
aries has the form of Euler’s equation:

4 p

7y_% 7y’zo' (4)
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The idea of the Bogomolny decomposition and the Bécklund transformation
is to derive simpler equations than (4) for the extremals of (1). The orders of
equations resulting from these concepts are usually lower. The order of (4)
is usually higher then the highest order of the derivative of y(z) appearing
in (1). Therefore, in order to derive the Bogomolny decomposition or the
Béacklund transformation from the least action principle one should not apply
the Euler equation as the necessary condition.
Let us analyze the variation of @:

5 = / (Fyh+F b)) do, (5)
X

where h = dy(z) is the increment of the function y(x). In order to satisfy the
necessary condition 0¢ = 0 in a different way than (4) we set the following
condition:

F,=0, (6)
which implies

F,=0. (7)
We call (6) and (7) the strong necessary conditions. All solutions of (6) and
(7) satistfy the Euler equation (4) but in most cases the set of solutions of (6)
and (7) is trivial (y = 0) or empty. In order to extend this set to a nontrivial

subset of the solutions of (4) we use the gauge transformation of (1)

® P+ 1 (8)

and instead of (4) we apply (6) and (7). For the variational problem (1) the
gauge transformation is generated by the following functional:

= / Gly)y da (9)
X

Eq. (9) is the topological invariant with respect to the local variation of y(x):
ST =0, (10)

i.e. I[y] remains constant while the field y(x) varies continuously preserv-
ing its boundary conditions. Vanishing of 61 under assumption about the
local variation of y(z) leads to the operational definition of the topological

invariant expressed by its density G(y)y :
IGyy]  d IGy)y]
oy dr Oy
Therefore, the Euler equations resulting from the extremum of ¢ and the

extremum of ¢ + I are equivalent. However, (6) and (7) are not invariant
with respect to @ — @ + I, i.e. the gauge transformation contributes to the

0. (11)
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strong necessary condition. This contribution can extend the subset of so-
lutions to the nontrivial one. In this way we derive a simpler differential
equation for extremals of @ which solutions form a subset of the solutions of
the Euler equation. Applying the necessary condition: §® = 0 to the gauge
transformed functional we obtain:

)\0/ [Fy (m,y,y’> h(z) + FJ (m,y,y’> h

X

!

(m)} dz

) W (x)] drx=0. (12)
Y

ox [ (@) o + (o)
X

Applying the strong necessary condition to (12) we derive the following field
equations:

MNoFy(z,y,y) +MGyly)y =0,
MNF ;(2,5,9) + MG(y) = 0. (13)

Formulas (13) establish a simultaneous set of equations for y(z) and G(y).
It must be stressed again that any solution of (13) satisfies (4).

2.1. Some generalizations

For the purpose of realistic field theories we generalize our considerations
in two directions:

1. y depends on n independent variables: y = y(z1, z9, ..., Tp).

2. @ depends on p independent functions and their derivatives:

d = é[yla Y,z1s - Ylxns Yl,z121 Y1209 s Y2, Y2,215 -9 Ups Up, 15 ] . (14)

As an illustrative example we consider a functional of two arguments:

Plu,v] = /F(u,u’z,u’t,u’m,v,v@,v’t,v’m)dmdt, (15)
E2
where
U’('at) € 027 U’("L‘a ) S Cla (16)
v(-,t) € C?, v(z, ) € CL.

The gauge transformation of (15) is generated using the following topological
invariants:
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L = /Gl(u,v)(u,mqt—u7tv7x)dxdt, (17)
E‘2

b = [ DiGa(u,v.u,.) ot (18)
E‘Z

I; = /DtGg(u,v) dxdt . (19)
E2

Since the densities in (18) and (19) are total derivatives of G5 and G35, there-
fore, we call them divergence terms. They can be constructed for a smooth
map M{" — M3 for arbitrary dimensions m and n, where M{" and M3 are
compact orientable manifolds. Non-divergence term (17) in the case m =n
is the degree of a smooth map (winding number, topological charge). This
quantity plays crucial role in the construction of topologically stable solu-
tions. For the functional (15) the list of invariants (17)-(19) may not be
sufficient. In such a case one must extend dependence of G5 and G3 on
the higher derivatives of u and v. In the general case the list of invariants
depends on:

(i) the number of independent variables,
(7i) the number of dependent variables,

(iii) the degrees of derivatives of the dependent variables present in (14).

