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1. Introduction

The analysis of consistent interactions that can be introduced among
fields with gauge freedom without changing the number of gauge symme-
tries [1-4] has been transposed lately at the level of the deformation of
the master equation [5] from the antifield-BRST formalism [6-10]. This
cohomological deformation technique has been applied, among others, to
Chern-Simons models [5], Yang-Mills theories [11]|, p-form gauge theories,
and chiral p-forms [12-19]. In this light, the antifield-BRST method was
proved to be an elegant tool for investigating the problem of consistent inter-
actions. On the other hand, the Hamiltonian formulation [10,20-24] appears
to be the most natural background for investigating various topics in gauge
theories, such as the implementation of the BRST symmetry in quantum
mechanics [10], the analysis of anomalies [25]|, the link between the local
BRST cohomologies in both Lagrangian and Hamiltonian formalisms [26]
(see Theorem 6 from this reference), or for establishing a proper connec-
tion between the BRST symmetry and canonical quantization methods [27].
These considerations strongly stimulate a Hamiltonian BRST approach to
other interesting problems.

In this paper we analyze the problem of constructing consistent interac-
tions among fields with gauge freedom in the framework of the Hamiltonian

(2843)
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BRST formalism. Our strategy includes two main steps: (i) initially, we
show that the problem of introducing consistent interactions among fields
with gauge freedom can be reformulated as a problem of deforming the
BRST charge and the BRST-invariant Hamiltonian of a given “free” the-
ory, and consequently we deduce the general equations that govern these
two types of deformations; (7i) next, on behalf of the relationship between
the Hamiltonian and antifield BRST formalisms for constrained systems, we
prove that the general equations possess solutions. In the sequel, we re-
formulate the general equations in a manner that accounts for locality, and
subsequently illustrate our general procedure in the case of three-dimensional
Chern-Simons models and two-dimensional nonlinear gauge theories.

2. General equations of the Hamiltonian deformation approach

We begin with a system described by the canonical variables z4, subject
to the first-class constraints

Goo (2Y) =0, ag=1,..., M (1)
which are assumed to be L-stage reducible
GaOZ‘lgl:O, 0,1:1,...,M1, (2)

Z92 7% =0, ap=1,..., My, k=2,...,L, (3)

and suppose that there are no second-class constraints in the theory. The
Grassmann parities of the canonical variables and first-class constraints are
respectively denoted by e (zA) = €4 and €(Gyy) = €4, We denote the
first-class Hamiltonian by Hy, such that the gauge algebra is expressed by
b
[Gag, Gbo| = Gcoccoaobo . [HoyGagl = Gy V c(z)o . (4)
It is known that a constrained Hamiltonian system can be described by the

action
to

So [zA,uaO] = /dt (aA (2) 3 — Hy — Gaouao) , (5)
t1

where the Grassmann parities of the Lagrange multipliers are given by
£(u™) = gqy- In (5), aa (2) is the one-form potential that gives the sym-
plectic two-form

eat+l daa (_)€B(EA+1) 0 ap

wap = (=) 028 924
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whose inverse, w”P, corresponds to the fundamental Dirac brackets

[zA,zB] = wAB. Action (5) is invariant under the gauge transformations
ezt = [, Gup] €, deu™ = é% — V%‘Lebo — Cagocoecoubo —Z% €. (6)

In order to generate consistent interactions at the Hamiltonian level, we
deform the action (5) by adding to it some interaction terms

) CNC)
So—=So=5+¢9 So+9° So+---, (7)

and modify the gauge transformations (6) (to be denoted by 8.z, 6u%) in
such a way that the deformed gauge transformations leave invariant the new
action

%Sy %Sy
62’—’4662A + 5140 56’[1,[10 =0. (8)
Consequently, the deformation of the action (5) and of the gauge transfor-
mations (6) produces a deformation of the first-class constraints, first-class

Hamiltonian, and accompanying structure functions like

(M) (2)

Ga0_>'7a0 = Ga0+g Y ao +g2 Yao T (9)
DR
Hy—H = Hy+gH+g" H +--, (10)
a0 ~ a0 a0 (1)%0 9 (2)%0
Vbo_>Vbo :Vbo+gvb0+g Vb0+'”’ (11)
a0 a0 a0 (1) 9 (2)0
C boCo - C boCo = C b()Co + g C b()C() +g C boCo + Tty (12)

such that the deformed gauge algebra becomes

[’Yaoa’)/bo] = Yeo chobo ) [Ha 7110] = Yoo f/bgo . (13)

In the meantime, we deform the reducibility relations, but we do not explic-
itly write down these relations.

