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ON THRESHOLD AMPLITUDES I�Joanna Domienik, Joanna Gonera and Piotr Kosi«skiDepartment of Theoreti
al Physi
s II, University of �ód¹Pomorska 149/153, 90�236 �ód¹, Poland.(Re
eived July 17, 2001; revised version re
eived September 3, 2001)This is the �rst paper of the series devoted to threshold amplitudes inquantum �eld theory. We 
onsider here some aspe
ts of tree approxima-tion. The 
areful dis
ussion of relevant generating fun
tionals in
ludingthe problem of boundary 
onditions is given. The general rules for 
on-stru
ting the �eld matrix elements between threshold states are rederived.Some features of amplitudes for all parti
les at the threshold are dis
ussed.They are related to the properties of redu
ed 
lassi
al Newton systems. Inparti
ular, the nulli�
ation and divergen
e of amplitudes are interrelatedand explained in terms of dynami
s of 
lassi
al point parti
les.PACS numbers: 03.70.+k 1. Introdu
tionThe problem of multiparti
le produ
tion has attra
ted mu
h attentionin the past de
ade [1℄. Originally, it 
on
erned ele
troweak barion and lep-ton numbers violating pro
esses in the instanton se
tor [2℄. It has beenfound that, 
ontrary to the naive expe
tations, the relevant 
ross se
tionsare not so strongly suppressed if a large number of bosons is present in a�nal state. Later topologi
ally trivial se
tor has been 
onsidered with sim-ilar 
on
lusions: it has been shown that the tree amplitudes for n-parti
leprodu
tion in s
alar �4-theory behave like n!�n2 so they are not suppressedeven in a weakly 
oupled theory [3℄. It appeared also that a very detailedknowledge 
on
erning amplitudes is possible for spe
ial kinemati
s: that ofo�-shell, vanishing fourmomenta [4℄ or when all �nal parti
les are at thethreshold [4�9℄; other kinemati
s were also 
onsidered [10℄.The results 
on
erning threshold amplitudes are very interesting be
ause,being physi
ally relevant, they provide at the same time a rare example ofexa
t 
al
ulations in quantum �eld theory (�exa
t� means exa
t in some� Supported by the �ód¹ University Grant no 442.(2813)



2814 J. Domienik, J. Gonera, P. Kosi«skiparameter � here the number of bosons produ
ed). Moreover, they are astarting point for other interesting results; for example, knowing thresholdamplitudes one 
an make estimates, based on unitary, beyond threshold [11℄.Another interesting phenomenon is the nulli�
ation of 
ertain amplitudes onthe threshold. For example, for the pro
ess 2 ! n in �4 unbroken theory,all amplitudes vanish at threshold, ex
ept n = 2 and n = 4; if the symmetry� ! �� is broken the only nonvanishing amplitude is 2 ! 2 [10, 12, 13℄.Other theories were also analysed from this point of view and the nulli�
a-tion of tree 2! n amplitudes at the threshold was dis
overed in the bosoni
se
tor of ele
troweak model [14℄ and in the linear �-model [15℄; these resultsin general do not extend to the one-loop level [16℄ (see, however, Ref. [17℄).In more 
ompli
ated theories the nulli�
ation takes pla
e only provided somerelations between parameters are satis�ed [8, 15℄. Other interesting exam-ples of nulli�
ation are provided by the amplitudes with both initial and�nal parti
les at the threshold. It appears that in some theories almostall tree amplitudes of that kind vanish; the most prominent example is theO(2)-symmetri
 theory with two �elds in de�ning representation of O(2)and the symmetry softly broken by the mass term [18℄. The nulli�
ation oftree amplitudes is here ultimately related to integrability of some 
lassi
aldynami
al systems. This 
an be explained as follows [18℄. The generat-ing fun
tional for tree amplitudes obeys the 
lassi
al �eld equations. Forthreshold amplitudes the translational invarian
e is restored and dynami
alequations take the form of Newton equations for some systems of �nite de-grees of freedom. One 
an show [18℄ that the amputated Green fun
tionsare nonvanishing only provided in the 
ourse of solving perturbatively thedynami
al equations the resonan
es do appear. However, this is ex
ludedif our redu
ed system posses a 
ertain kind of symmetry (like O(2)-theorymentioned above [19℄). The relation between nulli�
ation of amplitudes andintegrable systems 
an be understood within general framework of mod-ern theory of integrable systems [20℄. However, a more traditional approa
hbased on 
an
ellations due to Ward identities is also possible [21℄. These andother properties of threshold amplitudes make the whole subje
t very inter-esting and deserving a more detailed study. The present paper is the �rst ofthe series devoted to su
h a study, both at the tree and at the loop levels.It is organized as follows. In Se
. 2 we dis
uss the generating fun
tionals forGreen fun
tions and amputated Green fun
tions in the tree approximation.The boundary e�e
ts are treated with a spe
ial 
are and shown to modify theform of the relevant fun
tionals. The general rules for building tree-graphmatrix elements of T -ordered �eld produ
ts between states with arbitrarynumber of parti
les are derived in Se
. 3 using fun
tional methods. Then,in Se
. 4 these 
onsiderations are spe
i�ed to the 
ase of threshold asymp-toti
 states. Finally, in Se
. 5 we give a general dis
ussion of nulli�
ation



