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CONSISTENT INTERACTIONS IN THE HAMILTONIANBRST FORMALISMC. BizdadeaFa
ulty of Physi
s, University of Craiova13 A.I. Cuza Str., Craiova 1100, Romaniae-mail: bizdadea�
entral.u
v.ro(Re
eived June 18, 2001)A Hamiltonian BRST deformation pro
edure for obtaining 
onsistentintera
tions among �elds with gauge freedom is proposed. The generaltheory is exempli�ed on the three-dimensional Chern�Simons models andtwo-dimensional nonlinear gauge theories.PACS numbers: 11.10.Ef 1. Introdu
tionThe analysis of 
onsistent intera
tions that 
an be introdu
ed among�elds with gauge freedom without 
hanging the number of gauge symme-tries [1�4℄ has been transposed lately at the level of the deformation ofthe master equation [5℄ from the anti�eld-BRST formalism [6�10℄. This
ohomologi
al deformation te
hnique has been applied, among others, toChern�Simons models [5℄, Yang�Mills theories [11℄, p-form gauge theories,and 
hiral p-forms [12�19℄. In this light, the anti�eld-BRST method wasproved to be an elegant tool for investigating the problem of 
onsistent inter-a
tions. On the other hand, the Hamiltonian formulation [10,20�24℄ appearsto be the most natural ba
kground for investigating various topi
s in gaugetheories, su
h as the implementation of the BRST symmetry in quantumme
hani
s [10℄, the analysis of anomalies [25℄, the link between the lo
alBRST 
ohomologies in both Lagrangian and Hamiltonian formalisms [26℄(see Theorem 6 from this referen
e), or for establishing a proper 
onne
-tion between the BRST symmetry and 
anoni
al quantization methods [27℄.These 
onsiderations strongly stimulate a Hamiltonian BRST approa
h toother interesting problems.In this paper we analyze the problem of 
onstru
ting 
onsistent intera
-tions among �elds with gauge freedom in the framework of the Hamiltonian(2843)



2844 C. BizdadeaBRST formalism. Our strategy in
ludes two main steps: (i) initially, weshow that the problem of introdu
ing 
onsistent intera
tions among �eldswith gauge freedom 
an be reformulated as a problem of deforming theBRST 
harge and the BRST-invariant Hamiltonian of a given �free� the-ory, and 
onsequently we dedu
e the general equations that govern thesetwo types of deformations; (ii) next, on behalf of the relationship betweenthe Hamiltonian and anti�eld BRST formalisms for 
onstrained systems, weprove that the general equations possess solutions. In the sequel, we re-formulate the general equations in a manner that a

ounts for lo
ality, andsubsequently illustrate our general pro
edure in the 
ase of three-dimensionalChern-Simons models and two-dimensional nonlinear gauge theories.2. General equations of the Hamiltonian deformation approa
hWe begin with a system des
ribed by the 
anoni
al variables zA, subje
tto the �rst-
lass 
onstraintsGa0 �zA� � 0 ; a0 = 1; : : : ;M0 (1)whi
h are assumed to be L-stage redu
ibleGa0Za0a1 = 0 ; a1 = 1; : : : ;M1 ; (2)Zak�2ak�1Zak�1ak � 0 ; ak = 1; : : : ;Mk; k = 2; : : : ; L ; (3)and suppose that there are no se
ond-
lass 
onstraints in the theory. TheGrassmann parities of the 
anoni
al variables and �rst-
lass 
onstraints arerespe
tively denoted by " �zA� = "A and " (Ga0) = "a0 . We denote the�rst-
lass Hamiltonian by H0, su
h that the gauge algebra is expressed by[Ga0 ; Gb0 ℄ = G
0C
0a0b0 ; [H0; Ga0 ℄ = Gb0V b0a0 : (4)It is known that a 
onstrained Hamiltonian system 
an be des
ribed by thea
tion S0 �zA; ua0� = t2Zt1 dt �aA (z) _zA �H0 �Ga0ua0� ; (5)where the Grassmann parities of the Lagrange multipliers are given by" (ua0) = "a0 . In (5), aA (z) is the one-form potential that gives the sym-ple
ti
 two-form!AB = (�)"A+1 �LaA�zB + (�)"B("A+1) �LaB�zA ;



Hamiltonian BRST Intera
tions 2845whose inverse, !AB, 
orresponds to the fundamental Dira
 bra
kets�zA; zB� = !AB. A
tion (5) is invariant under the gauge transformationsÆ�zA = �zA; Ga0� �a0 ; Æ�ua0 = _�a0 � V a0b0�b0 � Ca0b0
0�
0ub0 � Za0a1�a1 : (6)In order to generate 
onsistent intera
tions at the Hamiltonian level, wedeform the a
tion (5) by adding to it some intera
tion termsS0 ! ~S0 = S0 + g (1)S 0 +g2 (2)S 0 + � � � ; (7)and modify the gauge transformations (6) (to be denoted by ~Æ�zA, ~Æ�ua0) insu
h a way that the deformed gauge transformations leave invariant the newa
tion ÆR ~S0ÆzA ~Æ�zA + ÆR ~S0Æua0 ~Æ�ua0 = 0 : (8)Consequently, the deformation of the a
tion (5) and of the gauge transfor-mations (6) produ
es a deformation of the �rst-
lass 
onstraints, �rst-
lassHamiltonian, and a

ompanying stru
ture fun
tions likeGa0 ! 
a0 = Ga0 + g (1)
 a0 +g2 (2)
 a0 + � � � ; (9)H0 ! H = H0 + g (1)H +g2 (2)H + � � � ; (10)V a0b0 ! ~V a0b0 = V a0b0 + g (1)V a0b0 +g2 (2)V a0b0 + � � � ; (11)Ca0b0
0 ! ~Ca0b0
0 = Ca0b0
0 + g (1)C a0b0
0 +g2 (2)C a0b0
0 + � � � ; (12)su
h that the deformed gauge algebra be
omes[
a0 ; 
b0 ℄ = 