As the BRST charge and BRST-invariant Hamiltonian contain all the
information on the gauge structure of a given theory, we can reformulate
the problem of introducing consistent interactions within the Hamiltonian
BRST context in terms of these two essential compounds. Indeed, if the

interactions can be consistently constructed, then the BRST charge of the
(0)

undeformed theory, {2, can be deformed such as to be the BRST charge of

the deformed theory, i.e.,

(0) © M,
N—=0=04+9 2 +¢° 2 +--, (14)
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[2,02]=0. (15)

Equation (15) can be analyzed order by order in the deformation parameter
g, leading to

—~
o
=
—
o
~

0.0 =0, (16)

[(0) (1]
20,0 =0, (17)

© @ [ O
210, 0|+ |2, 2| =0, (18)

At the same time, the deformation of the BRST charge induces the defor-
(0)
mation of the BRST-invariant Hamiltonian of the undeformed theory, H p,

(0) (0) (1) (2)
Hp— Hp=Hp+g Hp+¢* Hp +--+, (19)

in such a way that Hp is the BRST-invariant Hamiltonian of the interacting
theory, i.e.,
[Hp, 2] =0. (20)

The equation (20) splits, according to the powers of the deformation param-
eter, as

[0) (0]
H37 -Q = Oa (21)

© O [0 O
HB7 + HBag — Oa (22)

© @ [0 O [@ ©
Hp Q|+ |Hp 2|+ |Hp, 2| =0, (23)

Equations (16)-(18), etc. and (21)-(23), etc. stand for the general equa-
tions of our deformation procedure. With the help of their solutions we
can reach the Hamiltonian version of the interacting theory. More precisely,
from the deformed BRST charge one identifies the deformed first-class con-
straints, their corresponding algebra, the new reducibility relations, etc. In
the meantime, from the deformed BRST-invariant Hamiltonian one draws
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the new first-class Hamiltonian, the Dirac brackets among the deformed
first-class constraints and this first-class Hamiltonian, etc. The equations
(16) and (21) are checked by hypothesis. Then, it appears naturally the
question whether the remaining equations possess solutions. This will be
investigated in the next section.

3. Solution to the general equations

In order to prove that the equations (17)-(18), etc. and (22)-(23), etc.
possess solutions, we use the link between the antifield and Hamiltonian
BRST formalisms for constrained Hamiltonian systems [28]. First-class con-
strained Hamiltonian systems can be approached from the point of view
of the BRST formalism in two different manners. One is based on the
antibracket—antifield formulation [6-10], while the other relies on the stan-
dard Hamiltonian BRST treatment [10,20-24]. The starting point of the
antibracket—antifield formalism is represented by the invariance of the ac-
tion (5) under the gauge transformations (6). In agreement with the general
prescriptions of the antibracket—antifield procedure, we introduce the ghosts

(™) gy, pyr and (u™),_, ;. with
e(n™) = (q, +k+1) mod2, gh(n®*)=%k+1, k=0,...,L, (24)
€ (u™) = (eq, + k) mod 2, gh(u™) =k, k=1,... L, (25)
where gh denotes the ghost number. The antifields associated with the
fields (zA,u“O,n“kfl,u“k) are denoted by (zjl,uzo,n;;kil,uZJ and display

the properties ¢ (antifield) = ¢ (field) 4+ 1, gh (antifield) = —gh (field) — 1.
Up to terms that are quadratic in the antifields, the solution to the master
equation reads as

to L
(0)
s = [ (“A (2) 54+ 3wl i — Ho — Gogu®® + 2} [, Gag | 1
k=0

t1

1
—up VO + (=)0 0% nule + 5 (=) Ty C 5 e

L-1 L
S Y ) 2
k=0 k=1

The Hamiltonian point of view is based on extending the phase-space by
introducing the canonical pairs ghost-antighost (n*,P,, ), with [n%,P,, | =
0% and € (Pq,) = (€45 + & +1) mod 2, gh (P, ) = k+1. The BRST charge
starts like
0) -1
Q= Gaon™ + 5 (=)0 PogC% . 10 + Y Pa, Z%, ™+ +---, (27)
k=0
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(0) (0) . . .
such that |2, 2| = 0. The BRST-invariant extension of Hy

