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CONSISTENT INTERACTIONS IN THE HAMILTONIANBRST FORMALISMC. BizdadeaFaulty of Physis, University of Craiova13 A.I. Cuza Str., Craiova 1100, Romaniae-mail: bizdadea�entral.uv.ro(Reeived June 18, 2001)A Hamiltonian BRST deformation proedure for obtaining onsistentinterations among �elds with gauge freedom is proposed. The generaltheory is exempli�ed on the three-dimensional Chern�Simons models andtwo-dimensional nonlinear gauge theories.PACS numbers: 11.10.Ef 1. IntrodutionThe analysis of onsistent interations that an be introdued among�elds with gauge freedom without hanging the number of gauge symme-tries [1�4℄ has been transposed lately at the level of the deformation ofthe master equation [5℄ from the anti�eld-BRST formalism [6�10℄. Thisohomologial deformation tehnique has been applied, among others, toChern�Simons models [5℄, Yang�Mills theories [11℄, p-form gauge theories,and hiral p-forms [12�19℄. In this light, the anti�eld-BRST method wasproved to be an elegant tool for investigating the problem of onsistent inter-ations. On the other hand, the Hamiltonian formulation [10,20�24℄ appearsto be the most natural bakground for investigating various topis in gaugetheories, suh as the implementation of the BRST symmetry in quantummehanis [10℄, the analysis of anomalies [25℄, the link between the loalBRST ohomologies in both Lagrangian and Hamiltonian formalisms [26℄(see Theorem 6 from this referene), or for establishing a proper onne-tion between the BRST symmetry and anonial quantization methods [27℄.These onsiderations strongly stimulate a Hamiltonian BRST approah toother interesting problems.In this paper we analyze the problem of onstruting onsistent intera-tions among �elds with gauge freedom in the framework of the Hamiltonian(2843)



2844 C. BizdadeaBRST formalism. Our strategy inludes two main steps: (i) initially, weshow that the problem of introduing onsistent interations among �eldswith gauge freedom an be reformulated as a problem of deforming theBRST harge and the BRST-invariant Hamiltonian of a given �free� the-ory, and onsequently we dedue the general equations that govern thesetwo types of deformations; (ii) next, on behalf of the relationship betweenthe Hamiltonian and anti�eld BRST formalisms for onstrained systems, weprove that the general equations possess solutions. In the sequel, we re-formulate the general equations in a manner that aounts for loality, andsubsequently illustrate our general proedure in the ase of three-dimensionalChern-Simons models and two-dimensional nonlinear gauge theories.2. General equations of the Hamiltonian deformation approahWe begin with a system desribed by the anonial variables zA, subjetto the �rst-lass onstraintsGa0 �zA� � 0 ; a0 = 1; : : : ;M0 (1)whih are assumed to be L-stage reduibleGa0Za0a1 = 0 ; a1 = 1; : : : ;M1 ; (2)Zak�2ak�1Zak�1ak � 0 ; ak = 1; : : : ;Mk; k = 2; : : : ; L ; (3)and suppose that there are no seond-lass onstraints in the theory. TheGrassmann parities of the anonial variables and �rst-lass onstraints arerespetively denoted by " �zA� = "A and " (Ga0) = "a0 . We denote the�rst-lass Hamiltonian by H0, suh that the gauge algebra is expressed by[Ga0 ; Gb0 ℄ = G0C0a0b0 ; [H0; Ga0 ℄ = Gb0V b0a0 : (4)It is known that a onstrained Hamiltonian system an be desribed by theation S0 �zA; ua0� = t2Zt1 dt �aA (z) _zA �H0 �Ga0ua0� ; (5)where the Grassmann parities of the Lagrange multipliers are given by" (ua0) = "a0 . In (5), aA (z) is the one-form potential that gives the sym-pleti two-form!AB = (�)"A+1 �LaA�zB + (�)"B("A+1) �LaB�zA ;



