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This is the first paper of the series devoted to threshold amplitudes in
quantum field theory. We consider here some aspects of tree approxima-
tion. The careful discussion of relevant generating functionals including
the problem of boundary conditions is given. The general rules for con-
structing the field matrix elements between threshold states are rederived.
Some features of amplitudes for all particles at the threshold are discussed.
They are related to the properties of reduced classical Newton systems. In
particular, the nullification and divergence of amplitudes are interrelated
and explained in terms of dynamics of classical point particles.

PACS numbers: 03.70.+k

1. Introduction

The problem of multiparticle production has attracted much attention
in the past decade [1]. Originally, it concerned electroweak barion and lep-
ton numbers violating processes in the instanton sector [2]. It has been
found that, contrary to the naive expectations, the relevant cross sections
are not so strongly suppressed if a large number of bosons is present in a
final state. Later topologically trivial sector has been considered with sim-
ilar conclusions: it has been shown that the tree amplitudes for n-particle
production in scalar $*-theory behave like nIAT so they are not suppressed
even in a weakly coupled theory [3]. It appeared also that a very detailed
knowledge concerning amplitudes is possible for special kinematics: that of
off-shell, vanishing fourmomenta [4] or when all final particles are at the
threshold [4-9]; other kinematics were also considered [10].

The results concerning threshold amplitudes are very interesting because,
being physically relevant, they provide at the same time a rare example of
exact calculations in quantum field theory (“exact” means exact in some
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parameter — here the number of bosons produced). Moreover, they are a
starting point for other interesting results; for example, knowing threshold
amplitudes one can make estimates, based on unitary, beyond threshold [11].
Another interesting phenomenon is the nullification of certain amplitudes on
the threshold. For example, for the process 2 — n in ! unbroken theory,
all amplitudes vanish at threshold, except n = 2 and n = 4; if the symmetry
& — —& is broken the only nonvanishing amplitude is 2 — 2 [10, 12, 13].
Other theories were also analysed from this point of view and the nullifica-
tion of tree 2 — n amplitudes at the threshold was discovered in the bosonic
sector of electroweak model [14] and in the linear o-model [15]; these results
in general do not extend to the one-loop level [16] (see, however, Ref. [17]).
In more complicated theories the nullification takes place only provided some
relations between parameters are satisfied [8,15]. Other interesting exam-
ples of nullification are provided by the amplitudes with both initial and
final particles at the threshold. It appears that in some theories almost
all tree amplitudes of that kind vanish; the most prominent example is the
O(2)-symmetric theory with two fields in defining representation of O(2)
and the symmetry softly broken by the mass term [18]. The nullification of
tree amplitudes is here ultimately related to integrability of some classical
dynamical systems. This can be explained as follows [18]. The generat-
ing functional for tree amplitudes obeys the classical field equations. For
threshold amplitudes the translational invariance is restored and dynamical
equations take the form of Newton equations for some systems of finite de-
grees of freedom. One can show [18] that the amputated Green functions
are nonvanishing only provided in the course of solving perturbatively the
dynamical equations the resonances do appear. However, this is excluded
if our reduced system posses a certain kind of symmetry (like O(2)-theory
mentioned above [19]). The relation between nullification of amplitudes and
integrable systems can be understood within general framework of mod-
ern theory of integrable systems [20]. However, a more traditional approach
based on cancellations due to Ward identities is also possible [21]. These and
other properties of threshold amplitudes make the whole subject very inter-
esting and deserving a more detailed study. The present paper is the first of
the series devoted to such a study, both at the tree and at the loop levels.
It is organized as follows. In Sec. 2 we discuss the generating functionals for
Green functions and amputated Green functions in the tree approximation.
The boundary effects are treated with a special care and shown to modify the
form of the relevant functionals. The general rules for building tree-graph
matrix elements of T-ordered field products between states with arbitrary
number of particles are derived in Sec. 3 using functional methods. Then,
in Sec. 4 these considerations are specified to the case of threshold asymp-
totic states. Finally, in Sec. 5 we give a general discussion of nullification
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of threshold-to-threshold tree-graph amplitudes in the context of classical
mechanics of Newtonian systems.

