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THE SIMPLEST NON-TRIVIAL MODELOF CHAOTIC CAUSAL DYNAMICSAdam J. Makowski and Mi
haª Fr¡
kowiakInstitute of Physi
s, Ni
holas Coperni
us UniversityGrudzi¡dzka 5/7, 87-100 Toru«, Polande-mail: amak�phys.uni.torun.ple-mail: mi
half�n
a
.torun.pl(Re
eived June 18, 2001)The simplest non-trivial model of 
haoti
 Bohmian dynami
s is identi-�ed. We argue that its most important features 
an be observed in more
omplex models, above all, the presumable me
hanism of the appearan
eof 
haos in the Bohmian-type dynami
al systems.PACS numbers: 05.45.+b, 03.65.�w, 03.65.Sq1. Introdu
tionIn the de Broglie�Bohm approa
h to quantum phenomena [1�3℄ parti
lespossess highly non-
lassi
al but well-de�ned traje
tories. They are derivablefrom the guidan
e equation:v = _r = jj j2 = i~2m r � �  �r j j2 = 1mrS; (1)where  (r; t) = R(r; t) exp [(i=~)S(r; t)℄ is a generator of the velo
ity �eld.Thus, so-
alled quantum 
haos 
an be studied via Eq. (1) sin
e traje
-tories naturally exist in the de Broglie�Bohm me
hani
s whi
h was provedto be 
ompletely equivalent to the standard Copenhagen version of quan-tum me
hani
s. The velo
ity �eld (1) preserves its de�nition also within thehydrodynami
al formulation of quantum theory.Solutions of Eq. (1) 
an be very 
ompli
ated as it was �rst believed byBohm himself [2℄. Sin
e the equations 
an be nonlinear ones, Dürr et al. [4℄
on
luded that. . . there is nothing in Bohmian me
hani
s whi
h would pre-
lude sensitive dependen
e on initial 
onditions of. . . Bohmian orbits. . . andhen
e positive Lyapunov exponents. The idea of looking for 
haos in Bohmiantraje
tories, and thus in quantum theory, was also mentioned in [5, 6℄ and(2831)
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kowiaksome time later it was a
tually ful�lled [7℄. Shortly after that a numberof authors [8�14℄ found 
haoti
 orbits for various models and entailed wavefun
tions.A generi
 feature of Bohmian me
hani
s is that the phase spa
e volumesare not 
onserved by the �ow, i.e. r � v does not generally vanish. It isexpe
ted [12℄, however, that the volumes are 
onserved on the average, whi
hmeans vanishing of limT!1(1=T ) R T0 r � v d� . Very re
ently we have beensu

essful [15℄ in 
onstru
ting, within the Bohmian me
hani
s, a model of aHamiltonian system (r � v = 0), perturbed by disturban
e periodi
 in time,leading to 
haoti
 solutions for some parameters.Most studies on quantum 
haology mentioned here [8�14℄ were inspiredby Parmenter and Valentine's work [7℄, where the system of two non-autono-mous equations (or three autonomous), generated from the 2D anisotropi
harmoni
 os
illator wave fun
tions, was integrated. This work opened anumber of interesting questions, among them: (i) what are the ne
essary
onditions for the 
ausal 
haoti
 orbits to exist, espe
ially, whether a model-system of equations playing the role of a limit 
ase for other 
ausal models
an be identi�ed, (ii) whether the known properties of volume-
onservingsystems with a time-dependent perturbation 
an be observed in the Bohmiandynami
s as well.The problems we have just distinguished, though subje
tively 
hosen,are however important for the 
ausal dynami
s itself and for the theory ofdynami
al systems in general. So far, they have not been fully answered.The reason is that the systems based on Eq. (1) are mu
h more di�
ult todeal with than any other 
onservative or dissipative system studied so far.In this paper we shall therefore try to identify a model being not only thesimplest one in the 
ausal dynami
s but also revealing the way the 
haoti
Bohmian orbits are 
reated. In what follows, the answer to the point (i) willbe given and we shall also 
ontribute to the point (ii) above.2. Essential equationsA parti
ularly interesting problem 
onne
ted with the point (i) aboveis the following: what is the simplest form of the wave fun
tion  (r; t) inEq. (1) that still generates 
haoti
 solutions. After having 
ondu
ted numer-i
al experiments authors of the work [7℄ 
on
luded that it is ne
essary for (r; t) to be a superposition of at least three stationary one-parti
le statesand at least one pair of the states must have mutually in
ommensurate en-ergy eigenstates. The wave fun
tion of the two-dimensional anisotropi
 har-moni
 os
illator used for the study generated a set of two non-autonomousequations with three 
ontrol parameters.
