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ON THRESHOLD AMPLITUDES I�Joanna Domienik, Joanna Gonera and Piotr Kosi«skiDepartment of Theoretial Physis II, University of �ód¹Pomorska 149/153, 90�236 �ód¹, Poland.(Reeived July 17, 2001; revised version reeived September 3, 2001)This is the �rst paper of the series devoted to threshold amplitudes inquantum �eld theory. We onsider here some aspets of tree approxima-tion. The areful disussion of relevant generating funtionals inludingthe problem of boundary onditions is given. The general rules for on-struting the �eld matrix elements between threshold states are rederived.Some features of amplitudes for all partiles at the threshold are disussed.They are related to the properties of redued lassial Newton systems. Inpartiular, the nulli�ation and divergene of amplitudes are interrelatedand explained in terms of dynamis of lassial point partiles.PACS numbers: 03.70.+k 1. IntrodutionThe problem of multipartile prodution has attrated muh attentionin the past deade [1℄. Originally, it onerned eletroweak barion and lep-ton numbers violating proesses in the instanton setor [2℄. It has beenfound that, ontrary to the naive expetations, the relevant ross setionsare not so strongly suppressed if a large number of bosons is present in a�nal state. Later topologially trivial setor has been onsidered with sim-ilar onlusions: it has been shown that the tree amplitudes for n-partileprodution in salar �4-theory behave like n!�n2 so they are not suppressedeven in a weakly oupled theory [3℄. It appeared also that a very detailedknowledge onerning amplitudes is possible for speial kinematis: that ofo�-shell, vanishing fourmomenta [4℄ or when all �nal partiles are at thethreshold [4�9℄; other kinematis were also onsidered [10℄.The results onerning threshold amplitudes are very interesting beause,being physially relevant, they provide at the same time a rare example ofexat alulations in quantum �eld theory (�exat� means exat in some� Supported by the �ód¹ University Grant no 442.(2813)



2814 J. Domienik, J. Gonera, P. Kosi«skiparameter � here the number of bosons produed). Moreover, they are astarting point for other interesting results; for example, knowing thresholdamplitudes one an make estimates, based on unitary, beyond threshold [11℄.Another interesting phenomenon is the nulli�ation of ertain amplitudes onthe threshold. For example, for the proess 2 ! n in �4 unbroken theory,all amplitudes vanish at threshold, exept n = 2 and n = 4; if the symmetry� ! �� is broken the only nonvanishing amplitude is 2 ! 2 [10, 12, 13℄.Other theories were also analysed from this point of view and the nulli�a-tion of tree 2! n amplitudes at the threshold was disovered in the bosonisetor of eletroweak model [14℄ and in the linear �-model [15℄; these resultsin general do not extend to the one-loop level [16℄ (see, however, Ref. [17℄).In more ompliated theories the nulli�ation takes plae only provided somerelations between parameters are satis�ed [8, 15℄. Other interesting exam-ples of nulli�ation are provided by the amplitudes with both initial and�nal partiles at the threshold. It appears that in some theories almostall tree amplitudes of that kind vanish; the most prominent example is theO(2)-symmetri theory with two �elds in de�ning representation of O(2)and the symmetry softly broken by the mass term [18℄. The nulli�ation oftree amplitudes is here ultimately related to integrability of some lassialdynamial systems. This an be explained as follows [18℄. The generat-ing funtional for tree amplitudes obeys the lassial �eld equations. Forthreshold amplitudes the translational invariane is restored and dynamialequations take the form of Newton equations for some systems of �nite de-grees of freedom. One an show [18℄ that the amputated Green funtionsare nonvanishing only provided in the ourse of solving perturbatively thedynamial equations the resonanes do appear. However, this is exludedif our redued system posses a ertain kind of symmetry (like O(2)-theorymentioned above [19℄). The relation between nulli�ation of amplitudes andintegrable systems an be understood within general framework of mod-ern theory of integrable systems [20℄. However, a more traditional approahbased on anellations due to Ward identities is also possible [21℄. These andother properties of threshold amplitudes make the whole subjet very inter-esting and deserving a more detailed study. The present paper is the �rst ofthe series devoted to suh a study, both at the tree and at the loop levels.It is organized as follows. In Se. 2 we disuss the generating funtionals forGreen funtions and amputated Green funtions in the tree approximation.The boundary e�ets are treated with a speial are and shown to modify theform of the relevant funtionals. The general rules for building tree-graphmatrix elements of T -ordered �eld produts between states with arbitrarynumber of partiles are derived in Se. 3 using funtional methods. Then,in Se. 4 these onsiderations are spei�ed to the ase of threshold asymp-toti states. Finally, in Se. 5 we give a general disussion of nulli�ation