Hamiltonian BRST Interations 2845whose inverse, !AB, orresponds to the fundamental Dira brakets�zA; zB� = !AB. Ation (5) is invariant under the gauge transformationsÆ�zA = �zA; Ga0� �a0 ; Æ�ua0 = _�a0 � V a0b0�b0 � Ca0b00�0ub0 � Za0a1�a1 : (6)In order to generate onsistent interations at the Hamiltonian level, wedeform the ation (5) by adding to it some interation termsS0 ! ~S0 = S0 + g (1)S 0 +g2 (2)S 0 + � � � ; (7)and modify the gauge transformations (6) (to be denoted by ~Æ�zA, ~Æ�ua0) insuh a way that the deformed gauge transformations leave invariant the newation ÆR ~S0ÆzA ~Æ�zA + ÆR ~S0Æua0 ~Æ�ua0 = 0 : (8)Consequently, the deformation of the ation (5) and of the gauge transfor-mations (6) produes a deformation of the �rst-lass onstraints, �rst-lassHamiltonian, and aompanying struture funtions likeGa0 ! a0 = Ga0 + g (1) a0 +g2 (2) a0 + � � � ; (9)H0 ! H = H0 + g (1)H +g2 (2)H + � � � ; (10)V a0b0 ! ~V a0b0 = V a0b0 + g (1)V a0b0 +g2 (2)V a0b0 + � � � ; (11)Ca0b00 ! ~Ca0b00 = Ca0b00 + g (1)C a0b00 +g2 (2)C a0b00 + � � � ; (12)suh that the deformed gauge algebra beomes[a0 ; b0 ℄ = 0 ~C0a0b0 ; [H; a0 ℄ = b0 ~V b0a0 : (13)In the meantime, we deform the reduibility relations, but we do not expli-itly write down these relations.As the BRST harge and BRST-invariant Hamiltonian ontain all theinformation on the gauge struture of a given theory, we an reformulatethe problem of introduing onsistent interations within the HamiltonianBRST ontext in terms of these two essential ompounds. Indeed, if theinterations an be onsistently onstruted, then the BRST harge of theundeformed theory, (0)
 , an be deformed suh as to be the BRST harge ofthe deformed theory, i.e.,(0)
! 
 =(0)
 +g (1)
 +g2 (2)
 + � � � ; (14)



2846 C. Bizdadea[
 ;
 ℄ = 0 : (15)Equation (15) an be analyzed order by order in the deformation parameterg, leading to �(0)
 ; (0)
 � = 0 ; (16)2 �(0)
 ; (1)
 � = 0 ; (17)2 �(0)
 ; (2)
 �+ �(1)
 ; (1)
 � = 0 ; (18)...At the same time, the deformation of the BRST harge indues the defor-mation of the BRST-invariant Hamiltonian of the undeformed theory, (0)HB ,(0)HB! HB =(0)HB +g (1)HB +g2 (2)HB + � � � ; (19)in suh a way that HB is the BRST-invariant Hamiltonian of the interatingtheory, i.e., [HB ;
 ℄ = 0 : (20)The equation (20) splits, aording to the powers of the deformation param-eter, as �(0)HB; (0)
 � = 0 ; (21)�(0)HB ; (1)
 �+ �(1)HB; (0)
 � = 0 ; (22)�(0)HB; (2)
 �+ �(1)HB ; (1)
 �+ �(2)HB; (0)
 � = 0 ; (23)...Equations (16)�(18), et. and (21)�(23), et. stand for the general equa-tions of our deformation proedure. With the help of their solutions wean reah the Hamiltonian version of the interating theory. More preisely,from the deformed BRST harge one identi�es the deformed �rst-lass on-straints, their orresponding algebra, the new reduibility relations, et. Inthe meantime, from the deformed BRST-invariant Hamiltonian one draws



Hamiltonian BRST Interations 2847the new �rst-lass Hamiltonian, the Dira brakets among the deformed�rst-lass onstraints and this �rst-lass Hamiltonian, et. The equations(16) and (21) are heked by hypothesis. Then, it appears naturally thequestion whether the remaining equations possess solutions. This will beinvestigated in the next setion.3. Solution to the general equationsIn order to prove that the equations (17)�(18), et. and (22)�(23), et.possess solutions, we use the link between the anti�eld and HamiltonianBRST formalisms for onstrained Hamiltonian systems [28℄. First-lass on-strained Hamiltonian systems an be approahed from the point of viewof the BRST formalism in two di�erent manners. One is based on theantibraket�anti�eld formulation [6�10℄, while the other relies on the stan-dard Hamiltonian BRST treatment [10, 20�24℄. The starting point of theantibraket�anti�eld formalism is represented by the invariane of the a-tion (5) under the gauge transformations (6). In agreement with the generalpresriptions of the antibraket�anti�eld proedure, we introdue the ghosts(�ak�1)k=1;:::;L+1 and (uak)k=1;:::;L, with" (�ak ) = ("ak + k + 1) mod 2; gh (�ak ) = k + 1; k = 0; : : : ; L; (24)" (uak) = ("ak + k) mod 2; gh (uak) = k; k = 1; : : : ; L ; (25)where gh denotes the ghost number. The anti�elds assoiated with the�elds �zA; ua0 ; �ak�1 ; uak� are denoted by �z�A; u�a0 ; ��ak�1 ; u�ak� and displaythe properties " (anti�eld) = " (�eld) + 1, gh (anti�eld) = �gh (�eld) � 1.Up to terms that are quadrati in the anti�elds, the solution to the masterequation reads as(0)S = t2Zt1 dt aA (z) _zA + LXk=0 u�ak _�ak �H0 �Ga0ua0 + z�A �zA; Ga0� �a0�u�a0V a0b0�b0 + (�)"b0+1 u�a0Ca0b00�0ub0 + 12 (�)"b0 ��a0Ca0b00�0�b0+ L�1Xk=0 ��akZakak+1�ak+1 � LXk=1 u�ak�1Zak�1ak uak + : : :! : (26)The Hamiltonian point of view is based on extending the phase-spae byintroduing the anonial pairs ghost�antighost (�ak ;Pak ), with [�ak ;Pak ℄ =Æakbk and " (Pak) = ("ak + k + 1) mod 2, gh (Pak) = k+1. The BRST hargestarts like(0)
= Ga0�a0 + 12 (�)"b0 Pa0Ca0b00�0�b0 + L�1Xk=0 PakZakak+1�ak+1 + � � � ; (27)