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ently shown [15℄ that a linear
ombination of only two stationary states is su�
ient to obtain 
haoti
 
ausaltraje
tories if one of the states is at least double degenerate. The dynami
alsystem derived in su
h a way had two 
ontrol parameters and when they wereput equal to ea
h other the system was proved to be 
ompletely integrable.We are going to show that with two properly 
hosen stationary statesdynami
al systems 
an be generated with one or two or four 
ontrol param-eters leading in ea
h 
ase to 
haoti
 behaviour. To this end let us assume(~ = 1; m = 1; ! = 1) (x; y; t) =  n(x) n(y)e�iE1t+[a0 k(x) n(y) + ia1 n(x) k(y)℄ e�iE2t; (2)where  j are solutions of the stationary 1D S
hrödinger equation and Ek areeigenenergies of the 2D problems. The se
ond stationary state is obviouslydouble degenerate and a0 and a1 are arbitrary real 
onstants. From thede�nition of the velo
ity �eld given in Eq. (1) we have_x = � a0'0(x) [sin("t) + a1'(y)℄(
os("t) + a0'(x))2 + (sin("t) + a1'(y))2 ;_y = a1'0(y) [
os("t) + a0'(x)℄(
os("t) + a0'(x))2 + (sin("t) + a1'(y))2 ; (3)where '(z) =  k(z) n(z) ; " = E2 �E1 (4)and '0 means the �rst derivative with respe
t to z.From its 
onstru
tion the set (3) has two free parameters a0 and a1.Nevertheless, their number 
an grow up to four or more, where E1 and E2 are�xed, when some ideas of the so-
alled supersymmetri
 quantum me
hani
sare used. This method is based on using supersymmetry transformations toderive potentials V̂ isospe
tral to a given one, say V , i.e. with exa
tly thesame eigenvalue spe
trum. For details of the pro
edure we refer the readerto literature (see e.g. [16℄). Here we are only going to present some formulaeready to use.Let f n(x)g and En be, respe
tively, eigenstates and eigenenergies of aHamiltonian with potential V (x). De�ne a fun
tion I(x) = R x�1 j 0(z)j2dz,where  0(z) is the ground (nodeless) state. Then, for properly 
hosen valuesof the real parameter �, we 
an generate [16℄ a new potential V̂ (x;�) =V (x)� (d2=dx2) ln[I(x) + �℄ with q = 0; 1; 2 : : : less bound states than V (x)has. Now the eigenfun
tions  ̂(x;�) 
orresponding to V̂ (x;�) in the stri
tly
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tral 
ase of q = 0 with Ên = En have the form ̂n+1(x;�) =  n+1(x) + 12 � 1En+1 �E0� I 0(x)I(x) + � � ddx �  00(x) 0(x)� n+1(x);(5)where n = 0; 1; 2 : : : and � > 0 or � < �1 and the prim denotes the �rstorder derivative. Now, the normalized wave fun
tion  ̂0 of the ground statereads  ̂0(x;�) = p�(1 + �)I(x) + �  0(x) : (6)In the limit of �!1 the �new� fun
tions  ̂ and potentials V̂ redu
e to the�old� ones.The pro
edure sket
hed above 
an be further generalized and one 
an
onstru
t [17℄ an in�nite number of isospe
tral families V̂ (x;�1; �2; : : :) hav-ing identi
al bound-state energies.Sin
e the velo
ity �eld in Eq. (1) is a fun
tional of wave fun
tion we
an modify properties of the dynami
al system as in Eqs. (3), based on twostationary states, by in
reasing the number of 
ontrol parameters. In thesimplest 
ase, instead of Eq. (2), we 
an now propose ̂��(x; y; t) =  ̂n(x;�) ̂n(y;�)e�iE1t+ ha0 ̂k(x;�) ̂n(y;�) + ia1 ̂n(x;�) ̂k(y;�)i e�iE2t ; (7)where � > 0 or � < �1. With the repla
ement  !  ̂�� we have fromEq. (1): _x = � a0'̂0�(x) [sin("t) + a1'̂�(y)℄(
os("t) + a0'̂�(x))2 + (sin("t) + a1'̂�(y))2 ;_y = a1'̂0�(y) [
os("t) + a0'̂�(x)℄(
os("t) + a0'̂�(x))2 + (sin("t) + a1'̂�(y))2 ; (8)where '̂�(x) =  ̂k(x;�) ̂n(x;�) ; '̂�(y) =  ̂k(y;�) ̂n(y;�) : (9)Of 
ourse, as � ! 1 and � ! 1 the set of Eqs. (8) redu
es to that givenin Eqs. (3).Sin