)
Hp=Ho+ P, VEN™ +---, (28)

) (0
satisfies the equation [HB, (2] = 0. By employing the identifications

w =P, k=0,...,L, (29)

a,

and extending the Dirac bracket such that [ Ok ] = 5a’gk, we get that

rag

to
(0) (0) d (0 [© (0 1,[ 4 [@ (O
S, S Z/dt —— 2 — |HB, 2|+ 23 |27, 2,2
dt 2
t

Ao R [ ] ) o

k=0

DN | =

The deformations (14) and (19) induce a deformation of the solution to the
master equation

(0) © M (2)

S—S=8549 5 +9° S +---, (31)
such that the equation (30) for the deformed theory becomes

ta
%(s, S) = /dt (-%n — [Hy, 2] + %zg 24, (2, 2]

t1
L
1
+3 Znak 12,020+ 5> (2,9, 0] k) %
k=0

The equation (32) splits according to the deformation parameter as (30) and

t
@ 1) ¢ d (1) 0 @) (1) (0 o4 [O Q)
S, S Z/dt —%Q—HB,Q —|HB, 2| +2z4 |27, |02, 0

t1

L L
(0) (1) (0) (1)
o [nak,[n,n”+Z[[n,n],uzk]uak>, (33)
k=0 k=0
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t
0) (2) 1 /1) (1) ; d (2) 0) (2 1 @
S, S|+=(S5,S8 :/dt -—— N —|HB, 2| — |HB, 2
2 dt
t1
2) LW w
HB, +ZA 5 .Q,.Q

e 4 ré%%ﬂ

© 1 1[m Q)
S ([ 8] 4[] ] ).
k=0

(1)
The last equations emphasize that the existence of § guarantees the exis-
(1) (1) 2) 2)
tence of 2 and H g, the existence of § guarantees the existence of 2 and

2)
H B, and so on. Moreover, the equations (17)-(18), etc. and (22)-(23), etc.

. ) (0) (1) (0) (2) ASONSY
are equivalent to the equations | §, S | =0, S,S |+5(S,S )| =0,

etc. modulo imposing some appropriate boundary conditions on 2 [24]. On
the other hand, the last equations possess solution. The existence of such
solutions was proved in [5] on behalf of the triviality of the antibracket in the
cohomology. Thus, the existence of the solutions in the antibracket proves
the existence of the solutions to (17)-(18), etc. and (22)-(23), etc. In con-
clusion, the equations that describe the Hamiltonian deformation procedure
possess solutions, so we can construct consistent Hamiltonian interactions
by means of the equations (17)-(18), etc. and (22)-(23), etc.

At this point, we consider the interactions that can be obtained via a
redefinition of the variables

[\DI»—t

(34)

A=At (35)

Such a redefinition implies that the first-class constraint functions and the
first-class Hamiltonian are transformed like

_ oG,

Gag = Gay = Gq (ZA+9>‘A+ ) Gao+g>‘A 92 0+"'a (36)
_ SV H,

Hy— Hy = Ho[z" +gM 4] = Ho+ g\ = 4 (37)

5zA
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Obviously, the redefinition (35) modifies as well the other structure func-
tions. The transformations (36)—(37) induce the changes

(0) (0) ora,

N—=0N =0 +g>\AaTAO7]aO + -, (38)
(0) (0) oL H
HB—>HB:HB+Q>\A 6ZAO+"'7 (39)

at the level of the BRST charge, respectively, of the BRST-invariant Hamil-
tonian. The interactions that can be eliminated by means of variable re-
definitions are usually considered as no interactions and are called trivial
interactions. Trivial interactions appear at the level of the solutions to the
equations (17)-(18), etc. and (22)-(23), etc. as follows. The equation (17)
(1) 0 0
implies that 2 is an (s)—co—cycle, where (s) denotes the undeformed BRST
0
differential, which decomposes like (s): 0+y+---, with § the Koszul-Tate
differential (graded by the antighost number, antigh) and v the exterior
derivative along the gauge orbits (graded by the pure ghost number, pgh).