On Threshold Amplitudes I 2815of threshold-to-threshold tree-graph amplitudes in the 
ontext of 
lassi
alme
hani
s of Newtonian systems.2. Generating fun
tions for tree amplitudesFor de�niteness we 
onsider the �4-theory de�ned by the a
tionSJ [�℄ � S[�℄ + Z d4xJ(x)�(x) � Z d4xL(�(x)) + Z d4xJ(x)�(x) ;L(�) � 12(�������m2�2)� �4!�4 ; (1)the results are valid, mutatis mutandis, also for more 
ompli
ated theories.The basi
 quantity we start with is the generating fun
tional for 
on-ne
ted Green fun
tionsW [J ℄ � �i ln(h0out j 0iniJ) ; (2)here h0out j 0iniJ is the va
uum-to-va
uum amplitude in the presen
e ofexternal 
urrent J(x). We are interested in the tree-graph approximation.It is well known [22℄ that, within this approximation, �(x j J) � ÆW=ÆJ(x)obeys 
lassi
al �eld equations in the presen
e of external 
urrent J(x),(�+m2)�(x j J) + �3!�3(x j J) = J(x) : (3)The proof is very simple. One 
onverts Eq. (3) into integral equation withappropriate, i.e. Feynman boundary 
onditions�(x j J) = Z d4y�F(x� y)J(y)� �3! Z d4y�F(x� y)�3(y j J) : (4)Itera
tive solution of this equation reprodu
es the tree-graph expansion ofone-point Green fun
tion. One 
an then 
al
ulate the generating fun
tionalW [J ℄ = 1Z0 d� Z d4xJ(x)�(x j �J) : (5)Integrating by parts and usingÆSÆ�(x j �J) = ��J(x)



2816 J. Domienik, J. Gonera, P. Kosi«skione getsW [J ℄ = Z d4x�J(x)�(x j �J) j�=1�=0 � 1Z0 d� Z d4x�J(x)d�(x j �J)d�= Z d4xJ(x)�(x j J) + 1Z0 d� Z d4x ÆSÆ�(x j �J) d�(x j �J)d�= Z d4xJ(x)�(x j J)+ 1Z0 d�dS(�)d� = S[�℄+Z d4xJ(x)�(x j J) :(6)This derivation is slightly formal due to the fa
t that ÆS=Æ�(x) involvesintegration by parts whi
h is not justi�ed be
ause �(x j J) does not vanishat in�nity. One 
an show that this results in slight modi�
ation of S[�℄;namely, S[�℄ is understood asS[�℄ = Z d4x�� 12�(x j J)(�+m2)�(x j J)� �4!�4(x j J)� : (7)Indeed, 
onsider S(�) entering Eq. (6),S(�) = Z d4x�12(���(x j �J)���(x j �J)�m2�2(x j �J)) � �4!�4(x j �J)� (8)we havedS(�)d� = Z d4x����d�(x j �J)d� ����(x j �J)�m2d�(x j �J)d� �(x j �J)� �3! d�(x j �J)d� �3(x j �J)�=Z d4x����d�(x j �J)d� ���(x j �J)��d�(x j �J)d� �(�+m2)�(x j �J) + �3!�3(x j �J)��= Z d4x����d�(x j �J)d� ���(x j �J)�� �J(x)d�(x j �J)d� � : (9)Therefore, a

ording to the derivation given above, the proper formula isW [J ℄ = S[�℄ + Z d4xJ�� 1Z0 d� Z d4x���d�d����� : (10)