2848 C. Bizdadeasuh that �(0)
 ; (0)
 � = 0. The BRST-invariant extension of H0(0)HB= H0 + Pa0V a0b0�b0 + � � � ; (28)satis�es the equation �(0)HB ; (0)
 � = 0. By employing the identi�ationsu�ak = Pak ; k = 0; : : : ; L; (29)and extending the Dira braket suh that ��ak ; u�ak� = Æakbk , we get that12 �(0)S ; (0)S� = t2Zt1 dt�� ddt (0)
 � �(0)HB; (0)
 �+ 12z�A �zA; �(0)
 ; (0)
 ��+12 LXk=0 ��ak ��ak ; �(0)
 ; (0)
 ��+12 LXk=0 ��(0)
 ; (0)
 � ; u�ak�uak! :(30)The deformations (14) and (19) indue a deformation of the solution to themaster equation (0)S! S =(0)S +g (1)S +g2 (2)S + � � � ; (31)suh that the equation (30) for the deformed theory beomes12 (S; S) = t2Zt1 dt�� ddt
 � [HB;
 ℄ + 12z�A �zA; [
 ;
 ℄�+12 LXk=0 ��ak [�ak ; [
 ;
 ℄℄ + 12 LXk=0 �[
 ;
 ℄ ; u�ak�uak! : (32)The equation (32) splits aording to the deformation parameter as (30) and�(0)S ; (1)S� = t2Zt1 dt�� ddt (1)
 � �(0)HB ; (1)
 �� �(1)HB; (0)
 �+ z�A �zA; �(0)
 ; (1)
 ��+ LXk=0 ��ak ��ak ; �(0)
 ; (1)
 ��+ LXk=0 ��(0)
 ; (1)
 � ; u�ak�uak! ; (33)



Hamiltonian BRST Interations 2849�(0)S ; (2)S�+ 12 �(1)S ; (1)S� = t2Zt1 dt�� ddt (2)
 � �(0)HB ; (2)
 �� �(1)HB ; (1)
 �� �(2)HB; (0)
 �+ z�A �zA; �(0)
 ; (2)
 �+ 12 �(1)
 ; (1)
 ��+ LXk=0 ��ak ��ak ; �(0)
 ; (2)
 �+ 12 �(1)
 ; (1)
 ��+ LXk=0 ��(0)
 ; (2)
 �+ 12 �(1)
 ; (1)
 � ; u�ak�uak! ;... (34)The last equations emphasize that the existene of (1)S guarantees the exis-tene of (1)
 and (1)HB , the existene of (2)S guarantees the existene of (2)
 and(2)HB , and so on. Moreover, the equations (17)�(18), et. and (22)�(23), et.are equivalent to the equations �(0)S ; (1)S� = 0, �(0)S ; (2)S� + 12 �(1)S ; (1)S� = 0,et. modulo imposing some appropriate boundary onditions on 
 [24℄. Onthe other hand, the last equations possess solution. The existene of suhsolutions was proved in [5℄ on behalf of the triviality of the antibraket in theohomology. Thus, the existene of the solutions in the antibraket provesthe existene of the solutions to (17)�(18), et. and (22)�(23), et. In on-lusion, the equations that desribe the Hamiltonian deformation proedurepossess solutions, so we an onstrut onsistent Hamiltonian interationsby means of the equations (17)�(18), et. and (22)�(23), et.At this point, we onsider the interations that an be obtained via arede�nition of the variableszA ! �zA = zA + g�A + � � � : (35)Suh a rede�nition implies that the �rst-lass onstraint funtions and the�rst-lass Hamiltonian are transformed likeGa0 ! �Ga0 = Ga0 �zA + g�A + � � �� = Ga0 + g�A �LGa0�zA + � � � ; (36)H0 ! �H0 = H0 �zA + g�A + � � �� = H0 + g�A ÆLH0ÆzA + � � � : (37)