0
The overall degree of (8), namely, the ghost number, is defined like the differ-
ence between the pure ghost number and the antighost number. We suppose

1) (©
that 2 is an s-coboundary
(1) 1) (0)
n= [(J), ()] . (40)

By expanding the right hand-side of the last relation according to the anti-
ghost number, we find

() L 9"Gay
QzuAaTAono—i—---, (41)

o)
where u = ‘Z—ngA , such that the solution (40) deforms in a trivial
n=P=0

way the BRST charge (as (40) leads to a deformation of the same type with

(38)). Using (40), we find
(0) (1) (1) (0) (0)
Hp, 2| =- o,Hp|, 2|, (42)

0
such that from (22) it results (up to an (s)—exact term) that

0
@ _[w@7_ " 7 asd” e
B= |7 0B = g Y T8

3

(43)
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where @ = (zA,n,P), and w®? = [@a, @B]. The expansion of the right
hand-side of (43) according to the antighost number

1 (0)
oF (O-)wa,@(sL Hp _ A(SLHO .

55 5o U oA T

(44)

leads to a trivial deformation of the BRST-invariant Hamiltonian (of the
same type with (39)). Moreover, it can be shown that (40) deforms the
remaining structure functions also in a trivial manner. In conclusion, the
trivial solutions (40) produce trivial interactions.

In practical applications, it is commonly required that the deformations

GO RN C) R OV C) .
should be local, i.e., 2, 2, Hp, HB, etc. have to be local functionals. Let

Fy = [dP7'zf) and F, = [d”~'zf; be two local functionals. If the Dirac
bracket is local, then [Fy, F5] is local, namely, there exists a local [f1, fo]
(but defined up to a (D — 1)-dimensional divergence), such that [Fy, Fy] =
[dP= 'z [f1, fa] (if the Dirac bracket itself is nonlocal, the deformations will
also be nonlocal). Thus, the equations (17)-(18), etc. and (22)-(23), etc.
can be written as

25w =0 j,, (45)

)
2 9% 4 [(3,(5} — 0 g, (46)

0)(1) 0) (D] 1
‘s)hm[m,%}’ = ot iy, (47)

0@ O M [0 @] )
(8)h3+[h3,(w)]+[h3,(w) = ak(m)k, (48)

(k) k
in terms of the integrands h p and (w). Even if the Dirac bracket is local,
there might however appear obstructions if one insists on the locality of

1) (1
deformations. For instance, even if (()), (()) is (g)—exact, it is not granted
that it is the BRST variation of a local functional. Such locality problems
appear also in the Lagrangian deformation procedure [5]. The analysis of
such obstructions can be done with the help of cohomological techniques in
terms of the cohomological group H(s|d), where d = dz'0; represents the
spatial part of the exterior space-time derivative. However, in the case of
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most important applications [5,11-19], the Lagrangian BRST deformation
procedure leads to local interactions. Thus, we expect that the Hamilto-
nian BRST deformation treatment also outputs local vertices in practical
applications of interest.

4. Examples

4.1. Chern—Simons model

Let us exemplify the prior procedure in the case of Abelian Chern—Simons
model in three dimensions. We start with the Lagrangian action

So [A4] =3 / Pz Py ALED (49)
where kqp is a non-degenerate, symmetric, and constant matrix, while

b _ b b — b
R, =0,A% — 9,4 =9, A"

Performing the canonical analysis and eliminating the second-class con-
straints (the independent variables are A%, 70, and A%), we infer the first-
class constraints

Gy = 7r2 ~0, Gy = —%5OikkabF£c ~U, (50)

and the first-class Hamiltonian
Hy = —2/d2mASG2a. (51)
The non-vanishing fundamental Dirac brackets read as [Ag,ﬂ'l?] = 99,

[Az, Aé’] = %50kjk“b, hence the BRST charge takes the form

(0) .
0= [ o (x0f ~ 4"k Fhns) (52)
where k% is the inverse of kg, and (n¢,71%) stand for the fermionic ghost

0 0
number one ghosts. Thus, the BRST operator (s) splits as (8): 0 ++. Then,
we have