0 ~C
0a0b0 ; [H; 
a0 ℄ = 
b0 ~V b0a0 : (13)In the meantime, we deform the redu
ibility relations, but we do not expli
-itly write down these relations.As the BRST 
harge and BRST-invariant Hamiltonian 
ontain all theinformation on the gauge stru
ture of a given theory, we 
an reformulatethe problem of introdu
ing 
onsistent intera
tions within the HamiltonianBRST 
ontext in terms of these two essential 
ompounds. Indeed, if theintera
tions 
an be 
onsistently 
onstru
ted, then the BRST 
harge of theundeformed theory, (0)
 , 
an be deformed su
h as to be the BRST 
harge ofthe deformed theory, i.e.,(0)
! 
 =(0)
 +g (1)
 +g2 (2)
 + � � � ; (14)



2846 C. Bizdadea[
 ;
 ℄ = 0 : (15)Equation (15) 
an be analyzed order by order in the deformation parameterg, leading to �(0)
 ; (0)
 � = 0 ; (16)2 �(0)
 ; (1)
 � = 0 ; (17)2 �(0)
 ; (2)
 �+ �(1)
 ; (1)
 � = 0 ; (18)...At the same time, the deformation of the BRST 
harge indu
es the defor-mation of the BRST-invariant Hamiltonian of the undeformed theory, (0)HB ,(0)HB! HB =(0)HB +g (1)HB +g2 (2)HB + � � � ; (19)in su
h a way that HB is the BRST-invariant Hamiltonian of the intera
tingtheory, i.e., [HB ;
 ℄ = 0 : (20)The equation (20) splits, a

ording to the powers of the deformation param-eter, as �(0)HB; (0)
 � = 0 ; (21)�(0)HB ; (1)
 �+ �(1)HB; (0)
 � = 0 ; (22)�(0)HB; (2)
 �+ �(1)HB ; (1)
 �+ �(2)HB; (0)
 � = 0 ; (23)...Equations (16)�(18), et
. and (21)�(23), et
. stand for the general equa-tions of our deformation pro
edure. With the help of their solutions we
an rea
h the Hamiltonian version of the intera
ting theory. More pre
isely,from the deformed BRST 
harge one identi�es the deformed �rst-
lass 
on-straints, their 
orresponding algebra, the new redu
ibility relations, et
. Inthe meantime, from the deformed BRST-invariant Hamiltonian one draws



Hamiltonian BRST Intera
tions 2847the new �rst-
lass Hamiltonian, the Dira
 bra
kets among the deformed�rst-
lass 
onstraints and this �rst-
lass Hamiltonian, et
. The equations(16) and (21) are 
he
ked by hypothesis. Then, it appears naturally thequestion whether the remaining equations possess solutions. This will beinvestigated in the next se
tion.3. Solution to the general equationsIn order to prove that the equations (17)�(18), et
. and (22)�(23), et
.possess solutions, we use the link between the anti�eld and HamiltonianBRST formalisms for 
onstrained Hamiltonian systems [28℄. First-
lass 
on-strained Hamiltonian systems 
an be approa
hed from the point of viewof the BRST formalism in two di�erent manners. One is based on theantibra
ket�anti�eld formulation [6�10℄, while the other relies on the stan-dard Hamiltonian BRST treatment [10, 20�24℄. The starting point of theantibra
ket�anti�eld formalism is represented by the invarian
e of the a
-tion (5) under the gauge transformations (6). In agreement with the generalpres
riptions of the antibra
ket�anti�eld pro
edure, we introdu
e the ghosts(�ak�1)k=1;:::;L+1 and (uak)k=1;:::;L, with" (�ak ) = ("ak + k + 1) mod 2; gh (�ak ) = k + 1; k = 0; : : : ; L; (24)" (uak) = ("ak + k) mod 2; gh (uak) = k; k = 1; : : : ; L ; (25)where gh denotes the ghost number. The anti�elds asso
iated with the�elds �zA; ua0 ; �ak�1 ; uak� are denoted by �z�A; u�a0 ; ��ak�1 ; u�ak� and displaythe properties " (anti�eld) = " (�eld) + 1, gh (anti�eld) = �gh (�eld) � 1.Up to terms that are quadrati
 in the anti�elds, the solution to the masterequation reads as(0)S = t2Zt1 dt aA (z) _zA + LXk=0 u�ak _�ak �H0 �Ga0ua0 + z�A �zA; Ga0� �a0�u�a0V a0b0�b0 + (�)"b0+1 u�a0Ca0b0
0�
0ub0 + 12 (�)"b0 ��a0Ca0b0
0�
0�b0+ L�1Xk=0 ��akZakak+1�ak+1 � LXk=1 u�ak�1Zak�1ak uak + : : :! : (26)The Hamiltonian point of view is based on extending the phase-spa
e byintrodu
ing the 
anoni
al pairs ghost�antighost (�ak ;Pak ), with [�ak ;Pak ℄ =Æakbk and " (Pak) = ("ak + k + 1) mod 2, gh (Pak) = k+1. The BRST 
hargestarts like(0)
= Ga0�a0 + 12 (�)"b0 Pa0Ca0b0
0�
0�b0 + L�1Xk=0 PakZakak+1�ak+1 + � � � ; (27)