2850 C. BizdadeaObviously, the rede�nition (35) modi�es as well the other struture fun-tions. The transformations (36)�(37) indue the hanges(0)
! 
 = (0)
 +g�A �LGa0�zA �a0 + � � � ; (38)(0)HB! HB = (0)HB +g�A ÆLH0ÆzA + � � � ; (39)at the level of the BRST harge, respetively, of the BRST-invariant Hamil-tonian. The interations that an be eliminated by means of variable re-de�nitions are usually onsidered as no interations and are alled trivialinterations. Trivial interations appear at the level of the solutions to theequations (17)�(18), et. and (22)�(23), et. as follows. The equation (17)implies that (1)
 is an (0)s -o-yle, where (0)s denotes the undeformed BRSTdi�erential, whih deomposes like (0)s = Æ +  + � � �, with Æ the Koszul�Tatedi�erential (graded by the antighost number, antigh) and  the exteriorderivative along the gauge orbits (graded by the pure ghost number, pgh).The overall degree of (0)s , namely, the ghost number, is de�ned like the di�er-ene between the pure ghost number and the antighost number. We supposethat (1)
 is an (0)s -oboundary (1)
= �(1)� ; (0)
 � : (40)By expanding the right hand-side of the last relation aording to the anti-ghost number, we �nd (1)
= uA�LGa0�zA �a0 + � � � ; (41)where uA = ÆR(1)�ÆzB !BA�����=P=0, suh that the solution (40) deforms in a trivialway the BRST harge (as (40) leads to a deformation of the same type with(38)). Using (40), we �nd�(0)HB; (1)
 � = � ��(1)� ; (0)HB� ; (0)
 � ; (42)suh that from (22) it results (up to an (0)s -exat term) that(1)HB= �(1)� ; (0)HB� = ÆR (1)�Æ�� !�� ÆL (0)HBÆ�� ; (43)



Hamiltonian BRST Interations 2851where �� = �zA; �;P�, and !�� = ���;���. The expansion of the righthand-side of (43) aording to the antighost numberÆR (1)�Æ�� !�� ÆL (0)HBÆ�� = uA ÆLH0ÆzA + � � � ; (44)leads to a trivial deformation of the BRST-invariant Hamiltonian (of thesame type with (39)). Moreover, it an be shown that (40) deforms theremaining struture funtions also in a trivial manner. In onlusion, thetrivial solutions (40) produe trivial interations.In pratial appliations, it is ommonly required that the deformationsshould be loal, i.e., (1)
 , (2)
 , (1)HB , (2)HB , et. have to be loal funtionals. LetF1 = R dD�1xf1 and F2 = R dD�1xf2 be two loal funtionals. If the Dirabraket is loal, then [F1; F2℄ is loal, namely, there exists a loal [f1; f2℄(but de�ned up to a (D � 1)-dimensional divergene), suh that [F1; F2℄ =R dD�1x [f1; f2℄ (if the Dira braket itself is nonloal, the deformations willalso be nonloal). Thus, the equations (17)�(18), et. and (22)�(23), et.an be written as 2 (0)s (1)! = �k (1)j k ; (45)2 (0)s (2)! + �(1)! ; (1)! � = �k (2)j k ; (46)...(0)s (1)h B + �(0)h B ; (1)! � = �k (1)mk ; (47)(0)s (2)h B + �(1)h B; (1)! �+ �(0)h B ; (2)! � = �k (2)mk ; (48)...in terms of the integrands (k)h B and (k)! . Even if the Dira braket is loal,there might however appear obstrutions if one insists on the loality ofdeformations. For instane, even if �(1)
 ; (1)
 � is (0)s -exat, it is not grantedthat it is the BRST variation of a loal funtional. Suh loality problemsappear also in the Lagrangian deformation proedure [5℄. The analysis ofsuh obstrutions an be done with the help of ohomologial tehniques interms of the ohomologial group H(sj ~d), where ~d = dxi�i represents thespatial part of the exterior spae-time derivative. However, in the ase of



2852 C. Bizdadeamost important appliations [5, 11�19℄, the Lagrangian BRST deformationproedure leads to loal interations. Thus, we expet that the Hamilto-nian BRST deformation treatment also outputs loal verties in pratialappliations of interest. 4. Examples4.1. Chern�Simons modelLet us exemplify the prior proedure in the ase of Abelian Chern�Simonsmodel in three dimensions. We start with the Lagrangian ationS0 �Aa�� = 12 Z d3x"���kabAa�F b�� ; (49)where kab is a non-degenerate, symmetri, and onstant matrix, whileF b�� = ��Ab� � ��Ab� � �[�Ab�℄ :Performing the anonial analysis and eliminating the seond-lass on-straints (the independent variables are Aa0, �0a, and Aak), we infer the �rst-lass onstraintsG1a � �0a � 0 ; G2a � �12"0ikkabF bik � 0 ; (50)and the �rst-lass HamiltonianH0 = �2Z d2xAa0G2a : (51)The non-vanishing fundamental Dira brakets read as �Aa0; �0b � = Æab,hAak; Abji = 12"0kjkab, hene the BRST harge takes the form(0)
= Z d2x��0a�a1 � 12"0ikkabF bik�a2� ; (52)where kab is the inverse of kab, and (�a1 ; �a2 ) stand for the fermioni ghostnumber one ghosts. Thus, the BRST operator (0)s splits as (0)s = Æ+. Then,we haveÆAa0 = 0 ; Æ�0a = 0 ; ÆAak = 0 ; Æ�a1 = Æ�a2 = 0 ; (53)ÆP1a = ��0a ; ÆP2a = 12"0ikkabF bik ; (54)Aa0 = �a1 ; �0a = 0 ; Aak = 12�k�a2 ; �a1 = �a2 = 0 ; (55)P1a = P2a = 0 : (56)