The strong necessary conditions for extremum of (15) are:

Euzoa EUZO, Eu,zzoa F,’U,z:Oa
Fu,=0, Fy,, =0, F,.=0, —0.

sU

(20)

U,z

In order to extend (20) to the nontrivial set of equations we apply the fol-
lowing gauge transformation:

¢*:¢+11+IQ+13. (21)
Applying the strong necessary condition to ®* we obtain:

MFy+Gry(uzvy —ugvy,)+ DyGoy + DiGsy =0,

: MFy+Grp(ugvy —ugve) + DyGoy + DGz, =0,
Uy MFy, +Gg+ (G + DyGay ) =0,
Vg MFy, —Giug+ (Gop + DyGay ) =0,
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Uy : AOEu,t — Gl’U’z + G37u =0, (26)

Vi - >\0F,v,t + Glu,m + G3,v =0, (27)

Uz - AOEuzm + G?,u,m = 07 (28)

Vo - AOF',vM + G?,v,z =0, (29)

where )¢ is a Lagrange multiplier. In the simplification process of (22)—(29)

the following commutators have been used:

0 | 0 |
[%aDZL‘_ - Oa [%aDZL‘_ _Oa
0 | 0 0 | 0
[BT’I’D‘T_ = 30 [GT’I’D‘T = 35
0 | 0 0 | 0
[au,m’D"”  Ouy [av,m’Dm_ C Ovy

Equations (22)-(29) establish a set of simultaneous equations for u(z,t),
’U(.’L‘,t), Gl,GQ and G3.

3. Applications

This section is devoted to the two classes of applications of the derived
formalism: the Bogomolny decompositions and the Bicklund transforma-
tions. In the first section we present derivation of the “duality equations”
for the 71(S') and 75(S?) models. In the second section we give all the de-
tails of derivations of the Bécklund transformations for the class of nonlinear
Klein—Gordon equations, both hyperbolic and elliptic. Finally, we test our
formalism on the nonlinear Schrédinger equation.

3.1. Bogomolny decomposition

In the study of some nonlinear models solutions can be obtained by con-
sidering the first order differential equations (Bogomolny equations), instead
of more complicated Euler-Lagrange equations [1,13,14]|. The traditional
method of deriving Bogomolny equations is based on transforming an ex-
pression of the energy of a field configuration to the positive determined
form which the lower bound has topological nature. In the study of topolog-
ical solitons the Bogomolny equations play the special role. In recent years
there have been numerous studies on the soliton solutions of Chern—Simons
gauge theories, Landau—Ginzburg model and the Maxwell-Chern—Simons
theory [1,15,16]. Since the Bogomolny method is based on the minimiza-
tion of the energy the derived solutions are static. Physically one can think of
this property as reflecting the absence of static forces between well-separated
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single solitons. However, some time dependent solutions can be derived.
Defining the space of static soliton solutions of soliton number n (mod-
uli space M,,) the interacting dynamics of several vortices has been con-
structed [17]. More powerful method then the traditional one is N = 2
supersymmetric extension of the investigated model [18-20]. In this formal-
ism the energy of field configuration is bounded below by the central charge
of the supersymmetric algebra. The Bogomolny equations arise as algebraic
results from the following algorithm [21]. Let us consider a theory with
a conserved topological charge. (The central charge for N = 2 supersym-
metric version is equal to the topological charge [22].) We shall construct
a supersymmetric extension of this theory. A topological conservation law,
if true in the original theory, will remain in the extended theory. The energy
functional of extended theory should reduce to that of the original theory
when the extra physical fields are eliminated. Conditions for such a reduc-
tion appear to be the Bogomolny equations.

In this section we present derivation of the Bogomolny equations (Bogo-
molny decomposition) resulting from the strong necessary condition concept.
In contrast to the above mentioned approaches this derivation does not re-
quire any bounds for the energy or action functional.