On Threshold Amplitudes I 2817On the other hand one 
an writeS[�℄ = Z d4x�12(�������m2�2)� �4!�4�= Z d4x��12�(�+m2)�� �4!�4�+ 12 Z d4x��(����)= Z d4x��12�(�+m2)�� �4!�4�+ 12 1Z0 d� Z d4x���d�d����+ ����d�d��� (11)whi
h, together with Eq. (10) impliesW [J ℄ = Z d4x��12�(�+m2)�� �4!�4�+ Z d4xJ�+12 1Z0 d� Z d4x������ d�d� � d�d����� : (12)Last term equals12 1Z0 d� Z d4x��(�+m2)d�d� � d�d� (�+m2)�� : (13)Now, using�(x j �J) = Z d4y�F(x� y)��J(y) � �3!�3(y j �J)� (14)andd� (x j �J)d� = Z d4y�F(x� y)�J(y)� �2!�2(y j �J)d�(y j �J)d� � (15)as well as �F(�x) = �F(x) we �nd that (13) vanishes.Let us now pass to the S-matrix elements. It is easy to see that thestandard LSZ formulae 
an be summarized as follows. To get the generatingfun
tional for S-matrix elements one takesW [J ℄ and makes the repla
ementJ(x) ! �0(x)�������!(�x +m2), where �0(x) is a 
lassi
al free �eld. Let ffi(x)g



2818 J. Domienik, J. Gonera, P. Kosi«skibe a 
omplete set of normalized positive energy solutions of K�G equations;put �0(x) =Xi (�ifi(x) + �ifi(x)) : (16)Then S(�) = W [J ℄ jJ!�0������!(�+m2) (17)is the generating fun
tional for S-matrix elements: �=��i(�=��i) produ
esinitial (�nal) state des
ribed by the wave fun
tion fi(x). More generally,if the above repla
ement is made after taking a number of derivatives withrespe
t to J(x) one obtains the generating fun
tional for the arbitrary ma-trix elements of time-ordered �eld produ
ts; for example, the derivatives�=��i(�=��i) of Æ2WÆJ(x1)ÆJ(x2) ���J!�0������!(�+m2)generate matrix elements of T (�(x1)�(x2)). It is not di�
ult to �nd therelevant equation for �(x j �0) � �(x j J) jJ!�0������!(�+m2). Making therepla
ement J(x)! �0(x)�������!(�x +m2) in Eq. (4) one obtains�(x j �0) = �0(x)� �3! Z d4y�F(x� y)�3(y j �0) : (18)This equation implies that �(x j �0) obeys(�+m2)�(x j �0) + �3!�3(x j �0) = 0 (19)together with �(x j �0) j�=0= �0(x) : (20)The above derivation is slightly formal. However, the validity of Eq. (18)
an be 
on�rmed by solving it re
ursively. One obtains then tree-graphexpansion of matrix elements of �(x):Let us now 
al
ulate the generating fun
tional S(�) = S[�0℄. Naiveapproa
h would be to use Eqs. (6), (7) and (18) to getS[�0℄ = Z d4x��12�(x j �0)(�+m2)�(x j �0)� �4!�4(x j �0)�+Z d4x�0(x)(�+m2)�(x j �0) : (21)



