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The simplest non-trivial model of chaotic Bohmian dynamics is identi-
fied. We argue that its most important features can be observed in more
complex models, above all, the presumable mechanism of the appearance
of chaos in the Bohmian-type dynamical systems.

PACS numbers: 05.45.+b, 03.65.—w, 03.65.5q

1. Introduction

In the de Broglie-Bohm approach to quantum phenomena [1-3] particles
possess highly non-classical but well-defined trajectories. They are derivable
from the guidance equation:
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where 9(r,t) = R(r,t)exp [(i/h)S(r,t)] is a generator of the velocity field.

Thus, so-called quantum chaos can be studied via Eq. (1) since trajec-
tories naturally exist in the de Broglie-Bohm mechanics which was proved
to be completely equivalent to the standard Copenhagen version of quan-
tum mechanics. The velocity field (1) preserves its definition also within the
hydrodynamical formulation of quantum theory.

Solutions of Eq. (1) can be very complicated as it was first believed by
Bohm himself [2]. Since the equations can be nonlinear ones, Diirr et al. [4]
concluded that. .. there is nothing in Bohmian mechanics which would pre-
clude sensitive dependence on initial conditions of...Bohmian orbits. .. and
hence positive Lyapunov exponents. The idea of looking for chaos in Bohmian
trajectories, and thus in quantum theory, was also mentioned in [5,6] and
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some time later it was actually fulfilled [7]. Shortly after that a number
of authors [8-14] found chaotic orbits for various models and entailed wave
functions.

A generic feature of Bohmian mechanics is that the phase space volumes
are not conserved by the flow, i.e. V - v does not generally vanish. It is
expected [12], however, that the volumes are conserved on the average, which

means vanishing of limy_, . (1/7T) fOT V - v dr. Very recently we have been
successful [15] in constructing, within the Bohmian mechanics, a model of a
Hamiltonian system (V -v = 0), perturbed by disturbance periodic in time,
leading to chaotic solutions for some parameters.

Most studies on quantum chaology mentioned here [8-14] were inspired
by Parmenter and Valentine’s work [7], where the system of two non-autono-
mous equations (or three autonomous), generated from the 2D anisotropic
harmonic oscillator wave functions, was integrated. This work opened a
number of interesting questions, among them: (i) what are the necessary
conditions for the causal chaotic orbits to exist, especially, whether a model-
system of equations playing the role of a limit case for other causal models
can be identified, (i) whether the known properties of volume-conserving
systems with a time-dependent perturbation can be observed in the Bohmian
dynamics as well.

The problems we have just distinguished, though subjectively chosen,
are however important for the causal dynamics itself and for the theory of
dynamical systems in general. So far, they have not been fully answered.
The reason is that the systems based on Eq. (1) are much more difficult to
deal with than any other conservative or dissipative system studied so far.
In this paper we shall therefore try to identify a model being not only the
simplest one in the causal dynamics but also revealing the way the chaotic
Bohmian orbits are created. In what follows, the answer to the point (i) will
be given and we shall also contribute to the point (i) above.

2. Essential equations

A particularly interesting problem connected with the point (i) above
is the following: what is the simplest form of the wave function (r,t) in
Eq. (1) that still generates chaotic solutions. After having conducted numer-
ical experiments authors of the work |7] concluded that it is necessary for
1(r,t) to be a superposition of at least three stationary one-particle states
and at least one pair of the states must have mutually incommensurate en-
ergy eigenstates. The wave function of the two-dimensional anisotropic har-
monic oscillator used for the study generated a set of two non-autonomous
equations with three control parameters.
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Using the same eigenstates we have recently shown [15] that a linear
combination of only two stationary states is sufficient to obtain chaotic causal
trajectories if one of the states is at least double degenerate. The dynamical
system derived in such a way had two control parameters and when they were
put equal to each other the system was proved to be completely integrable.

We are going to show that with two properly chosen stationary states
dynamical systems can be generated with one or two or four control param-
eters leading in each case to chaotic behaviour. To this end let us assume
(h=1,m=1,w=1)

P(2,y,t) = Pn (@) (y)e P+ aoPr (2)Pn (y) + iarthn (z)v(y)] e 72, (2)

where 1); are solutions of the stationary 1D Schrédinger equation and Ej, are
eigenenergies of the 2D problems. The second stationary state is obviously
double degenerate and a¢ and a; are arbitrary real constants. From the
definition of the velocity field given in Eq. (1) we have

B aoy' (z) [sin(et) + arp(y)]

(cos(et) + aop(x))? + (sin(et) + arp(y))*’
j = a1¢' (y) [cos(et) + aop(z)] )
(cos(et) + agp(x))? + (sin(et) + arp(y))*’

where
_ ¥(2)
VYn(2) ’

and ¢’ means the first derivative with respect to z.