On Threshold Amplitudes I 2815of threshold-to-threshold tree-graph amplitudes in the ontext of lassialmehanis of Newtonian systems.2. Generating funtions for tree amplitudesFor de�niteness we onsider the �4-theory de�ned by the ationSJ [�℄ � S[�℄ + Z d4xJ(x)�(x) � Z d4xL(�(x)) + Z d4xJ(x)�(x) ;L(�) � 12(�������m2�2)� �4!�4 ; (1)the results are valid, mutatis mutandis, also for more ompliated theories.The basi quantity we start with is the generating funtional for on-neted Green funtionsW [J ℄ � �i ln(h0out j 0iniJ) ; (2)here h0out j 0iniJ is the vauum-to-vauum amplitude in the presene ofexternal urrent J(x). We are interested in the tree-graph approximation.It is well known [22℄ that, within this approximation, �(x j J) � ÆW=ÆJ(x)obeys lassial �eld equations in the presene of external urrent J(x),(�+m2)�(x j J) + �3!�3(x j J) = J(x) : (3)The proof is very simple. One onverts Eq. (3) into integral equation withappropriate, i.e. Feynman boundary onditions�(x j J) = Z d4y�F(x� y)J(y)� �3! Z d4y�F(x� y)�3(y j J) : (4)Iterative solution of this equation reprodues the tree-graph expansion ofone-point Green funtion. One an then alulate the generating funtionalW [J ℄ = 1Z0 d� Z d4xJ(x)�(x j �J) : (5)Integrating by parts and usingÆSÆ�(x j �J) = ��J(x)



2816 J. Domienik, J. Gonera, P. Kosi«skione getsW [J ℄ = Z d4x�J(x)�(x j �J) j�=1�=0 � 1Z0 d� Z d4x�J(x)d�(x j �J)d�= Z d4xJ(x)�(x j J) + 1Z0 d� Z d4x ÆSÆ�(x j �J) d�(x j �J)d�= Z d4xJ(x)�(x j J)+ 1Z0 d�dS(�)d� = S[�℄+Z d4xJ(x)�(x j J) :(6)This derivation is slightly formal due to the fat that ÆS=Æ�(x) involvesintegration by parts whih is not justi�ed beause �(x j J) does not vanishat in�nity. One an show that this results in slight modi�ation of S[�℄;namely, S[�℄ is understood asS[�℄ = Z d4x�� 12�(x j J)(�+m2)�(x j J)� �4!�4(x j J)� : (7)Indeed, onsider S(�) entering Eq. (6),S(�) = Z d4x�12(���(x j �J)���(x j �J)�m2�2(x j �J)) � �4!�4(x j �J)� (8)we havedS(�)d� = Z d4x����d�(x j �J)d� ����(x j �J)�m2d�(x j �J)d� �(x j �J)� �3! d�(x j �J)d� �3(x j �J)�=Z d4x����d�(x j �J)d� ���(x j �J)��d�(x j �J)d� �(�+m2)�(x j �J) + �3!�3(x j �J)��= Z d4x����d�(x j �J)d� ���(x j �J)�� �J(x)d�(x j �J)d� � : (9)Therefore, aording to the derivation given above, the proper formula isW [J ℄ = S[�℄ + Z d4xJ�� 1Z0 d� Z d4x���d�d����� : (10)