On Threshold Amplitudes I 2819However, this is wrong [23, 24℄. To see this it is su�
ient to 
al
ulate�(x j �0) to the �rst order in � and then S[�0℄ to the same order [24℄.In order to get a right answer we have to 
onsider 
arefully the kineti
term. One hasZ d4x�(x j J)(�+m2)�(x j J)= Z d4xd4y�J(x)� �3!�3(x j J)��F(x� y)�J(y)� �3!�3(y j J)� :(22)Let us insert now J(x) ! �0(x)�������!(�x +m2); J(y) ! �0(y)�������!(�y +m2); then(22) attains the formZ d4x��2�3! ��3(x j �0)�0(x)+�� �3!�2Z d4xd4y�3(x j�0)�F(x�y)�3(y j�0):(23)On the other handZ d4x�(x j �0)(�+m2)�(x j �0)= Z d4x��0(x)� �3! Z d4y�f (x� y)�3(y j �0)����3! ��3(j �0) :(24)Eqs. (23), (24) di�er by the termZ d4x�0(x)�� �3!��3(x j �0) = Z d4x�0(x)(�+m2)�(x j �0): (25)Taking all that into a

ount one obtains �nal answer [23, 24℄.S[�0℄ = Z d4x��12�(x j �0)(�+m2)�(x j �0)� �4!�4(x j �0)�+12 Z d4x�0(x)(�+m2)�(x j �0) : (26)To 
he
k this formula let us 
al
ulate�S��i = Z d4x��12 ��(x)��i (�+m2)�(x)� 12�(x)(�+m2)��(x)��i� �3!�3(x) ��(x)��i �+ 12 Z d4xfi(x)(�+m2)�(x)+12 Z d4x�0(x)(�+m2)��(x)��i ; (27)



2820 J. Domienik, J. Gonera, P. Kosi«skihere �(x) � �(x j �0). Using �eld equation for �(x j �0) we 
an write�S��i = 12 Z d4xfi(x)(�+m2)�(x) + 12 Z d4x�0(x)(�+m2)��(x)��i+12 Z d4x���(x)��i (�+m2)�(x)� �(x)(�+m2)��(x)��i � : (28)Using ��(x)��i = fi(x)� �2! Z d4y�F(x� y)�2(y)��(y)��i (29)we arrive after some manipulations at�S��i = Z d4xfi(x)(�+m2)�(x j �0) : (30)Analogously �S��i = Z d4xfi(x)(�+m2)�(x j �0) (31)whi
h 
on�rms validity of Eq. (26).3. Matrix elementsAs it has been explained above the derivatives ofW [J ℄ produ
e 
onne
tedmatrix elements of T -ordered �eld produ
ts. Indeed, taking an appropriatenumber of derivatives with respe
t to J(x) and making the repla
ementJ(x) ! �0(x)������!(�+m2) one gets the generating fun
tional for relevant ma-trix elements. Starting from �(x j �0) one obtains the matrix elementshout j �(x) j ini with in- ( out- ) states spe
i�ed by �=��i (�=��i) deriva-tives. This element 
an be further redu
ed by applying K�G operator orused as an input for 
al
ulating the amplitude for a larger pro
ess.Let us now pass to the matrix elements hout j T (�(x)�(y)) j ini. Let usde�ne G(x; y j J) � Æ�(x j J)ÆJ(y) ;by di�erentiating Eq. (3) with respe
t to J(y) we arrive at the followingequation(�x +m2)G(x; y j J) + �2!�2(x j J)G(x; y j J) = Æ(4)(x� y) : (32)



On Threshold Amplitudes I 2821Making standard repla
ement one 
onverts Eq. (32) into(�x +m2)G(x; y j �0) + �2!�2(x j �0)G(x; y j �0) = Æ(4)(x� y) (33)with G(x; y j �0) � G(x; y j J) jJ!�0������!(�+m2) :The 
orresponding integral equation whi
h a