2. Generating functions for tree amplitudes

For definiteness we consider the @*-theory defined by the action
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the results are valid, mutatis mutandis, also for more complicated theories.

The basic quantity we start with is the generating functional for con-
nected Green functions

W{[J] = —i In({Oout | Oin) ) ; (2)

here (Oout | Oin)s is the vacuum-to-vacuum amplitude in the presence of
external current J(z). We are interested in the tree-graph approximation.
It is well known [22] that, within this approximation, &(z | J) = dW/J(z)
obeys classical field equations in the presence of external current J(z),

m+wﬂ¢@Ln+%ﬁ@|ﬂ:J@y (3)

The proof is very simple. One converts Eq. (3) into integral equation with
appropriate, i.e. Feynman boundary conditions

oo 1) = [ d'ydeo =) - 5 [dydee -0, @)

Iteractive solution of this equation reproduces the tree-graph expansion of
one-point Green function. One can then calculate the generating functional

1
W] = / do / A J (2)B(z | o). (5)
0

Integrating by parts and using

08

0P(z | aJ) = ()
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one gets

1
Wi = [atsar@t | ad) 125} —/ o f () S

1
08 do(z | aJ)
d* d
/mJ $|J+/ a/ (0 o)) o

0
/d4xJ x|J+/1dadS S|+ /d4xJ() (] J).(6)

0

This derivation is slightly formal due to the fact that 6S/6®(z) involves
integration by parts which is not justified because ¢(x | J) does not vanish
at infinity. One can show that this results in slight modification of S[®];
namely, S[®] is understood as

S[#] = /d4x< 5B | DO+ mA)B(a | 1)~ A | J)) RS
Indeed, consider S(«) entering Eq. (6),

S(a) = /d4m<%(8ﬂ¢($ | aJ)OHP(z | )

Cm2d2(z | o)) — %@4(:5 | aJ)) (8)
we have
oo Pt
d (z | aJ)

- (@4 )0l | 0d) + 8°(a | 0)))

- / d4x(6u<wa“¢(x|aj)>—aJ(x)W). ()

Therefore, according to the derivation given above, the proper formula is

WJ] = S[@] + / daJd— /1 der / d%aﬂ(j—ia#@). (10)
0
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On the other hand one can write
4, (1 2 52 A i
4 1 A 54 1 4
= [dz 245(D +m?)P — Eé + 3 d*z0,,(PO"P)
1 A
_ 4 4
—/dx( 2¢(D+m)¢—5¢)
1 / dd
+ §/da/d4$8ﬂ < ot'd + PO+ <da>) (11)
0
which, together with Eq. (10) implies

W[J] = /d%( ;@(D—Fm )P — %@4) /d%Jqs

dd do
/ da / d*zd), <q§aﬂ— - d—al@) (12)
Last term equals
1 / do do
< 4 2\0®  a¥ 2
2/da/dm<q§(D+m)da da(D+m)Q§> (13)
0

Now, using

#(e]al) = [ dyseio—y) (att) - 38w lan) (1)

and

W /d4yAF($ ) <J(y) — %ég(y | aJ)W) (15)

as well as Ap(—x) = Ap(z) we find that (13) vanishes.