SAL =0, onl =0, AL =0, onl =on3 =0,
§Prg = —79, P2 = 2e"*ky FY,

yAY =i, Al =0, yAL=1310m5, mi=m5=0,
YP1a = YP2q =0.
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In (54) and (56), P1, and Pa, stand for fermionic antighosts corresponding
to the ghosts n{, respectively, n§. The pure ghost and antighost numbers of
the variables from the BRST complex are valued like

pgh (2*) = 0, pgh(n") =1, pgh(Pr)=0, (57)
antigh (24) = 0, antigh (n”') =0, antigh (Pr) =1, (58)

where
A= (40,70 . 0l =mind) . Pr=(PiaPa). (59)

1
Now, we solve the equation (45). In view of this, we develop (w) according
to the antighost number

(&;):(J;)O + (J;)l 4t (J;)J, antigh <(a1:)J> =J, gh <(‘L)J) =1, (60)

where the last term in (60) can be assumed to be annihilated by =, i.e.,

(1)

v wjy= 0. Thus, in order to compute the first-order deformation of the
BRST charge, we need to know H (7). Analysing the definitions (55)—(56),
we remark that the cohomology of v will be generated by Fj, 70, Ppr and
their spatial derivatives, as well as by the undifferentiated ghosts 79 (the
ghosts 79 are y-closed, but their spatial derivatives are -y-exact, while the
ghosts n{ are trivial in the cohomology of 7 as they are y-exact). Conse-
quently, the general solution of the equation ya = 0 can be written as

a = Qpr ([FZL;] ) [71'2] 7[PF]) eM (775) + V/Ba (61)

where e (n4) constitutes a basis in the (finite-dimensional) space of the
polynomials in the ghosts 75, while the notation « [g] signifies that o depends

1
on ¢ and its spatial derivatives up to a finite order. As pgh <(w)J) =J+1,

1
from (61) it results that we can represent (w) s under the form

(1) 1

W= mﬂm...c”_ﬂfr]gl . n;J.H ‘ .

With this choice, it is simply to see that the y-invariant coefficient pig,...q,,,

belongs to H; (5|CZ>, hence it is solution to the equation

Ofay-ay s + OkbE =0, (63)

a1-aj41
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for some bf Using the result from [29] adapted to the Hamilto-

a1-ay41°

nian context, it follows that H; <5|d~) vanishes for J > 1, so we can write

(1) (1) (1) )] 1 ab . <
that w=wo + w1y, with wi1= Fuungny, where uq, pertains to Hy <5|d).

From the latter equations in (54) we have that the general representative
of Hy (5|J> is of the type pqp = C°,Pac, where C°,, are some constants,
antisymmetric in the lower indices, C°,, = —C¢,,. The reason for consid-
ering C°,, to be constant results from the equation that must be obeyed
by ftap, namely, Ouq, = O (CcabEijkch?>. In this way, we obtained

1
that (w)lz $C° . Pacnsnl. Equation (45) at antighost number zero reads

1 1 1 .
as d (w)l +y (w)oz dpn*, which further yields (w)oz Ccadkcbeokj A%Agng. Con-

sequently, we inferred that the complete first-order deformation of the BRST
charge is pictured by

(1) ;
w=C% (4Pacnnh + kicas™ Ay Al (64)
Simple computation leads to
M () 2 1 e m a b n 0ij c d n A€
0.0|=[d m<—§0 106 O™ Pom 1 — €9k aaC ), Cly b Al A)

(65)
0
The last relation shows that [(2, {2] cannot be written like an (s)—exact mod-

ulo d local functional, as required by (46). For this reason it is necessary to

(1) (1)
have | 2, 2| = 0. This condition takes place if and only if Cc[ab cm

nle

= 07
so if and only if these constants verify the Jacobi identity. This further im-

(k)
plies that 2= 0 for all £ > 2. Thus, the deformed BRST charge, consistent
to all orders in the deformation parameter, takes the final form

2= / @ (n9n = =% kia (5 — 9C 0 ALAL) 18 + 39C° o Pacn§n})
(66)
and it is clearly a local functional.
Next, we derive the deformed BRST-invariant Hamiltonian. The BRST-

()
invariant Hamiltonian for the free model is given by H p= Ho+2 [ d*zn{Pag,
such that with the help of (64) we find

0 @
[h B (w)] = —2C° ykicqe® A (n Al +180; Aa) — 20, Pacn3n? . (67)
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Under these circumstances, the solution to the equation (47) reads as

(1) -~
h = 2C¢,, (kcdeo” Ag Az Al + ASchn‘Q‘) . (68)