2848 C. Bizdadeasu
h that �(0)
 ; (0)
 � = 0. The BRST-invariant extension of H0(0)HB= H0 + Pa0V a0b0�b0 + � � � ; (28)satis�es the equation �(0)HB ; (0)
 � = 0. By employing the identi�
ationsu�ak = Pak ; k = 0; : : : ; L; (29)and extending the Dira
 bra
ket su
h that ��ak ; u�ak� = Æakbk , we get that12 �(0)S ; (0)S� = t2Zt1 dt�� ddt (0)
 � �(0)HB; (0)
 �+ 12z�A �zA; �(0)
 ; (0)
 ��+12 LXk=0 ��ak ��ak ; �(0)
 ; (0)
 ��+12 LXk=0 ��(0)
 ; (0)
 � ; u�ak�uak! :(30)The deformations (14) and (19) indu
e a deformation of the solution to themaster equation (0)S! S =(0)S +g (1)S +g2 (2)S + � � � ; (31)su
h that the equation (30) for the deformed theory be
omes12 (S; S) = t2Zt1 dt�� ddt
 � [HB;
 ℄ + 12z�A �zA; [
 ;
 ℄�+12 LXk=0 ��ak [�ak ; [
 ;
 ℄℄ + 12 LXk=0 �[
 ;
 ℄ ; u�ak�uak! : (32)The equation (32) splits a

ording to the deformation parameter as (30) and�(0)S ; (1)S� = t2Zt1 dt�� ddt (1)
 � �(0)HB ; (1)
 �� �(1)HB; (0)
 �+ z�A �zA; �(0)
 ; (1)
 ��+ LXk=0 ��ak ��ak ; �(0)
 ; (1)
 ��+ LXk=0 ��(0)
 ; (1)
 � ; u�ak�uak! ; (33)
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tions 2849�(0)S ; (2)S�+ 12 �(1)S ; (1)S� = t2Zt1 dt�� ddt (2)
 � �(0)HB ; (2)
 �� �(1)HB ; (1)
 �� �(2)HB; (0)
 �+ z�A �zA; �(0)
 ; (2)
 �+ 12 �(1)
 ; (1)
 ��+ LXk=0 ��ak ��ak ; �(0)
 ; (2)
 �+ 12 �(1)
 ; (1)
 ��+ LXk=0 ��(0)
 ; (2)
 �+ 12 �(1)
 ; (1)
 � ; u�ak�uak! ;... (34)The last equations emphasize that the existen
e of (1)S guarantees the exis-ten
e of (1)
 and (1)HB , the existen
e of (2)S guarantees the existen
e of (2)
 and(2)HB , and so on. Moreover, the equations (17)�(18), et
. and (22)�(23), et
.are equivalent to the equations �(0)S ; (1)S� = 0, �(0)S ; (2)S� + 12 �(1)S ; (1)S� = 0,et
. modulo imposing some appropriate boundary 
onditions on 
 [24℄. Onthe other hand, the last equations possess solution. The existen
e of su
hsolutions was proved in [5℄ on behalf of the triviality of the antibra
ket in the
ohomology. Thus, the existen
e of the solutions in the antibra
ket provesthe existen
e of the solutions to (17)�(18), et
. and (22)�(23), et
. In 
on-
lusion, the equations that des
ribe the Hamiltonian deformation pro
edurepossess solutions, so we 
an 
onstru
t 
onsistent Hamiltonian intera
tionsby means of the equations (17)�(18), et
. and (22)�(23), et
.At this point, we 
onsider the intera
tions that 
an be obtained via arede�nition of the variableszA ! �zA = zA + g�A + � � � : (35)Su
h a rede�nition implies that the �rst-
lass 
onstraint fun
tions and the�rst-
lass Hamiltonian are transformed likeGa0 ! �Ga0 = Ga0 �zA + g�A + � � �� = Ga0 + g�A �LGa0�zA + � � � ; (36)H0 ! �H0 = H0 �zA + g�A + � � �� = H0 + g�A ÆLH0ÆzA + � � � : (37)