Let us now pass to the S-matrix elements. It is easy to see that the
standard LSZ formulae can be summarized as follows. To get the generating
functional for S-matrix elements one takes W[.J] and makes the replacement

i ——
J(x) = ®o(z)(O; + m?), where $y(z) is a classical free field. Let {fi(z)}
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be a complete set of normalized positive energy solutions of K—G equations;
put

Bo(z) =Y (Bifi(x) + Bifi(x)) - (16)

)

Then

S(P) =WLJ] (17)

=i
J—d0(0 4+ m*)
is the generating functional for S-matrix elements: 9/93;(0/9p;) produces
initial (final) state described by the wave function f;(z). More generally,
if the above replacement is made after taking a number of derivatives with
respect to J(z) one obtains the generating functional for the arbitrary ma-
trix elements of time-ordered field products; for example, the derivatives

9/08,(9/ 55;) of
_ewoo
6J(21)0J (x2) | 700(0 + m?)

generate matrix elements of T(®(xz1)P(x2)). It is not difficult to find the

relevant equation for &(z | $9) = P(z | J) | ————. Making the
J—d0(0 4+ m?)

— . :
replacement J(z) — Po(x)(0; + m*) in Eq. (4) one obtains

Bz | 80) = Bo(o) — 55 [ d'yAe(o - )@y | B0). (18)
This equation implies that &(z | ®¢) obeys
O+ m?) (e | Bo) + 2 | Fo) = 0 (19)
together with
(x| o) [rx=0= Po(z). (20)

The above derivation is slightly formal. However, the validity of Eq. (18)
can be confirmed by solving it recursively. One obtains then tree-graph
expansion of matrix elements of ¢(z).

Let us now calculate the generating functional S(5) = S[®y]. Naive
approach would be to use Egs. (6), (7) and (18) to get

Sin] = [ s (~30e | 20O+ )0 | 20) - 5o | 00))

+/d4xd50(ac)(|j + m?)®(z | o). (21)
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However, this is wrong [23,24]. To see this it is sufficient to calculate
D(z | Do) to the first order in A and then S[Pp] to the same order [24].

In order to get a right answer we have to consider carefully the kinetic
term. One has

/d‘*m(m | (O +m?)®(z | J)
_ /d4xd4y<J(m) - %@3@ | J))Ap(ac —y) (J(y) . %@3@ | J)) :
(22)

~ P pX
Let us insert now J(z) — Po(z)(0; +m*), J(y) = Po(y)(0y + m”); then
(22) attains the form

/ ' <_—2A) B (2 | BBy () + <—%)2 / L dy (2 | Bo) Ar (z—1) By | By).

(23)
On the other hand

[ dtst(a | 200 + mt)o(a | @)

= [ata (@) - 3 [ avaste i@l o) (5) 20 70,
(24)

Egs. (23), (24) differ by the term

/d4mq§0(x) <—3) P (x| By) = /d4x¢0(m)(D+m2)<ﬁ($ | o). (25)

Taking all that into account one obtains final answer [23,24].

S[®] = /d4x <—%¢(m | Bo) (O m?)B(ar | B) — (x| @0))
+%/d4$¢0($)(ﬂ +m?)d(z | By). (26)
To check this formula let us calculate
g—; - /d% <—%8§gf) O+ m?)d(z) — %@(I)(D + m2)a§§:)
—%qs?’(x) agsg)) + % / Az f;(z)(0 + m?)d(z)
+3 [ ooy @+ m) 2 21)
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here ¢(z) = @(z | $o). Using field equation for &(z | @y) we can write

gﬁsz - %/d4$fi($)(m + m2)q§(f) + % /d4$@0($)(D +m2)—8(§éf)
0 P
+% /d4x <%(D +m?)®(z) — B(z) (0 +m?) ggf)) (28)
Using
9 B
géf) = filz) - % / d'yAp(z - y)ég(y)% (29)
we arrive after some manipulations at
0
28 = [aes@o s ot |20 -
Analogously
a_S — 4I7 mg =z
aE_/d fi(x)(O 4+ m*)P(x | Do) (31)

which confirms validity of Eq. (26).

3. Matrix elements

As it has been explained above the derivatives of W{[.J] produce connected
matrix elements of T-ordered field products. Indeed, taking an appropriate
number of derivatives with respect to J(z) and making the replacement

—
J(z) = Po(z)(0 + m?) one gets the generating functional for relevant ma-
trix elements. Starting from &(z | ®p) one obtains the matrix elements
{out | &(x) | in) with in- ( out- ) states specified by 8/98; (9/9B;) deriva-
tives. This element can be further reduced by applying K-G operator or
used as an input for calculating the amplitude for a larger process.