On Threshold Amplitudes I 2817On the other hand one an writeS[�℄ = Z d4x�12(�������m2�2)� �4!�4�= Z d4x��12�(�+m2)�� �4!�4�+ 12 Z d4x��(����)= Z d4x��12�(�+m2)�� �4!�4�+ 12 1Z0 d� Z d4x���d�d����+ ����d�d��� (11)whih, together with Eq. (10) impliesW [J ℄ = Z d4x��12�(�+m2)�� �4!�4�+ Z d4xJ�+12 1Z0 d� Z d4x������ d�d� � d�d����� : (12)Last term equals12 1Z0 d� Z d4x��(�+m2)d�d� � d�d� (�+m2)�� : (13)Now, using�(x j �J) = Z d4y�F(x� y)��J(y) � �3!�3(y j �J)� (14)andd� (x j �J)d� = Z d4y�F(x� y)�J(y)� �2!�2(y j �J)d�(y j �J)d� � (15)as well as �F(�x) = �F(x) we �nd that (13) vanishes.Let us now pass to the S-matrix elements. It is easy to see that thestandard LSZ formulae an be summarized as follows. To get the generatingfuntional for S-matrix elements one takesW [J ℄ and makes the replaementJ(x) ! �0(x)�������!(�x +m2), where �0(x) is a lassial free �eld. Let ffi(x)g



2818 J. Domienik, J. Gonera, P. Kosi«skibe a omplete set of normalized positive energy solutions of K�G equations;put �0(x) =Xi (�ifi(x) + �ifi(x)) : (16)Then S(�) = W [J ℄ jJ!�0������!(�+m2) (17)is the generating funtional for S-matrix elements: �=��i(�=��i) produesinitial (�nal) state desribed by the wave funtion fi(x). More generally,if the above replaement is made after taking a number of derivatives withrespet to J(x) one obtains the generating funtional for the arbitrary ma-trix elements of time-ordered �eld produts; for example, the derivatives�=��i(�=��i) of Æ2WÆJ(x1)ÆJ(x2) ���J!�0������!(�+m2)generate matrix elements of T (�(x1)�(x2)). It is not di�ult to �nd therelevant equation for �(x j �0) � �(x j J) jJ!�0������!(�+m2). Making thereplaement J(x)! �0(x)�������!(�x +m2) in Eq. (4) one obtains�(x j �0) = �0(x)� �3! Z d4y�F(x� y)�3(y j �0) : (18)This equation implies that �(x j �0) obeys(�+m2)�(x j �0) + �3!�3(x j �0) = 0 (19)together with �(x j �0) j�=0= �0(x) : (20)The above derivation is slightly formal. However, the validity of Eq. (18)an be on�rmed by solving it reursively. One obtains then tree-graphexpansion of matrix elements of �(x):Let us now alulate the generating funtional S(�) = S[�0℄. Naiveapproah would be to use Eqs. (6), (7) and (18) to getS[�0℄ = Z d4x��12�(x j �0)(�+m2)�(x j �0)� �4!�4(x j �0)�+Z d4x�0(x)(�+m2)�(x j �0) : (21)



On Threshold Amplitudes I 2819However, this is wrong [23, 24℄. To see this it is su�ient to alulate�(x j �0) to the �rst order in � and then S[�0℄ to the same order [24℄.In order to get a right answer we have to onsider arefully the kinetiterm. One hasZ d4x�(x j J)(�+m2)�(x j J)= Z d4xd4y�J(x)� �3!�3(x j J)��F(x� y)�J(y)� �3!�3(y j J)� :(22)Let us insert now J(x) ! �0(x)�������!(�x +m2); J(y) ! �0(y)�������!(�y +m2); then(22) attains the formZ d4x��2�3! ��3(x j �0)�0(x)+�� �3!�2Z d4xd4y�3(x j�0)�F(x�y)�3(y j�0):(23)On the other handZ d4x�(x j �0)(�+m2)�(x j �0)= Z d4x��0(x)� �3! Z d4y�f (x� y)�3(y j �0)����3! ��3(j �0) :(24)Eqs. (23), (24) di�er by the termZ d4x�0(x)�� �3!��3(x j �0) = Z d4x�0(x)(�+m2)�(x j �0): (25)Taking all that into aount one obtains �nal answer [23, 24℄.S[�0℄ = Z d4x��12�(x j �0)(�+m2)�(x j �0)� �4!�4(x j �0)�+12 Z d4x�0(x)(�+m2)�(x j �0) : (26)To hek this formula let us alulate�S��i = Z d4x��12 ��(x)��i (�+m2)�(x)� 12�(x)(�+m2)��(x)��i� �3!�3(x) ��(x)��i �+ 12 Z d4xfi(x)(�+m2)�(x)+12 Z d4x�0(x)(�+m2)��(x)��i ; (27)