2850 C. BizdadeaObviously, the rede�nition (35) modi�es as well the other stru
ture fun
-tions. The transformations (36)�(37) indu
e the 
hanges(0)
! 
 = (0)
 +g�A �LGa0�zA �a0 + � � � ; (38)(0)HB! HB = (0)HB +g�A ÆLH0ÆzA + � � � ; (39)at the level of the BRST 
harge, respe
tively, of the BRST-invariant Hamil-tonian. The intera
tions that 
an be eliminated by means of variable re-de�nitions are usually 
onsidered as no intera
tions and are 
alled trivialintera
tions. Trivial intera
tions appear at the level of the solutions to theequations (17)�(18), et
. and (22)�(23), et
. as follows. The equation (17)implies that (1)
 is an (0)s -
o-
y
le, where (0)s denotes the undeformed BRSTdi�erential, whi
h de
omposes like (0)s = Æ + 
 + � � �, with Æ the Koszul�Tatedi�erential (graded by the antighost number, antigh) and 
 the exteriorderivative along the gauge orbits (graded by the pure ghost number, pgh).The overall degree of (0)s , namely, the ghost number, is de�ned like the di�er-en
e between the pure ghost number and the antighost number. We supposethat (1)
 is an (0)s -
oboundary (1)
= �(1)� ; (0)
 � : (40)By expanding the right hand-side of the last relation a

ording to the anti-ghost number, we �nd (1)
= uA�LGa0�zA �a0 + � � � ; (41)where uA = ÆR(1)�ÆzB !BA�����=P=0, su
h that the solution (40) deforms in a trivialway the BRST 
harge (as (40) leads to a deformation of the same type with(38)). Using (40), we �nd�(0)HB; (1)
 � = � ��(1)� ; (0)HB� ; (0)
 � ; (42)su
h that from (22) it results (up to an (0)s -exa
t term) that(1)HB= �(1)� ; (0)HB� = ÆR (1)�Æ�� !�� ÆL (0)HBÆ�� ; (43)
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tions 2851where �� = �zA; �;P�, and !�� = ���;���. The expansion of the righthand-side of (43) a

ording to the antighost numberÆR (1)�Æ�� !�� ÆL (0)HBÆ�� = uA ÆLH0ÆzA + � � � ; (44)leads to a trivial deformation of the BRST-invariant Hamiltonian (of thesame type with (39)). Moreover, it 
an be shown that (40) deforms theremaining stru
ture fun
tions also in a trivial manner. In 
on
lusion, thetrivial solutions (40) produ
e trivial intera
tions.In pra
ti
al appli
ations, it is 
ommonly required that the deformationsshould be lo
al, i.e., (1)
 , (2)
 , (1)HB , (2)HB , et
. have to be lo
al fun
tionals. LetF1 = R dD�1xf1 and F2 = R dD�1xf2 be two lo
al fun
tionals. If the Dira
bra
ket is lo
al, then [F1; F2℄ is lo
al, namely, there exists a lo
al [f1; f2℄(but de�ned up to a (D � 1)-dimensional divergen
e), su
h that [F1; F2℄ =R dD�1x [f1; f2℄ (if the Dira
 bra
ket itself is nonlo
al, the deformations willalso be nonlo
al). Thus, the equations (17)�(18), et
. and (22)�(23), et
.
an be written as 2 (0)s (1)! = �k (1)j k ; (45)2 (0)s (2)! + �(1)! ; (1)! � = �k (2)j k ; (46)...(0)s (1)h B + �(0)h B ; (1)! � = �k (1)mk ; (47)(0)s (2)h B + �(1)h B; (1)! �+ �(0)h B ; (2)! � = �k (2)mk ; (48)...in terms of the integrands (k)h B and (k)! . Even if the Dira
 bra
ket is lo
al,there might however appear obstru
tions if one insists on the lo
ality ofdeformations. For instan
e, even if �(1)
 ; (1)
 � is (0)s -exa
t, it is not grantedthat it is the BRST variation of a lo
al fun
tional. Su
h lo
ality problemsappear also in the Lagrangian deformation pro
edure [5℄. The analysis ofsu
h obstru
tions 
an be done with the help of 
ohomologi
al te
hniques interms of the 
ohomologi
al group H(sj ~d), where ~d = dxi�i represents thespatial part of the exterior spa
e-time derivative. However, in the 
ase of



2852 C. Bizdadeamost important appli
ations [5, 11�19℄, the Lagrangian BRST deformationpro
edure leads to lo
al intera
tions. Thus, we expe
t that the Hamilto-nian BRST deformation treatment also outputs lo
al verti
es in pra
ti
alappli
ations of interest. 4. Examples4.1. Chern�Simons modelLet us exemplify the prior pro
edure in the 
ase of Abelian Chern�Simonsmodel in three dimensions. We start with the Lagrangian a
tionS0 �Aa�� = 12 Z d3x"���kabAa�F b�� ; (49)where kab is a non-degenerate, symmetri
, and 
onstant matrix, whileF b�� = ��Ab� � ��Ab� � �[�Ab�℄ :Performing the 
anoni
al analysis and eliminating the se
ond-
lass 
on-straints (the independent variables are Aa0, �0a, and Aak), we infer the �rst-
lass 
onstraintsG1a � �0a � 0 ; G2a � �12"0ikkabF bik � 0 ; (50)and the �rst-
lass HamiltonianH0 = �2Z d2xAa0G2a : (51)The non-vanishing fundamental Dira
 bra
kets read as �Aa0; �0b � = Æab,hAak; Abji = 12"0kjkab, hen
e the BRST 
harge takes the form(0)
= Z d2x��0a�a1 � 12"0ikkabF bik�a2� ; (52)where kab is the inverse of kab, and (�a1 ; �a2 ) stand for the fermioni
 ghostnumber one ghosts. Thus, the BRST operator (0)s splits as (0)s = Æ+
. Then,we haveÆAa0 = 0 ; Æ�0a = 0 ; ÆAak = 0 ; Æ�a1 = Æ�a2 = 0 ; (53)ÆP1a = ��0a ; ÆP2a = 12"0ikkabF bik ; (54)
Aa0 = �a1 ; 
�0a = 0 ; 
Aak = 12�k�a2 ; 
�a1 = 
�a2 = 0 ; (55)
P1a = 
P2a = 0 : (56)
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tions 2853In (54) and (56), P1a and P2a stand for fermioni
 antighosts 
orrespondingto the ghosts �a1 , respe
tively, �a2 . The pure ghost and antighost numbers ofthe variables from the BRST 
omplex are valued likepgh �zA� = 0 ; pgh ��� � = 1 ; pgh (P� ) = 0 ; (57)antigh �zA� = 0 ; antigh ��� � = 0 ; antigh (P� ) = 1 ; (58)where zA = �Aa�; �0a� ; �� = (�a1 ; �a2) ; P� = (P1a;P2a) : (59)Now, we solve the equation (45). In view of this, we develop (1)! a