Let us now pass to the matrix elements (out | T(®(z)®(y)) | in). Let us
define

Glo.y| 1) = 5L

by differentiating Eq. (3) with respect to J(y) we arrive at the following
equation

(B +m*)G(a,y | ) + %452(30 | NG,y | J) =D (@—y).  (32)
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Making standard replacement one converts Eq. (32) into

(Oa +m2)G{a,y | Bo) + 20w | B0)Glay | o) =W (a —y)  (33)

with

Gz, y | o) = Glz,y | J .
(z,y | @) = G(z,y | )IH%(DJFmQ)

The corresponding integral equation which accommodates proper boundary
conditions reads

G(z,y | ®9) = Ap(z —y) — %/d4zAF(m — z)@g(z | ©0)G(z,y | o). (34)

Iteractive solution of Eq. (33) produces perturbative expansion for G(z,y |
Pp). If one is able to solve Eq. (34) in closed form all matrix elements
(out | T(P(x)®@(y) | in) are attainable. They can serve, for example, to
calculate the S-matrix elements for processes where two particles, initial or
final, are distinguished (the main application, in the present context, is the
scattering of hard particle in the presence of the arbitrary number of soft
ones).

Let us note that Eq. (33) defines Green function for quantum field cou-
pled to the classical external field 3&2(z | @), the coupling constant being A.
Therefore, in order to calculate the S-matrix elements obtained by reducing
the fields from T-product one can use the results from scattering theory in
classical external field. For example, the relevant scattering amplitude can
be calculated from the soution of homogeneous counterpart of Eq. (32) [25].
Let g(x) be the positive energy solution of K—G equation. Define the Feyn-
man wave function [25]

0y(s) = [ d'yGay | 00)(G, + mPlgly). (35)
Then, due to Eq. (33) and (O + m?)g(z) = 0,
(4 2+ 3% | 00 ) 4) =0 (36)

and

Uy (z) Ir=0=g(z). (37)

If f(x) is another positive energy solution, the amplitude of the scattering
g — f in the presence of external field £#2(z | &) is calculated by finding
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the amplitude that f(z) enters ¥y(z) in distant future [25]. The only dif-
ference between our case and of actual external field scattering is that our
amplitudes are already properly normalized contrary to the external field
problem [25]. In Appendix we demonstrate that this technique coincides
with that used in Ref. [8].

One can continue with higher T-products. Define

_ 0G(z,y | J)
G(%Zhﬂﬂ—w- (38)
Taking the derivative of Eq. (32) one obtains
2 A 52
+AP(z | J)G(z,2 | J)G(z,y | J) =0 (39)
and
2 A 52
(O +m”)G(z,y,2 | Po) + 22 (@ | @o)G(z,y,z | Po)
+AD(z | Do)G(z, 2 | Po)G(z,y | Po) = 0. (40)

There are no connected three-point functions in quantum theory of particles
in external classical field. Using this as a boundary conditions we can solve
Eq. (40)

G(z,y,z | Do) = —)\/d4uG($,u | @0)P(u | @o)G(u,y | Po)G(u,z | Dy).

(41)
This procedure can be continued. By differentiating Eq. (40) with respect
to J(w) one obtains the equation for four-point function which again is
explicitly solvable. It is not difficult to verify that the tree approximation
to the Green functions G(z1,...,2, | $9) which generate matrix elements
of T(®(x1),...P(x,)) is determined by the Lagrangian

i) = % <8Md5(x)8“¢(x) 232 (z) — %@2(:5 | @0)452(:5))
20 | B0)P (@) — @) (42)

obtained from L(®) by making a shift &(z) — &(z) + @(z | Pg) (c¢f. also
Ref. [1]). This result can be extended to the loop amplitudes (using, for
example, path integral representation) [1].
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4. Threshold amplitudes