3.1.1. Models associated with 71 (S*) homotopy group

Following [1,2] one can derive the above Bogomolny decomposition for
the one-dimensional scalar field theory. We are looking for the lowest possi-
ble static energy in disconnected sectors characterized by the different pos-
sibilities for the asymptotic behavior of the finite energy configurations. Let
the sectors be classified by the elements of the homotopy group 7 (S') and
let the static energy be of the following form:

HMzzlé(ﬁf§2+mmm]m. (30)

Then the ground state minimizing (30) must satisfy the associated Euler’s
equation:

Y(2) 2o = Uyly(@)]. (31)
Following the Bogomolny decomposition one splits H[y]:
1 [[d 2
)= [ |2 & Vo= 0)| da 1o, (32)
2 dx
X

where
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is the topological invariant. C is a constant determinig the origin of the
energy scale and satisfying the following condition:

/Cdm < 00. (34)
X

It results from (32) that, y(x) is the minimum of (30) if and only if y(z)
satisfies the first order differential equation:

dy(z)
dz

+/2(U[y] - C) = 0. (35)

When (35) is derived by integration of the Euler equation then C plays
the role of integration constants. Now we present derivation of (35) from
the strong necessary condition concept. Let us transform (30) to H*[y] =
Hly] + I, where I and H are given by (9) and (30), respectively. Applying
(13) we derive:

Uay + G,yy,m = 0’
Yo+ G=0. (36)

Eliminating G from (36) we obtain (35).

3.1.2. Field equations associated with m2(S?) homotopy group

Less trivial problems correspond to a mapping of the two-dimensional
space of independent variables into a two-dimensional sphere. Let us assume
that all possible values of a continuous field establish a manifold isomor-
phic to S2?. This assumption is equivalent to the assumption of a constant
boundary conditions at infinity. Therefore, any continuous field function
satisfying the boundary conditions can be classified by the homotopy class.
The set of all these classes (and the rules of superposition) establish the
homotopy group m(S?) [3,23]. This information is very important from
the point of view of the strong necessary condition concept. It determines
the main topological invariants used for the construction of the gauge trans-
formation. There are several important field models classified by m(S52):
static two-dimensional classical Heisenberg model [24, 25], field models in
(141)-dimensional space generating soliton equations [26]. In this section
we present some results for the Heisenberg model (o-model). Belavin and
Polyakov [24,25] using the Bogomolny decomposition, found all topological
solutions of the static two-dimensional Heisenberg model. In this section
we will re-derive their results by applying the strong necessary condition
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concept. In order to make direct use of the results from Sec. 2 we iden-
tify independent variables (x1,x2) with (x,t), respectively. We derive their
results by the use of procedure (15)-(29). The model is governed by the
following differential equation:
* 2
Aw — 2w (Vw)” _ 0, (37)
1+ ww*
where w = (S* +14SY)/(1 + S%),S%,8Y,5% are components of the classical
Heisenberg spin, normalized to a constant value: (S%)%4+(S8Y)%+(S5%)? =const.
(37) results from the least “action” principle, where the “action” is repre-
sented by the integral of energy:

VuwVw*

H=[| " 4

/ (1 T ww*)g T1dxo , (38)
E2

where w is a complex field on E?. Tt is sufficient to consider only the invariant
I from (17)—(19):

I, = /Gl(w,w*)(w’mw:}2 — W gy Wy, ) drids . (39)
E2

We derive the following necessary conditions:

*

w@l * *
m + w’mGl(w,w ) = 0, (40)
w:kfh * *
(1 + ww*)2 o w,ﬂhGl(w’w ) =0, (41)
2w*VwVw* N N .
AT ww ) + G (w, w*) (W gy Wy — W aywy, ) =0, (42)
and c.c.

Equations (40)—(42) and the complex conjugated ones must be self consis-
tent. This requirement determines G (w,w™*) uniquely:

1

Gl(w,w ) = —lm.