ordingto the antighost number(1)!=(1)! 0 + (1)! 1 + � � �+ (1)! J ; antigh�(1)! J� = J ; gh�(1)! J� = 1; (60)where the last term in (60) 
an be assumed to be annihilated by 
, i.e.,
 (1)! J= 0. Thus, in order to 
ompute the �rst-order deformation of theBRST 
harge, we need to know H (
). Analysing the de�nitions (55)�(56),we remark that the 
ohomology of 
 will be generated by F aij , �0a, P� andtheir spatial derivatives, as well as by the undi�erentiated ghosts �a2 (theghosts �a2 are 
-
losed, but their spatial derivatives are 
-exa
t, while theghosts �a1 are trivial in the 
ohomology of 
 as they are 
-exa
t). Conse-quently, the general solution of the equation 
� = 0 
an be written as� = �M ��F aij� ; ��0a� ; [P� ℄� eM (�a2) + 
� ; (61)where eM (�a2) 
onstitutes a basis in the (�nite-dimensional) spa
e of thepolynomials in the ghosts �a2 , while the notation � [q℄ signi�es that � dependson q and its spatial derivatives up to a �nite order. As pgh�(1)! J� = J + 1,from (61) it results that we 
an represent (1)! J under the form(1)! J= 1(J + 1)!�a1���aJ+1�a12 � � � �aJ+12 : (62)With this 
hoi
e, it is simply to see that the 
-invariant 
oe�
ient �a1���aJ+1belongs to HJ �Æj ~d�, hen
e it is solution to the equationÆ�a1���aJ+1 + �kbka1���aJ+1 = 0 ; (63)



2854 C. Bizdadeafor some bka1���aJ+1 . Using the result from [29℄ adapted to the Hamilto-nian 
ontext, it follows that HJ �Æj ~d� vanishes for J > 1, so we 
an writethat (1)!=(1)! 0 + (1)! 1, with (1)! 1= 12�ab�a2�b2, where �ab pertains to H1 �Æj ~d�.From the latter equations in (54) we have that the general representativeof H1 �Æj ~d� is of the type �ab = C
abP2
, where C
ab are some 
onstants,antisymmetri
 in the lower indi
es, C
ab = �C
ba. The reason for 
onsid-ering C
ab to be 
onstant results from the equation that must be obeyedby �ab, namely, Æ�ab = �k �C
ab"0kjk
dAdj�. In this way, we obtainedthat (1)! 1= 12C
abP2
�a2�b2. Equation (45) at antighost number zero readsas Æ (1)! 1 +
 (1)! 0= �knk, whi
h further yields (1)! 0= C
adk
b"0kjAakAdj�b2. Con-sequently, we inferred that the 
omplete �rst-order deformation of the BRST
harge is pi
tured by(1)!= C
ab �12P2
�a2�b2 + k
d"0kjAakAbj�d2� : (64)Simple 
omputation leads to�(1)
 ; (1)
 �=Z d2x��13C
[abCmn℄
P2m�a2�b2�n2 � "0ijkadC
[neCdb℄
�a2�b2Ani Aej� :(65)The last relation shows that �(1)
 ; (1)
 � 
annot be written like an (0)s -exa
t mod-ulo ~d lo
al fun
tional, as required by (46). For this reason it is ne
essary tohave �(1)
 ; (1)
 � = 0. This 
ondition takes pla
e if and only if C
[abCmn℄
 = 0,so if and only if these 
onstants verify the Ja
obi identity. This further im-plies that (k)
= 0 for all k � 2. Thus, the deformed BRST 
harge, 
onsistentto all orders in the deformation parameter, takes the �nal form
 = Z d2x��0a�a1 � "0ikk
a �12F 
ik � gC
bdAbiAdk� �a2 + 12gC
abP2
�a2�b2� ;(66)and it is 
learly a lo
al fun
tional.Next, we derive the deformed BRST-invariant Hamiltonian. The BRST-invariant Hamiltonian for the free model is given by (0)HB= H0+2 R d2x�a1P2a,su
h that with the help of (64) we �nd�(0)h B ; (1)! � = �2C
abk
d"0ijAbj ��d1Aai + �d2�iAa0�� 2C
abP2
�a2�b1 : (67)
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tions 2855Under these 
ir
umstan
es, the solution to the equation (47) reads as(1)h B= 2C
ab �k
d"0ijAd0AaiAbj +Ab0P2
�a2� : (68)Straightforward 
omputation gives �(1)HB; (1)
 � = 0, hen
e equation (48) issatis�ed with the 
hoi
e (2)h B= 0. Therefore, the higher-order deforma-tion equations for the BRST-invariant Hamiltonian are veri�ed with (3)HB=(4)HB= � � � = 0. Combining the last results, we 
an write down the 
ompletedeformed BRST-invariant Hamiltonian likeHB=2Z d2x��Aa0"0ikk
a �12F 
ik � gC
bdAbiAdk�+ ��a1 � gCa
bAb0�
2�P2a� ;(69)hen
e it is also a lo
al fun
tional.Taking into a

