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THE SIMPLEST NON-TRIVIAL MODELOF CHAOTIC CAUSAL DYNAMICSAdam J. Makowski and Mihaª Fr¡kowiakInstitute of Physis, Niholas Copernius UniversityGrudzi¡dzka 5/7, 87-100 Toru«, Polande-mail: amak�phys.uni.torun.ple-mail: mihalf�na.torun.pl(Reeived June 18, 2001)The simplest non-trivial model of haoti Bohmian dynamis is identi-�ed. We argue that its most important features an be observed in moreomplex models, above all, the presumable mehanism of the appearaneof haos in the Bohmian-type dynamial systems.PACS numbers: 05.45.+b, 03.65.�w, 03.65.Sq1. IntrodutionIn the de Broglie�Bohm approah to quantum phenomena [1�3℄ partilespossess highly non-lassial but well-de�ned trajetories. They are derivablefrom the guidane equation:v = _r = jj j2 = i~2m r � �  �r j j2 = 1mrS; (1)where  (r; t) = R(r; t) exp [(i=~)S(r; t)℄ is a generator of the veloity �eld.Thus, so-alled quantum haos an be studied via Eq. (1) sine traje-tories naturally exist in the de Broglie�Bohm mehanis whih was provedto be ompletely equivalent to the standard Copenhagen version of quan-tum mehanis. The veloity �eld (1) preserves its de�nition also within thehydrodynamial formulation of quantum theory.Solutions of Eq. (1) an be very ompliated as it was �rst believed byBohm himself [2℄. Sine the equations an be nonlinear ones, Dürr et al. [4℄onluded that. . . there is nothing in Bohmian mehanis whih would pre-lude sensitive dependene on initial onditions of. . . Bohmian orbits. . . andhene positive Lyapunov exponents. The idea of looking for haos in Bohmiantrajetories, and thus in quantum theory, was also mentioned in [5, 6℄ and(2831)



2832 A.J. Makowski, M. Fr¡kowiaksome time later it was atually ful�lled [7℄. Shortly after that a numberof authors [8�14℄ found haoti orbits for various models and entailed wavefuntions.A generi feature of Bohmian mehanis is that the phase spae volumesare not onserved by the �ow, i.e. r � v does not generally vanish. It isexpeted [12℄, however, that the volumes are onserved on the average, whihmeans vanishing of limT!1(1=T ) R T0 r � v d� . Very reently we have beensuessful [15℄ in onstruting, within the Bohmian mehanis, a model of aHamiltonian system (r � v = 0), perturbed by disturbane periodi in time,leading to haoti solutions for some parameters.Most studies on quantum haology mentioned here [8�14℄ were inspiredby Parmenter and Valentine's work [7℄, where the system of two non-autono-mous equations (or three autonomous), generated from the 2D anisotropiharmoni osillator wave funtions, was integrated. This work opened anumber of interesting questions, among them: (i) what are the neessaryonditions for the ausal haoti orbits to exist, espeially, whether a model-system of equations playing the role of a limit ase for other ausal modelsan be identi�ed, (ii) whether the known properties of volume-onservingsystems with a time-dependent perturbation an be observed in the Bohmiandynamis as well.The problems we have just distinguished, though subjetively hosen,are however important for the ausal dynamis itself and for the theory ofdynamial systems in general. So far, they have not been fully answered.The reason is that the systems based on Eq. (1) are muh more di�ult todeal with than any other onservative or dissipative system studied so far.In this paper we shall therefore try to identify a model being not only thesimplest one in the ausal dynamis but also revealing the way the haotiBohmian orbits are reated. In what follows, the answer to the point (i) willbe given and we shall also ontribute to the point (ii) above.2. Essential equationsA partiularly interesting problem onneted with the point (i) aboveis the following: what is the simplest form of the wave funtion  (r; t) inEq. (1) that still generates haoti solutions. After having onduted numer-ial experiments authors of the work [7℄ onluded that it is neessary for (r; t) to be a superposition of at least three stationary one-partile statesand at least one pair of the states must have mutually inommensurate en-ergy eigenstates. The wave funtion of the two-dimensional anisotropi har-moni osillator used for the study generated a set of two non-autonomousequations with three ontrol parameters.