2820 J. Domienik, J. Gonera, P. Kosi«skihere �(x) � �(x j �0). Using �eld equation for �(x j �0) we an write�S��i = 12 Z d4xfi(x)(�+m2)�(x) + 12 Z d4x�0(x)(�+m2)��(x)��i+12 Z d4x���(x)��i (�+m2)�(x)� �(x)(�+m2)��(x)��i � : (28)Using ��(x)��i = fi(x)� �2! Z d4y�F(x� y)�2(y)��(y)��i (29)we arrive after some manipulations at�S��i = Z d4xfi(x)(�+m2)�(x j �0) : (30)Analogously �S��i = Z d4xfi(x)(�+m2)�(x j �0) (31)whih on�rms validity of Eq. (26).3. Matrix elementsAs it has been explained above the derivatives ofW [J ℄ produe onnetedmatrix elements of T -ordered �eld produts. Indeed, taking an appropriatenumber of derivatives with respet to J(x) and making the replaementJ(x) ! �0(x)������!(�+m2) one gets the generating funtional for relevant ma-trix elements. Starting from �(x j �0) one obtains the matrix elementshout j �(x) j ini with in- ( out- ) states spei�ed by �=��i (�=��i) deriva-tives. This element an be further redued by applying K�G operator orused as an input for alulating the amplitude for a larger proess.Let us now pass to the matrix elements hout j T (�(x)�(y)) j ini. Let usde�ne G(x; y j J) � Æ�(x j J)ÆJ(y) ;by di�erentiating Eq. (3) with respet to J(y) we arrive at the followingequation(�x +m2)G(x; y j J) + �2!�2(x j J)G(x; y j J) = Æ(4)(x� y) : (32)



On Threshold Amplitudes I 2821Making standard replaement one onverts Eq. (32) into(�x +m2)G(x; y j �0) + �2!�2(x j �0)G(x; y j �0) = Æ(4)(x� y) (33)with G(x; y j �0) � G(x; y j J) jJ!�0������!(�+m2) :The orresponding integral equation whih aommodates proper boundaryonditions readsG(x; y j �0) = �F(x� y)� �2! Z d4z�F(x� z)�2(z j �0)G(z; y j �0) : (34)Iterative solution of Eq. (33) produes perturbative expansion for G(x; y j�0). If one is able to solve Eq. (34) in losed form all matrix elementshout j T (�(x)�(y) j ini are attainable. They an serve, for example, toalulate the S-matrix elements for proesses where two partiles, initial or�nal, are distinguished (the main appliation, in the present ontext, is thesattering of hard partile in the presene of the arbitrary number of softones).Let us note that Eq. (33) de�nes Green funtion for quantum �eld ou-pled to the lassial external �eld 12�2(x j �0), the oupling onstant being �.Therefore, in order to alulate the S-matrix elements obtained by reduingthe �elds from T -produt one an use the results from sattering theory inlassial external �eld. For example, the relevant sattering amplitude anbe alulated from the soution of homogeneous ounterpart of Eq. (32) [25℄.Let g(x) be the positive energy solution of K�G equation. De�ne the Feyn-man wave funtion [25℄	g(x) � Z d4yG(x; y j �0) �������(�y +m2)g(y) : (35)Then, due to Eq. (33) and (�+m2)g(x) = 0,��+m2 + �2�2(x j �0)�	g(x) = 0 (36)and 	g(x) j�=0= g(x) : (37)If f(x) is another positive energy solution, the amplitude of the satteringg ! f in the presene of external �eld 12�2(x j �0) is alulated by �nding



2822 J. Domienik, J. Gonera, P. Kosi«skithe amplitude that f(x) enters 	g(x) in distant future [25℄. The only dif-ferene between our ase and of atual external �eld sattering is that ouramplitudes are already properly normalized ontrary to the external �eldproblem [25℄. In Appendix we demonstrate that this tehnique oinideswith that used in Ref. [8℄.One an ontinue with higher T -produts. De�neG(x; y; z j J) = ÆG(x; y j J)ÆJ(z) : (38)Taking the derivative of Eq. (32) one obtains(�x +m2)G(x; y; z j J) + �2!�2(x j J)G(x; y; z j J)+��(x j J)G(x; z j J)G(x; y j J) = 0 (39)and (�x +m2)G(x; y; z j �0) + �2!�2(x j �0)G(x; y; z j �0)+��(x j �0)G(x; z j �0)G(x; y j �0) = 0 : (40)There are no onneted three-point funtions in quantum theory of partilesin external lassial �eld. Using this as a boundary onditions we an solveEq. (40)G(x; y; z j �0) = ��Z d4uG(x; u j �0)�(u j �0)G(u; y j �0)G(u; z j �0) :(41)This proedure an be ontinued. By di�erentiating Eq. (40) with respetto J(!) one obtains the equation for four-point funtion whih again isexpliitly solvable. It is not di�ult to verify that the tree approximationto the Green funtions G(x1; : : : ; xn j �0) whih generate matrix elementsof T (�(x1); : : : �(xn)) is determined by the LagrangianeL(�) = 12 ����(x)���(x)�m2�2(x)� �2�2(x j �0)�2(x)�� �3!�(x j �0)�3(x)� �4!�4(x) (42)obtained from L(�) by making a shift �(x) ! �(x) + �(x j �0) (f. alsoRef. [1℄). This result an be extended to the loop amplitudes (using, forexample, path integral representation) [1℄.