Hamiltonian BRST Interations 2853In (54) and (56), P1a and P2a stand for fermioni antighosts orrespondingto the ghosts �a1 , respetively, �a2 . The pure ghost and antighost numbers ofthe variables from the BRST omplex are valued likepgh �zA� = 0 ; pgh ��� � = 1 ; pgh (P� ) = 0 ; (57)antigh �zA� = 0 ; antigh ��� � = 0 ; antigh (P� ) = 1 ; (58)where zA = �Aa�; �0a� ; �� = (�a1 ; �a2) ; P� = (P1a;P2a) : (59)Now, we solve the equation (45). In view of this, we develop (1)! aordingto the antighost number(1)!=(1)! 0 + (1)! 1 + � � �+ (1)! J ; antigh�(1)! J� = J ; gh�(1)! J� = 1; (60)where the last term in (60) an be assumed to be annihilated by , i.e., (1)! J= 0. Thus, in order to ompute the �rst-order deformation of theBRST harge, we need to know H (). Analysing the de�nitions (55)�(56),we remark that the ohomology of  will be generated by F aij , �0a, P� andtheir spatial derivatives, as well as by the undi�erentiated ghosts �a2 (theghosts �a2 are -losed, but their spatial derivatives are -exat, while theghosts �a1 are trivial in the ohomology of  as they are -exat). Conse-quently, the general solution of the equation � = 0 an be written as� = �M ��F aij� ; ��0a� ; [P� ℄� eM (�a2) + � ; (61)where eM (�a2) onstitutes a basis in the (�nite-dimensional) spae of thepolynomials in the ghosts �a2 , while the notation � [q℄ signi�es that � dependson q and its spatial derivatives up to a �nite order. As pgh�(1)! J� = J + 1,from (61) it results that we an represent (1)! J under the form(1)! J= 1(J + 1)!�a1���aJ+1�a12 � � � �aJ+12 : (62)With this hoie, it is simply to see that the -invariant oe�ient �a1���aJ+1belongs to HJ �Æj ~d�, hene it is solution to the equationÆ�a1���aJ+1 + �kbka1���aJ+1 = 0 ; (63)



2854 C. Bizdadeafor some bka1���aJ+1 . Using the result from [29℄ adapted to the Hamilto-nian ontext, it follows that HJ �Æj ~d� vanishes for J > 1, so we an writethat (1)!=(1)! 0 + (1)! 1, with (1)! 1= 12�ab�a2�b2, where �ab pertains to H1 �Æj ~d�.From the latter equations in (54) we have that the general representativeof H1 �Æj ~d� is of the type �ab = CabP2, where Cab are some onstants,antisymmetri in the lower indies, Cab = �Cba. The reason for onsid-ering Cab to be onstant results from the equation that must be obeyedby �ab, namely, Æ�ab = �k �Cab"0kjkdAdj�. In this way, we obtainedthat (1)! 1= 12CabP2�a2�b2. Equation (45) at antighost number zero readsas Æ (1)! 1 + (1)! 0= �knk, whih further yields (1)! 0= Cadkb"0kjAakAdj�b2. Con-sequently, we inferred that the omplete �rst-order deformation of the BRSTharge is pitured by(1)!= Cab �12P2�a2�b2 + kd"0kjAakAbj�d2� : (64)Simple omputation leads to�(1)
 ; (1)
 �=Z d2x��13C[abCmn℄P2m�a2�b2�n2 � "0ijkadC[neCdb℄�a2�b2Ani Aej� :(65)The last relation shows that �(1)
 ; (1)
 � annot be written like an (0)s -exat mod-ulo ~d loal funtional, as required by (46). For this reason it is neessary tohave �(1)
 ; (1)
 � = 0. This ondition takes plae if and only if C[abCmn℄ = 0,so if and only if these onstants verify the Jaobi identity. This further im-plies that (k)
= 0 for all k � 2. Thus, the deformed BRST harge, onsistentto all orders in the deformation parameter, takes the �nal form
 = Z d2x��0a�a1 � "0ikka �12F ik � gCbdAbiAdk� �a2 + 12gCabP2�a2�b2� ;(66)and it is learly a loal funtional.Next, we derive the deformed BRST-invariant Hamiltonian. The BRST-invariant Hamiltonian for the free model is given by (0)HB= H0+2 R d2x�a1P2a,suh that with the help of (64) we �nd�(0)h B ; (1)! � = �2Cabkd"0ijAbj ��d1Aai + �d2�iAa0�� 2CabP2�a2�b1 : (67)