e for a single stationary state or for a linear 
ombination of two non-degenerate stationary states dynami
al systems resulting from Eq. (1) 
anbe easily proved to be non-
haoti
, we 
on
lude that equations (8) or (3) arethe simplest non-trivial systems within the Bohmian me
hani
s with possibly
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haoti
 dynami
s. At this point it should be mentioned that 
haoti
 be-haviour 
an be generated from Eq. (1) even for just one stationary state [18℄,it is ne
essary, however, to deal with two parti
les.3. The simplest model of 
haoti
 
ausal dynami
sWe are now ready to identify the model that 
ould play the role of a lim-iting 
ase of more 
omplex models of Bohmian dynami
s and still revealingtheir non-trivial properties.To this end let us observe that Eqs. (3) and (8) have the same form andthe latter were derived to show a possibility of introdu
ing additional 
ontrolparameters to the system under 
onsideration. Thus, for the time being, wemay restri
t ourselves to Eqs. (3).In the simplest non-trivial 
ase we 
an 
hoose'(z) = Cz ; " = 1 (10)in Eqs. (4), whi
h follows from using two lowest states of 1D harmoni
os
illator, i.e., n = 0, k = 1 and  0(z) = A exp(�(1=2)z2),  1(z) =Bz exp(�(1=2)z2). Due to the relation C = B=A, for normalized statesC = p2. Sin
e the 
onstant 
an be absorbed by a0 and a1 we take for sim-pli
ity C = 1. Now  (x; y; t) in Eq. (2) is the state representing 2D isotropi
os
illator with eigenenergies E1 = 1 and E2 = 2.In the 
ase of a0 = a1 = a, sin
e the integral of the motion C(x; y; t) =M � a2 lnM � 2a(x 
os t+ y sin t), where M = (
os t+ ax)2 + (sin t+ ay)2exists, Eqs. (3) do not generate 
haoti
 solutions. Moreover, we also have� _x=�x+� _y=�y = 0 whi
h means 
onservation of the phase spa
e �volume�. It
an be also observed that a fun
tion H(x; y; t) exists su
h that _x = ��H=�yand _y = �H=�x with H de�ned as H = (1=2) lnM .When a0 6= a1 Eqs. (3) are no more integrable and the very detaileddis
ussion in [15℄ showed that the system of equations 
an be transformedinto the form of a Hamiltonian autonomous system with a periodi
 non-Hamiltonian perturbation. Then, the method of Melnikov fun
tion 
an alsobe used to prove formally the existen
e of 
haoti
 orbits.The model dis
ussed here is, as yet, the only known model of Bohmiandynami
s with the above properties. Presumably no similar 
ase with su
hunique features 
an be found. To show that it 
an serve as a referen
e modelfor other models we have prepared a sequen
e of strobos
opi
 maps in Fig. 1for a few pairs of a0 6= a1 su
h that a0 = 1:015A and a1 = 0:985A withA =1; 100; 10; 4; 2; 1.The �rst plot in Fig. 1 represents a 
ir
le whi
h is then deformed intoa 
urve formed of two loops 
rossing a single point. When a0 = a1 boththe homo
lini
 orbit of that shape and the hyperboli
 point 
an be found
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Fig. 1. Strobos
opi
 maps of the period 2� for the model des
ribed by Eqs. (3)and (10). In ea
h 
ase the time interval is 0 < t < 50000 with the time step of�t = 0:001.formally as shown with full parti
ulars in [15℄. Here we show instead forA = 10 a thin sto
hasti
 layer appearing in the vi
inity of the orbit spread-ing out in the area surrounding the point. The smaller the value of A is,the faster the homo
lini
 orbit breaks up and the fully developed 
haoti
traje
tory 
an be attributed to the pi
ture for A = 2. We have estimatedthe largest Lyapunow exponent for the traje
tory with x(0) = 1:98, y(0) = 0and 0 < t < 200000, �t = 0:001, as �max = 0:06.