ount (66) and (69), we 
an pro
eed to the identi�
ationof the new gauge theory. From the antighost-independent terms in (66)we observe that the deformation of the BRST 
harge implies the deformed�rst-
lass 
onstraints
2a � �"0ikk
a �12F 
ik � gC
bdAbiAdk� � 0 ; (70)the remaining 
onstraints being undeformed. The term 12 g C
abP2
 �a2 �b2shows that the modi�ed 
onstraint fun
tions generate a Lie algebra in termsof the stru
ture 
onstants C
ab[
2a; 
2b℄ = gC
ab
2
 : (71)On the other hand, the antighost-independent pie
e in (69)H = �2Z d2xAa0"0ikk
a � 12F 
ik � gC
bdAbiAdk� ; (72)is pre
isely the �rst-
lass Hamiltonian of the intera
ting theory. The 
om-ponents linear in the antighosts from (69) indi
ate that the Dira
 bra
ketsamong the new �rst-
lass Hamiltonian and deformed 
onstraint fun
tionsare modi�ed as [H; 
2a℄ = �2gC
abAb0
2
 : (73)In 
on
lusion, the resulting 
oupled �rst-
lass theory is nothing but the nonAbelian version of the Chern�Simons model in three dimensions, des
ribedby the lo
al Lagrangian a
tion�S0 �Aa�� = Z d3x"���Aa� �12kabF b�� � 23gCab
Ab�A
�� ; (74)



2856 C. Bizdadeawhere Cab
 = Cd[b
ka℄d. As �rst-
lass 
onstraints generate gauge transfor-mations, from the deformations (70) and (71) we 
an state that the addedintera
tions involved with (72) modify both the gauge transformations andtheir algebra. 4.2. Two-dimensional nonlinear theoriesNext, we analyze the nontrivial deformations of a two-dimensional gaugetheory, des
ribed by the Lagrangian a
tionS0 �Ha�; 'a; Aa�; B��a � = Z d2x�Ha���'a + 12B��a �[�Aa�℄� : (75)The 
anoni
al analysis of this model yields (after the elimination of these
ond-
lass 
onstraints) the �rst-
lass 
onstraintsG1a � �0a � 0 ; G2a � ��1B01a � 0 ; G3a � p1a � 0 ; G4a � ��1'a � 0 ;(76)and the �rst-
lass HamiltonianH0 = Z dx1 (Aa0G2a +Ha1G4a) ; (77)where the non-vanishing Dira
 bra
kets among the independent variablesare expressed by�Aa0; �0b � = Æab; h'a;Hb0i = Æ ba ; �Aa1; B01b � = Æab ; �Ha1 ; p1b� = Æab : (78)Consequently, the BRST 
harge and the BRST-invariant Hamiltonian takethe form (0)
 = Z dx1 ��0a�a1 + p1aCa1 � ��1B01a � �a2 � ��1'a�Ca2 � ; (79)(0)HB = H0 + Z dx1 (�a1P2a + Ca1P2a) ; (80)where the indi
es 1 and 2 involved with the ghosts and antighosts simply
orrespond to the indi
es of the asso
iated 
onstraint fun
tions in (76). Justlike in the previous example, the `free' BRST di�erential redu
es to the �rsttwo pie
es, (0)s = Æ + 
. These two operators are de�ned on the generatorsfrom the BRST 
omplex asÆzA = 0 ; Æ�� = 0 ; (81)ÆP1a = ��0a ; ÆP1a = �p1a ; ÆP2a = �1B01a ; ÆP2a = �1'a ; (82)
Aa0 = �a1 ; 
�0a = 0 ; 
'a = 0 ; 
Ha0 = ��1Ca2 ; (83)
Aa1 = �1�a2 ; 
B01a = 0 ; 
Ha1 = Ca1 ; 
p1a = 0 ; (84)
�� = 0 ; 
P� = 0 ; (85)
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tions 2857where zA = �Aa0; �0a; 'a;Ha0 ; Aa1; B01a ;Ha1 ; p1a� ; (86)�� = (�a1 ; Ca1 ; �a2 ; Ca2 ) ; P� = (P1a; P1a;P2a; P2a) : (87)Both the antighost and pure ghost numbers of the variables (87) 
oin
idewith the 
orresponding ones involved with (57)�(58).In order to determine the deformations of the BRST 
harge and BRST-invariant Hamiltonian, we follow the same line like previously. We start withthe expansion (60) and assume that its last representative 
an be taken tobe annihilated by 
. In this 
ase, the 
ohomology of 
 will be generatedby 'a, �0a, B01a , p1a, P� and their spatial derivatives, as well as by the un-di�erentiated ghosts �a2 and Ca2 , hen
e the general solution of the equation
� = 0 is given by� = �M �['a℄ ; ��0a� ; �B01a � ; �p1a� ; [P� ℄� eM (�a2 ; Ca2 ) + 
� ; (88)where eM (�a2 ; Ca2 ) is a basis in the (�nite-dimensional) spa
e of the polyno-mials in the ghosts. In this situation we have again that pgh�(1)! J� = J+1,su
h that (88) implies that we 
an take(1)! J= J+1Xk=0ma1���akb1���bJ�k+1�a12 � � � �ak2 Cb12 � � �CbJ�k+12 ; (89)so the 
-invariant 
oe�
ients ma1���akb1���bJ�k+1 pertain to HJ �Æj ~d�, or, inother words, they must obey the equationÆma1���akb1���bJ�k+1 + �i
ia1���akb1���bJ�k+1 = 0 : (90)It is easy to see that HJ �Æj ~d� vanishes again for J > 1, su
h that (1)!=(1)! 0 + (1)! 1, where (1)! 1= mab�a2�b2 + nabCa2Cb2 + uab�a2Cb2 ; (91)withmab, nab and uab fromH1 �Æj ~d�. The general representative ofH1 �Æj ~d�
an be written under the form�ab = �ÆWabÆ'
 P2
 + ��M 
abP2
 + ÆM 
abÆ'd B
01P2d� ; (92)