(43)

Substituting (43) into (41) and (42) we obtain the Belavin-Polyakov result:

s
T —wy, =0,

Wy +iWg, = 0.
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3.2. The Bdcklund transformations

Bécklund transformation arose in the 19th century and still remains the
only hope to construct sufficiently complicated exact solutions of nonlinear
equations. The main idea of the Backlund transformation is the following.
Let S(u) = 0 and T'(v) = 0 be two uncoupled partial differential equations,
in two independent variables x and ¢, for the two functions u and v. Let
R; = 0 be a pair of relations:

Ri(u,v,u 4,0 4,4, 0y, ...;2,t) =0 (44)

between the two functions © and v, where 4 = 1,2. Then R; = 0 is a Béck-
lund transformation if it is integrable for v when S(u) = 0 and if resulting
v is a solution of T'(v) = 0, and vice versa. This approach to the solutions
of the equations S(u) = 0 and T'(v) = 0 is useful if the relations (44) are
simpler then the original equations. The existence of the Backlund trans-
formations is usually taken as a criterion for complete integrability. There
are different ways in which the Bécklund transformations may be achieved
[4-7]. The newest one is connected with the zero curvature formulation
[27,28]. For the large class of equations admitting a zero curvature rep-
resentation, the auto-Bécklund transformations can be recovered from the
Darboux matrix concept. Very recently new variational approach to the
Backlund transformations has been derived on the basis of the strong nec-
essary condition concept [12]. This method is of the same structure as the
variational derivation of the Bogomolny decomposition described in Sec. 3.1.
Below we present some applications of the strong necessary condition to
derivation of the Bécklund transformations.

3.2.1. A class of nonlinear Klein—Gordon equations

We illustrate applicability of our method on the well known class of
equations [7]:
Ugt = P(u), (45)

where u satisfies (16) and 3p : p,, = P(u). Eq. (45) possesses poor topology,
i.e. all configurations of the field u(z,t) satisfying the boundary conditions
are classified by the elements of the homotopy group mo(S'), which is trivial.
In order to construct topological invariant (17) we have to consider a model
corresponding to the nontrivial homotopy group m2(S?). Thus we combine
two independent equations of (45) type:

Uar = Pu), v =Q(v), (46)

where v and v satisfy (16) and 3p: p, = P(u),3q: g, = Q(v). The non-
linear Klein—Gordon system enables us to formulate the following problem:
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What are the forms of P(u) and Q(v) for which (46) possesses the Bicklund
transformation? We start from writing down the action functional:

Olu,v] = / [uguy+ p(u) + Ao(3v20,4 + q(v))] dzdt . (47)

E‘2
For the purpose of the strong necessary condition concept we generate the
gauge transformation with (17)-(19), where for simplicity we reduce Gs to
the following form: Gs = Ga(u,v). Applying the concept of the strong

necessary condition to the gauge transformed ¢* = @+ Iy + Iy + I3 we derive
the following field equations:

u: P(U)+G1,u (U,xv,t_u,tv,m)+G2,uuU,m+G2,uvv,m+G3,uuU,t+G3,uvU,t =0, (48)

v AOQ(UH—GI,WJ (u,z'u,t_u,tv,m)+G2,uvu,z+G2,ﬂﬂU,I+G3,ﬂuu,t+G3,va,t =0, (49)

1

Ug U +Grvy+Goy =0, (50)
A

VU 7%,,5 — Grus+Goy =0, (51)
1

Ut HUa Givy+Gs, =0, (52)
Ao

Ut - 7’U’z + Glu’z + G37v =0. (53)

First of all (48)—(53) must be self consistent. Formally, we have six simulta-
neous equations for the five unknown functions: u,v, Gy, G2, Gs. Therefore,
in the first step we must decrease the number of equations to four by making
(48)—(53) linearly dependent. We achieve this by the following conditions:

Ao

i G2=0, (54)
2G1Goy + G2y =0, (55)
2G1G3, — Gz, = 0. (56)

54)—(56) imply that G; must be constant: G = + Y220 while Ao < 0 and
2

Go = Go <ﬁ - u> : (57)

Gs = G3< (58)

A to).
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For further calculations we choose A\g = —1 and G = % Taking into account
(55) and (56) we reduce (48)—(53) to the set of four equations:

P(U) = _GQ,uu(U,z - U,m) - G3,uu (U,t + U,t) s

Q(u) = _G2,uu(u,m - U,x) + G3,uu(u,t + U,t) ) (59)
Uy — Vg = _2G3,u7
Ut + Vit = _2G2’u . (60)

It will appear below that equations (60) establish the Backlund transforma-
tion for equations (46). Using (60) we eliminate from (59) the derivatives
with respect to x and t:

(P(u) + Q(U)) = GQ,uuGS,ua (61)
(P(u) - Q(U)) = GS,uuGQ,u . (62)

o =

Taking into account relations between the derivatives of the second order:
Gouu = —G2,u0, G3uu = G3up we derive from (61) and (62) the following
conditions for G5 and G3:

P(u) = %(GQ,uG:&,u)a (63)
QM) = (GruCisa). (64)

It results from (63) and (64) that:
G2,uG3u = 3[p(u) — q(v)] + const. (65)

According to(57) and (58) we introduce the following notation: Go,=f(u—v)
and G3, = g(u+v). Then (65) becomes:

flu—v)g(u+v)= % (u) — q(v)] + const. (66)

In order to determine admissible set of solutions of (66) we remove p(u) and
g(v) from (66) by differentiation with respect to u and v:

") _g") _ )

GG

where ¢ = u —v, n = u+v. The separation constants w labels the solutions
of the one parameter family consisting of three disconnected sets (w > 0,
w =0, w < 0) corresponding to different forms of the right-hand sides of the
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TABLE I

Dependence of type of the Bicklund transformation on the forms of the right-hand sides
of the initial equations (46).

w f(§) and g(n) P(u) and Q(v) A,B,C,D

(&) = AexpJwé P(u) = 4y/w (AC exp 2y/wu auto-Ba:
w>0| +Bexp—ywé —BD exp —2y/wu) C*+D*>0
g9(n) = Cexp uwn Q(v) = 4y/w(—BC exp 2/wv A=-B#0

+D exp —/wn +AD exp —2+/wv)
Ba: in other cases

w=0| f(¢)=A4¢+B P(u) =4ACu auto-Ba:

g(n) =Cn+ D Q(v) =4ACv VA,C € R

f(&) = Acos/—wé | P(u) = 4y/—w[(BD — AC) sin 2¢/—wu auto-Ba:
w<0 +DB sin /—w¢ +(AD + BC) cos 2y/—wu] A=B,C=D

g(n) = Ccos/—wn | Q(v) = 4/—w[(BD + AC)sin 2\/—wv | Bi: in other cases
+D sin/—wn +(—AD + BC)) cos 2v/—w)]

original equations. Depending on A, B, C' and D parameters we obtain auto-
Bécklund (auto-Ba) or Béacklund (B&) transformation inside each subset of
w space (Table I).

Moreover, if we admit more general forms for P and @ in (46):

U ot = P(U,I,t) s Vot = Q(’U,I,t) y

then the auto-Béicklund transformation exists if and only if P = P;s(z)r(t)
and Q = Q;s(z)r(t), where P; and Q; are given in Table I and s(z), r(t)
are arbitrary functions of z and ¢ belonging to the class C''. Similar result
was obtained by Byrnes in [30].

3.2.2. The nonlinear inhomogeneous elliptic Klein—Gordon equation

In this section we apply the strong necessary condition to the elliptic
nonlinear inhomogeneous Klein—-Gordon equation:

u,:m: + u,tt = ’Y(ma ta u) 9 (68)

where z,t are the independent variables, u is the dependent variable, whereas
v is a function of z, ¢t and u. The Lagrangian density which leads to equation
(68) has the form:

L= %(uQm + u2t) + I'(z,t,u), (69)
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where ( )
or'(z,t,u)
—ou y(z,t,u). (70)

In order to derive the Bécklund transformation from the strong necessary
condition concept we define the following gauge transformed functional:

*[u,v] = /{[%(u?x—i-u?t) + Ii(z,t,u)] + X0 [F (0% 4v7) +To(2, t,0)] } dadt
E2
+1I + I + I, (71)

where Iy, Is, I3 are the topological invariants taken as:

L = /Gl(u,v)(u@v,t — vy )dzdt, (72)
E2

I, = /DmGz(m,t,u,v)dmdt, (73)
E2

I3 = /DtGg(:E,t,u,v)d:Edt. (74)
E2

In formulas (72)-(74) G1, G2 and G35 are arbitrary functions of the given
arguments. Following the strong necessary condition concept we obtain the
set of equations:

u: vz, t,u) +Giy (U,xv,t _u,tv,x) + (G2,xu +G2,uuu,m+G2,uvU,m)
+(G3,tu + G3,uuu,t + G3,uv'U,t) =0,