ommodates proper boundary
onditions readsG(x; y j �0) = �F(x� y)� �2! Z d4z�F(x� z)�2(z j �0)G(z; y j �0) : (34)Itera
tive solution of Eq. (33) produ
es perturbative expansion for G(x; y j�0). If one is able to solve Eq. (34) in 
losed form all matrix elementshout j T (�(x)�(y) j ini are attainable. They 
an serve, for example, to
al
ulate the S-matrix elements for pro
esses where two parti
les, initial or�nal, are distinguished (the main appli
ation, in the present 
ontext, is thes
attering of hard parti
le in the presen
e of the arbitrary number of softones).Let us note that Eq. (33) de�nes Green fun
tion for quantum �eld 
ou-pled to the 
lassi
al external �eld 12�2(x j �0), the 
oupling 
onstant being �.Therefore, in order to 
al
ulate the S-matrix elements obtained by redu
ingthe �elds from T -produ
t one 
an use the results from s
attering theory in
lassi
al external �eld. For example, the relevant s
attering amplitude 
anbe 
al
ulated from the soution of homogeneous 
ounterpart of Eq. (32) [25℄.Let g(x) be the positive energy solution of K�G equation. De�ne the Feyn-man wave fun
tion [25℄	g(x) � Z d4yG(x; y j �0) �������(�y +m2)g(y) : (35)Then, due to Eq. (33) and (�+m2)g(x) = 0,��+m2 + �2�2(x j �0)�	g(x) = 0 (36)and 	g(x) j�=0= g(x) : (37)If f(x) is another positive energy solution, the amplitude of the s
atteringg ! f in the presen
e of external �eld 12�2(x j �0) is 
al
ulated by �nding



2822 J. Domienik, J. Gonera, P. Kosi«skithe amplitude that f(x) enters 	g(x) in distant future [25℄. The only dif-feren
e between our 
ase and of a
tual external �eld s
attering is that ouramplitudes are already properly normalized 
ontrary to the external �eldproblem [25℄. In Appendix we demonstrate that this te
hnique 
oin
ideswith that used in Ref. [8℄.One 
an 
ontinue with higher T -produ
ts. De�neG(x; y; z j J) = ÆG(x; y j J)ÆJ(z) : (38)Taking the derivative of Eq. (32) one obtains(�x +m2)G(x; y; z j J) + �2!�2(x j J)G(x; y; z j J)+��(x j J)G(x; z j J)G(x; y j J) = 0 (39)and (�x +m2)G(x; y; z j �0) + �2!�2(x j �0)G(x; y; z j �0)+��(x j �0)G(x; z j �0)G(x; y j �0) = 0 : (40)There are no 
onne
ted three-point fun
tions in quantum theory of parti
lesin external 
lassi
al �eld. Using this as a boundary 
onditions we 
an solveEq. (40)G(x; y; z j �0) = ��Z d4uG(x; u j �0)�(u j �0)G(u; y j �0)G(u; z j �0) :(41)This pro
edure 
an be 
ontinued. By di�erentiating Eq. (40) with respe
tto J(!) one obtains the equation for four-point fun
tion whi
h again isexpli
itly solvable. It is not di�
ult to verify that the tree approximationto the Green fun
tions G(x1; : : : ; xn j �0) whi
h generate matrix elementsof T (�(x1); : : : �(xn)) is determined by the LagrangianeL(�) = 12 ����(x)���(x)�m2�2(x)� �2�2(x j �0)�2(x)�� �3!�(x j �0)�3(x)� �4!�4(x) (42)obtained from L(�) by making a shift �(x) ! �(x) + �(x j �0) (
f. alsoRef. [1℄). This result 
an be extended to the loop amplitudes (using, forexample, path integral representation) [1℄.