Let us consider the matrix elements (in particular — amplitudes) of
the form (out | T(®(z)...) | in) where all incoming and outgoing particles
have vanishing threemomenta. Then the problem becomes translationally
invariant. In particular, @¢(z) = @y (t) can be chosen as follows

Bo(t) = fe= ™" + fe'™ (43)

and @(z | §g) = P(t | Pg) becomes a function of time only. Egs. (19), (20)
take the form

A
(97 +m*)®(t | Bo) + 5 P°(t | By) =0, (44)
P(t | Do) [rx=0= Po(t) (45)
while Eq. (18) is converted into

o

B(t] @) = bolt) ~ / 4Dy (t — )T (1’ | By) (46)

— 00

o0
e~ ip(t—t")
47
ot | L (47)
—

The problem becomes now tractable: Eqs. (44), (45) define one-dimensional
anharmonic (quatric) oscillator. The same applies to all matrix elements
(out | T(®(x)...) | in). In fact, for translational invariant in- and out- states
these elements are translational invariant so one can use Fourier transform
and reduce the relevant partial differential equations to the ordinary ones. In
some cases an explicit solution is then available. Let us note that 8 and
in Eq. (43) need not to be complex conjugated; ®y(t) and, consequently,
&(t | Do) become then complex. In particular, if we are interested in
amplitudes with only initial (final) particles at the rest we can assume
B =0 (B =0). This property is very important because it happens of-
ten that the amplitudes with both initial and final particles at threshold are
divergent while those with such particles in one state only, initial or final,
are finite (see below).

with
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5. All particles at the threshold

We shall first consider the amplitudes for the processes with all, initial
as well as final, particles at the threshold. For one component &*-theory this

means that we are dealing with n® — n® amplitudes. To calculate them
2n—1
we have to solve first Egs. (44), (45), then to compute % |l5=5=0

3?2 1p(t|Po) .. .
or “omor L and finally reduce the remaining field from the matrix

element.

According to Eqgs. (44), (45) we are, therefore, looking for the solution
to the anharmonic oscillator problem with prescribed harmonic limit. Let
us write the A-expansion of (¢ | $)

(t | Bg) = Z@ (48)

@, (t)A™ is the sum of all graphs of order n» in A with all but one external
propagators amputated and replaced by ;. Expansion (48), when inserted
into Eq. (44), gives

@ +m)) P () + 5 S BlB(D) P (1) = 0 (49)

" k+l4+m=n

which allows to solve recusively for @, (t) once $¢(t) is known.

The frequency corresponding to the unamputated external line is integer
(negative or positive) multiple of m. In order to obtain a nonvanishing am-
plitude after amputating the last remaining external propagator the relevant
frequency should be —m (initial line) or m (final line).

In the succesive step of perturbative solution one has to solve harmonic
oscillator equation corresponding to a given external force. The first term
on the left-hand side of Eq. (49) gives the sum of amputated trees of n 4+ 1-st
order. We see that the amplitudes are nonvanishing in this order if and only
if the frequency of external force is +m i.e. we are faced with resonances.

Let us analyse Eq. (49) in more detail. We assume first that the frequency
w of “external force” differs from +m. Inserting the expansion (49) into the
integral equation (46) we conclude that the particular solution of Eq. (49) we
should use is the one obtained by dividing the external force by m? —w?. Let
us note that the choice of Dy (t) is irrelevant as long as m? # w?: any choice
of Green function would produce the same result. This property is reflected
by the corresponding property of tree graphs — the relevant amplitudes do
not depend on the choice of ie-prescription as long as all internal momenta
are off-shell.
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The situation changes drastically once the resonances occur. Then, as
it is well known, the solution is no longer periodic in time; rather, it has
the form of the polynomial of first degree times a periodic function. More
generally, (7) if the external force is a polynomial of degree k times periodic
function of frequency +m, the solution is a polynomial of degree k+ 1 times
periodic function while (i%) if the force is a polynomial of degree k times pe-
riodic function of the frequency different from 4m, the solution is a periodic
function times polynomial of the same degree. One can combine this state-
ment with the tree-graph interpretation of Eq. (49); the main point here is
that the occurrence of resonance correspond to the divergence of unampu-
tated propagator. Taking all that into account we conclude that following:
in each step of pertubative solution of Eq. (49) the degree of the polynomial
in ¢ multiplying the term e*™ k € Z, equals the maximal number of on-
shell propagators in the tree graphs with unamputated propagator carrying
the energy km, contributing to that order. We see that threshold tree am-
plitudes are in general divergent and this divergence may be related to the
structure of solution to the classical dynamical equations for anharmonic
oscillator.