From its construction the set (3) has two free parameters ag and a;.
Nevertheless, their number can grow up to four or more, where Ey and Fs are
fixed, when some ideas of the so-called supersymmetric quantum mechanics
are used. This method is based on using supersymmetry transformations to
derive potentials V isospectral to a given one, say V, i.e. with exactly the
same eigenvalue spectrum. For details of the procedure we refer the reader
to literature (see e.g. [16]). Here we are only going to present some formulae
ready to use.

Let {¢n(z)} and E, be, respectively, eigenstates and eigenenergies of a
Hamiltonian with potential V(z). Define a function I(z) = [*__ |t (2)|*dz,
where 1)y(z) is the ground (nodeless) state. Then, for properly chosen values
of the real parameter A, we can generate [16] a new potential V(z;\) =
V(z) — (d?/dz?) In[I(z) + \] with ¢ = 0,1,2... less bound states than V(z)
has. Now the eigenfunctions v (z; \) corresponding to V(z; A) in the strictly

¢(2) e=FEy,—E (4)
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isospectral case of ¢ = 0 with E, = E, have the form

(z)+ X \dz  o(z)

where n = 0,1,2... and A > 0 or A < —1 and the prim denotes the first
order derivative. Now, the normalized wave function 1) of the ground state
reads

Bt =t @)+ 5 (5 ) 71 s (4~ 28 ),
S

Po(z; \) = %

In the limit of A — oo the “new” functions 1/3 and potentials V reduce to the
“old” ones.

The procedure sketched above can be further generalized and one can
construct [17] an infinite number of isospectral families V' (z; A1, Ag, .. .) hav-
ing identical bound-state energies.

Since the velocity field in Eq. (1) is a functional of wave function we
can modify properties of the dynamical system as in Egs. (3), based on two
stationary states, by increasing the number of control parameters. In the

simplest case, instead of Eq. (2), we can now propose

Po(z) - (6)

~

Q/;Aﬂ(xayat) = 1/)n($,)\)'l/;n(y, M)e*iElt
+ [aoWr (3 NP (y; 1) + i1 (5 Ny (y; M)] =it (7)

where g > 0 or p < —1. With the replacement 9 — QLAM we have from
Eq. (1):

ao P\ (z) [sin(et) + a1, (y)]
(cos(et) + agpx(x))” + (sin(et) + a14,(y))”
a1y, (y) [cos(et) + aopa(@)]

) = , 8
YT (cos(et) + aopa(2))? + (sin(et) + a1 @u(y))” ¥

i = - :

where

o) = BEX g ) = BeUiE), 0
Pn(2; ) Pn(y; 1)
Of course, as A — oo and p — oo the set of Egs. (8) reduces to that given
in Egs. (3).

Since for a single stationary state or for a linear combination of two non-
degenerate stationary states dynamical systems resulting from Eq. (1) can
be easily proved to be non-chaotic, we conclude that equations (8) or (3) are
the simplest non-trivial systems within the Bohmian mechanics with possibly
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chaotic dynamics. At this point it should be mentioned that chaotic be-
haviour can be generated from Eq. (1) even for just one stationary state [18],
it is necessary, however, to deal with two particles.

3. The simplest model of chaotic causal dynamics

We are now ready to identify the model that could play the role of a lim-
iting case of more complex models of Bohmian dynamics and still revealing
their non-trivial properties.

To this end let us observe that Egs. (3) and (8) have the same form and
the latter were derived to show a possibility of introducing additional control
parameters to the system under consideration. Thus, for the time being, we
may restrict ourselves to Eqgs. (3).

In the simplest non-trivial case we can choose

p(z)=Cz, e=1 (10)

in Egs. (4), which follows from using two lowest states of 1D harmonic
oscillator, i.e., n = 0, k = 1 and to(z) = Aexp(—(1/2)22), ¥1(z) =
Bzexp(—(1/2)z%). Due to the relation C = B/A, for normalized states
C = /2. Since the constant can be absorbed by a¢ and a1 we take for sim-
plicity C' = 1. Now 9(z,y,t) in Eq. (2) is the state representing 2D isotropic
oscillator with eigenenergies F; = 1 and FEo = 2.

In the case of ag = a1 = a, since the integral of the motion C(xz,y,t) =
M —a?In M — 2a(x cost + ysint), where M = (cost + az)? + (sint + ay)?
exists, Egs. (3) do not generate chaotic solutions. Moreover, we also have
0t /0x+07y/dy = 0 which means conservation of the phase space “volume”. It
can be also observed that a function H(z,y,t) exists such that £ = —0H /0y
and y = 0H/0z with H defined as H = (1/2)In M.