Hamiltonian BRST Interations 2855Under these irumstanes, the solution to the equation (47) reads as(1)h B= 2Cab �kd"0ijAd0AaiAbj +Ab0P2�a2� : (68)Straightforward omputation gives �(1)HB; (1)
 � = 0, hene equation (48) issatis�ed with the hoie (2)h B= 0. Therefore, the higher-order deforma-tion equations for the BRST-invariant Hamiltonian are veri�ed with (3)HB=(4)HB= � � � = 0. Combining the last results, we an write down the ompletedeformed BRST-invariant Hamiltonian likeHB=2Z d2x��Aa0"0ikka �12F ik � gCbdAbiAdk�+ ��a1 � gCabAb0�2�P2a� ;(69)hene it is also a loal funtional.Taking into aount (66) and (69), we an proeed to the identi�ationof the new gauge theory. From the antighost-independent terms in (66)we observe that the deformation of the BRST harge implies the deformed�rst-lass onstraints2a � �"0ikka �12F ik � gCbdAbiAdk� � 0 ; (70)the remaining onstraints being undeformed. The term 12 g CabP2 �a2 �b2shows that the modi�ed onstraint funtions generate a Lie algebra in termsof the struture onstants Cab[2a; 2b℄ = gCab2 : (71)On the other hand, the antighost-independent piee in (69)H = �2Z d2xAa0"0ikka � 12F ik � gCbdAbiAdk� ; (72)is preisely the �rst-lass Hamiltonian of the interating theory. The om-ponents linear in the antighosts from (69) indiate that the Dira braketsamong the new �rst-lass Hamiltonian and deformed onstraint funtionsare modi�ed as [H; 2a℄ = �2gCabAb02 : (73)In onlusion, the resulting oupled �rst-lass theory is nothing but the nonAbelian version of the Chern�Simons model in three dimensions, desribedby the loal Lagrangian ation�S0 �Aa�� = Z d3x"���Aa� �12kabF b�� � 23gCabAb�A�� ; (74)



2856 C. Bizdadeawhere Cab = Cd[bka℄d. As �rst-lass onstraints generate gauge transfor-mations, from the deformations (70) and (71) we an state that the addedinterations involved with (72) modify both the gauge transformations andtheir algebra. 4.2. Two-dimensional nonlinear theoriesNext, we analyze the nontrivial deformations of a two-dimensional gaugetheory, desribed by the Lagrangian ationS0 �Ha�; 'a; Aa�; B��a � = Z d2x�Ha���'a + 12B��a �[�Aa�℄� : (75)The anonial analysis of this model yields (after the elimination of theseond-lass onstraints) the �rst-lass onstraintsG1a � �0a � 0 ; G2a � ��1B01a � 0 ; G3a � p1a � 0 ; G4a � ��1'a � 0 ;(76)and the �rst-lass HamiltonianH0 = Z dx1 (Aa0G2a +Ha1G4a) ; (77)where the non-vanishing Dira brakets among the independent variablesare expressed by�Aa0; �0b � = Æab; h'a;Hb0i = Æ ba ; �Aa1; B01b � = Æab ; �Ha1 ; p1b� = Æab : (78)Consequently, the BRST harge and the BRST-invariant Hamiltonian takethe form (0)
 = Z dx1 ��0a�a1 + p1aCa1 � ��1B01a � �a2 � ��1'a�Ca2 � ; (79)(0)HB = H0 + Z dx1 (�a1P2a + Ca1P2a) ; (80)where the indies 1 and 2 involved with the ghosts and antighosts simplyorrespond to the indies of the assoiated onstraint funtions in (76). Justlike in the previous example, the `free' BRST di�erential redues to the �rsttwo piees, (0)s = Æ + . These two operators are de�ned on the generatorsfrom the BRST omplex asÆzA = 0 ; Æ�� = 0 ; (81)ÆP1a = ��0a ; ÆP1a = �p1a ; ÆP2a = �1B01a ; ÆP2a = �1'a ; (82)Aa0 = �a1 ; �0a = 0 ; 'a = 0 ; Ha0 = ��1Ca2 ; (83)Aa1 = �1�a2 ; B01a = 0 ; Ha1 = Ca1 ; p1a = 0 ; (84)�� = 0 ; P� = 0 ; (85)