On Threshold Amplitudes I 28234. Threshold amplitudesLet us 
onsider the matrix elements (in parti
ular � amplitudes) ofthe form hout j T (�(x):::) j ini where all in
oming and outgoing parti
leshave vanishing threemomenta. Then the problem be
omes translationallyinvariant. In parti
ular, �0(x) � �0(t) 
an be 
hosen as follows�0(t) = �e�imt + �eimt (43)and �(x j �0) � �(t j �0) be
omes a fun
tion of time only. Eqs. (19), (20)take the form (�2t +m2)�(t j �0) + �3!�3(t j �0) = 0 ; (44)�(t j �0) j�=0= �0(t) (45)while Eq. (18) is 
onverted into�(t j �0) = �0(t)� �3! 1Z�1 dt0DF(t� t0)�3(t0 j �0) (46)with DF(t) � 12� 1Z�1 d� e�ip(t�t0)m2 � p2 � i" : (47)The problem be
omes now tra
table: Eqs. (44), (45) de�ne one-dimensionalanharmoni
 (quatri
) os
illator. The same applies to all matrix elementshout j T (�(x) : : :) j ini. In fa
t, for translational invariant in- and out- statesthese elements are translational invariant so one 
an use Fourier transformand redu
e the relevant partial di�erential equations to the ordinary ones. Insome 
ases an expli
it solution is then available. Let us note that � and �in Eq. (43) need not to be 
omplex 
onjugated; �0(t) and, 
onsequently,�(t j �0) be
ome then 
omplex. In parti
ular, if we are interested inamplitudes with only initial (�nal) parti
les at the rest we 
an assume� = 0 (� = 0). This property is very important be
ause it happens of-ten that the amplitudes with both initial and �nal parti
les at threshold aredivergent while those with su
h parti
les in one state only, initial or �nal,are �nite (see below).
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les at the thresholdWe shall �rst 
onsider the amplitudes for the pro
esses with all, initialas well as �nal, parti
les at the threshold. For one 
omponent �4-theory thismeans that we are dealing with n� ! n� amplitudes. To 
al
ulate themwe have to solve �rst Eqs. (44), (45), then to 
ompute �2n�1�(tj�0)��n�1��n j�=�=0�or �2n�1�(tj�0)��n��n�1 � and �nally redu
e the remaining �eld from the matrixelement.A

ording to Eqs. (44), (45) we are, therefore, looking for the solutionto the anharmoni
 os
illator problem with pres
ribed harmoni
 limit. Letus write the �-expansion of �(t j �0)�(t j �0) = 1Xn=0�n(t)�n; (48)�n(t)�n is the sum of all graphs of order n in � with all but one externalpropagators amputated and repla
ed by �0. Expansion (48), when insertedinto Eq. (44), gives(�2t +m2)�n+1(t) + 13! Xk+l+m=n�k(t)�l(t)�m(t) = 0 (49)whi
h allows to solve re
usively for �n(t) on
e �0(t) is known.The frequen
y 
orresponding to the unamputated external line is integer(negative or positive) multiple of m. In order to obtain a nonvanishing am-plitude after amputating the last remaining external propagator the relevantfrequen
y should be �m (initial line) or m (�nal line).In the su

esive step of perturbative solution one has to solve harmoni
os
illator equation 
orresponding to a given external for
e. The �rst termon the left-hand side of Eq. (49) gives the sum of amputated trees of n+1-storder. We see that the amplitudes are nonvanishing in this order if and onlyif the frequen
y of external for
e is �m i.e. we are fa
ed with resonan
es.Let us analyse Eq. (49) in more detail. We assume �rst that the frequen
y! of �external for
e� di�ers from �m. Inserting the expansion (49) into theintegral equation (46) we 
on
lude that the parti
ular solution of Eq. (49) weshould use is the one obtained by dividing the external for
e by m2�!2. Letus note that the 
hoi
e of DF(t) is irrelevant as long as m2 6= !2: any 
hoi
eof Green fun
tion would produ
e the same result. This property is re�e
tedby the 
orresponding property of tree graphs � the relevant amplitudes donot depend on the 
hoi
e of i"-pres
ription as long as all internal momentaare o�-shell.
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hanges drasti
ally on
e the resonan
es o

ur. Then, asit is well known, the solution is no longer periodi
 in time; rather, it hasthe form of the polynomial of �rst degree times a periodi
 fun
tion. Moregenerally, (i) if the external for
e is a polynomial of degree k times periodi
fun
tion of frequen
y �m, the solution is a polynomial of degree k+1 timesperiodi
 fun
tion while (ii) if the for
e is a polynomial of degree k times pe-riodi
 fun
tion of the frequen
y di�erent from �m, the solution is a periodi
fun
tion times polynomial of the same degree. One 
an 
ombine this state-ment with the tree-graph interpretation of Eq. (49); the main point here isthat the o

urren
e of resonan
e 
orrespond to the divergen
e of unampu-tated propagator. Taking all that into a