ORI
Straightforward computation gives [ HB, Q] = 0, hence equation (48) is

(2)
satisfied with the choice p p= 0. Therefore, the higher-order deforma-
(3)
tion equations for the BRST-invariant Hamiltonian are verified with H g=

4
Hp=--- =0. Combining the last results, we can write down the complete

deformed BRST-invariant Hamiltonian like

Hp=2 / @ (= A5 koo (1F5 — 9O ALAL) + (nf = gC 4 Alns) Paa)
(69)
hence it is also a local functional.
Taking into account (66) and (69), we can proceed to the identification
of the new gauge theory. From the antighost-independent terms in (66)
we observe that the deformation of the BRST charge implies the deformed
first-class constraints

Y2a = —e"hey (5FG — 9% AVAT) % 0, (70)

the remaining constraints being undeformed. The term % g C°Pac b
shows that the modified constraint functions generate a Lie algebra in terms
of the structure constants C°,,

[Y2a,728] = 9C ap72c - (71)
On the other hand, the antighost-independent piece in (69)

H = —Q/dQIL‘AS{;‘Oikkm (% ch - gCdeA?Az> ) (72)

is precisely the first-class Hamiltonian of the interacting theory. The com-
ponents linear in the antighosts from (69) indicate that the Dirac brackets
among the new first-class Hamiltonian and deformed constraint functions
are modified as

[H, %2a] = =29C 3 Al y2e - (73)

In conclusion, the resulting coupled first-class theory is nothing but the non
Abelian version of the Chern—Simons model in three dimensions, described
by the local Lagrangian action

5’0 [AZ] = /d3$EHVpAZ (%kabFZI/’p - %gcabcAgAZ) ) (74)
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where Cype = Cd[bck a)d- As first-class constraints generate gauge transfor-

mations, from the deformations (70) and (71) we can state that the added
interactions involved with (72) modify both the gauge transformations and
their algebra.

4.2. Two-dimensional nonlinear theories

Next, we analyze the nontrivial deformations of a two-dimensional gauge
theory, described by the Lagrangian action

So [HE, pa, A2, BI] = / d*z (Hpo" o + SBI 0, AY) . (75)

The canonical analysis of this model yields (after the elimination of the
second-class constraints) the first-class constraints
Gia =m0~ 0, Gog = —HBY =0, G3u=ps =0, G =-0"p, =0,
(76)
and the first-class Hamiltonian

H() = /diEl (A8G2a + HilG4a) 3 (77)

where the non-vanishing Dirac brackets among the independent variables
are expressed by

[AS’T‘-I?] = 5aba [‘PaaHg] = 5ab7 [A(llaBlgn] = 5ab’ [Hfaplﬂ = 5ab' (78)
Consequently, the BRST charge and the BRST-invariant Hamiltonian take
the form

(0)
0 = [ ot (=g 490t~ (B0 - (9'0a) C8). (79)

(0)
Hy = Hy+ / da (10 Paa + C2Po) | (80)

where the indices 1 and 2 involved with the ghosts and antighosts simply
correspond to the indices of the associated constraint functions in (76). Just
like in the previous example, the ‘free’ BRST differential reduces to the first

0
two pieces, (3): 0 + «v. These two operators are defined on the generators
from the BRST complex as

6z =0, ot =0, (81)
6P1y = —70, 0Py = —pl, 6Py = 0B, 6Py = 0" 0y, (82)
YAG = ni,  Aml=0, yp.=0,  yH{=-0'Cy, (83)
vAY = o3, yBy =0,  yH{ =Cf,  4p, =0, (84)
i =0, YPr =0, (85)
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where

2N = (A8, pa. HE, AL, BY HY py) (86)
7IF = (77%,0%,77%’03), Pr = (Pla,Pla,P?a,P?a)- (87)

Both the antighost and pure ghost numbers of the variables (87) coincide
with the corresponding ones involved with (57)—(58).