Hamiltonian BRST Interations 2857where zA = �Aa0; �0a; 'a;Ha0 ; Aa1; B01a ;Ha1 ; p1a� ; (86)�� = (�a1 ; Ca1 ; �a2 ; Ca2 ) ; P� = (P1a; P1a;P2a; P2a) : (87)Both the antighost and pure ghost numbers of the variables (87) oinidewith the orresponding ones involved with (57)�(58).In order to determine the deformations of the BRST harge and BRST-invariant Hamiltonian, we follow the same line like previously. We start withthe expansion (60) and assume that its last representative an be taken tobe annihilated by . In this ase, the ohomology of  will be generatedby 'a, �0a, B01a , p1a, P� and their spatial derivatives, as well as by the un-di�erentiated ghosts �a2 and Ca2 , hene the general solution of the equation� = 0 is given by� = �M �['a℄ ; ��0a� ; �B01a � ; �p1a� ; [P� ℄� eM (�a2 ; Ca2 ) + � ; (88)where eM (�a2 ; Ca2 ) is a basis in the (�nite-dimensional) spae of the polyno-mials in the ghosts. In this situation we have again that pgh�(1)! J� = J+1,suh that (88) implies that we an take(1)! J= J+1Xk=0ma1���akb1���bJ�k+1�a12 � � � �ak2 Cb12 � � �CbJ�k+12 ; (89)so the -invariant oe�ients ma1���akb1���bJ�k+1 pertain to HJ �Æj ~d�, or, inother words, they must obey the equationÆma1���akb1���bJ�k+1 + �iia1���akb1���bJ�k+1 = 0 : (90)It is easy to see that HJ �Æj ~d� vanishes again for J > 1, suh that (1)!=(1)! 0 + (1)! 1, where (1)! 1= mab�a2�b2 + nabCa2Cb2 + uab�a2Cb2 ; (91)withmab, nab and uab fromH1 �Æj ~d�. The general representative ofH1 �Æj ~d�an be written under the form�ab = �ÆWabÆ' P2 + ��M abP2 + ÆM abÆ'd B01P2d� ; (92)



2858 C. Bizdadeawhere the oe�ients Wab and M ab depend on 'a, the latter ones are an-tisymmetri in the lower indies, M ab = �M ba, while � and � are someonstants. On aount of (92), we simply infer thatÆ�ab = �1 (�Wab + �M abB01)whih on�rms that �ab veri�es the equation (90). Moreover, we observethat �ab is -invariant. For subsequent purpose, we restrit ourselves to thehoiesmab = �12 �M abP2 + ÆM abÆ'd B01P2d� ; uab = �ÆWabÆ' P2 ;nab = 0 and M ab = ÆWabÆ'whih further lead to(1)! 1= �12 �ÆWabÆ' P2 + Æ2WabÆ'Æ'dB01P2d� �a2�b2 � ÆWabÆ' P2�a2Cb2 :By means of the equation Æ (1)! 1 + (1)! 0= �knk, we then �nd that(1)! 0= Wab �Aa1Cb2 + �a2Hb0�� ÆWabÆ' B01�a2Ab1;so the omplete �rst-order deformation of the BRST harge reads as(1)! = �12 �ÆWabÆ' P2 + Æ2WabÆ'Æ'dB01P2d� �a2�b2 � ÆWabÆ' P2�a2Cb2+Wab �Aa1Cb2 + �a2Hb0�� ÆWabÆ' B01�a2Ab1: (93)After some omputation, we arrive at�(1)
 ; (1)
 � = Z dx1�tabwab + ÆtabÆ'd v abd + Æ2tabÆ'nÆ'd z abdn � ; (94)where we performed the notationstab � We[a ÆW b℄Æ'e ; (95)wab = �2Ca2�b2A1 +Ha0 �b2�2 ; (96)v abd = 13P2d�a2�b2�2 �Bd01�a2�b2A1 + P2dCa2�b2�2 ; (97)z abdn = 13Bd01P2n�a2�b2�2 : (98)



Hamiltonian BRST Interations 2859From (94) it follows that �(1)
 ; (1)
 � is not (0)s -exat modulo ~d, as required,therefore it should vanish. This is attained if and only iftab = 0 (99)whih is nothing but the Jaobi identity for a nonlinear gauge algebra. Inonsequene, we an take the seond- and higher-order deformations of theBRST harge to vanish, (k)
= 0, k � 2.Next, we pass to analyse the deformations of the BRST-invariant Hamil-tonian (80). In view of this, we �nd that�(0)HB; (1)
 � = (0)s  Z dx1��ÆWabÆ' P2 + Æ2WabÆ'Æ'dB01P2d� �a2Ab0+ÆWabÆ' P2 ��a2Hb1 �Aa0Cb2�+ ÆWabÆ' B01Aa0Ab1�Wab �Aa1Hb1 +Aa0Hb0��!; (100)so the �rst-order deformation, whih is ontrolled by the equation (47), willbe expressed by(1)h B = ��ÆWabÆ' P2 + Æ2WabÆ'Æ'dB01P2d� �a2Ab0�ÆWabÆ' P2 ��a2Hb1�Aa0Cb2�� 12 ÆWabÆ' B�� Aa�Ab�+WabAa�Hb�: (101)Diret omputation yields �(1)HB ; (1)
 � = 0, hene equation (48) is ful�lledwith the hoie (2)h B= 0. Further, all higher-order deformations of the BRST-invariant Hamiltonian an be taken to vanish, (3)HB=(4)HB= � � � = 0.Putting together the results inferred so far, we obtain that the ompleteform of the deformed BRST harge and deformed BRST-invariant Hamilto-nian for the model under study, onsistent to all orders in the deformationparameter, are expressed by
 = Z dx1 ��0a�a1 + p1aCa1 + ���1'a � gWabAb1�Ca2+���1B01a + gWabHb0 � g ÆWabÆ' B01Ab1� �a2�12g ÆWabÆ' P2�a2�b2 � gP2�a2 �12 Æ2WabÆ'Æ'dBd01�b2 + ÆWabÆ' Cb2��;(102)