It is not difficult to recognize the origin of polynomial terms in perturba-
tive expansion. Assume that § and § are complex conjugated so that @ (t)
is real and, consequently ®(t | §y) also. Obviously &(t | Py) is periodic with
the period w(F,\) depending in general on energy and coupling constant;
the boundary condition is w(F, X = 0) = m. The coordinate &(¢ | y) can
be developed in Fourier series

Dt | Do) = Y Dy (B, N)er P! (50)
k=—o00

with @, = &_;, and &4 (E,\ = 0) = 361}, + F_1x. By expanding in coupling
constant we get

B(t | Bg) = i (20 +ar+..) R
k=—o00
- ©) (1) . Ow(E,\) ikmt
= > (cpk + &, /\+...) <1+sz‘)\_0)\t+...>e

k=—00

(51)

The terms linear, quadratic etc. in time appear due to the A-dependence of
the frequency of motion (it could a priori happen that in order to fulfil the
boundary conditions @(t | @g) |x=o= Po(t) one has to take the energy E as
A-dependent; this does not invalidate the arguments).
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One can now identify the maximally divergent graphs. If —y=* 8“’ | —0# 0,

q. (b1) implies that the degree in ¢ at the most is equal to the order

in )\; however, the number of propagators in tree graph of the order n with

one external line unamputated is just n (remember we are considering tree

graphs). Therefore, all propagators are then singular. Low order graphs of
this type are shown in Fig. 1.

il
f b
M
_ iy}
! ém if i
M
_m_mm
Fig. 1.

Let us now turn back to the threshold amplitudes. In order to produce
the nonvanishing contribution, @(¢ | $g) should develop polynomial (in t)
terms in A\ expansion which, in turn, implies that the higher order tree am-
plitudes are divergent. In fact, the nonvanishing and nonsingular amplitude
corresponds to the contribution to @(t | @) with singular unamputated ex-
ternal line propagator and regular all other propagators. This tree graph can
be then used as a building block in constructing higher order tree graphs.
Therefore, the tree-graph expansion of @(t | ) is divergent. On the other
hand, if all terms in the tree-graphs expansion for @(t | @¢) are well-defined,
no polynomial terms in ¢ develop which implies that w(F, \) is Ad-independent
so that w(E,X) = m. Then the recursive solution of Eq. (46) defines the
Fourier series for the periodic (with the period m) function &(¢ | ®y). All
terms of A-expansion of (¢ | &g) are well defined and the relevant ampli-
tudes must vanish.

Concluding, we are faced with the following dichotomy: either the tree-
graph expansion of @(t | @) is ill-defined or all threshold amplitudes vanish.