On Threshold Amplitudes I 28234. Threshold amplitudesLet us onsider the matrix elements (in partiular � amplitudes) ofthe form hout j T (�(x):::) j ini where all inoming and outgoing partileshave vanishing threemomenta. Then the problem beomes translationallyinvariant. In partiular, �0(x) � �0(t) an be hosen as follows�0(t) = �e�imt + �eimt (43)and �(x j �0) � �(t j �0) beomes a funtion of time only. Eqs. (19), (20)take the form (�2t +m2)�(t j �0) + �3!�3(t j �0) = 0 ; (44)�(t j �0) j�=0= �0(t) (45)while Eq. (18) is onverted into�(t j �0) = �0(t)� �3! 1Z�1 dt0DF(t� t0)�3(t0 j �0) (46)with DF(t) � 12� 1Z�1 d� e�ip(t�t0)m2 � p2 � i" : (47)The problem beomes now tratable: Eqs. (44), (45) de�ne one-dimensionalanharmoni (quatri) osillator. The same applies to all matrix elementshout j T (�(x) : : :) j ini. In fat, for translational invariant in- and out- statesthese elements are translational invariant so one an use Fourier transformand redue the relevant partial di�erential equations to the ordinary ones. Insome ases an expliit solution is then available. Let us note that � and �in Eq. (43) need not to be omplex onjugated; �0(t) and, onsequently,�(t j �0) beome then omplex. In partiular, if we are interested inamplitudes with only initial (�nal) partiles at the rest we an assume� = 0 (� = 0). This property is very important beause it happens of-ten that the amplitudes with both initial and �nal partiles at threshold aredivergent while those with suh partiles in one state only, initial or �nal,are �nite (see below).



2824 J. Domienik, J. Gonera, P. Kosi«ski5. All partiles at the thresholdWe shall �rst onsider the amplitudes for the proesses with all, initialas well as �nal, partiles at the threshold. For one omponent �4-theory thismeans that we are dealing with n� ! n� amplitudes. To alulate themwe have to solve �rst Eqs. (44), (45), then to ompute �2n�1�(tj�0)��n�1��n j�=�=0�or �2n�1�(tj�0)��n��n�1 � and �nally redue the remaining �eld from the matrixelement.Aording to Eqs. (44), (45) we are, therefore, looking for the solutionto the anharmoni osillator problem with presribed harmoni limit. Letus write the �-expansion of �(t j �0)�(t j �0) = 1Xn=0�n(t)�n; (48)�n(t)�n is the sum of all graphs of order n in � with all but one externalpropagators amputated and replaed by �0. Expansion (48), when insertedinto Eq. (44), gives(�2t +m2)�n+1(t) + 13! Xk+l+m=n�k(t)�l(t)�m(t) = 0 (49)whih allows to solve reusively for �n(t) one �0(t) is known.The frequeny orresponding to the unamputated external line is integer(negative or positive) multiple of m. In order to obtain a nonvanishing am-plitude after amputating the last remaining external propagator the relevantfrequeny should be �m (initial line) or m (�nal line).In the suesive step of perturbative solution one has to solve harmoniosillator equation orresponding to a given external fore. The �rst termon the left-hand side of Eq. (49) gives the sum of amputated trees of n+1-storder. We see that the amplitudes are nonvanishing in this order if and onlyif the frequeny of external fore is �m i.e. we are faed with resonanes.Let us analyse Eq. (49) in more detail. We assume �rst that the frequeny! of �external fore� di�ers from �m. Inserting the expansion (49) into theintegral equation (46) we onlude that the partiular solution of Eq. (49) weshould use is the one obtained by dividing the external fore by m2�!2. Letus note that the hoie of DF(t) is irrelevant as long as m2 6= !2: any hoieof Green funtion would produe the same result. This property is re�etedby the orresponding property of tree graphs � the relevant amplitudes donot depend on the hoie of i"-presription as long as all internal momentaare o�-shell.



