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An asymptotic formula for Renyi entropies characterizing a Bernoulli
distribution is derived and compared with numerical estimates. Its physical
consequences are discussed.
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1. As shown in our previous papers [1,2|, the Renyi entropies [3] may
serve as an useful characteristics of the multiparticle spectra. To obtain a
better insight into the meaning of such measurements, we investigate in the
present note the Renyi entropies for Bernoulli distributions.

The Bernoulli distribution of N particles in M bins

N! e
P(pl, DM, ’I'lM) = mpl pM y (1)
where p; is the probability of one particle falling into the j-th bin and N is
the total multiplicity
ni+no+..+ny=N (2)

represents the simplest model of particle production with no correlations
between particles (except those induced by the fixed number of particles -
N). Uncorrelated production is a general consequence of some important
mechanisms of particle production (as, e.g., in the bremsstrahlung model [4])
and therefore it is worth to be investigated in detail. To our knowledge,
however, nobody as yet discussed to what an extent the distribution (1) is
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violated in real data'. Our calculation may thus provide a tool for this kind
of investigation.
The coincidence probabilities are defined as

C(N,M)= > [P(p1,-parsnas-nn)] (3)
ni+..+ny=N

and thus, using (1) we have

Nipit..pyY !

Cl(Na M) = Z 5n1+...+nM,N<

Nni,...,Np1

2. We want to evaluate the sum (4) in the limit
N —o0; M fixed (5)

(which seems to be the most interesting one for “practical” applications).
In this limit we can replace factorials by the Stirling formula?

nlxv2mn+ 1n"e ™" (6)
and obtain

N! V21N + 1NNe N

ml.oonp!t \/(2rng +1) ... (2nna + Dl n e nm

_ (varne1) " s o

V(D) - h(zar) (23 a5

where we have introduced

2mn;+1  z;+1/27N
— <z = = . 8
N M) = N T T r 12N ®)

Substituting this into (4) and replacing the sum by an integral, we have

(1-M)I
O)(N, M) = NM-1 <\/27TN ¥ 1) X, 9)

! The observed correlations can often be ascribed to the fact that the total multiplicity
distribution differs from the Poisson one. Here we are talking about the correlations
for a fized total multiplicity.

2 We use v/2rN + 1 instead of traditional /27 N. This gives the correct limit for
N — 0 and thus represents a much better approximation at small V.
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where

T zy \ NI
X=[dzy...deyd(zi+. .. +an—1) (h(z)... h(za) "2 <%) .
AR

(10)

One should keep in mind, however, that this replacement of the sum by

the integral can be justified only if all p; are finite, different from 0. In the

case when one of p; vanishes, the corresponding sum contains still one term

(n; = 0), whereas the integral vanishes.

If all pls are finite, the integral (10) can be evaluated by the saddle point

method. To this end we first perform one integration (over x /)

TM-1,

B NIl
Pt P Y .
7 ,(11)
T Ty Y

X=|[dxy...dxp_1 (h(.’L‘l) . h(IMfl)h(y))il/2 (

where now
y=1l—-o1—...—zp 1. (12)

We now write the integral in the form

X=[dz...dzyr1 (h(z1) ... h(za1)h(y)) 2 exp (D(z1,. .., 200-1))

(13)
and search for a maximum of @. From (13) we have

M-1
&(z1,...,xpm-1) = —NI Z x; log <ﬂ) + ylog <i) . (14)
im1 pi bm

The saddle-point condition (vanishing of the first derivatives) gives

P i
9 _ _Nilog <I—> + Nllog <i) = 0. (15)
0z; Di PM
The solution is
Ti =pi (16)
The second derivatives are
2P B _Nl B Nl __Nl B Nl
(0;)? T Y Pi PMm
2P Nl Nl
_ MM (17)

0z;0x; Y PMm
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As long as all ps are finite, we can thus approximate the integral (13) by

X = (h(pl)...h(pM))1/2/dx1...dxM_1

NI [ML,, M-1
exp Y ; E(iﬁz —pi)* + Z;I(xz - pi)(z; — pj)
1
= (h(p1) ... h(par)) "* mpar) D2 (N) M2 18
where Dy is the determinant of the (M — 1)-dimensional matrix
bum
D;j = ?5@' +dij (19)

and d;; is the matrix with all elements equal to 1. Djs can be calculated:

M-1
Dy = ) (20)
Pi--..PM

so that
X = (hlp1) - h(pan)) ™2 (pr - pan) /2 (2m) MDZ(ND M2 (a1
Introducing this into (9) we obtain

C/N, M) = 2aN + D)2 [ 2mpy + 1) ... 2rpar + D)2 20, (22)

where
o = < (2rN +1)(27p1) ... (2mpar) )1/2
- \UM-1(27N)(27py + 1) ... 2mpar + 1)
_ < 21N +1)(27p1 /1) . .. (2mpa /1) )1/2 -
(QWN/Z)(QWM + 1) (27rpM_|_ 1) )
and where
pi = Npi, (24)

are the average values of the multiplicity (i.e., particle density) per bin.