2858 C. Bizdadeawhere the 
oe�
ients Wab and M 
ab depend on 'a, the latter ones are an-tisymmetri
 in the lower indi
es, M 
ab = �M 
ba, while � and � are some
onstants. On a

ount of (92), we simply infer thatÆ�ab = �1 (�Wab + �M 
abB
01)whi
h 
on�rms that �ab veri�es the equation (90). Moreover, we observethat �ab is 
-invariant. For subsequent purpose, we restri
t ourselves to the
hoi
esmab = �12 �M 
abP2
 + ÆM 
abÆ'd B
01P2d� ; uab = �ÆWabÆ'
 P2
 ;nab = 0 and M 
ab = ÆWabÆ'
whi
h further lead to(1)! 1= �12 �ÆWabÆ'
 P2
 + Æ2WabÆ'
Æ'dB
01P2d� �a2�b2 � ÆWabÆ'
 P2
�a2Cb2 :By means of the equation Æ (1)! 1 +
 (1)! 0= �knk, we then �nd that(1)! 0= Wab �Aa1Cb2 + �a2Hb0�� ÆWabÆ'
 B
01�a2Ab1;so the 
omplete �rst-order deformation of the BRST 
harge reads as(1)! = �12 �ÆWabÆ'
 P2
 + Æ2WabÆ'
Æ'dB
01P2d� �a2�b2 � ÆWabÆ'
 P2
�a2Cb2+Wab �Aa1Cb2 + �a2Hb0�� ÆWabÆ'
 B
01�a2Ab1: (93)After some 
omputation, we arrive at�(1)
 ; (1)
 � = Z dx1�tab
wab
 + Ætab
Æ'd v ab
d + Æ2tab
Æ'nÆ'd z ab
dn � ; (94)where we performed the notationstab
 � We[a ÆW b
℄Æ'e ; (95)wab
 = �2Ca2�b2A
1 +Ha0 �b2�
2 ; (96)v ab
d = 13P2d�a2�b2�
2 �Bd01�a2�b2A
1 + P2dCa2�b2�
2 ; (97)z ab
dn = 13Bd01P2n�a2�b2�
2 : (98)
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tions 2859From (94) it follows that �(1)
 ; (1)
 � is not (0)s -exa
t modulo ~d, as required,therefore it should vanish. This is attained if and only iftab
 = 0 (99)whi
h is nothing but the Ja
obi identity for a nonlinear gauge algebra. In
onsequen
e, we 
an take the se
ond- and higher-order deformations of theBRST 
harge to vanish, (k)
= 0, k � 2.Next, we pass to analyse the deformations of the BRST-invariant Hamil-tonian (80). In view of this, we �nd that�(0)HB; (1)
 � = (0)s  Z dx1��ÆWabÆ'
 P2
 + Æ2WabÆ'
Æ'dB
01P2d� �a2Ab0+ÆWabÆ'
 P2
 ��a2Hb1 �Aa0Cb2�+ ÆWabÆ'
 B
01Aa0Ab1�Wab �Aa1Hb1 +Aa0Hb0��!; (100)so the �rst-order deformation, whi
h is 
ontrolled by the equation (47), willbe expressed by(1)h B = ��ÆWabÆ'
 P2
 + Æ2WabÆ'
Æ'dB
01P2d� �a2Ab0�ÆWabÆ'
 P2
 ��a2Hb1�Aa0Cb2�� 12 ÆWabÆ'
 B��
 Aa�Ab�+WabAa�Hb�: (101)Dire
t 
omputation yields �(1)HB ; (1)
 � = 0, hen
e equation (48) is ful�lledwith the 
hoi
e (2)h B= 0. Further, all higher-order deformations of the BRST-invariant Hamiltonian 
an be taken to vanish, (3)HB=(4)HB= � � � = 0.Putting together the results inferred so far, we obtain that the 
ompleteform of the deformed BRST 
harge and deformed BRST-invariant Hamilto-nian for the model under study, 
onsistent to all orders in the deformationparameter, are expressed by
 = Z dx1 ��0a�a1 + p1aCa1 + ���1'a � gWabAb1�Ca2+���1B01a + gWabHb0 � g ÆWabÆ'
 B
01Ab1� �a2�12g ÆWabÆ'
 P2
�a2�b2 � gP2
�a2 �12 Æ2WabÆ'
Æ'dBd01�b2 + ÆWabÆ'
 Cb2��;(102)