When ag # a1 Egs. (3) are no more integrable and the very detailed
discussion in [15] showed that the system of equations can be transformed
into the form of a Hamiltonian autonomous system with a periodic non-
Hamiltonian perturbation. Then, the method of Melnikov function can also
be used to prove formally the existence of chaotic orbits.

The model discussed here is, as yet, the only known model of Bohmian
dynamics with the above properties. Presumably no similar case with such
unique features can be found. To show that it can serve as a reference model
for other models we have prepared a sequence of stroboscopic maps in Fig. 1
for a few pairs of ag # aq such that ¢ = 1.0154 and a; = 0.985A4 with
A = 00,100,10,4,2,1.

The first plot in Fig. 1 represents a circle which is then deformed into
a curve formed of two loops crossing a single point. When ag = a1 both
the homoclinic orbit of that shape and the hyperbolic point can be found
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Fig.1. Stroboscopic maps of the period 27 for the model described by Egs. (3)
and (10). In each case the time interval is 0 < ¢t < 50000 with the time step of
At = 0.001.

formally as shown with full particulars in [15]. Here we show instead for
A = 10 a thin stochastic layer appearing in the vicinity of the orbit spread-
ing out in the area surrounding the point. The smaller the value of A is,
the faster the homoclinic orbit breaks up and the fully developed chaotic
trajectory can be attributed to the picture for A = 2. We have estimated
the largest Lyapunow exponent for the trajectory with z(0) = 1.98, y(0) =0
and 0 < t < 200000, At = 0.001, as Amax = 0.06.
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4. Comparison with more intricate models

We shall now deviate from the above model to show that other more
complicated models reveal similar behaviour. Two completely different ways
of doing such modifications are briefly sketched below.

4.1. An isospectral modification

We can destroy the rotational symmetry of the 2D harmonic oscillator
potential of the model of Section 3 and simultaneously preserve the same
eigenvalues spectrum of the new potential. To this end the functions )(z)

and 91 (2), with z = z or y, are used in Egs. (5) and (6) and will get 4o (z; ),
P1(z; N) and o(y; 1), Y1 (y; p). Finally, from Eqgs. (9), we have:

. o I(=)+ A . e @’
o) = TN ( +2ﬁ(A+I(x))> ’

N ()" eV’
7 E (“M(wr@)))’ .

where I(z) = 7~!/? [ e~ du. Once more the factor of v/2 is absorbed

by the expansion coefficients in Eq. (7). The functions Qﬁo(m;k) io(y;,u)
and 1o(z; A) 11 (y; ) correspond to the same previous energies E; = 1 and
FE5 =2, and hence again € = 1. The new potential has now the form

Vau(z,y) = V(@) + Vu(y)

1, 5 o 20 Y25e™®" (A + I(z)) + 7 e 2%
= Sz + ) +
3 ) O+ 1)’
+27r_1/2ye_y2 (u+I(y)) + 7 e’
(1 +1(y)*

and in the limit of A = oo and p — oo it reduces to the usual 2D oscillator
potential. For the sake of comparison, its 1D image is presented in Fig. 2.
The lower the value of A is, the more V)\(.’L‘) deviates from its partner potential
V(z) = (1/2)z%. Similarly, ¢ () in Egs. (11) deviates from ¢(z) in Eq. (10).
Thus, the model of Section 3 is a limiting case of the one introduced above
for asymptotic values of A and pu. Only in this limit with a¢g = aq the
latter is obviously integrable. In other cases, for any combination of the
four parameters ag, a1, A, i, a chaotic solution can always be found. The
components of the velocity field v(z,y,t) are now determined by Eqs. (8)
and (11). Formal calculations show that V - v is now changing with time
and tends to zero only in the above limit. Nevertheless, the scenario of

(12)
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modified potential
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Fig.2. The plot of the modified potential Vj(z) as given in Eq. (12) for
A =1,2,3,59 (full lines). The smaller the value of X is the larger is the devi-
ation of Vy(z) from the harmonic oscillator potential V(z) = (1/2)z% or Ve ()
(dashed line).

approaching a chaotic orbit seems to be very similar to that observed for
the model given by Egs. (10) and (3). This is clearly visible in Fig. 3.

The first two plots are about the same as in Fig. 1 and for smaller values
of a the stochastic layers appear to be a little more pronounced than those
in the corresponding pictures in Fig. 1. We have expected this as a conse-
quence of the lack of the rotational symmetry of the isospectral Hamiltonian

(cf. Fig. 2).