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ate modelsWe shall now deviate from the above model to show that other more
ompli
ated models reveal similar behaviour. Two 
ompletely di�erent waysof doing su
h modi�
ations are brie�y sket
hed below.4.1. An isospe
tral modi�
ationWe 
an destroy the rotational symmetry of the 2D harmoni
 os
illatorpotential of the model of Se
tion 3 and simultaneously preserve the sameeigenvalues spe
trum of the new potential. To this end the fun
tions  0(z)and  1(z), with z = x or y, are used in Eqs. (5) and (6) and will get  ̂0(x;�), ̂1(x;�) and  ̂0(y;�),  ̂1(y;�). Finally, from Eqs. (9), we have:'̂�(x) = I(x) + �p�(1 + �)  x+ e�x22p�(�+ I(x))! ;'̂�(y) = I(y) + �p�(1 + �)  y + e�y22p�(�+ I(y))! ; (11)where I(z) = ��1=2 R z�1 e�u2du. On
e more the fa
tor of p2 is absorbedby the expansion 
oe�
ients in Eq. (7). The fun
tions  ̂0(x;�)  ̂0(y;�)and  ̂0(x;�)  ̂1(y;�) 
orrespond to the same previous energies E1 = 1 andE2 = 2, and hen
e again " = 1. The new potential has now the formV̂��(x; y) = V̂�(x) + V̂�(y)= 12(x2 + y2) + 2��1=2xe�x2 (�+ I(x)) + ��1e�2x2(�+ I(x))2+2��1=2ye�y2 (�+ I(y)) + ��1e�2y2(�+ I(y))2 (12)and in the limit of �!1 and �!1 it redu
es to the usual 2D os
illatorpotential. For the sake of 
omparison, its 1D image is presented in Fig. 2.The lower the value of � is, the more V̂�(x) deviates from its partner potentialV (x) = (1=2)x2. Similarly, '̂�(x) in Eqs. (11) deviates from '(z) in Eq. (10).Thus, the model of Se
tion 3 is a limiting 
ase of the one introdu
ed abovefor asymptoti
 values of � and �. Only in this limit with a0 = a1 thelatter is obviously integrable. In other 
ases, for any 
ombination of thefour parameters a0, a1, �, �, a 
haoti
 solution 
an always be found. The
omponents of the velo
ity �eld v(x; y; t) are now determined by Eqs. (8)and (11). Formal 
al
ulations show that r � v is now 
hanging with timeand tends to zero only in the above limit. Nevertheless, the s
enario of
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xFig. 2. The plot of the modi�ed potential V̂�(x) as given in Eq. (12) for� = 1; 2; 3; 5; 9 (full lines). The smaller the value of � is the larger is the devi-ation of V̂�(x) from the harmoni
 os
illator potential V (x) = (1=2)x2 or V̂1(x)(dashed line).approa
hing a 
haoti
 orbit seems to be very similar to that observed forthe model given by Eqs. (10) and (3). This is 
learly visible in Fig. 3.The �rst two plots are about the same as in Fig. 1 and for smaller valuesof a the sto
hasti
 layers appear to be a little more pronoun
ed than thosein the 
orresponding pi
tures in Fig. 1. We have expe
ted this as a 
onse-quen
e of the la
k of the rotational symmetry of the isospe
tral Hamiltonian(
f. Fig. 2). 4.2. Parti
le in a restri
ted spa
eThe se
ond modi�
ation of our Eqs. (10) and (3) uses the simplest modelwith a non-linear eigenvalue spe
trum. It is a square well with x 2 [0; �℄,y 2 [0; �℄ and the normalized wave fun
tions  n = p(2=�) sin (nz) andenergies En = (1=2)n2, n = 1; 2 : : :. Then, for n = 1 and k = 2 in Eq. (2)we use in Eqs. (3) '(z) = 2 
os z; " = 32 : (13)In our numeri
al 
al
ulations the fa
tor of 2 is in
luded in the 
onstants a0and a1 in Eqs. (3). Now, Eqs. (3) are integrated for a number of values
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Fig. 3. Strobos
opi
 maps of the period 2� for the isospe
tral model des
ribed byEqs. (8) and (11) with a0 = a1 = a and � = � = 20. The time interval and thetime step are respe
tively 0 < t < 50000 and �t = 0:005.of a0 = a1 = a and the results are presented in Fig. 4. The �rst member(jaj >> 1) of the family of pi
tures is not a 
ir
le but a 
losed 
urve perfe
tlyapproximated by the relation � = sinx � sin y, where 0 � � � 1. Forsmaller values of the parameter jaj we 
an again observe the formation of ahomo
lini
 orbit with the shape as in Fig. 4 for a = �10. When de
reasingjaj the orbit breaks up and the sto
hasti
 layer be
omes well pronoun
ed.