(
v Xove(z,t, )+ G (U =10 5) (G200 +G2uvth e+ G200V 1)
+(G3.0 + Gyt + G3ppv4) =0, (
Ug: Ug+ G+ Gy =0, (77
vy Girug+ v+ Gy =0, (
ug: up— Grug+ Gz, =0, (
vi: —Grug+ Aovg + Goy =0. (
We perform the reduction procedure for equations (77)-(80). Assuming

Glzl, )\0 =1 and
G3u = _G2v7 (81)

)
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we obtain two equations:
Ug+ V= _G2,u s (83)
Up— Vg = Goy . (84)

Introducing complex variables: z = x + it, Z = z — it as the independent
variables and the new dependent variables: a = %(u+14v), B = (u —iv) we
express (83) and (84) in the form:

a,=—1Gp, (85)

Bz=—3G2a- (86)

Equations (75) and (76) in those independent and dependent variables are:
(2,2, a4 B) + (G220 + Go,28) — 1(G2,00G2,5 + G2,55G2,0) =0, (87)

o — . .
’)/2(2,2, - IB) + 74(G2,za — Gg,gﬂ) — %’L (GZQQGQﬁ — GQ,/BBGQ’Q) =0. (88)
(]

In derivation of equations (87) and (88) we have used the fact that G 45 = 0,
which results from (81) and (82). Following that property the function G
may be presented in the form:

GQ(Z,E,O{,IB):A(Z,E,Ot)—f—B(Z,E,IB). (89)
Substituting (89) into (87) and (88) we obtain:
Yi(2, 2,0+ B) + (Ao + Bsg) — 1(AaaBpg+BpsAa) =0, (90)

o — . .
’}’2(2, z, ; 5) + ’L(A’Za — B72/5) — %’L (A,aaB,/i — BﬁﬂA’a) =0. (91)

Differentiating equation (90) with respect to « and 3, and subtracting the
obtained equations from each other we have:

A zaa = jAacaB s = Bzss — 1AaBsss - (92)

Equation (92) may be separated if we assume that: A, =0, B ; = 0. There-
fore,

Ag = a1(2) eV + ay(z)e VP, (93)

)

B =bi(2) eV 4 by(z) e VAP, (94)



2786 K. SokaLski, T. WIETECHA, Z. LISOWSKI

where a1, as, by, by are arbitrary functions of the given arguments. Repeating
the described above procedure for equation (91) we obtain the same solutions
for A, and B g. Substituting (93) and (94) into (90) and (91) we obtain:

m(z 7 a+f) = */TX [al(z)bl(z) eVMNa+B) _ 4o (2)by(2) e*\/ﬂaﬂﬂ . (95)

(2,7, 2 - by — # [al(z)bg(z) VANOB) _ 4o (2)by (2) e*ma*ﬁ)] . (96)

Thus, we have obtained that the Backlund transformation exists if the func-
tions 1 and -y are given by (95) and (96). Following (85) and (86) the
Backlund transformation has the form:

o, =—1 [bl (2) e¥™ 4 by(2) e*ﬁm] , (97)

Bz=-1 [al(i) eV 1 ay(2) e_ﬁa)] . (98)

In the special case if A=—1, a1(2) =—a2(z) =—ia(2) and by (z) = —by(z) =
—ib(z) we obtain:

a, = —@ sin 3, (99)
Bz = —@ sin . (100)

Formulas (95) and (96) take the form:
(2,2, a + ) = a(2)b(z) sin(a + B) (101)

(2, 2, ) = a(2)b(2) sinh(az;,ﬁ) . (102)

It results from the general form given by (97) and (98) that equation (68)
admits the Bécklund transformation if the right-hand side depends on inde-
pendent variables in a special manner and the function of u has the form of
exponential, trigonometric sine and cosine, and hyperbolic sine and cosine
functions. The obtained result corresponds to those considered in [31-35]
for the case if vy (z,t,u) = sinu and 7o (x,t,u) = sinhu.
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3.2.3. The nonlinear Schrédinger equation

We consider the Nonlinear Schrodinger Equation (NLS) in the canonical
form:
Uy 4+ Uy +2u | u ?=0, (103)

where u(z,t) is a complex valued function. Eq. (103) results from the least
action principle for the following Lagrangian density:

Llu] = —uuy — %(uj‘tu —ufug)+ | utu P (104)
The field functions take values in the one-dimensional Complex Projective
space CP'. The homotopy group m3(CP!) is equivalent to 72(S?) and in
principle it is possible to perform the Bogomolny decomposition. In order
to derive the Backlund transformation we have to combine two independent
NLS equations:

Uy 4 e+ 2u | u?=0, (105)
g+ Vg +20 |0 [*=0, (106)
where all values of u(z,t) and v(z,t) compose CP? manifold. The identity

of (105) and (106) limits our considerations to the auto-Bécklund transfor-
mation. The action functional for (105) and (106) has the following form:

B[, v] = / (L] + AoL[v])dadt, (107)

E2
where Aq is a Lagrange multiplier. In order to create the topological invariant
we assume that CP? possesses the structure of the Kihler manifold [36].

Then the gauge transformation for (107) is generated by the following set of
the topological invariants:

_ * * * * * *
J =1 / I (u+v,u* +0%) [u’zu’t —ULUL VLV — VU

E2
+ugvh —uhvy +vgul — U’*zu,t] dxdt , (108)
Jy = /DxFQ(U, VU0 U gy U gy Uy, VY ) At (109)
E2
Jz = /thg(u, v, u*, 0" )dxdt (110)

E‘2
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where I'i(-,2*) € C!, I'(z,-) € C' and Iy :(z,2*) = I'(z,2*) € R. I, and
I'; are the mappings of the C? class with respect to all their arguments.
(For convenience we introduce the imaginary units on the front of the integral
n (108).) The gauge transformation

P =1 (111)

is defined by I = J; + Jo + J3. Applying the strong necessary conditions to
(111) we obtain the following field equations:

e %u = il (u¥, +v%) + Iy (112)
1 .
uj‘t : QU= il (ug +vz) + 150 . (113)
vy AO%U* — il (0% +u’) + Ty, (114)
1 .

v:kt : —)\050 =il1(ug +vyz)+ I3, (115)
Uy : uwy = =il (uy +vy) — Ty (116)
ufm : Uy =110 (uy +vy) — Ioye. (117)
Vg —Aovy = il (v +uly) + Ty . (118)
v’*z : XV =il (ug+vy) — Iy . (119)

w: —%uj; + 2u(u*)? = DT + Dyl + 0111 2 (120)
w* %u,t +2utu? = Dy Ty ye + Dyl + 00T 02 (121)

v: —AO%U; + 2000(0")2 = DyIs 0 + Dyl +i0 1102, (122)
¥ )\0%1)715 + 2)\01)*1)2 = thgﬂ,* + DIF2,U* + 1091182, (123)

where 2 = (u + ) z(u +v)% — (v + v)5 (v + v) ;. The symbols preceding
colons indicate the arguments of formal differentiations leading to the re-
spective equation. Eqs. (112)-(123) establish the simultaneous system of
equations for the nine unknown functions: u, v, u*, v*, I, Iy, I'y, I3, I'5.
The fundamental problem is to constitute (112)-(123) to be self consistent
and then to reduce them to the two relations of the two complex functions
uw and v. Let us assume that I3 v = =134+, I3 v = = I3, and A\g = —1. Then,
(112) and (114) are the complex conjugated to (113) and (115), respectively.
Additionally we assume that:

I3(u,v,u*,v") = %(uv* —ou*), (124)



A Concept of Strong Necessary Condition in ... 2789

which is consistent with the earlier assumptions for I'3. This form finally
reduces (112)—(115) to one equation:

u—v=-=-2I1(u+v),. (125)

We are able to assume the following form for I7:
1(,.2 * *y) —1/2
Iy =—5 (k* = (u+o)(u* +0%)) 77, (126)

where k is real and | v 4+ v | is constrained by I} = I'1. (125) takes the
following final form:

1/2

(u+2) = (u—0) (K — (u+v)(u* +v) (127)

In the next step we form the consistency between the remaining equations
(116)-(119). In order to reduce this set we assume the following constraints
for Iy: Iy, = Iby and I, = I5,+. Then (116)-(119) are reduced to:

uy = ilN(u+v)y — Toye, (128)