2860 C. Bizdadearespe
tively,HB = Z dx1�Aa0G2a +Ha1G4a + gWabAa�Hb� � g2 ÆWabÆ'
 B��
 Aa�Ab�+��
1 + g ÆWabÆ'
 �a2Ab0�P2
 +�C
1 + g Æ2WabÆ'
Æ'dBd01�a2Ab0+ g ÆWabÆ'
 ��a2Hb1 + Ca2Ab0��P2
� : (103)The above quantities allow us to identify the resulting intera
ting theory.The antighost-independent pie
es in (102) furnish the deformed �rst-
lass
onstraints 
2a � ��1B01a + gWabHb0 � g ÆWabÆ'
 B
01Ab1 � 0 ; (104)
4a � ��1'a � gWabAb1 � 0 ; (105)the others being una�e
ted. The terms linear in the antighosts show thatsome of the Dira
 bra
kets among the new �rst-
lass 
onstraints are alsodeformed, namely,[
2a; 
2b℄ = �g ÆWabÆ'
 
2
 � g Æ2WabÆ'
Æ'dBd01
4
 ; (106)[
4a; 
2b℄ = �g ÆWabÆ'
 
4
 : (107)On the other hand, with the help of the 
omponents in (103) independentof ghosts and antighosts, we read the deformed �rst-
lass HamiltonianH = Z dx1�Aa0G2a +Ha1G4a + gWabAa�Hb� � g2 ÆWabÆ'
 B��
 Aa�Ab�� ; (108)while the terms linear in the antighosts o�er the Dira
 bra
kets among themodi�ed �rst-
lass 
onstraints and �rst-
lass Hamiltonian of the type[H;G1a℄ = 
2a; [H;G3a℄ = 
4a ; (109)[H; 
2a℄ = g� Æ2WabÆ'
Æ'dBd01Ab0 + ÆWabÆ'
 Hb1� 
4
 + g ÆWabÆ'
 Ab0
2
 ; (110)[H; 
4a℄ = g ÆWabÆ'
 Ab0
4
 : (111)



Hamiltonian BRST Intera
tions 2861In this manner, the 
oupled model des
ribes nothing but a two-dimensionalnonlinear gauge theory, pi
tured by the lo
al Lagrangian a
tion�S0 �Ha�; 'a; Aa�; B��a � = Z d2x�Ha� ���'a + gWabAb��+12B��a ��[�Aa�℄ + g ÆWb
Æ'a Ab�A
��� ; (112)subje
t to the deformed gauge transformations�Æ�Ha� = �Æa
�� + g ÆWb
Æ'a Ab�� �
�� + g�ÆWb
Æ'a Hb� � Æ2Wb
Æ'aÆ'dBd��Ab�� �
 ;(113)�Æ�'a = �gWab�b ; (114)�Æ�Aa� = �Æa
�� + g ÆWb
Æ'a Ab�� �
 ; (115)�Æ�B��a = gWab�b�� � g ÆWabÆ'
 B��
 �b: (116)Now, it is 
lear that the deformation pro
edure modi�es the a
tion, thegauge transformations, as well as their algebra.5. Con
lusionTo 
on
lude with, in this paper we have presented a Hamiltonian BRSTapproa
h to the 
onstru
tion of 
onsistent intera
tions among �elds withgauge freedom. Our pro
edure reformulates the problem of 
onstru
tingHamiltonian 
onsistent intera
tions as a deformation problem of the BRST
harge and BRST-invariant Hamiltonian of a given �free� theory. We havederived the general equations that govern the Hamiltonian BRST deforma-tion method and proved that they possess solutions. Next, we have writtendown the lo
al version of these equations and dis
ussed on the lo
ality oftheir solutions. Finally, the general theory was exempli�ed in the 
ase of theChern-Simons model in three dimensions and of a two-dimensional nonlin-ear gauge theory. In 
onne
tion with these models, we expli
itly obtainedthe deformed �rst-
lass 
onstraints, �rst-
lass Hamiltonian, and a

ompa-nying Hamiltonian gauge algebra. We think that our approa
h togetherwith the general results in [26℄ might be su

essfully applied, among others,to the 
omputation of lo
al BRST 
ohomologies for those theories whoseLagrangian version is more intri
ate than the Hamiltonian one.This work has been supported by the Romanian National Coun
il forA
ademi
 S
ienti�
 Resear
h (CNCSIS) grant.
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