On Threshold Amplitudes I 2825The situation hanges drastially one the resonanes our. Then, asit is well known, the solution is no longer periodi in time; rather, it hasthe form of the polynomial of �rst degree times a periodi funtion. Moregenerally, (i) if the external fore is a polynomial of degree k times periodifuntion of frequeny �m, the solution is a polynomial of degree k+1 timesperiodi funtion while (ii) if the fore is a polynomial of degree k times pe-riodi funtion of the frequeny di�erent from �m, the solution is a periodifuntion times polynomial of the same degree. One an ombine this state-ment with the tree-graph interpretation of Eq. (49); the main point here isthat the ourrene of resonane orrespond to the divergene of unampu-tated propagator. Taking all that into aount we onlude that following:in eah step of pertubative solution of Eq. (49) the degree of the polynomialin t multiplying the term eikmt; k 2 Z, equals the maximal number of on-shell propagators in the tree graphs with unamputated propagator arryingthe energy km, ontributing to that order. We see that threshold tree am-plitudes are in general divergent and this divergene may be related to thestruture of solution to the lassial dynamial equations for anharmoniosillator.It is not di�ult to reognize the origin of polynomial terms in perturba-tive expansion. Assume that � and � are omplex onjugated so that �0(t)is real and, onsequently �(t j �0) also. Obviously �(t j �0) is periodi withthe period !(E; �) depending in general on energy and oupling onstant;the boundary ondition is !(E; � = 0) = m. The oordinate �(t j �0) anbe developed in Fourier series�(t j �0) = 1Xk=�1�k(E; �)eik!(E;�)t (50)with �k = ��k and �k(E; � = 0) = �Æ1k+�Æ�1k. By expanding in ouplingonstant we get�(t j �0) = 1Xk=�1��(0)k + �(1)k �+ : : :� eikt�m+ �!(E;�)�� ����=0 �+:::�= 1Xk=�1��(0)k + �(1)k �+ : : :��1 + ik�!(E; �)�� ����=0 � t+ : : :� eikmt(51)The terms linear, quadrati et. in time appear due to the �-dependene ofthe frequeny of motion (it ould a priori happen that in order to ful�l theboundary onditions �(t j �0) j�=0= �0(t) one has to take the energy E as�-dependent; this does not invalidate the arguments).



2826 J. Domienik, J. Gonera, P. Kosi«skiOne an now identify the maximally divergent graphs. If �!(E;�)�� j�=0 6= 0,Eq. (51) implies that the degree in t at the most is equal to the orderin �; however, the number of propagators in tree graph of the order n withone external line unamputated is just n (remember we are onsidering treegraphs). Therefore, all propagators are then singular. Low order graphs ofthis type are shown in Fig. 1.
Fig. 1.Let us now turn bak to the threshold amplitudes. In order to produethe nonvanishing ontribution, �(t j �0) should develop polynomial (in t)terms in � expansion whih, in turn, implies that the higher order tree am-plitudes are divergent. In fat, the nonvanishing and nonsingular amplitudeorresponds to the ontribution to �(t j �0) with singular unamputated ex-ternal line propagator and regular all other propagators. This tree graph anbe then used as a building blok in onstruting higher order tree graphs.Therefore, the tree-graph expansion of �(t j �0) is divergent. On the otherhand, if all terms in the tree-graphs expansion for �(t j �0) are well-de�ned,no polynomial terms in t develop whih implies that !(E; �) is �-independentso that !(E; �) � m. Then the reursive solution of Eq. (46) de�nes theFourier series for the periodi (with the period m) funtion �(t j �0). Allterms of �-expansion of �(t j �0) are well de�ned and the relevant ampli-tudes must vanish.Conluding, we are faed with the following dihotomy: either the tree-graph expansion of �(t j �0) is ill-de�ned or all threshold amplitudes vanish.One an pose the question when it is possible to �nd the solutions tothe lassial equations of motion whih are periodi in time with the basifrequeny equal to m. Suh solution will produe well de�ned term-by-termtree-graph expansion of �(t j �0). It is quite easy to see that for real motionsone an hardly get a reasonable theory. For, if the period of motion, beingequal to m, does not depend on energy, one is able to �nd the general lassof potentials by the method explained in [26℄; if one assumes the potential tobe the polynomial the unique solution is harmoni osillator of frequeny m,i.e. free-�eld theory. For omplex motions the situation is more ompliatedand suh solutions are possible for nontrivial potentials [6, 18℄. To see this