4.2. Particle in a restricted space

The second modification of our Eqgs. (10) and (3) uses the simplest model
with a non-linear eigenvalue spectrum. It is a square well with z € [0, 7],
y € [0,7] and the normalized wave functions 1, = 1/(2/7)sin(nz) and
energies B, = (1/2)n?, n = 1,2.... Then, for n = 1 and k = 2 in Eq. (2)
we use in Egs. (3)

3
o(z) =2cosz, &= 3 (13)
In our numerical calculations the factor of 2 is included in the constants ag

and aq in Egs. (3). Now, Eqs. (3) are integrated for a number of values
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Fig. 3. Stroboscopic maps of the period 27 for the isospectral model described by
Egs. (8) and (11) with ag = a1 = a and A = g = 20. The time interval and the
time step are respectively 0 < ¢ < 50000 and At = 0.005.

of a9 = a1 = a and the results are presented in Fig. 4. The first member
(la| >> 1) of the family of pictures is not a circle but a closed curve perfectly
approximated by the relation A = sinz - siny, where 0 < A < 1. For
smaller values of the parameter |a| we can again observe the formation of a
homoclinic orbit with the shape as in Fig. 4 for a = —10. When decreasing
|a| the orbit breaks up and the stochastic layer becomes well pronounced.
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The dynamics here is very similar to that in our model of Section 3 and
this again suggests considering it as the simplest non-trivial model of chaotic

Bohmian dynamics.
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Fig.4. Stroboscopic maps of the period (4/3)r for an infinite square well model

described by Egs. (3) and (13). The time interval is in each case 0 < ¢ < 50000
and At = 0.001.




Chaotic Causal Model 2841

5. Conclusion

In this article we have discussed the set of equations that could serve
as the reference one for chaotic causal trajectories and revealing the way in
which the causal orbits become chaotic ones. This work is the first attempt
to contribute to this difficult problem. The results presented here seem
to suggest that the way from a regular to chaotic behaviour leads via the
formation and break-up of a homoclinic orbit. Unfortunately, the formal
derivation of the orbit and of the critical points is possible only for the model
of Section 3 above and for the details we refer the reader to [15]. In other
cases we are able to do that only numerically. To emphasize this, we have
prepared sequences of pictures in Figs. 3 and 4 clearly showing their close
similarity to those in Fig. 1. It is indeed common for the way the chaotic
behaviour appears in Fig. 1 to be essentially independent of the model that
is used to generate it. Results of our paper thus bridge the gap between the
theory of dynamical systems and the causal quantum trajectories.

We can consider the sequence of pictures in Fig. 1 as a possible way
leading to the appearance of chaotic orbits in the Bohmian, or equivalently,
in the hydrodynamical formulation of quantum mechanics. Quite strong
support of the conjecture is in our opinion convincingly manifested in the
series of plots in the above figures. What we have discussed here has not
been observed so far since the models under consideration were too complex
and the properties of trajectories depicted here were masked in their very
complicated dynamics.

The proof that some orbits in Fig. 1, and hence in Figs. 3 and 4 as well,
are chaotic ones, follows directly from the results of our recent paper [15].
That is why we have calculated the largest Lyapunow exponent just for
one orbit with A = 2 to show what the typical order of magnitude for the
quantity and models under consideration is.

Looking for the simplest yet non-trivial dynamics systems, both con-
servative and dissipative ones, has attracted much interest for a number of
years. Representative studies on the subject together with the lists of such
models can be found in [19,20]. Our work is a contribution in this field for
a special class of dynamical systems generated by the guidance equation (1)
of the de Broglie-Bohm quantum mechanics. The model based on Egs. (3)
and (10) can be considered as the simplest non-trivial one for the reasons
outlined throughout the paper. The name is additionally justified by the
fact that the wave function we have used has only one moving node. Our
numerical experiments with a number of other models lead to the conjecture
that for the systems of two non-autonomous equations of the form of Eq. (1),
existence of at least one moving node seems to be a necessary condition for
chaotic orbits to exist. In our model the node moves along a circle in the
integrable case and along an ellipse as the system is chaotic.
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We should emphasize at this point that a huge number of dynamical
systems can be generated with help of Eq. (1) since they are a functional of
the used wave function. The resulting systems of two non-autonomous equa-
tions, necessary by the well-known Poincaré—Bendixson theorem for chaotic
behaviour to appear, are not similar to any of systems studied so far. Our
results show, however, that for the particular choice of the velocity field gen-
erator, i.e. the wave function, we can observe mechanism of obtaining chaotic
orbits similar to the one known for the systems forced by the disturbance
periodic in time. To find such a behaviour for “the quantum trajectories”
of Eq. (1) we were constrained to a specific choice of functions without a
particular physical significance. The similarity of Bohmian systems to the
well-known dynamical ones is presumably still preserved for physically im-
portant wave functions. This statement is, for now, an open question.

This work has been supported in part by the Polish State Committee for
Scientific Research (KBN) grant No. 2 P03B 121 16).
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