3. The formula we have obtained is valid when N is large and all pls are
finite, which guarantees that also all ps are large. It is, however, inapplicable
when one of the pls is very small or if it vanishes. This is best seen by
observing that for [ = 1 we should have C; =1, i.e., £2’ = 1, which is badly
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violated when some of pls vanish. This is the consequence of the error we

have made when replacing the sum (4) by the integral.
The form of the Eq. (23) suggests that the simplest way to correct for

this error is to replace 2’ in (22) by

_(@eN+1)2rp/l+1)... 2rpar/l+ 1)\
= < (2aN/l4+1)27wp1 + 1) ... 2mppm + 1) ) : (25)

This prescription satisfies several natural constraints:

(1) Tt is correct in the limit N — oo and all ps finite, which is of course
the fundamental requirement;

(i) It guarantees C = 1;

(111) If some number, say My, of pis vanishes, the formula for C;(N; M)
reduces automatically to the formula for C;(N; M — My), as it should;

(iv) It satisfies the constraints C; = 1 for M=1 and C; =1 for N = 0.

Accepting this we thus finally have the Renyi entropies:

1 1
H)(N,M) = T llog C)(N, M) g log(2mp; + 1) — §log(277N+ 1)
1 27N +1 2mp; [l +1
— 1 1 — 26
2(l—1)[0g<277N/l+1)+ZZ_;Og<27Tpi—i—1 (26)
In the limit [ — 1 we obtain the Shannon entropy:
S(N log 2p; + 1) — 1log(27rN +1)
2
M
mN TP
L — . 27
27TN+1+;<277,01-+1> (27)

This completes the derivation®.

4. Our final formulae (26) and (27) were derived in the limit (5) of
large multiplicities. To see how this approximation works we compare in
the Fig. 1, Hs calculated from (26) (for the case of 4 bins) with their exact

3 Note that now, after replacing 2’ by £2, p in (26) and (27) can be taken arbitrarily
small.
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values (obtained by direct numerical evaluation). One sees that when all ps
are equal to each other, the asymptotic formula is very accurate, even down
to small values of the multiplicity. When one of the pls is much smaller than
others, the formula interpolates between M and M — 1. The approximation
is slightly worse but the error never exceeds a few percent. We have checked
that the same is true also for the Shannon entropy.

RENYI ENTROPY
H, FOR BERNOULLI DISTRIBUTION

EXACT

8r — — ——APPROXIMATION
M =4

N

1 1 1 L 1 1 1 1 1
2 4 8§ 16 32 64 128 256

Fig. 1. Renyi entropy Hs calculated for Bernoulli distribution and compared with
the approximation given by Eq. (26). In the p1 = ps = p3; ps = 0 case, the exact
and approximate curves are practically indistinguishable (as in the p; = ps = p3 =
D4 case).

We conclude that the Eqs. (26) and (27) represent a good approximation
to the actual values of the Renyi and Shannon entropies and may thus be
used as their reliable estimates.

5. The first observation from the formulae (26) and (27) is that the
entropy of the system is (apart from an additive constant) a sum of the
contributions from individual bins. This is the reflection of the property of
additivity: different bins may be considered as quasi-independent statistical
systems. For a system with the same average number of particles in each
bin (p; = p) this implies linear dependence of entropy on number of bins
and thus its linear dependence on the total number of particles. We thus
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find a normal situation, expected for weakly correlated systems. It should
be emphasized, however, that the proportionality coefficient is not universal
but depends on p.

On the other hand for a fixed number of bins M the dependence of
the entropy on the average number of particles is rather different. In this
case a change in the total number of particles implies change in the particle
density p. At large N, and if the particle density is not too small (27p > 1),
a linear increase of the entropy with the logarithm of the number of particles
is expected. However, in the very low density limit (27rp < 1) the entropy, S,
becomes

S~ 27N — tlog(2nN +1) — 1 + O(1/N). (28)

Thus we recover now a universal linear dependence of the leading term in S
on the number of particles, N (for large N). For such a situation to occur,
the number of bins, M, must be indeed very large, to insure that the density
p = N/M is small enough?.

These observations show that the interpretation of the experimental mea-
surements requires rather careful specification of their conditions. In the
particular case we consider, one sees that the measurement of (Renyi) en-
tropy at a fixed particle density (changing the number of bins) and the
measurement at a fixed number and size of the bins (changing the particle
density) provide entirely independent information. The first one tests the
independence of the particle distribution in different bins. The second one
tests to what an extent the mechanism of particle production depends on
the density of the produced particles.

6. In conclusion, we have derived a formula which gives coincidence
probabilities for an entirely random distribution of particles at a given to-
tal multiplicity. This formula predicts a rather simple dependence of Renyi
entropies on the number of particles in the phase-space region considered:
they are linear in log N (with the exception of the wery low densities). It
also gives a linear dependence on the number of bins taken for the analy-
sis, reflecting the additivity of entropy for the weakly correlated systems.
Since the Bernoulli distribution provides a fundamental building block for
many models of particle production, it would be interesting to see how this
compares with the data.

4 Tt is possible — though we do not have a proof — that the linear dependence of the
leading term of S on log N characterizes systems at all densities except the very low
ones (p; << 0.1!1). To support this claim we may quote our previous result from [2]:
The entropy of a system of Bosons condensing in the lowest (but discrete!) state
acquires the leading log IV dependence.
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