2860 C. Bizdadearespetively,HB = Z dx1�Aa0G2a +Ha1G4a + gWabAa�Hb� � g2 ÆWabÆ' B�� Aa�Ab�+��1 + g ÆWabÆ' �a2Ab0�P2 +�C1 + g Æ2WabÆ'Æ'dBd01�a2Ab0+ g ÆWabÆ' ��a2Hb1 + Ca2Ab0��P2� : (103)The above quantities allow us to identify the resulting interating theory.The antighost-independent piees in (102) furnish the deformed �rst-lassonstraints 2a � ��1B01a + gWabHb0 � g ÆWabÆ' B01Ab1 � 0 ; (104)4a � ��1'a � gWabAb1 � 0 ; (105)the others being una�eted. The terms linear in the antighosts show thatsome of the Dira brakets among the new �rst-lass onstraints are alsodeformed, namely,[2a; 2b℄ = �g ÆWabÆ' 2 � g Æ2WabÆ'Æ'dBd014 ; (106)[4a; 2b℄ = �g ÆWabÆ' 4 : (107)On the other hand, with the help of the omponents in (103) independentof ghosts and antighosts, we read the deformed �rst-lass HamiltonianH = Z dx1�Aa0G2a +Ha1G4a + gWabAa�Hb� � g2 ÆWabÆ' B�� Aa�Ab�� ; (108)while the terms linear in the antighosts o�er the Dira brakets among themodi�ed �rst-lass onstraints and �rst-lass Hamiltonian of the type[H;G1a℄ = 2a; [H;G3a℄ = 4a ; (109)[H; 2a℄ = g� Æ2WabÆ'Æ'dBd01Ab0 + ÆWabÆ' Hb1� 4 + g ÆWabÆ' Ab02 ; (110)[H; 4a℄ = g ÆWabÆ' Ab04 : (111)



Hamiltonian BRST Interations 2861In this manner, the oupled model desribes nothing but a two-dimensionalnonlinear gauge theory, pitured by the loal Lagrangian ation�S0 �Ha�; 'a; Aa�; B��a � = Z d2x�Ha� ���'a + gWabAb��+12B��a ��[�Aa�℄ + g ÆWbÆ'a Ab�A��� ; (112)subjet to the deformed gauge transformations�Æ�Ha� = �Æa�� + g ÆWbÆ'a Ab�� ��� + g�ÆWbÆ'a Hb� � Æ2WbÆ'aÆ'dBd��Ab�� � ;(113)�Æ�'a = �gWab�b ; (114)�Æ�Aa� = �Æa�� + g ÆWbÆ'a Ab�� � ; (115)�Æ�B��a = gWab�b�� � g ÆWabÆ' B�� �b: (116)Now, it is lear that the deformation proedure modi�es the ation, thegauge transformations, as well as their algebra.5. ConlusionTo onlude with, in this paper we have presented a Hamiltonian BRSTapproah to the onstrution of onsistent interations among �elds withgauge freedom. Our proedure reformulates the problem of onstrutingHamiltonian onsistent interations as a deformation problem of the BRSTharge and BRST-invariant Hamiltonian of a given �free� theory. We havederived the general equations that govern the Hamiltonian BRST deforma-tion method and proved that they possess solutions. Next, we have writtendown the loal version of these equations and disussed on the loality oftheir solutions. Finally, the general theory was exempli�ed in the ase of theChern-Simons model in three dimensions and of a two-dimensional nonlin-ear gauge theory. In onnetion with these models, we expliitly obtainedthe deformed �rst-lass onstraints, �rst-lass Hamiltonian, and aompa-nying Hamiltonian gauge algebra. We think that our approah togetherwith the general results in [26℄ might be suessfully applied, among others,to the omputation of loal BRST ohomologies for those theories whoseLagrangian version is more intriate than the Hamiltonian one.This work has been supported by the Romanian National Counil forAademi Sienti� Researh (CNCSIS) grant.
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