Chaoti Causal Model 2833Using the same eigenstates we have reently shown [15℄ that a linearombination of only two stationary states is su�ient to obtain haoti ausaltrajetories if one of the states is at least double degenerate. The dynamialsystem derived in suh a way had two ontrol parameters and when they wereput equal to eah other the system was proved to be ompletely integrable.We are going to show that with two properly hosen stationary statesdynamial systems an be generated with one or two or four ontrol param-eters leading in eah ase to haoti behaviour. To this end let us assume(~ = 1; m = 1; ! = 1) (x; y; t) =  n(x) n(y)e�iE1t+[a0 k(x) n(y) + ia1 n(x) k(y)℄ e�iE2t; (2)where  j are solutions of the stationary 1D Shrödinger equation and Ek areeigenenergies of the 2D problems. The seond stationary state is obviouslydouble degenerate and a0 and a1 are arbitrary real onstants. From thede�nition of the veloity �eld given in Eq. (1) we have_x = � a0'0(x) [sin("t) + a1'(y)℄(os("t) + a0'(x))2 + (sin("t) + a1'(y))2 ;_y = a1'0(y) [os("t) + a0'(x)℄(os("t) + a0'(x))2 + (sin("t) + a1'(y))2 ; (3)where '(z) =  k(z) n(z) ; " = E2 �E1 (4)and '0 means the �rst derivative with respet to z.From its onstrution the set (3) has two free parameters a0 and a1.Nevertheless, their number an grow up to four or more, where E1 and E2 are�xed, when some ideas of the so-alled supersymmetri quantum mehanisare used. This method is based on using supersymmetry transformations toderive potentials V̂ isospetral to a given one, say V , i.e. with exatly thesame eigenvalue spetrum. For details of the proedure we refer the readerto literature (see e.g. [16℄). Here we are only going to present some formulaeready to use.Let f n(x)g and En be, respetively, eigenstates and eigenenergies of aHamiltonian with potential V (x). De�ne a funtion I(x) = R x�1 j 0(z)j2dz,where  0(z) is the ground (nodeless) state. Then, for properly hosen valuesof the real parameter �, we an generate [16℄ a new potential V̂ (x;�) =V (x)� (d2=dx2) ln[I(x) + �℄ with q = 0; 1; 2 : : : less bound states than V (x)has. Now the eigenfuntions  ̂(x;�) orresponding to V̂ (x;�) in the stritly



2834 A.J. Makowski, M. Fr¡kowiakisospetral ase of q = 0 with Ên = En have the form ̂n+1(x;�) =  n+1(x) + 12 � 1En+1 �E0� I 0(x)I(x) + � � ddx �  00(x) 0(x)� n+1(x);(5)where n = 0; 1; 2 : : : and � > 0 or � < �1 and the prim denotes the �rstorder derivative. Now, the normalized wave funtion  ̂0 of the ground statereads  ̂0(x;�) = p�(1 + �)I(x) + �  0(x) : (6)In the limit of �!1 the �new� funtions  ̂ and potentials V̂ redue to the�old� ones.The proedure skethed above an be further generalized and one anonstrut [17℄ an in�nite number of isospetral families V̂ (x;�1; �2; : : :) hav-ing idential bound-state energies.Sine the veloity �eld in Eq. (1) is a funtional of wave funtion wean modify properties of the dynamial system as in Eqs. (3), based on twostationary states, by inreasing the number of ontrol parameters. In thesimplest ase, instead of Eq. (2), we an now propose ̂��(x; y; t) =  ̂n(x;�) ̂n(y;�)e�iE1t+ ha0 ̂k(x;�) ̂n(y;�) + ia1 ̂n(x;�) ̂k(y;�)i e�iE2t ; (7)where � > 0 or � < �1. With the replaement  !  ̂�� we have fromEq. (1): _x = � a0'̂0�(x) [sin("t) + a1'̂�(y)℄(os("t) + a0'̂�(x))2 + (sin("t) + a1'̂�(y))2 ;_y = a1'̂0�(y) [os("t) + a0'̂�(x)℄(os("t) + a0'̂�(x))2 + (sin("t) + a1'̂�(y))2 ; (8)where '̂�(x) =  ̂k(x;�) ̂n(x;�) ; '̂�(y) =  ̂k(y;�) ̂n(y;�) : (9)Of ourse, as � ! 1 and � ! 1 the set of Eqs. (8) redues to that givenin Eqs. (3).Sine for a single stationary state or for a linear ombination of two non-degenerate stationary states dynamial systems resulting from Eq. (1) anbe easily proved to be non-haoti, we onlude that equations (8) or (3) arethe simplest non-trivial systems within the Bohmian mehanis with possibly