In order to determine the deformations of the BRST charge and BRST-
invariant Hamiltonian, we follow the same line like previously. We start with
the expansion (60) and assume that its last representative can be taken to
be annihilated by . In this case, the cohomology of v will be generated
by ©a, T0, B, pl. Pr and their spatial derivatives, as well as by the un-
differentiated ghosts 3 and C§, hence the general solution of the equation
vya = 0 is given by

a=an ([gd], [72), [BY], [pa] . [Pr]) e™ (n$,C8) +~B,  (88)

where eM (n$,C$) is a basis in the (finite-dimensional) space of the polyno-
1

mials in the ghosts. In this situation we have again that pgh <(w)J) =J+1,

such that (88) implies that we can take

(1) J+1

_ ay ay b1
W= E My agby-by_psr T2~ T oyt -
k=0

ChI-ktt, (89)

so the y-invariant coefficients mg,...qb,.-b,_,,, pertain to H; (5|J), or, in
other words, they must obey the equation

5ma1~~~akb1---bJ_k+1 + 81'031...%1,1...1,‘]49“ =0. (90)
- 1
It is easy to see that Hj <5|d) vanishes again for J > 1, such that (w)z
(1) (1)

Wy + Wi, where

(1)
wi= mabngng + nabcgcg + Uabngcg ) (91)

with mgp, ngp and ugp from Hy <6|J) . The general representative of Hy (5|J)
can be written under the form

c

SW. oM
Xab = A—2Py. + 0 <Mcab732c + 5%‘11’ Bc01P2d) : (92)

depe
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where the coefficients Wy, and M€, depend on ¢,, the latter ones are an-
tisymmetric in the lower indices, M€, = —M¢, , while A and o are some
constants. On account of (92), we simply infer that

5Xab = 61 (>\Wab + O'McabBC(n)

which confirms that y,, verifies the equation (90). Moreover, we observe
that x4p is y-invariant. For subsequent purpose, we restrict ourselves to the
choices

1 M¢e oW,
Map = — = <Mcabp2c + il BcOlp2d) ) Uy = ——2L Py,
2 d dpc
oWy
= 0 and M°¢, = a
nab an ab 6@0
which further lead to
(1) 1 5Wab 52Wab b 5Wab
= —— B.o1 P a —P aC
Wi 2 < 500 Poc + 5oty c01FPag | mane — 5. 2cM2C -

1 1
By means of the equation § (w)l +v (w)oz On*, we then find that

5Wab
0,

(D)

W o= W, (A‘“C§ i ngHg) _ Boo1n8 A,

so the complete first-order deformation of the BRST charge reads as

(1) Wap 52 Wab o Wap o
w = _5 < 5()0’1 Poe + ——— 5 5 c01P2d> 7]2773 — ﬁPQCT]QCg
SW,
W, (A‘“cg n ngHg) — W’”’Bcom‘Q‘Abl. (93)

After some computation, we arrive at
.Q,.Q :/dI1<tbwabc+Lvac+7zac ’ 94
|: abe 5§0d d 5§0n5§0d dn ( )
where we performed the notations

Wy

tabe = We[a 5()06 ; (95)
w' = 205, A + Hiinjns (96)
v = IPaansnbns — Baornsnh A + PoaCnlins (97)
2,30 = %BdegnnSnSnS- (98)
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1 @ 0 -
From (94) it follows that [Q, (2] is not (3)—exact modulo d, as required,
therefore it should vanish. This is attained if and only if
tape =0 (99)

which is nothing but the Jacobi identity for a nonlinear gauge algebra. In
consequence, we can take the second- and higher-order deformations of the

(k)
BRST charge to vanish, =0, k > 2.
Next, we pass to analyse the deformations of the BRST-invariant Hamil-
tonian (80). In view of this, we find that

) (1 0 W, W,
Hp, 2| = (3) /dwl PPy, + JBCOIP2d ngAp
e 0pedpq

5Wab b a b 5Wab a Abl
5 Nabp, ( Hb — AOCQ> S Buoi ASA
W, (A“IHi’JrASHS))), (100)

so the first-order deformation, which is controlled by the equation (47), will
be expressed by

(1) SWap 52 Wy
S 220 B o1 Pay | NS AL
h B <5<,0c Pac + Spedipg ! 2d> N2 Ag
Wap a7b a b 1 6Wap vV Aa Ab ap ryb
_5_”;(:1320 (nQHI_AOCQ>—§ 5‘; " BYY AL AL+ Wap A (101)

m
Direct computation yields [H B, Q] = 0, hence equation (48) is fulfilled

(2)
with the choice pb p= 0. Further, all higher-order deformations of the BRST-
3) @)

invariant Hamiltonian can be taken to vanish, Hg=Hpg=--- = 0.