)

Vg = —il(u+v);+ 1o, (129)

where I is defined by (126).
In order to obtain the consistency between (128) and (129) we put:
I« = —U.x + %(U,:L‘ - Um) + %(’U/ + 'U)2(’U: + U)*Ep_l/2

) El

Fluto) |ug +o, P2 (130)

where ¥ = k2

obtain:

— (u + v)(u* + v*). Integrating (130) with respect to u* we

I = %(u@ +vg) (v —u*) — %WI/Q [%F&2 + %(u +v)(u* + U*)]
+% ![/_1/2 | Uy + Vg |2 +¢(u7 U, U g, U,m) > (131)

where ¢(u, v, u 4, v,) is an arbitrary function of class C2. The forms of terms
appearing in (131) enable us to determine ¢ in the following form:

¢ = %(U*m +ul) (v —u). (132)

Substituting (132) into (131) we satisfy the constraints for I. Inserting
(131) into (128) and (129) we receive two identical equations of the following
form:

. i . —
(utv) s =1 (u,m—fu,m)wlﬂ—l—g(u—i-v) [ | utv |2+ (utv) o (o) , ¥ 1]. (133)
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Using (124), (126), (131) and (132) we reduce (120), (121), (122) and (123)
to the following single equation:

i(u+0) s+ (u+v) e+ 2w u > +o]o?) =0, (134)

Lemma. The following equations: (134), (127) and (133) are dependent.
Proof. Differentiating (127) with respect to z and eliminating v 5 + v, and
u’y + v% by the use of (127) and its complex conjugated one, we obtain:

() g = (u—0) 2 1/? = 1 [(u—0)?(u" +0") + (u—v) (u+v) (u* —v*)] . (135)
Substituting (135) to (134) and performing some evaluations we derive:

1

(u+v); =i(u—v), ¥V + 5 (1 0) (2uu” + 200%). (136)
The direct calculations show that
2uu* + 200" = u+v |2 +(u+0) 4 (u +0*) T (137)

Therefore, the remaining independent relations: (127) and (133) establish
the desired auto-Béacklund transformation of the nonlinear Schrédinger equa-
tion. If one compares (127) and (133) with the well known form of the
Bécklund transformation [37] then (127) is to be substituted into (133):

(u+v) =i (ug —v2) P2+ St o) Jutv P +u=v ] . (138)

Finally, (127) and (138) represent the Bécklund transformation in the canon-
ical form.

4. Conclusions

The introduced concept of the strong necessary condition leads to the du-
ality equation associated with the Euler equation. The highest order of the
duality equations is lower then the order of the Euler equation. On princi-
ple each solution of the duality equation satisfies the Euler one, therefore,
Op C Og, where Op and Og are sets of solutions of the duality and the
Euler equations, respectively. This can be easily proved by transforming the
duality equations into the Euler one by applying a differentiation. It would
be a great advantage to extend the above relation to Op = Og. In the
general case this is not possible. In the worst case Op contains only a triv-
ial solution or Op = (. In order to extend Op to the nontrivial subset of
Or we apply two methods: gauge transformation of the action functional
and/or softening of the strong necessary condition [12]. If one succeeds to
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eliminate all G; (or in the case of complex fields all I5) functions from the
duality equations without any differentiation process and without any con-
straint for the field functions then the final equations establish one of the
following forms: the Bogomolny decomposition, the Bécklund transforma-
tion or a duality equation of the higher type. Duality equations correspond
to the Bogomolny decomposition if they govern only the field function ap-
pearing in the considered differential equation (45), whereas they correspond
to the Bécklund transformation if they govern two independent field func-
tions being unknowns of the two independent differential equations (46). In
the general case the higher type duality equations govern more then two
independent field functions. When does each of these types appear? The
necessary condition to perform the Bogomolny decomposition of the action
functional is a nontrivial homotopy group associated with the considered
model (see Sec. 3.1.1, 3.1.2 and [29]). In the case of the trivial homotopy
group we combine two (or more) independent models in such a way that the
resulting homotopy group is nontrivial. As it was already mentioned above,
such a procedure leads to the Backlund transformation or to the higher types
of the duality equations (Sec. 3.2.1, 3.2.2, 3.2.3 and [12]).
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