ount we 
on
lude that following:in ea
h step of pertubative solution of Eq. (49) the degree of the polynomialin t multiplying the term eikmt; k 2 Z, equals the maximal number of on-shell propagators in the tree graphs with unamputated propagator 
arryingthe energy km, 
ontributing to that order. We see that threshold tree am-plitudes are in general divergent and this divergen
e may be related to thestru
ture of solution to the 
lassi
al dynami
al equations for anharmoni
os
illator.It is not di�
ult to re
ognize the origin of polynomial terms in perturba-tive expansion. Assume that � and � are 
omplex 
onjugated so that �0(t)is real and, 
onsequently �(t j �0) also. Obviously �(t j �0) is periodi
 withthe period !(E; �) depending in general on energy and 
oupling 
onstant;the boundary 
ondition is !(E; � = 0) = m. The 
oordinate �(t j �0) 
anbe developed in Fourier series�(t j �0) = 1Xk=�1�k(E; �)eik!(E;�)t (50)with �k = ��k and �k(E; � = 0) = �Æ1k+�Æ�1k. By expanding in 
oupling
onstant we get�(t j �0) = 1Xk=�1��(0)k + �(1)k �+ : : :� eikt�m+ �!(E;�)�� ����=0 �+:::�= 1Xk=�1��(0)k + �(1)k �+ : : :��1 + ik�!(E; �)�� ����=0 � t+ : : :� eikmt(51)The terms linear, quadrati
 et
. in time appear due to the �-dependen
e ofthe frequen
y of motion (it 
ould a priori happen that in order to ful�l theboundary 
onditions �(t j �0) j�=0= �0(t) one has to take the energy E as�-dependent; this does not invalidate the arguments).



2826 J. Domienik, J. Gonera, P. Kosi«skiOne 
an now identify the maximally divergent graphs. If �!(E;�)�� j�=0 6= 0,Eq. (51) implies that the degree in t at the most is equal to the orderin �; however, the number of propagators in tree graph of the order n withone external line unamputated is just n (remember we are 
onsidering treegraphs). Therefore, all propagators are then singular. Low order graphs ofthis type are shown in Fig. 1.
Fig. 1.Let us now turn ba
k to the threshold amplitudes. In order to produ
ethe nonvanishing 
ontribution, �(t j �0) should develop polynomial (in t)terms in � expansion whi
h, in turn, implies that the higher order tree am-plitudes are divergent. In fa
t, the nonvanishing and nonsingular amplitude
orresponds to the 
ontribution to �(t j �0) with singular unamputated ex-ternal line propagator and regular all other propagators. This tree graph 
anbe then used as a building blo
k in 
onstru
ting higher order tree graphs.Therefore, the tree-graph expansion of �(t j �0) is divergent. On the otherhand, if all terms in the tree-graphs expansion for �(t j �0) are well-de�ned,no polynomial terms in t develop whi
h implies that !(E; �) is �-independentso that !(E; �) � m. Then the re
ursive solution of Eq. (46) de�nes theFourier series for the periodi
 (with the period m) fun
tion �(t j �0). Allterms of �-expansion of �(t j �0) are well de�ned and the relevant ampli-tudes must vanish.Con
luding, we are fa
ed with the following di
hotomy: either the tree-graph expansion of �(t j �0) is ill-de�ned or all threshold amplitudes vanish.One 
an pose the question when it is possible to �nd the solutions tothe 
lassi
al equations of motion whi
h are periodi
 in time with the basi
frequen
y equal to m. Su
h solution will produ
e well de�ned term-by-termtree-graph expansion of �(t j �0). It is quite easy to see that for real motionsone 
an hardly get a reasonable theory. For, if the period of motion, beingequal to m, does not depend on energy, one is able to �nd the general 
lassof potentials by the method explained in [26℄; if one assumes the potential tobe the polynomial the unique solution is harmoni
 os
illator of frequen
y m,i.e. free-�eld theory. For 
omplex motions the situation is more 
ompli
atedand su
h solutions are possible for nontrivial potentials [6, 18℄. To see this
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onsider on
e more the expansion for �(t),�(t) = 1Xk=�1�k(E; �)eik!(E;�)t ; (52)due to d2V (�)d�2 j�=0= m2 one has !(E = 0; �) = m. With the reality
ondition �k(E; �) = ��k(E; �) the only solution with vanishing energyis �k(E = 0; �) = 0. However, if the reality 
ondition is abandoned, one 
an�nd nontrivial �k(0; �). The best examples are the solutions obeying [6℄��(t) j�=0= �e�imt : (53)Their tree-graph expansion produ
e well-de�ned amplitudes with thresholdparti
les in �nal (initial) states only.These results 
an be generalized to many-
omponent �elds. Assume thatthe redu
ed theory is an integrable system with r degrees of freedom, de�nedby the HamiltonianH = 12 rXi=1(�2i +m2i�2i ) + V (�;�) ; (54)V (�; 0) = 0; V (0;�) = �V (�; �)��i ����=0 = �2V (�;�)��i��j ����=0 = 0 :Let (JK ; �K); k = 1; :::; r, be the a
tion-angle variables and assume thatJ = 0 
orresponds to the stationary point �i = 0; �i = 0; i = 1; :::; r. Any
omponent �i 
an be expanded in multiple Fourier serie�i(t) = Xn1;::;nr �i;n1;:::;nr(J; �)eiPrk=1 nk!k(J;�)t : (55)Our assumptions imply !k(0;�) = mk. Again, skipping reality 
onditionsone 
an often �nd nontrivial �i;n1;:::;nr(0;�). Generi
ally, they 
orrespondto the boundary 
onditions �i(t) j�=0= �iei"imit; "i = �1; these are simplysolutions with JK = 0 in the limit � = 0. In this way one obtains the treeapproximation to the amplitudes with some kind of parti
les at the thresholdin the initial state and other kind in the �nal one. A