Putting together the results inferred so far, we obtain that the complete
form of the deformed BRST charge and deformed BRST-invariant Hamilto-
nian for the model under study, consistent to all orders in the deformation
parameter, are expressed by

0 = /dﬂcl ( ot + peCYf + (—61% —gWabA“) Cs
oW,
+ <—31321 + gWap HY — gVabBcolAbl) N

1 5”(11) 1 52”(11) b 5”ab b
—g—2P P -———2RB + —20C. 102
29750, 2c772772 G123 <25 504 do1712 500 5] |,(102)



2860 C. B1ZDADEA

respectively,

Q(SWab
2 dpc

Hp = / da'! <A8G2a + H{Gaq + gWap A" H}, — B AL AL

2

6Wab b 5 Wab b

C a ‘ C B llA

+ (771 +g9 S nyAg | Pac + | CT + 975%5% o172 Ag
Wap

dpe

+ 9= (ngH} + chg)) P2c> . (103)

The above quantities allow us to identify the resulting interacting theory.
The antighost-independent pieces in (102) furnish the deformed first-class
constraints

oW,
0pe
_81§0a - gVVabAb1 ~0, (105)

Yoo = —OBY + gWaHS — g "Ban A" =0, (104)

Y4a

the others being unaffected. The terms linear in the antighosts show that
some of the Dirac brackets among the new first-class constraints are also
deformed, namely,

oW, 2w,
[Y2a,720] = —9 5(pcb72c—gd%5¢23d0174c, (106)
oW,
[Yia,Y2b] = —9 5 " Yae - (107)
Pe

On the other hand, with the help of the components in (103) independent
of ghosts and antighosts, we read the deformed first-class Hamiltonian

gdWab
2 dpc

H= / dz! <A8G2a + H{Guq + gWap A" HY, — Bg”Af;A’;> , (108)

while the terms linear in the antighosts offer the Dirac brackets among the
modified first-class constraints and first-class Hamiltonian of the type

[H,G1a] = Y24, [H,G34] = Yaa s (109)

82 Wap b, Wap Wab 4p

H = ——— By A H —A 110

[H,24] 9(5%5% do1A4g + 30s 1 ’Y4c+95% 072¢, (110)
Wap

H =

[ 7’)/404] g 6@

Afyac - (111)

c
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In this manner, the coupled model describes nothing but a two-dimensional
nonlinear gauge theory, pictured by the local Lagrangian action

So [H}}, pas AfL, BY] = /d% (Hff (3“90:1 +9Wabx4b“>

1
+5BL" <<9m A%+ gégbcAZA§)> . (112)
a

subject to the deformed gauge transformations

B} Wie Wae 1y 0 We b

S.HY = (46%0" +g—L2A™ ) ¢ HY — Bauw A" ) ¢
g < < ) w9 < 0pa " dpadpa M ‘

(113)

Seﬁoa = _gWabEb (114)

N a 5Wbc b

J AL = <5 Ot g S, Ab (115)

. 5

5.BM = gWae™ — g ;/VabBé“’eb. (116)

Now, it is clear that the deformation procedure modifies the action, the
gauge transformations, as well as their algebra.

5. Conclusion

To conclude with, in this paper we have presented a Hamiltonian BRST
approach to the construction of consistent interactions among fields with
gauge freedom. Our procedure reformulates the problem of constructing
Hamiltonian consistent interactions as a deformation problem of the BRST
charge and BRST-invariant Hamiltonian of a given “free” theory. We have
derived the general equations that govern the Hamiltonian BRST deforma-
tion method and proved that they possess solutions. Next, we have written
down the local version of these equations and discussed on the locality of
their solutions. Finally, the general theory was exemplified in the case of the
Chern-Simons model in three dimensions and of a two-dimensional nonlin-
ear gauge theory. In connection with these models, we explicitly obtained
the deformed first-class constraints, first-class Hamiltonian, and accompa-
nying Hamiltonian gauge algebra. We think that our approach together
with the general results in [26] might be successfully applied, among others,
to the computation of local BRST cohomologies for those theories whose
Lagrangian version is more intricate than the Hamiltonian one.

This work has been supported by the Romanian National Council for
Academic Scientific Research (CNCSIS) grant.
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