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s here is very similar to that in our model of Se
tion 3 andthis again suggests 
onsidering it as the simplest non-trivial model of 
haoti
Bohmian dynami
s.
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Fig. 4. Strobos
opi
 maps of the period (4=3)� for an in�nite square well modeldes
ribed by Eqs. (3) and (13). The time interval is in ea
h 
ase 0 < t < 50000and �t = 0:001.
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lusionIn this arti
le we have dis
ussed the set of equations that 
ould serveas the referen
e one for 
haoti
 
ausal traje
tories and revealing the way inwhi
h the 
ausal orbits be
ome 
haoti
 ones. This work is the �rst attemptto 
ontribute to this di�
ult problem. The results presented here seemto suggest that the way from a regular to 
haoti
 behaviour leads via theformation and break-up of a homo
lini
 orbit. Unfortunately, the formalderivation of the orbit and of the 
riti
al points is possible only for the modelof Se
tion 3 above and for the details we refer the reader to [15℄. In other
ases we are able to do that only numeri
ally. To emphasize this, we haveprepared sequen
es of pi
tures in Figs. 3 and 4 
learly showing their 
losesimilarity to those in Fig. 1. It is indeed 
ommon for the way the 
haoti
behaviour appears in Fig. 1 to be essentially independent of the model thatis used to generate it. Results of our paper thus bridge the gap between thetheory of dynami
al systems and the 
ausal quantum traje
tories.We 
an 
onsider the sequen
e of pi
tures in Fig. 1 as a possible wayleading to the appearan
e of 
haoti
 orbits in the Bohmian, or equivalently,in the hydrodynami
al formulation of quantum me
hani
s. Quite strongsupport of the 
onje
ture is in our opinion 
onvin
ingly manifested in theseries of plots in the above �gures. What we have dis
ussed here has notbeen observed so far sin
e the models under 
onsideration were too 
omplexand the properties of traje
tories depi
ted here were masked in their very
ompli
ated dynami
s.The proof that some orbits in Fig. 1, and hen
e in Figs. 3 and 4 as well,are 
haoti
 ones, follows dire
tly from the results of our re
ent paper [15℄.That is why we have 
al
ulated the largest Lyapunow exponent just forone orbit with A = 2 to show what the typi
al order of magnitude for thequantity and models under 
onsideration is.Looking for the simplest yet non-trivial dynami
s systems, both 
on-servative and dissipative ones, has attra
ted mu
h interest for a number ofyears. Representative studies on the subje
t together with the lists of su
hmodels 
an be found in [19, 20℄. Our work is a 
ontribution in this �eld fora spe
ial 
lass of dynami
al systems generated by the guidan
e equation (1)of the de Broglie�Bohm quantum me
hani
s. The model based on Eqs. (3)and (10) 
an be 
onsidered as the simplest non-trivial one for the reasonsoutlined throughout the paper. The name is additionally justi�ed by thefa
t that the wave fun
tion we have used has only one moving node. Ournumeri
al experiments with a number of other models lead to the 
onje
turethat for the systems of two non-autonomous equations of the form of Eq. (1),existen
e of at least one moving node seems to be a ne
essary 
ondition for
haoti
 orbits to exist. In our model the node moves along a 
ir
le in theintegrable 
ase and along an ellipse as the system is 
haoti
.
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alsystems 
an be generated with help of Eq. (1) sin
e they are a fun
tional ofthe used wave fun
tion. The resulting systems of two non-autonomous equa-tions, ne
essary by the well-known Poin
aré�Bendixson theorem for 
haoti
behaviour to appear, are not similar to any of systems studied so far. Ourresults show, however, that for the parti
ular 
hoi
e of the velo
ity �eld gen-erator, i.e. the wave fun
tion, we 
an observe me
hanism of obtaining 
haoti
orbits similar to the one known for the systems for
ed by the disturban
eperiodi
 in time. To �nd su
h a behaviour for �the quantum traje
tories�of Eq. (1) we were 
onstrained to a spe
i�
 
hoi
e of fun
tions without aparti
ular physi
al signi�
an
e. The similarity of Bohmian systems to thewell-known dynami
al ones is presumably still preserved for physi
ally im-portant wave fun
tions. This statement is, for now, an open question.This work has been supported in part by the Polish State Committee forS
ienti�
 Resear
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