Chaoti Causal Model 2835haoti dynamis. At this point it should be mentioned that haoti be-haviour an be generated from Eq. (1) even for just one stationary state [18℄,it is neessary, however, to deal with two partiles.3. The simplest model of haoti ausal dynamisWe are now ready to identify the model that ould play the role of a lim-iting ase of more omplex models of Bohmian dynamis and still revealingtheir non-trivial properties.To this end let us observe that Eqs. (3) and (8) have the same form andthe latter were derived to show a possibility of introduing additional ontrolparameters to the system under onsideration. Thus, for the time being, wemay restrit ourselves to Eqs. (3).In the simplest non-trivial ase we an hoose'(z) = Cz ; " = 1 (10)in Eqs. (4), whih follows from using two lowest states of 1D harmoniosillator, i.e., n = 0, k = 1 and  0(z) = A exp(�(1=2)z2),  1(z) =Bz exp(�(1=2)z2). Due to the relation C = B=A, for normalized statesC = p2. Sine the onstant an be absorbed by a0 and a1 we take for sim-pliity C = 1. Now  (x; y; t) in Eq. (2) is the state representing 2D isotropiosillator with eigenenergies E1 = 1 and E2 = 2.In the ase of a0 = a1 = a, sine the integral of the motion C(x; y; t) =M � a2 lnM � 2a(x os t+ y sin t), where M = (os t+ ax)2 + (sin t+ ay)2exists, Eqs. (3) do not generate haoti solutions. Moreover, we also have� _x=�x+� _y=�y = 0 whih means onservation of the phase spae �volume�. Itan be also observed that a funtion H(x; y; t) exists suh that _x = ��H=�yand _y = �H=�x with H de�ned as H = (1=2) lnM .When a0 6= a1 Eqs. (3) are no more integrable and the very detaileddisussion in [15℄ showed that the system of equations an be transformedinto the form of a Hamiltonian autonomous system with a periodi non-Hamiltonian perturbation. Then, the method of Melnikov funtion an alsobe used to prove formally the existene of haoti orbits.The model disussed here is, as yet, the only known model of Bohmiandynamis with the above properties. Presumably no similar ase with suhunique features an be found. To show that it an serve as a referene modelfor other models we have prepared a sequene of strobosopi maps in Fig. 1for a few pairs of a0 6= a1 suh that a0 = 1:015A and a1 = 0:985A withA =1; 100; 10; 4; 2; 1.The �rst plot in Fig. 1 represents a irle whih is then deformed intoa urve formed of two loops rossing a single point. When a0 = a1 boththe homolini orbit of that shape and the hyperboli point an be found
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Fig. 1. Strobosopi maps of the period 2� for the model desribed by Eqs. (3)and (10). In eah ase the time interval is 0 < t < 50000 with the time step of�t = 0:001.formally as shown with full partiulars in [15℄. Here we show instead forA = 10 a thin stohasti layer appearing in the viinity of the orbit spread-ing out in the area surrounding the point. The smaller the value of A is,the faster the homolini orbit breaks up and the fully developed haotitrajetory an be attributed to the piture for A = 2. We have estimatedthe largest Lyapunow exponent for the trajetory with x(0) = 1:98, y(0) = 0and 0 < t < 200000, �t = 0:001, as �max = 0:06.



Chaoti Causal Model 28374. Comparison with more intriate modelsWe shall now deviate from the above model to show that other moreompliated models reveal similar behaviour. Two ompletely di�erent waysof doing suh modi�ations are brie�y skethed below.4.1. An isospetral modi�ationWe an destroy the rotational symmetry of the 2D harmoni osillatorpotential of the model of Setion 3 and simultaneously preserve the sameeigenvalues spetrum of the new potential. To this end the funtions  0(z)and  1(z), with z = x or y, are used in Eqs. (5) and (6) and will get  ̂0(x;�), ̂1(x;�) and  ̂0(y;�),  ̂1(y;�). Finally, from Eqs. (9), we have:'̂�(x) = I(x) + �p�(1 + �)  x+ e�x22p�(�+ I(x))! ;'̂�(y) = I(y) + �p�(1 + �)  y + e�y22p�(�+ I(y))! ; (11)where I(z) = ��1=2 R z�1 e�u2du. One more the fator of p2 is absorbedby the expansion oe�ients in Eq. (7). The funtions  ̂0(x;�)  ̂0(y;�)and  ̂0(x;�)  ̂1(y;�) orrespond to the same previous energies E1 = 1 andE2 = 2, and hene again " = 1. The new potential has now the formV̂��(x; y) = V̂�(x) + V̂�(y)= 12(x2 + y2) + 2��1=2xe�x2 (�+ I(x)) + ��1e�2x2(�+ I(x))2+2��1=2ye�y2 (�+ I(y)) + ��1e�2y2(�+ I(y))2 (12)and in the limit of �!1 and �!1 it redues to the usual 2D osillatorpotential. For the sake of omparison, its 1D image is presented in Fig. 2.The lower the value of � is, the more V̂�(x) deviates from its partner potentialV (x) = (1=2)x2. Similarly, '̂�(x) in Eqs. (11) deviates from '(z) in Eq. (10).Thus, the model of Setion 3 is a limiting ase of the one introdued abovefor asymptoti values of � and �. Only in this limit with a0 = a1 thelatter is obviously integrable. In other ases, for any ombination of thefour parameters a0, a1, �, �, a haoti solution an always be found. Theomponents of the veloity �eld v(x; y; t) are now determined by Eqs. (8)and (11). Formal alulations show that r � v is now hanging with timeand tends to zero only in the above limit. Nevertheless, the senario of