One can pose the question when it is possible to find the solutions to
the classical equations of motion which are periodic in time with the basic
frequency equal to m. Such solution will produce well defined term-by-term
tree-graph expansion of @(t | @¢). It is quite easy to see that for real motions
one can hardly get a reasonable theory. For, if the period of motion, being
equal to m, does not depend on energy, one is able to find the general class
of potentials by the method explained in [26]; if one assumes the potential to
be the polynomial the unique solution is harmonic oscillator of frequency m,
i.e. free-field theory. For complex motions the situation is more complicated
and such solutions are possible for nontrivial potentials [6,18]. To see this
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consider once more the expansion for @(t),

o0

O(t) = D Pr(B, )N (52)
k=—00
due to dixp(f) leg—o= m? one has w(E = 0,\) = m. With the reality

condition @x(E,\) = & _,(E, ) the only solution with vanishing energy
is & (F = 0,)) = 0. However, if the reality condition is abandoned, one can
find nontrivial @ (0, A). The best examples are the solutions obeying [6]

Do(t) [r=o= e (53)

Their tree-graph expansion produce well-defined amplitudes with threshold
particles in final (initial) states only.

These results can be generalized to many-component fields. Assume that
the reduced theory is an integrable system with r degrees of freedom, defined
by the Hamiltonian

1 T
H =5 (I +mi®}) + V(&) (54)
oV (®,)) O?V (P \)
V(2;0) = V(0;)) = ——= =——1" =
(2:0) ’ (0:2) 0®; lo=0 0D;0P; =0

Let (Jix,OKk), k = 1,...,r, be the action-angle variables and assume that
J = 0 corresponds to the stationary point Il; = 0,$; =0, i =1,...,r. Any
component @; can be expanded in multiple Fourier serie

Di(t) = Y Diny,n, (L, Al Do kLA (55)

N1 y.eyNp

Our assumptions imply wg(0; A) = my. Again, skipping reality conditions
one can often find nontrivial ®@;,, . n,(0;A). Generically, they correspond
to the boundary conditions ®;(t) [y—o= Bie"*i™!, &; = £1; these are simply
solutions with Jxg = 0 in the limit A = 0. In this way one obtains the tree
approximation to the amplitudes with some kind of particles at the threshold
in the initial state and other kind in the final one. According to the general
arguments above, all amplitudes of these types vanish.

As an example consider O(2)-theory with the symmetry softly broken by
a mass term [18],

2

_l m woy My 2_m_% 2 2 2,2
L= 5(0,00"® + 9ux0"x) — " = —"x" =A@+ x7)".  (56)
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Assume the @ — —@ symmetry is spontaneously broken, m? < 0, m2 > 0.
The relevant solutions read

21 2\ 2 A 2my —me 9
$ = Py |14 L4 2 2 A T M
0 ( * 2d, * 4m3 — m%zQ * Do (2m, + m¢)32122
-1
2 2\ 9 A 2my —me 9
x(1- L =2 2, 2 “Tx— o , (57
( 20 AmZ—md 2 By @my tma) (57)

2m, — me. 21
= 1 — (222X TPy T
X ZQ( (sz—qus)?@o)

~1

21 2\ 2 A 2my —me 9

X |1 = ———52% + — 77— %1% ;
( 20, 4m§< —m2 27 @ (2my + ma)3 2

here z; = Bre™Met 2y = o™t Py =< & > and me = V2 | mi |,m, =
/| m? | +m?2 are physical masses. These solutions can serve to compute the
amplitudes @ — n1P + nay or x — n1P + nox where the initial particle is
off-shell while the final ones — at the threshold. Now, it is easy to check
that the on-shell amplitude @ — 2x does not vanish provided mg = 2m,.
Then, according to Eq. (57) ®(¢) and x(¢) are divergent. On the other hand,
if mg # 2m,,, all amplitudes with on-shell initial particle vanish while &(t)
and x(t) are regular.

Appendix A

The equation defining Green function reads [8]
Gy - V]G =1 (A1)

with the formal solution

1

G=—"—
1—GoV

Go - (A.2)

Eq. (36) defines the wave function
U =GG,' (¥ =g) (A.3)
which, together with (A.2), gives

1

U=y
1— GV °

(A4)
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U =0+ GV (A.5)

(A.5) coincides with Eq. (2.22) of Ref. [8].
It is also easy to see that the recipe for calculating the amplitudes given

below Eq. (36) coincides in turn with Eq. (2.24) from Ref. [§].
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