ording to the generalarguments above, all amplitudes of these types vanish.As an example 
onsider O(2)-theory with the symmetry softly broken bya mass term [18℄,L = 12(������+ ������)� m212 �2 � m222 �2 � �(�2 + �2)2 : (56)



2828 J. Domienik, J. Gonera, P. Kosi«skiAssume the �! �� symmetry is spontaneously broken, m21 < 0; m22 > 0.The relevant solutions read� = �0 1 + z12�0 + 2�4m2� �m2� z22 + ��0 2m� �m�(2m� +m�)3 z1z22!� 1� z12�0 � 2�4m2� �m2� z22 + ��0 2m� �m�(2m� +m�)3 z1z22!�1 ; (57)� = z2�1� (2m� �m�2m� +m� ) z12�0�� 1� z12�0 � 2�4m2� �m2� z22 + ��0 2m� �m�(2m� +m�)3 z1z22!�1 ;here z1 = �1eim�t; z2 = �2eim�t; �0 �< � > and m� � p2 j m1 j;m� �pj m21 j +m22 are physi
al masses. These solutions 
an serve to 
ompute theamplitudes � ! n1�+ n2� or � ! n1� + n2� where the initial parti
le iso�-shell while the �nal ones � at the threshold. Now, it is easy to 
he
kthat the on-shell amplitude � ! 2� does not vanish provided m� = 2m�.Then, a

ording to Eq. (57) �(t) and �(t) are divergent. On the other hand,if m� 6= 2m�, all amplitudes with on-shell initial parti
le vanish while �(t)and �(t) are regular. Appendix AThe equation de�ning Green fun
tion reads [8℄[G�10 � V ℄G = 1 (A.1)with the formal solution G = 11�G0V G0 : (A.2)Eq. (36) de�nes the wave fun
tion	 = GG�10 	0 (	0 � g) (A.3)whi
h, together with (A:2), gives	 = 11�G0V 	0 (A.4)



On Threshold Amplitudes I 2829or 	 = 	0 +G0V 	 : (A.5)Eq.(A.5) 
oin
ides with Eq. (2.22) of Ref. [8℄.It is also easy to see that the re
ipe for 
al
ulating the amplitudes givenbelow Eq. (36) 
oin
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