2838 A.J. Makowski, M. Fr¡kowiak

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

m
od

ifi
ed

 p
ot

en
tia

l
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Fig. 3. Strobosopi maps of the period 2� for the isospetral model desribed byEqs. (8) and (11) with a0 = a1 = a and � = � = 20. The time interval and thetime step are respetively 0 < t < 50000 and �t = 0:005.of a0 = a1 = a and the results are presented in Fig. 4. The �rst member(jaj >> 1) of the family of pitures is not a irle but a losed urve perfetlyapproximated by the relation � = sinx � sin y, where 0 � � � 1. Forsmaller values of the parameter jaj we an again observe the formation of ahomolini orbit with the shape as in Fig. 4 for a = �10. When dereasingjaj the orbit breaks up and the stohasti layer beomes well pronouned.



2840 A.J. Makowski, M. Fr¡kowiakThe dynamis here is very similar to that in our model of Setion 3 andthis again suggests onsidering it as the simplest non-trivial model of haotiBohmian dynamis.
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Fig. 4. Strobosopi maps of the period (4=3)� for an in�nite square well modeldesribed by Eqs. (3) and (13). The time interval is in eah ase 0 < t < 50000and �t = 0:001.



Chaoti Causal Model 28415. ConlusionIn this artile we have disussed the set of equations that ould serveas the referene one for haoti ausal trajetories and revealing the way inwhih the ausal orbits beome haoti ones. This work is the �rst attemptto ontribute to this di�ult problem. The results presented here seemto suggest that the way from a regular to haoti behaviour leads via theformation and break-up of a homolini orbit. Unfortunately, the formalderivation of the orbit and of the ritial points is possible only for the modelof Setion 3 above and for the details we refer the reader to [15℄. In otherases we are able to do that only numerially. To emphasize this, we haveprepared sequenes of pitures in Figs. 3 and 4 learly showing their losesimilarity to those in Fig. 1. It is indeed ommon for the way the haotibehaviour appears in Fig. 1 to be essentially independent of the model thatis used to generate it. Results of our paper thus bridge the gap between thetheory of dynamial systems and the ausal quantum trajetories.We an onsider the sequene of pitures in Fig. 1 as a possible wayleading to the appearane of haoti orbits in the Bohmian, or equivalently,in the hydrodynamial formulation of quantum mehanis. Quite strongsupport of the onjeture is in our opinion onviningly manifested in theseries of plots in the above �gures. What we have disussed here has notbeen observed so far sine the models under onsideration were too omplexand the properties of trajetories depited here were masked in their veryompliated dynamis.The proof that some orbits in Fig. 1, and hene in Figs. 3 and 4 as well,are haoti ones, follows diretly from the results of our reent paper [15℄.That is why we have alulated the largest Lyapunow exponent just forone orbit with A = 2 to show what the typial order of magnitude for thequantity and models under onsideration is.Looking for the simplest yet non-trivial dynamis systems, both on-servative and dissipative ones, has attrated muh interest for a number ofyears. Representative studies on the subjet together with the lists of suhmodels an be found in [19, 20℄. Our work is a ontribution in this �eld fora speial lass of dynamial systems generated by the guidane equation (1)of the de Broglie�Bohm quantum mehanis. The model based on Eqs. (3)and (10) an be onsidered as the simplest non-trivial one for the reasonsoutlined throughout the paper. The name is additionally justi�ed by thefat that the wave funtion we have used has only one moving node. Ournumerial experiments with a number of other models lead to the onjeturethat for the systems of two non-autonomous equations of the form of Eq. (1),existene of at least one moving node seems to be a neessary ondition forhaoti orbits to exist. In our model the node moves along a irle in theintegrable ase and along an ellipse as the system is haoti.
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