On Threshold Amplitudes I 2827onsider one more the expansion for �(t),�(t) = 1Xk=�1�k(E; �)eik!(E;�)t ; (52)due to d2V (�)d�2 j�=0= m2 one has !(E = 0; �) = m. With the realityondition �k(E; �) = ��k(E; �) the only solution with vanishing energyis �k(E = 0; �) = 0. However, if the reality ondition is abandoned, one an�nd nontrivial �k(0; �). The best examples are the solutions obeying [6℄��(t) j�=0= �e�imt : (53)Their tree-graph expansion produe well-de�ned amplitudes with thresholdpartiles in �nal (initial) states only.These results an be generalized to many-omponent �elds. Assume thatthe redued theory is an integrable system with r degrees of freedom, de�nedby the HamiltonianH = 12 rXi=1(�2i +m2i�2i ) + V (�;�) ; (54)V (�; 0) = 0; V (0;�) = �V (�; �)��i ����=0 = �2V (�;�)��i��j ����=0 = 0 :Let (JK ; �K); k = 1; :::; r, be the ation-angle variables and assume thatJ = 0 orresponds to the stationary point �i = 0; �i = 0; i = 1; :::; r. Anyomponent �i an be expanded in multiple Fourier serie�i(t) = Xn1;::;nr �i;n1;:::;nr(J; �)eiPrk=1 nk!k(J;�)t : (55)Our assumptions imply !k(0;�) = mk. Again, skipping reality onditionsone an often �nd nontrivial �i;n1;:::;nr(0;�). Generially, they orrespondto the boundary onditions �i(t) j�=0= �iei"imit; "i = �1; these are simplysolutions with JK = 0 in the limit � = 0. In this way one obtains the treeapproximation to the amplitudes with some kind of partiles at the thresholdin the initial state and other kind in the �nal one. Aording to the generalarguments above, all amplitudes of these types vanish.As an example onsider O(2)-theory with the symmetry softly broken bya mass term [18℄,L = 12(������+ ������)� m212 �2 � m222 �2 � �(�2 + �2)2 : (56)



2828 J. Domienik, J. Gonera, P. Kosi«skiAssume the �! �� symmetry is spontaneously broken, m21 < 0; m22 > 0.The relevant solutions read� = �0 1 + z12�0 + 2�4m2� �m2� z22 + ��0 2m� �m�(2m� +m�)3 z1z22!� 1� z12�0 � 2�4m2� �m2� z22 + ��0 2m� �m�(2m� +m�)3 z1z22!�1 ; (57)� = z2�1� (2m� �m�2m� +m� ) z12�0�� 1� z12�0 � 2�4m2� �m2� z22 + ��0 2m� �m�(2m� +m�)3 z1z22!�1 ;here z1 = �1eim�t; z2 = �2eim�t; �0 �< � > and m� � p2 j m1 j;m� �pj m21 j +m22 are physial masses. These solutions an serve to ompute theamplitudes � ! n1�+ n2� or � ! n1� + n2� where the initial partile iso�-shell while the �nal ones � at the threshold. Now, it is easy to hekthat the on-shell amplitude � ! 2� does not vanish provided m� = 2m�.Then, aording to Eq. (57) �(t) and �(t) are divergent. On the other hand,if m� 6= 2m�, all amplitudes with on-shell initial partile vanish while �(t)and �(t) are regular. Appendix AThe equation de�ning Green funtion reads [8℄[G�10 � V ℄G = 1 (A.1)with the formal solution G = 11�G0V G0 : (A.2)Eq. (36) de�nes the wave funtion	 = GG�10 	0 (	0 � g) (A.3)whih, together with (A:2), gives	 = 11�G0V 	0 (A.4)
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